1
|
Sonin DL, Medved MS, Khapchaev AY, Sidorova MV, Palkeeva ME, Kazakova OA, Papayan GV, Mochalov DA, Minasyan SM, Anufriev IE, Mukhametdinova DV, Paramonova NM, Balabanova KM, Lopatina AS, Aleksandrov IV, Semenova NY, Kordyukova AA, Zaichenko KV, Shirinsky VP, Galagudza MM. Antiedemic Effect of the Myosin Light Chain Kinase Inhibitor PIK7 in the Rat Model of Myocardial Ischemia Reperfusion Injury. Curr Issues Mol Biol 2025; 47:33. [PMID: 39852148 PMCID: PMC11763459 DOI: 10.3390/cimb47010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Myocardial ischemia-reperfusion injury increases myocardial microvascular permeability, leading to enhanced microvascular filtration and interstitial fluid accumulation that is associated with greater microvascular obstruction and inadequate myocardial perfusion. A burst of reactive oxygen species and inflammatory mediators during reperfusion causes myosin light chain kinase (MLCK)-dependent endothelial hyperpermeability, which is considered a preventable cause of reperfusion injury. In the present study, a single intravenous injection of MLCK peptide inhibitor PIK7 (2.5 mg/kg or 40 mg/kg) was found to suppress the vascular hyperpermeability caused by ischemia/reperfusion injury in an in vivo rat model. The antiedemic effect of PIK7 is transient and ceases within 90 min of reperfusion. The early no-reflow detected for the first time after 30 min ischemia in this model of myocardial infarction reduces the area accessible for PIK7. Electron microscopy has shown membrane-bound blebs of endotheliocytes, which partially or completely obturate the capillary lumen, and few capillaries with signs of intercellular gap formation in samples obtained from the center of the early no-reflow zone in control and PIK7-injected rats. Co-injection of PIK7 with NO donor sodium nitroprusside (SNP) increases blood flow in the zone of early no-reflow, while reducing the increased vascular permeability caused by SNP.
Collapse
Affiliation(s)
- Dmitry L. Sonin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
| | - Mikhail S. Medved
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Asker Y. Khapchaev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Maria V. Sidorova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Marina E. Palkeeva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Olga A. Kazakova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Garry V. Papayan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Scientific and Educational Institute of Biomedicine, Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Daniil A. Mochalov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Sarkis M. Minasyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Scientific and Educational Institute of Biomedicine, Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Ilya E. Anufriev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 Saint-Petersburg, Russia
| | - Daria V. Mukhametdinova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Natalia M. Paramonova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Ksenia M. Balabanova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Anastasia S. Lopatina
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Ilia V. Aleksandrov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Natalya Yu. Semenova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Anna A. Kordyukova
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
| | - Kirill V. Zaichenko
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
| | - Vladimir P. Shirinsky
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Michael M. Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
- Department of Pathophysiology with Clinical Pathophysiology Course, Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Shimizu Y, Luo H, Murohara T. Disease-Specific Alteration of Cardiac Lymphatics: A Review from Animal Disease Models to Clinics. Int J Mol Sci 2024; 25:10656. [PMID: 39408983 PMCID: PMC11477446 DOI: 10.3390/ijms251910656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
For many years, the significance of cardiac lymphatic vessels was largely overlooked in clinical practice, with little consideration given to their role in the pathophysiology or treatment of cardiac diseases. However, recent research has brought renewed attention to these vessels, progressively illuminating their function and importance within the realm of cardiovascular science. Experimental studies, particularly those utilizing animal models of cardiac disease, have demonstrated a clear relationship between cardiac lymphatic vessels and both the pathogenesis and progression of these conditions. These findings have prompted a growing interest in potential therapeutic applications that specifically target the cardiac lymphatic system. Conversely, while clinical investigations into cardiac lymphatics remain limited, recent studies have begun to explore their identification through specific surface markers, as well as the expression dynamics of lymphangiogenic factors. These studies have increasingly highlighted associations of lymphatic dysfunction with inflammation and fibrosis, both of which negatively impact cardiac function and remodeling across various pathological states. Despite these advances, comprehensive reviews of the current knowledge regarding the cardiac lymphatic vasculature, particularly within specific disease contexts, remain scarce. This review aims to address this gap by providing a detailed synthesis of existing reports, encompassing both animal model research and studies on human clinical specimens, with a special focus on the role of cardiac lymphatic vessels in different disease states.
Collapse
|
3
|
Song G, Liu D, Ma J, Zhan Y, Ma F, Liu G. Cardiac Lymphatics and Therapeutic Prospects in Cardiovascular Disease: New Perspectives and Hopes. Cardiol Rev 2024:00045415-990000000-00289. [PMID: 39150263 DOI: 10.1097/crd.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The lymphatic system is the same reticular fluid system as the circulatory system found throughout the body in vascularized tissues. Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in maintaining tissue fluid homeostasis, immune cell transport, and lipid absorption. The heart also has an extensive lymphatic network, and as research on cardiac lymphatics has progressed in recent years, more and more studies have found that cardiac lymphangiogenesis may ameliorate certain cardiovascular diseases, and therefore stimulation of cardiac lymphangiogenesis may be an important tool in the future treatment of cardiovascular diseases. This article briefly reviews the development and function of cardiac lymphatic vessels, the interaction of cardiac lymphatic vessels with cardiovascular diseases (including atrial fibrillation, coronary atherosclerosis, and heart failure), and finally discusses the therapeutic potential of targeted cardiac lymphatic therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Guoyuan Song
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Da Liu
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianwei Ma
- Gastrointestinal Disease Diagnosis and Treatment Center, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yinge Zhan
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangfang Ma
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gang Liu
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Liu Y, Wang S, Zhang J, Sun Q, Xiao Y, Chen J, Yao M, Zhang G, Huang Q, Zhao T, Huang Q, Shi X, Feng C, Ai K, Bai Y. Reprogramming the myocardial infarction microenvironment with melanin-based composite nanomedicines in mice. Nat Commun 2024; 15:6651. [PMID: 39103330 PMCID: PMC11300711 DOI: 10.1038/s41467-024-50854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.
Collapse
Affiliation(s)
- Yamei Liu
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yi Xiao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, P.R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaojing Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Can Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
5
|
Rossitto G, Bertoldi G, Rutkowski JM, Mitchell BM, Delles C. Sodium, Interstitium, Lymphatics and Hypertension-A Tale of Hydraulics. Hypertension 2024; 81:727-737. [PMID: 38385255 PMCID: PMC10954399 DOI: 10.1161/hypertensionaha.123.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.
Collapse
Affiliation(s)
- Giacomo Rossitto
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | - Giovanni Bertoldi
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | | | - Brett M. Mitchell
- Dept. of Medical Physiology, Texas A&M University School of Medicine, USA
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
6
|
Kiseleva DG, Kirichenko TV, Markina YV, Cherednichenko VR, Gugueva EA, Markin AM. Mechanisms of Myocardial Edema Development in CVD Pathophysiology. Biomedicines 2024; 12:465. [PMID: 38398066 PMCID: PMC10887157 DOI: 10.3390/biomedicines12020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial edema is the excess accumulation of fluid in the myocardial interstitium or cardiac cells that develops due to changes in capillary permeability, loss of glycocalyx charge, imbalance in lymphatic drainage, or a combination of these factors. Today it is believed that this condition is not only a complication of cardiovascular diseases, but in itself causes aggravation of the disease and increases the risks of adverse outcomes. The study of molecular, genetic, and mechanical changes in the myocardium during edema may contribute to the development of new approaches to the diagnosis and treatment of this condition. This review was conducted to describe the main mechanisms of myocardial edema development at the molecular and cellular levels and to identify promising targets for the regulation of this condition based on articles cited in Pubmed up to January 2024.
Collapse
Affiliation(s)
- Diana G. Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
- Chazov National Medical Research Center of Cardiology, Ac. Chazov Str. 15A, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Vadim R. Cherednichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Ekaterina A. Gugueva
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
- Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
7
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
8
|
El-Diasty MM, Rodríguez J, Pérez L, Eiras S, Fernández AL. Accumulation of Inflammatory Mediators in the Normal Pericardial Fluid. Int J Mol Sci 2023; 25:157. [PMID: 38203327 PMCID: PMC10779335 DOI: 10.3390/ijms25010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
There is paucity of studies that focus on the composition of pericardial fluid under resting conditions. The purpose of this study is to determine the levels of inflammatory mediators in pericardial fluid and their correlation with plasma levels in patients undergoing elective cardiac surgery. We conducted a prospective cohort study on candidates for elective aortic valve replacement surgery. Pericardial fluid and peripheral venous blood samples were collected after opening the pericardium. Levels of interleukin 1α (IL-1α); interleukin 1β (IL-1β); interleukin 2 (IL-2) interleukin 4 (IL-4); interleukin 6 (IL-6); interleukin 8 (IL8); interleukin 10 (IL10); tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) epidermal growth factor (EGF), soluble E-selectin, L-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) were determined in both pericardial fluid and serum samples. A total of 45 patients with a mean age of 74 years were included of which 66% were males. Serum levels of all study mediators were within normal limits. Serum and pericardial levels of IL-1 α, IL-1 β, IL-2, IL-4, and IL-10 were similar. Levels of VEGF, EGF, VCAM-2, ICAM 1, E-selectin, P-selectin, and L-selectin were significantly lower in pericardial fluid than in serum. However, levels of IL-6, IL-8, TNF-α, IFN-γ, MCP-1, and MCP-1 were significantly higher in the pericardial fluid than in serum. Under normal conditions, the pattern of distribution of different inflammatory mediators in the pericardial fluid does not reflect serum levels. This may either reflect the condition of the underlying myocardium and epicardial fat or the activity of the mesothelial and mononuclear cells present in pericardial fluid.
Collapse
Affiliation(s)
- Mohammad M. El-Diasty
- Cardiac Surgery Department, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Division of Clinical Biochemistry, University Hospital, 15706 Santiago de Compostela, Spain; (J.R.); (L.P.)
| | - Javier Rodríguez
- Division of Clinical Biochemistry, University Hospital, 15706 Santiago de Compostela, Spain; (J.R.); (L.P.)
| | - Luis Pérez
- Division of Clinical Biochemistry, University Hospital, 15706 Santiago de Compostela, Spain; (J.R.); (L.P.)
| | - Sonia Eiras
- Laboratory of Cardiovascular Research, University Hospital, 15706 Santiago de Compostela, Spain;
| | - Angel L. Fernández
- Division of Cardiac Surgery, University Hospital, Department of Surgery, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Kurup S, Tan C, Kume T. Cardiac and intestinal tissue conduct developmental and reparative processes in response to lymphangiocrine signaling. Front Cell Dev Biol 2023; 11:1329770. [PMID: 38178871 PMCID: PMC10764504 DOI: 10.3389/fcell.2023.1329770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphatic vessels conduct a diverse range of activities to sustain the integrity of surrounding tissue. Besides facilitating the movement of lymph and its associated factors, lymphatic vessels are capable of producing tissue-specific responses to changes within their microenvironment. Lymphatic endothelial cells (LECs) secrete paracrine signals that bind to neighboring cell-receptors, commencing an intracellular signaling cascade that preludes modifications to the organ tissue's structure and function. While the lymphangiocrine factors and the molecular and cellular mechanisms themselves are specific to the organ tissue, the crosstalk action between LECs and adjacent cells has been highlighted as a commonality in augmenting tissue regeneration within animal models of cardiac and intestinal disease. Lymphangiocrine secretions have been owed for subsequent improvements in organ function by optimizing the clearance of excess tissue fluid and immune cells and stimulating favorable tissue growth, whereas perturbations in lymphatic performance bring about the opposite. Newly published landmark studies have filled gaps in our understanding of cardiac and intestinal maintenance by revealing key players for lymphangiocrine processes. Here, we will expand upon those findings and review the nature of lymphangiocrine factors in the heart and intestine, emphasizing its involvement within an interconnected network that supports daily homeostasis and self-renewal following injury.
Collapse
Affiliation(s)
- Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Honors College, University of Illinois at Chicago, Chicago, IL, United States
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Eltobshy SAG, Messiha R, Metias E, Sarhan M, El-Gamal R, El-Shaieb A, Ghalwash M. Effect of SGLT2 Inhibitor on Cardiomyopathy in a Rat Model of T2DM: Possible involvement of Cardiac Aquaporins. Tissue Cell 2023; 85:102200. [PMID: 37660414 DOI: 10.1016/j.tice.2023.102200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Diabetic cardiomyopathy (DCM) causes arrhythmia, heart failure, and sudden death. Empagliflozin, an SGLT-2 (Sodium glucose co-transporter) inhibitor, is an anti-diabetic medication that decreases blood glucose levels by stimulating urinary glucose excretion. Several aquaporins (AQPs) including AQP-1-3 and - 4 and their involvement in the pathogenesis in different cardiac diseases were detected. In the current study the effect of Empagliflozin on diabetic cardiomyopathy and the possible involvement of cardiac AQPs were investigated. METHODS 56 adult male Sprague-Dawley rats were divided into 4 groups: Control, DCM: type 2 diabetic rats, low EMPA+DCM received empagliflozin (10 mg/kg/day) and high EMPA+DCM received empagliflozin (30 mg/kg/day) for 6 weeks. RESULTS Administration of both EMPA doses, especially in high dose group, led to significant improvement in ECG parameters. Also, a significant improvement in biochemical and cardiac oxidative stress markers (significant decrease in serum CK-MB, and malondialdehyde while increasing catalase) with decreased fibrosis and edema in histopathological examination and a significant attenuation in apoptosis (caspase-3) and edema (AQP-1& -4). CONCLUSION Both doses of Empagliflozin have a cardioprotective effect and reduced myocardial tissue edema with high dose having a greater effect. This might be due to attenuation of oxidative stress, fibrosis and edema mediated through AQP-1, - 3& - 4 expression.
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Refka Messiha
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Sarhan
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed El-Shaieb
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura university, Mansoura 35516, Egypt
| | - Mohammad Ghalwash
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
11
|
Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, Rovira II, Galis ZS, Muratoglu SC. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest 2023; 133:e171582. [PMID: 37655664 PMCID: PMC10471172 DOI: 10.1172/jci171582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.
Collapse
Affiliation(s)
- Babak J. Mehrara
- Department of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna T. Wachter
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Patricia Greenwel
- Division of Digestive Diseases & Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, and
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Abstract
In recent years, the lymphatic system has received increasing attention due to the fast-growing number of findings about its diverse novel functional roles in health and disease. It is well documented that the lymphatic vasculature plays major roles in the maintenance of tissue-fluid balance, the immune response, and in lipid absorption. However, recent studies have identified an additional growing number of novel and sometimes unexpected functional roles of the lymphatic vasculature in normal and pathological conditions in different organs. Among those, cardiac lymphatics have been shown to play important roles in heart development, ischemic cardiac disease, and cardiac disorders. In this review, we will discuss some of those novel functional roles of cardiac lymphatics, as well as the therapeutic potential of targeting lymphatics for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
13
|
Ruliffson BNK, Whittington CF. Regulating Lymphatic Vasculature in Fibrosis: Understanding the Biology to Improve the Modeling. Adv Biol (Weinh) 2023; 7:e2200158. [PMID: 36792967 DOI: 10.1002/adbi.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Indexed: 02/17/2023]
Abstract
Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.
Collapse
Affiliation(s)
- Brian N K Ruliffson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| | - Catherine F Whittington
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| |
Collapse
|
14
|
Lim S, Kim SW, Kim IK, Song BW, Lee S. Organ-on-a-chip: Its use in cardiovascular research. Clin Hemorheol Microcirc 2023; 83:315-339. [PMID: 36502306 DOI: 10.3233/ch-221428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.
Collapse
Affiliation(s)
- Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| |
Collapse
|
15
|
Liu X, Cui K, Wu H, Li KS, Peng Q, Wang D, Cowan DB, Dixon JB, Sathish Srinivasan R, Bielenberg DR, Chen K, Wang DZ, Chen Y, Chen H. Promoting Lymphangiogenesis and Lymphatic Growth and Remodeling to Treat Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2023; 43:e1-e10. [PMID: 36453280 PMCID: PMC9780193 DOI: 10.1161/atvbaha.122.318406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (X.L.)
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | | | - Kathryn S Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Donghai Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta (J.B.D.)
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (R.S.S.)
| | - Diane R Bielenberg
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, MA (K.C.)
| | - Da-Zhi Wang
- USF Heart Institute, Center for Regenerative Medicine, College of Medicine Internal Medicine, University of South Florida, Tampa (D.Z.W.)
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham (Y.C.)
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| |
Collapse
|
16
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Li C, Qin D, Hu J, Yang Y, Hu D, Yu B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front Immunol 2022; 13:947147. [PMID: 36483560 PMCID: PMC9723346 DOI: 10.3389/fimmu.2022.947147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of heart failure with preserved ejection fraction is increasing in patients with obesity, diabetes, hypertension, and in the aging population. However, there is a lack of adequate clinical treatment. Patients with obesity-related heart failure with preserved ejection fraction display unique pathophysiological and phenotypic characteristics, suggesting that obesity could be one of its specific phenotypes. There has been an increasing recognition that overnutrition in obesity causes adipose tissue expansion and local and systemic inflammation, which consequently exacerbates cardiac remodeling and leads to the development of obese heart failure with preserved ejection fraction. Furthermore, overnutrition leads to cellular metabolic reprogramming and activates inflammatory signaling cascades in various cardiac cells, thereby promoting maladaptive cardiac remodeling. Growing evidence indicates that the innate immune response pathway from the NLRP3 inflammasome, to interleukin-1 to interleukin-6, is involved in the generation of obesity-related systemic inflammation and heart failure with preserved ejection fraction. This review established the existence of obese heart failure with preserved ejection fraction based on structural and functional changes, elaborated the inflammation mechanisms of obese heart failure with preserved ejection fraction, proposed that NLRP3 inflammasome activation may play an important role in adiposity-induced inflammation, and summarized the potential therapeutic approaches.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China,*Correspondence: Bilian Yu,
| |
Collapse
|
18
|
Vasques‐Nóvoa F, Angélico‐Gonçalves A, Alvarenga JM, Nobrega J, Cerqueira RJ, Mancio J, Leite‐Moreira AF, Roncon‐Albuquerque R. Myocardial oedema: pathophysiological basis and implications for the failing heart. ESC Heart Fail 2022; 9:958-976. [PMID: 35150087 PMCID: PMC8934951 DOI: 10.1002/ehf2.13775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Myocardial fluid homeostasis relies on a complex interplay between microvascular filtration, interstitial hydration, cardiomyocyte water uptake and lymphatic removal. Dysregulation of one or more of these mechanisms may result in myocardial oedema. Interstitial and intracellular fluid accumulation disrupts myocardial architecture, intercellular communication, and metabolic pathways, decreasing contractility and increasing myocardial stiffness. The widespread use of cardiac magnetic resonance enabled the identification of myocardial oedema as a clinically relevant imaging finding with prognostic implications in several types of heart failure. Furthermore, growing experimental evidence has contributed to a better understanding of the physical and molecular interactions in the microvascular barrier, myocardial interstitium and lymphatics and how they might be disrupted in heart failure. In this review, we summarize current knowledge on the factors controlling myocardial water balance in the healthy and failing heart and pinpoint the new potential therapeutic avenues.
Collapse
Affiliation(s)
- Francisco Vasques‐Nóvoa
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - António Angélico‐Gonçalves
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - José M.G. Alvarenga
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - João Nobrega
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Jennifer Mancio
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Adelino F. Leite‐Moreira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Roberto Roncon‐Albuquerque
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| |
Collapse
|
19
|
Lodhi S, Stone JP, Entwistle TR, Fildes JE. The Use of Hemoglobin-Based Oxygen Carriers in Ex Vivo Machine Perfusion of Donor Organs for Transplantation. ASAIO J 2022; 68:461-470. [PMID: 35220355 DOI: 10.1097/mat.0000000000001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There has been significant progress in the development of ex vivo machine perfusion for the nonischemic preservation of donor organs. However, several complications remain, including the logistics of using human blood for graft oxygenation and hemolysis occurring as a result of mechanical technology. Recently, hemoglobin-based oxygen carriers, originally developed for use as blood substitutes, have been studied as an alternative to red blood cell-based perfusates. Although research in this field is somewhat limited, the findings are promising. We offer a brief review of the use of hemoglobin-based oxygen carriers in ex vivo machine perfusion and discuss future directions that will likely have a major impact in progressing oxygen carrier use in clinical practice.
Collapse
Affiliation(s)
- Sirat Lodhi
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John P Stone
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Timothy R Entwistle
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - James E Fildes
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Stewart RH, Cox CS, Allen SJ, Laine GA. Myocardial Edema Provides a Link Between Pulmonary Arterial Hypertension and Pericardial Effusion. Circulation 2022; 145:793-795. [PMID: 35286166 DOI: 10.1161/circulationaha.121.057666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Randolph H Stewart
- Michael E. DeBakey Institute (R.H.S., C.S.C., S.J.A., G.A.L), Texas A&M University, College Station.,Department of Veterinary Physiology and Pharmacology (R.H.S.), Texas A&M University, College Station
| | - Charles S Cox
- Michael E. DeBakey Institute (R.H.S., C.S.C., S.J.A., G.A.L), Texas A&M University, College Station.,McGovern Medical School at UTHealth, University of Texas Health Science Center at Houston (C.S.C.)
| | - Steven J Allen
- Michael E. DeBakey Institute (R.H.S., C.S.C., S.J.A., G.A.L), Texas A&M University, College Station
| | - Glen A Laine
- Michael E. DeBakey Institute (R.H.S., C.S.C., S.J.A., G.A.L), Texas A&M University, College Station
| |
Collapse
|
21
|
The role of AQP3 and AQP4 channels in cisplatin-induced cardiovascular edema and the protective effect of melatonin. Mol Biol Rep 2021; 48:7457-7465. [PMID: 34657253 DOI: 10.1007/s11033-021-06763-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The present study evaluates the development of edema, the change in the AQP3, AQP4, p53 and Bax gene expressions, and the protective effects of melatonin in rat hearts administered with cisplatin. METHODS AND RESULTS A total of 28 Wistar albino rats were divided into four groups. The vehicle was administered intraperitoneally (i.p.) to the rats in the control group. The melatonin group (Mel) received melatonin at a dose of 10 mg/kg for 13 days. The cisplatin group (Cis) received cisplatin on days 1, 5, 9 and 13 at a dose of 4 mg/kg. The rats in the cisplatin + melatonin (Cis+Mel) group underwent the procedures both in the Mel and Cis groups. Blood and left ventricular samples were taken and analyzed on day 14 of the study. AQP3, p53 and Bax gene expressions were found to be significantly increased following cisplatin administration compared to the control, while melatonin administration significantly decreased the expression of these genes (p < 0.05). Melatonin administration also significantly decreased the level of AQP4 gene expression compared to the cis. On histological examination, congestion, hemorrhage, extracellular and intracellular edema, and degenerative changes were significantly more common in the Cis than in the control. Melatonin administration significantly decreased intracellular edema (p = 0.010) and degenerative changes (p = 0.010), and the improvement in extracellular edema was close to statistical significance (p = 0.051) in melatonin. CONCLUSIONS These results indicate that melatonin had an ameliorative effect on myocardial edema and AQP channels, and that it may be used as a protective molecule against myocardial edema secondary to cisplatin administration.
Collapse
|
22
|
Rame JE, Müller J. Myocardial Edema Revisited in a New Paradigm of Cardiac Electrical Microcurrent Application in Heart Failure. Bioelectricity 2021; 3:171-175. [PMID: 34729463 PMCID: PMC8558069 DOI: 10.1089/bioe.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Undisturbed bioelectricity is a prerequisite for normal organ function. This is especially true for organs with high electrical activity such as the heart and the nervous system. Under clinical conditions, however, this can hardly be determined in patients with disturbed organ function and is therefore largely ignored. Here, based on clinical data, we will discuss whether the direct application of an external electric current (in the physiological μA range) together with an electrical field to hearts with impaired pump function can explain the functional improvement of the hearts by edema reduction triggered by electro-osmosis.
Collapse
Affiliation(s)
- Jesus Eduardo Rame
- Department of Medicine, Jefferson Heart Institute, Philadelphia, Pennsylvania, USA
| | - Johannes Müller
- Department of Bioelectricity and Medical Research, Berlin Heals, Berlin, Germany
| |
Collapse
|
23
|
Cruz-Moreira D, Visone R, Vasques-Nóvoa F, S Barros A, Leite-Moreira A, Redaelli A, Moretti M, Rasponi M. Assessing the influence of perfusion on cardiac microtissue maturation: A heart-on-chip platform embedding peristaltic pump capabilities. Biotechnol Bioeng 2021; 118:3128-3137. [PMID: 34019719 PMCID: PMC8362142 DOI: 10.1002/bit.27836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023]
Abstract
Heart‐on‐chip is an unprecedented technology for recapitulating key biochemical and biophysical cues in cardiac pathophysiology. Several designs have been proposed to improve its ability to mimic the native tissue and establish it as a reliable research platform. However, despite mimicking one of most vascularized organs, reliable strategies to deliver oxygen and substrates to densely packed constructs of metabolically demanding cells remain unsettled. Herein, we describe a new heart‐on‐chip platform with precise fluid control, integrating an on‐chip peristaltic pump, allowing automated and fine control over flow on channels flanking a 3D cardiac culture. The application of distinct flow rates impacted on temporal dynamics of microtissue structural and transcriptional maturation, improving functional performance. Moreover, a widespread transcriptional response was observed, suggesting flow‐mediated activation of critical pathways of cardiomyocyte structural and functional maturation and inhibition of cardiomyocyte hypoxic injury. In conclusion, the present design represents an important advance in bringing engineered cardiac microtissues closer to the native heart, overcoming traditional bulky off‐chip fluid handling systems, improving microtissue performance, and matching oxygen and energy substrate requirements of metabolically active constructs, avoiding cellular hypoxia. Distinct flow patterns differently impact on microtissue performance and gene expression program.
Collapse
Affiliation(s)
- Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Francisco Vasques-Nóvoa
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - António S Barros
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
24
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Brakenhielm E, González A, Díez J. Role of Cardiac Lymphatics in Myocardial Edema and Fibrosis: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 76:735-744. [PMID: 32762908 DOI: 10.1016/j.jacc.2020.05.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
The cardiac lymphatic network plays a key role in regulation of myocardial extracellular volume and immune cell homeostasis. In different pathological conditions cardiac lymphatics undergo significant remodeling, with insufficient lymphatic function and/or lymphangiogenesis leading to fluid accumulation and development of edema. Additionally, by modulating the reuptake of tissue-infiltrating immune cells, lymphatics regulate immune responses. Available evidence suggests that both edema and inadequate immune response resolution may contribute to extracellular matrix remodeling and interstitial myocardial fibrosis. Interestingly, stimulation of lymphangiogenesis has been shown to improve cardiac function and reduce the progression of myocardial fibrosis during heart failure development after myocardial infarction. This review goes through the available clinical and experimental data supporting a role for cardiac lymphatics in cardiac disease, focusing on the current evidence linking poor cardiac lymphatic transport to the fibrogenic process and discussing potential avenues for novel biomarkers and therapeutic targets to limit cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1096, Faculty of Medicine and Pharmacy, Rouen, France
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain; Departments of Nephrology and Cardiology, University of Navarra Clinic, Pamplona, Spain.
| |
Collapse
|
26
|
Wiig H. Editorial commentary: Trends in cardiovascular medicine From deep in the heart - An emerging role of cardiac lymphatics. Trends Cardiovasc Med 2020; 31:339-340. [PMID: 32679301 DOI: 10.1016/j.tcm.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Helge Wiig
- Department of Biomedicine, University of Bergen, Norway.
| |
Collapse
|
27
|
Korneva YS, Ukrainets RV. The role of the cardiac lymphatic system in the development and progression of heart failure and novel therapeutic approaches for its management in post-infarction cardiac remodeling. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cardiac lymphatic vessels play a vital role in maintaining homeostasis in both physiological and pathological conditions, providing outflow of metabolites. It has been shown that myocardial infarction and postinfarction cardiac remodeling is accompanied by the lymphatic remodeling, which entails functional disorders and is of great importance in heart failure pathogenesis. As a result of progressive myocardial edema, hypoxia and fibrosis of the interstitial space increase, aggravating edema. Other pathways of additional myocardial damage and contractility reduction are triggered. Lymphatic efflux is associated with arrhythmias. Experimental models showed the positive effect of exogenous activation of lymphangiogenesis in relation to the prevention and treatment of heart failure, which can be further used to improve treatment regimens. This review discusses cardiac lymphatic remodeling after myocardial infarction, as well as the pathogenesis of related complications.
Collapse
Affiliation(s)
- Yu. S. Korneva
- Smolensk State Medical University;
Smolensk Regional Institute of Pathology
| | | |
Collapse
|
28
|
Myocardial Fluid Balance and Pathophysiology of Myocardial Edema in Coronary Artery Bypass Grafting. Cardiol Res Pract 2020; 2020:3979630. [PMID: 32550020 PMCID: PMC7256715 DOI: 10.1155/2020/3979630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial edema is one of the most common complications of coronary artery bypass grafting (CABG) that is linearly related to many coronary artery diseases. Myocardial edema can cause several consequences including systolic dysfunction, diastolic dysfunction, arrhythmia, and cardiac tissue fibrosis that can increase mortality in CABG. Understanding myocardial fluid balance and tissue and systemic fluid regulation is crucial in order to ultimately link how coronary artery bypass grafting can cause myocardial edema in such a setting. The identification of susceptible patients by using imaging modalities is still challenging. Future studies about the technique of imaging modalities, examination protocols, prevention, and treatment of myocardial edema should be carried out, in order to limit myocardial edema occurrence and prevent complications.
Collapse
|
29
|
Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Res Cardiol 2020; 115:39. [PMID: 32451732 PMCID: PMC7248044 DOI: 10.1007/s00395-020-0798-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous disease for which our pathophysiological understanding is still limited and specific prevention and treatment strategies are lacking. HFpEF is characterised by diastolic dysfunction and cardiac remodelling (fibrosis, inflammation, and hypertrophy). Recently, microvascular dysfunction and chronic low-grade inflammation have been proposed to participate in HFpEF development. Furthermore, several recent studies demonstrated the occurrence of generalized lymphatic dysfunction in experimental models of risk factors for HFpEF, including obesity, hypercholesterolaemia, type 2 diabetes mellitus (T2DM), hypertension, and aging. Here, we review the evidence for a combined role of coronary (micro)vascular dysfunction and lymphatic vessel alterations in mediating key pathological steps in HFpEF, including reduced cardiac perfusion, chronic low-grade inflammation, and myocardial oedema, and their impact on cardiac metabolic alterations (oxygen and nutrient supply/demand imbalance), fibrosis, and cardiomyocyte stiffness. We focus primarily on HFpEF caused by metabolic risk factors, such as obesity, T2DM, hypertension, and aging.
Collapse
|
30
|
Nielsen NR, Rangarajan KV, Mao L, Rockman HA, Caron KM. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. Am J Physiol Heart Circ Physiol 2020; 318:H895-H907. [PMID: 32142379 DOI: 10.1152/ajpheart.00436.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and hypertension. The aim of this study was to establish a murine model of myocardial edema and elucidate the response of cardiac lymphatics and the myocardium. Myocardial edema without infarction was induced in mice by cauterizing the coronary sinus, increasing pressure in the coronary venous system, and inducing myocardial edema. In male mice, there was rapid development of edema 3 h following coronary sinus cauterization (CSC), with associated dilation of cardiac lymphatics. By 24 h, males displayed significant cardiovascular contractile dysfunction. In contrast, female mice exhibited a temporal delay in the formation of myocardial edema, with onset of cardiovascular dysfunction by 24 h. Furthermore, myocardial edema induced a ring of fibrosis around the epicardial surface of the left ventricle in both sexes that included fibroblasts, immune cells, and increased lymphatics. Interestingly, the pattern of fibrosis and the cells that make up the fibrotic epicardial ring differ between sexes. We conclude that a novel surgical model of myocardial edema without infarct was established in mice. Cardiac lymphatics compensated by exhibiting both an acute dilatory and chronic growth response. Transient myocardial edema was sufficient to induce a robust epicardial fibrotic and inflammatory response, with distinct sex differences, which underscores the sex-dependent differences that exist in cardiac vascular physiology.NEW & NOTEWORTHY Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and high blood pressure. Cardiac lymphatics regulate interstitial fluid balance and, in a myocardial infarction model, have been shown to be therapeutically targetable by increasing heart function. Cardiac lymphatics have only rarely been studied in a noninfarct setting in the heart, and so we characterized the first murine model of increased coronary sinus pressure to induce myocardial edema, demonstrating distinct sex differences in the response to myocardial edema. The temporal pattern of myocardial edema induction and resolution is different between males and females, underscoring sex-dependent differences in the response to myocardial edema. This model provides an important platform for future research in cardiovascular and lymphatic fields with the potential to develop therapeutic interventions for many common cardiovascular diseases.
Collapse
Affiliation(s)
- Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
31
|
Wu MA, Catena E, Cogliati C, Ottolina D, Castelli A, Rech R, Fossali T, Ippolito S, Brucato AL, Colombo R. Myocardial edema in paroxysmal permeability disorders: The paradigm of Clarkson's disease. J Crit Care 2020; 57:13-18. [PMID: 32006896 DOI: 10.1016/j.jcrc.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/29/2019] [Accepted: 01/13/2020] [Indexed: 01/28/2023]
Abstract
PURPOSE Paroxysmal Permeability Disorders (PPDs) comprise a variety of diseases characterized by recurrent and transitory increase of endothelial permeability. Idiopathic Systemic Capillary Leak Syndrome (ISCLS) is a rare PPD that leads to an abrupt massive shift of fluids and proteins from the intravascular to the interstitial compartment. In some cases, tissue edema may involve the myocardium, but its role in the development of shock has not been elucidated so far. MATERIALS AND METHODS Assessment of cardiac involvement during ten life-threatening ISCLS episodes admitted to ICU. RESULTS Transthoracic echocardiographic examination was performed in eight episodes, whereas a poor acoustic window prevented cardiac ultrasound assessment in two episodes. Myocardial edema was detected by echocardiography in eight episodes and marked pericardial effusion in one-episode. Cardiac magnetic resonance showed diffuse myocardial edema in another episode. In one case, myocardial edema caused fulminant left ventricular dysfunction, which required extracorporeal life support. The mean septum thickness was higher during the shock phase compared to the recovery phase [15.5 mm (13.1-21 mm) vs. 9.9 mm (9-11.3 mm), p = .0003]. Myocardial edema resolved within 72 h. CONCLUSIONS During early phases of ISCLS, myocardial edema commonly occurs and can induce transient myocardial dysfunction, potentially contributing to the pathogenesis of shock.
Collapse
Affiliation(s)
- Maddalena A Wu
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Emanuele Catena
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Chiara Cogliati
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Davide Ottolina
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Antonio Castelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Roberto Rech
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Sonia Ippolito
- Department of Radiology, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Antonio L Brucato
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, "Fatebenefratelli e Oftalmico" Hospital, Piazzale Principessa Clotilde 3, 20121 Milan, Italy; Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy.
| |
Collapse
|
32
|
Abstract
The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Abstract
The heart contains a complex network of blood and lymphatic vessels. The coronary blood vessels provide the cardiac tissue with oxygen and nutrients and have been the major focus of research for the past few decades. Cardiac lymphatic vessels, which consist of lymphatic capillaries and collecting lymphatic vessels covering all layers of the heart, transport excess fluid from the interstitium and play important roles in maintaining tissue fluid balance. Unlike for the coronary blood vessels, until a few years ago, not much information was available on the origin and function of the cardiac-associated lymphatic vasculature. A growing body of evidence indicates that cardiac lymphatic vessels (lymphatics) may serve as a therapeutic cardiovascular target.
Collapse
Affiliation(s)
- Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
34
|
Verkerk AO, Lodder EM, Wilders R. Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 2019; 20:ijms20082039. [PMID: 31027200 PMCID: PMC6514906 DOI: 10.3390/ijms20082039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Jensen CF, Bartels ED, Braunstein TH, Nielsen LB, Holstein‐Rathlou N, Axelsen LN, Nielsen MS. Acute intramyocardial lipid accumulation in rats does not slow cardiac conduction per se. Physiol Rep 2019; 7:e14049. [PMID: 30968589 PMCID: PMC6456446 DOI: 10.14814/phy2.14049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Diabetic patients suffer from both cardiac lipid accumulation and an increased risk of arrhythmias and sudden cardiac death. This correlation suggests a link between diabetes induced cardiac steatosis and electrical abnormalities, however, the underlying mechanism remains unknown. We previously showed that cardiac conduction velocity slows in Zucker diabetic fatty rats and in fructose-fat fed rats, models that both exhibit prominent cardiac steatosis. The aim of this study was to investigate whether acute cardiac lipid accumulation reduces conduction velocity per se. Cardiac lipid accumulation was induced acutely by perfusing isolated rat hearts with palmitate-glucose buffer, or subacutely by fasting rats overnight. Subsequently, longitudinal cardiac conduction velocity was measured in right ventricular tissue strips, and intramyocardial triglyceride and lipid droplet content was determined by thin layer chromatography and BODIPY staining, respectively. Perfusion with palmitate-glucose buffer significantly increased intramyocardial triglyceride levels compared to perfusion with glucose (2.16 ± 0.17 (n = 10) vs. 0.92 ± 0.33 nmol/mg WW (n = 9), P < 0.01), but the number of lipid droplets was very low in both groups. Fasting of rats, however, resulted in both significantly elevated intramyocardial triglyceride levels compared to fed rats (3.27 ± 0.43 (n = 10) vs. 1.45 ± 0.24 nmol/mg WW (n = 10)), as well as a larger volume of lipid droplets (0.60 ± 0.13 (n = 10) vs. 0.21 ± 0.06% (n = 10), P < 0.05). There was no significant difference in longitudinal conduction velocity between palmitate-glucose perfused and control hearts (0.77 ± 0.025 (n = 10) vs. 0.75 m/sec ± 0.029 (n = 9)), or between fed and fasted rats (0.75 ± 0.042 m/sec (n = 10) vs. 0.79 ± 0.047 (n = 10)). In conclusion, intramyocardial lipid accumulation does not slow cardiac longitudinal conduction velocity per se. This is true for both increased intramyocardial triglyceride content, induced by palmitate-glucose perfusion, and increased intramyocardial triglyceride and lipid droplet content, generated by fasting.
Collapse
Affiliation(s)
- Christa F. Jensen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Emil D. Bartels
- Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Thomas H. Braunstein
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars B. Nielsen
- Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | | | - Lene N. Axelsen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schak Nielsen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
36
|
Radwański PB, Johnson CN, Györke S, Veeraraghavan R. Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Front Physiol 2018; 9:1228. [PMID: 30233404 PMCID: PMC6131669 DOI: 10.3389/fphys.2018.01228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
A nanodomain is a collection of proteins localized within a specialized, nanoscale structural environment, which can serve as the functional unit of macroscopic physiologic processes. We are beginning to recognize the key roles of cardiomyocyte nanodomains in essential processes of cardiac physiology such as electrical impulse propagation and excitation–contraction coupling (ECC). There is growing appreciation of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening arrhythmias in a variety of pathologies. Here, we offer an overview of current research on the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium channel-rich nanodomains within the intercalated disk that participate in cell-to-cell electrical coupling and (2) dyadic nanodomains located along transverse tubules that participate in ECC. The beat to beat function of cardiomyocytes involves three phases: the action potential, the calcium transient, and mechanical contraction/relaxation. In all these phases, cell-wide function results from the aggregation of the stochastic function of individual proteins. While it has long been known that proteins that exist in close proximity influence each other’s function, it is increasingly appreciated that there exist nanoscale structures that act as functional units of cardiac biophysical phenomena. Termed nanodomains, these structures are collections of proteins, localized within specialized nanoscale structural environments. The nano-environments enable the generation of localized electrical and/or chemical gradients, thereby conferring unique functional properties to these units. Thus, the function of a nanodomain is determined by its protein constituents as well as their local structural environment, adding an additional layer of complexity to cardiac biology and biophysics. However, with the emergence of experimental techniques that allow direct investigation of structure and function at the nanoscale, our understanding of cardiac physiology and pathophysiology at these scales is rapidly advancing. Here, we will discuss the structure and functions of multiple cardiomyocyte nanodomains, and novel strategies that target them for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Christopher N Johnson
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, United States
| | - Sándor Györke
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
Wadowski PP, Hülsmann M, Schörgenhofer C, Lang IM, Wurm R, Gremmel T, Koppensteiner R, Steinlechner B, Schwameis M, Jilma B. Sublingual functional capillary rarefaction in chronic heart failure. Eur J Clin Invest 2018; 48. [PMID: 29178250 DOI: 10.1111/eci.12869] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/21/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Microcirculatory changes contribute to clinical symptoms and disease progression in chronic heart failure (CHF). A depression of coronary flow reserve is associated with a lower myocardial capillary density in biopsies. We hypothesized that changes in cardiac microcirculation might also be reflected by a systemic reduction in capillaries and visualized by sublingual videomicroscopy. The aim was to study in vivo capillary density and glycocalyx dimensions in patients with CHF vs healthy controls. METHODS Fifty patients with ischaemic and nonischaemic CHF and standard treatment were compared to 35 healthy age-matched subjects in a prospective cross-sectional study. Sublingual microcirculation was visualized using a sidestream darkfield videomicroscope. Functional and perfused total capillary densities were compared between patients and controls. A reduced glycocalyx thickness was measured by an increased perfused boundary region (PBR). RESULTS Median functional and total perfused capillary densities were 30% and 45% lower in patients with CHF (both P < .001). Intake of oral vitamin K antagonists was associated with significantly lower capillary densities (P < .05), but not independent of NT-proBNP. Dimensions of the glycocalyx were marginally lower in CHF patients than in healthy controls (<7% difference). However, PBR correlated significantly with inflammation markers (fibrinogen: r = .58; C-reactive protein: r = .42), platelet counts (r = .36) and inversely with measures of liver/renal function such as bilirubin (r = -.38) or estimated glomerular filtration rate (r = -.34) in CHF patients. CONCLUSION CHF patients have got a markedly lower functional and total perfused capillary density in sublingual microvasculature when compared to controls, indicating a systemic decrease in microcirculation.
Collapse
Affiliation(s)
- Patricia P Wadowski
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Irene M Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Barbara Steinlechner
- Division of Cardiothoracic and Vascular Anesthesia, Medical University of Vienna, Vienna, Austria
| | - Michael Schwameis
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Li Y, Zhang Z, Zhou X, Li R, Cheng Y, Shang B, Han Y, Liu B, Xie X. Histone Deacetylase 1 Inhibition Protects Against Hypoxia-Induced Swelling in H9c2 Cardiomyocytes Through Regulating Cell Stiffness. Circ J 2017; 82:192-202. [PMID: 28747611 DOI: 10.1253/circj.cj-17-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The process of cardiomyocyte swelling involves changes of biomechanical properties and profiles of cellular genes. Although many genes have been proved to regulate cell edema of cardiomyocyte, the mechanisms involved in this event, as well as the biomechanical properties of swelling cell, remain unknown. METHODS AND RESULTS Whether histone deacetylase 1 (HDAC1) inhibition protects against hypoxia-induced H9c2 cardiomyocyte swelling is examined in this study. Hypoxia-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to cell swelling were also determined. H9c2 cells were treated under a chemical hypoxia situation (cobalt chloride) with HDAC1 inhibition (chemical inhibitor or siRNA) for 5 h, followed by in vitro biological and mechanical characterization. The results showed that expression of HDAC1 instead of HDAC4 was upregulated by chemical hypoxia. HDAC1 inhibition protects H9c2 cells against chemical hypoxia-induced hypoxic injury and cell swelling. HDAC1 inhibition improved cell viability, decreased lactate dehydrogenase leakage, cell apoptosis, malondialdehyde concentration, cell volume, and particles on the cell surface, and increased superoxide dismutase activity. Moreover, chemical hypoxia induced a decrease of Young's modulus, accompanied by alterations in the integrity of acetylated histone and organization of the cytoskeletal network. HDAC1 inhibition significantly reversed these processes. CONCLUSIONS Based on the ideal physical model, HDAC1 inhibition protects against hypoxia-induced swelling in H9c2 cardiomyocytes through enhancing cell stiffness. Overall, HDAC1 is a potential therapeutic target for myocardial edema.
Collapse
Affiliation(s)
- Yi Li
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University
- Gansu Cardiovascular Institute
| | - Zhengyi Zhang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Xiangnan Zhou
- School of Physics and Information Engineering, Shanxi Normal University
| | - Rui Li
- School of Stomatology, Lanzhou University
| | - Yan Cheng
- Experimental Center, Northwest University for Nationalities
- Department of Biochemistry and Medical Genetics, University of Manitoba
| | - Bo Shang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Yu Han
- College of Life Science & Technology, Huazhong University of Science & Technology
| | - Bin Liu
- School of Stomatology, Lanzhou University
| | - Xiaodong Xie
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University
- Gansu Cardiovascular Institute
| |
Collapse
|
39
|
Huang LH, Lavine KJ, Randolph GJ. Cardiac Lymphatic Vessels, Transport, and Healing of the Infarcted Heart. ACTA ACUST UNITED AC 2017; 2:477-483. [PMID: 28989985 PMCID: PMC5628514 DOI: 10.1016/j.jacbts.2017.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lymphatic vasculature plays a key role in regulating tissue fluid homeostasis, lipid transport, and immune surveillance throughout the body. Although it has been appreciated that the heart relies on lymphatic vessels to maintain fluid balance and that such balance must be tightly maintained to allow for normal cardiac output, it has only recently come to light that the lymphatic vasculature may serve as a therapeutic target with which to promote optimal healing following myocardial ischemia and infarction. This article reviews the subject of cardiac lymphatic vessels and highlights studies that imply targeting of lymphatic vessel development or transport using vascular endothelial growth factor-C therapy may serve as a promising avenue for future clinical application in the context of ischemic injury.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Address for correspondence: Dr. Li-Hao Huang, Department of Pathology and Immunology, Washington University School of Medicine, 425 South Euclid Avenue, BJCIH 8307, St. Louis, Missouri 63110.
| | - Kory J. Lavine
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Dr. Gwendalyn J. Randolph, Department of Pathology and Immunology, Washington University School of Medicine, 425 South Euclid Avenue, BJCIH 8307, St. Louis, Missouri 63110.
| |
Collapse
|
40
|
Stieger P, Daniel JM, Thölen C, Dutzmann J, Knöpp K, Gündüz D, Aslam M, Kampschulte M, Langheinrich A, Fischer S, Cabrera-Fuentes H, Wang Y, Wollert KC, Bauersachs J, Braun-Dullaeus R, Preissner KT, Sedding DG. Targeting of Extracellular RNA Reduces Edema Formation and Infarct Size and Improves Survival After Myocardial Infarction in Mice. J Am Heart Assoc 2017. [PMID: 28637776 PMCID: PMC5669142 DOI: 10.1161/jaha.116.004541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Following myocardial infarction (MI), peri-infarct myocardial edema formation further impairs cardiac function. Extracellular RNA (eRNA) released from injured cells strongly increases vascular permeability. This study aimed to assess the role of eRNA in MI-induced cardiac edema formation, infarct size, cardiac function, and survival after acute MI and to evaluate the therapeutic potential of ribonuclease 1 (RNase-1) treatment as an eRNA-degrading intervention. METHODS AND RESULTS C57BL/6J mice were subjected to MI by permanent ligation of the left anterior descending coronary artery. Plasma eRNA levels were significantly increased compared with those in controls starting from 30 minutes after ligation. Systemic application of RNase-1, but not DNase, significantly reduced myocardial edema formation 24 hours after ligation compared with controls. Consequently, eRNA degradation by RNase-1 significantly improved the perfusion of collateral arteries in the border zone of the infarcted myocardium 24 hours after ligation of the left anterior descending coronary artery, as detected by micro-computed tomography imaging. Although there was no significant difference in the area at risk, the area of vital myocardium was markedly larger in mice treated with RNase-1 compared with controls, as detected by Evans blue and 2,3,5-triphenyltetrazolium chloride staining. The increase in viable myocardium was associated with significantly preserved left ventricular function, as assessed by echocardiography. Moreover, RNase-1 significantly improved 8-week survival following MI. CONCLUSIONS eRNA is an unrecognized permeability factor in vivo, associated with myocardial edema formation after acute MI. RNase-1 counteracts eRNA-induced edema formation and preserves perfusion of the infarction border zone, reducing infarct size and protecting cardiac function after MI.
Collapse
Affiliation(s)
- Philipp Stieger
- Department of Cardiology and Angiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jan-Marcus Daniel
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christiane Thölen
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Kai Knöpp
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Dursun Gündüz
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Muhammad Aslam
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital Giessen and Marburg, Giessen, Germany
| | | | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hector Cabrera-Fuentes
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.,National Heart Research Institute, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.,Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Division of Molecular and Translational Cardiology, Hannover Medical School, Hannover, Germany
| | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Division of Molecular and Translational Cardiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Rüdiger Braun-Dullaeus
- Department of Cardiology and Angiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany .,Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
41
|
Greer-Short A, George SA, Poelzing S, Weinberg SH. Revealing the Concealed Nature of Long-QT Type 3 Syndrome. Circ Arrhythm Electrophysiol 2017; 10:e004400. [PMID: 28213505 DOI: 10.1161/circep.116.004400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gain-of-function mutations in the voltage-gated sodium channel (Nav1.5) are associated with the long-QT-3 (LQT3) syndrome. Nav1.5 is densely expressed at the intercalated disk, and narrow intercellular separation can modulate cell-to-cell coupling via extracellular electric fields and depletion of local sodium ion nanodomains. Models predict that significantly decreasing intercellular cleft widths slows conduction because of reduced sodium current driving force, termed "self-attenuation." We tested the novel hypothesis that self-attenuation can "mask" the LQT3 phenotype by reducing the driving force and late sodium current that produces early afterdepolarizations (EADs). METHODS AND RESULTS Acute interstitial edema was used to increase intercellular cleft width in isolated guinea pig heart experiments. In a drug-induced LQT3 model, acute interstitial edema exacerbated action potential duration prolongation and produced EADs, in particular, at slow pacing rates. In a computational cardiac tissue model incorporating extracellular electric field coupling, intercellular cleft sodium nanodomains, and LQT3-associated mutant channels, myocytes produced EADs for wide intercellular clefts, whereas for narrow clefts, EADs were suppressed. For both wide and narrow clefts, mutant channels were incompletely inactivated. However, for narrow clefts, late sodium current was reduced via self-attenuation, a protective negative feedback mechanism, masking EADs. CONCLUSIONS We demonstrated a novel mechanism leading to the concealing and revealing of EADs in LQT3 models. Simulations predict that this mechanism may operate independent of the specific mutation, suggesting that future therapies could target intercellular cleft separation as a compliment or alternative to sodium channels.
Collapse
Affiliation(s)
- Amara Greer-Short
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.)
| | - Sharon A George
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.)
| | - Steven Poelzing
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.).
| | - Seth H Weinberg
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.).
| |
Collapse
|
42
|
Beltrami C, Besnier M, Shantikumar S, Shearn AIU, Rajakaruna C, Laftah A, Sessa F, Spinetti G, Petretto E, Angelini GD, Emanueli C. Human Pericardial Fluid Contains Exosomes Enriched with Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Mol Ther 2017; 25:679-693. [PMID: 28159509 PMCID: PMC5363195 DOI: 10.1016/j.ymthe.2016.12.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/25/2016] [Indexed: 12/23/2022] Open
Abstract
The pericardial fluid (PF) is contained in the pericardial sac surrounding the heart. MicroRNA (miRNA) exchange via exosomes (endogenous nanoparticles) contributes to cell-to-cell communication. We investigated the hypotheses that the PF is enriched with miRNAs secreted by the heart and that it mediates vascular responses through exosome exchange of miRNAs. The study was developed using leftover material from aortic valve surgery. We found that in comparison with peripheral plasma, the PF contains exosomes enriched with miRNAs co-expressed in patients' myocardium and vasculature. At a functional level, PF exosomes improved survival, proliferation, and networking of cultured endothelial cells (ECs) and restored the angiogenic capacity of ECs depleted (via Dicer silencing) of their endogenous miRNA content. Moreover, PF exosomes improved post-ischemic blood flow recovery and angiogenesis in mice. Mechanistically, (1) let-7b-5p is proangiogenic and inhibits its target gene, TGFBR1, in ECs; (2) PF exosomes transfer a functional let-7b-5p to ECs, thus reducing their TGFBR1 expression; and (3) let-7b-5p depletion in PF exosomes impairs the angiogenic response to these nanoparticles. Collectively, our data support the concept that PF exosomes orchestrate vascular repair via miRNA transfer.
Collapse
Affiliation(s)
- Cristina Beltrami
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK; National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK
| | - Marie Besnier
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK
| | | | | | - Cha Rajakaruna
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK
| | - Abas Laftah
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK
| | - Fausto Sessa
- Circolo Research Hospital, 57 21100 Varese, Italy
| | | | - Enrico Petretto
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK; Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gianni D Angelini
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK; National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK; National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK.
| |
Collapse
|
43
|
Haugen O, Farstad M, Kvalheim V, Hammersborg S, Husby P. Intraoperative fluid balance during cardiopulmonary bypass: effects of different mean arterial pressures. Perfusion 2016; 22:273-8. [DOI: 10.1177/0267659107084148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Financial support . This study was financially supported by The Western Norway Regional Health Authority, The Norwegian Council on Cardiovascular Diseases, Faculty of Medicine, University of Bergen and The Frank Mohn Foundation, Norway. Introduction. This study investigated whether two levels of mean arterial pressure (MAP) during cardiopulmonary bypass did influence per-operative fluid shifts. Methods. Sixteen pigs underwent 60 minutes of normothermic cardiopulmonary bypass (CPB) followed by 90 minutes of hypothermic CPB. Eight animals had a MAP of 60—80 mmHg by norepinephrine (HP group). Another 8 animals had a MAP of 40—45 mmHg by phentolamine (LP group). Blood chemistry, plasma/interstitial colloid osmotic pressures, plasma volume, fluid balance, fluid extravasation rate and tissue water content were measured or calculated. Results. The plasma volume was significantly lower in the HP group compared with the LP group after 60 minutes of CPB. Net fluid balance was 0.18 (0.05) ml·kg-1·min -1 in the HP group and 0.21 ml·kg- 1·min-1 in the LP group (P > 0.05) while fluid extravasation rate was 1.18 (0.5) and 1.13 (0.4) ml·kg -1·min-1 in the HP group and the LP group during CPB (P > 0.05). Conclusion. Net fluid balance and fluid extravasation rate were similar in the animals with elevated and with lowered MAP during CPB. Perfusion (2007) 22, 273—278.
Collapse
Affiliation(s)
- Oddbjørn Haugen
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Marit Farstad
- Surgical Research Laboratory, Department of Surgical Sciences, University of Bergen, Bergen, Norway
| | - Venny Kvalheim
- Section for Thoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Stig Hammersborg
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Paul Husby
- Surgical Research Laboratory, Department of Surgical Sciences, University of Bergen, Bergen, Norway,
| |
Collapse
|
44
|
Investigation of the effects of aging on the expression of aquaporin 1 and aquaporin 4 protein in heart tissue. Anatol J Cardiol 2016; 17:18-23. [PMID: 27443479 PMCID: PMC5324856 DOI: 10.14744/anatoljcardiol.2016.7033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective: Aquaporin (AQP) 1 and AQP 4 are expressed in human heart and several studies have been focused on these two aquaporins. For this purpose, the present study is aimed to research the effects of aging on AQP 1 and AQP 4 in heart tissue. Methods: In this study, 14 Balb/C type white mice were used. Animals were divided into two equal groups. Group I consisted of 2-month-old young animals (n=7), and group II consisted of 18-month-old animals (n=7). To determine the AQP1 and AQP4 expression in the myocardium, the heart tissue was removed to perform western blotting and immunohistochemical and histopathological evaluations. Results: Muscle fibers of the heart in aged animals were more irregular and loosely organized in hematoxylin–eosin (H&E) stained sections. H-score analysis revealed that AQP1 and AQP4 immunoreactivity significantly increased in heart tissues of old mice compared with those of young mice (p<0.001). In addition, AQP1 and AQP4 protein expressions in the tissues of old animals were increased significantly according to western blot analysis (p=0.018 and p<0.001 for AQP1 and AQP4, respectively). Conclusion: Increased AQP1 and AQP4 levels in the heart tissue may be correlated with the maintenance of water and electrolytes balance, which decreases with aging. In this context, it might be the result of a compensatory response to decreased AQP4 functions. In addition, this increase with aging as demonstrated in our study might be one of the factors that increases the tendency of ischemia in elder people.
Collapse
|
45
|
Elvevoll B, Lundemoen S, Svendsen ØS, Mongstad A, Grong K, Kvalheim VL, Husby P. Does Roller Pump-Induced Pulsatile CPB Perfusion Affect Microvascular Fluid Shifts and Tissue Perfusion? Ann Thorac Surg 2016; 102:564-72. [PMID: 27139370 DOI: 10.1016/j.athoracsur.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 02/01/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pulsatile versus nonpulsatile cardiopulmonary bypass (CPB) perfusion remains debated. Beneficial effects on tissue perfusion, inflammation, and microvascular fluid exchange have been linked to pulsatile perfusion by some investigators and denied by others. This study evaluated fluid extravasation and tissue perfusion during nonpulsatile or pulsatile roller pump-induced CPB perfusion. METHODS Fourteen pigs underwent roller pump-induced pulsatile (n = 7) or nonpulsatile CPB perfusion (n = 7) for 90 minutes. Fluid input/losses, colloid osmotic pressures (plasma/interstitium), hematocrit, serum electrolytes, serum proteins, tissue perfusion, and total tissue water content were measured, and plasma volume and fluid extravasation were calculated. RESULTS Fluid additions/losses, plasma volume, and fluid extravasation changed similarly in both groups during CPB with no between-group differences. Neither was between-group differences observed for tissue perfusion and total tissue water content, with one exception. Total tissue water content of the right (3.92 ± 0.26 versus 4.32 ± 0.28 g/g dry weight) and left ventricle (4.02 ± 0.25 versus 4.33 ± 0.24 g/g dry weight) was lowered in the pulsatile group. CONCLUSIONS No important differences were found between pulsatile and nonpulsatile CPB perfusion for microvascular fluid balance and tissue perfusion.
Collapse
Affiliation(s)
- Bjørg Elvevoll
- Department of Anesthesia and Surgical Services, Haukeland University Hospital, Bergen, Norway
| | - Steinar Lundemoen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Øyvind S Svendsen
- Department of Anesthesia and Surgical Services, Haukeland University Hospital, Bergen, Norway
| | - Arve Mongstad
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Ketil Grong
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Venny L Kvalheim
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Paul Husby
- Department of Anesthesia and Surgical Services, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| |
Collapse
|
46
|
Henri O, Pouehe C, Houssari M, Galas L, Nicol L, Edwards-Lévy F, Henry JP, Dumesnil A, Boukhalfa I, Banquet S, Schapman D, Thuillez C, Richard V, Mulder P, Brakenhielm E. Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction. Circulation 2016; 133:1484-97; discussion 1497. [PMID: 26933083 DOI: 10.1161/circulationaha.115.020143] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The lymphatic system regulates interstitial tissue fluid balance, and lymphatic malfunction causes edema. The heart has an extensive lymphatic network displaying a dynamic range of lymph flow in physiology. Myocardial edema occurs in many cardiovascular diseases, eg, myocardial infarction (MI) and chronic heart failure, suggesting that cardiac lymphatic transport may be insufficient in pathology. Here, we investigate in rats the impact of MI and subsequent chronic heart failure on the cardiac lymphatic network. Further, we evaluate for the first time the functional effects of selective therapeutic stimulation of cardiac lymphangiogenesis post-MI. METHODS AND RESULTS We investigated cardiac lymphatic structure and function in rats with MI induced by either temporary occlusion (n=160) or permanent ligation (n=100) of the left coronary artery. Although MI induced robust, intramyocardial capillary lymphangiogenesis, adverse remodeling of epicardial precollector and collector lymphatics occurred, leading to reduced cardiac lymphatic transport capacity. Consequently, myocardial edema persisted for several months post-MI, extending from the infarct to noninfarcted myocardium. Intramyocardial-targeted delivery of the vascular endothelial growth factor receptor 3-selective designer protein VEGF-CC152S, using albumin-alginate microparticles, accelerated cardiac lymphangiogenesis in a dose-dependent manner and limited precollector remodeling post-MI. As a result, myocardial fluid balance was improved, and cardiac inflammation, fibrosis, and dysfunction were attenuated. CONCLUSIONS We show that, despite the endogenous cardiac lymphangiogenic response post-MI, the remodeling and dysfunction of collecting ducts contribute to the development of chronic myocardial edema and inflammation-aggravating cardiac fibrosis and dysfunction. Moreover, our data reveal that therapeutic lymphangiogenesis may be a promising new approach for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Orianne Henri
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Chris Pouehe
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Mahmoud Houssari
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Ludovic Galas
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Lionel Nicol
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Florence Edwards-Lévy
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Jean-Paul Henry
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Anais Dumesnil
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Inès Boukhalfa
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Sébastien Banquet
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Damien Schapman
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Christian Thuillez
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Vincent Richard
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Paul Mulder
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Ebba Brakenhielm
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| |
Collapse
|
47
|
Aquaporin-1 Deficiency Protects Against Myocardial Infarction by Reducing Both Edema and Apoptosis in Mice. Sci Rep 2015; 5:13807. [PMID: 26348407 PMCID: PMC4562302 DOI: 10.1038/srep13807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/06/2015] [Indexed: 01/26/2023] Open
Abstract
Many studies have determined that AQP1 plays an important role in edema formation and resolution in various tissues via water transport across the cell membrane. The aim of this research was to determine both if and how AQP1 is associated with cardiac ischemic injury, particularly the development of edema following myocardial infarction (MI). AQP1+/+ and AQP1−/− mice were used to create the MI model. Under physiological conditions, AQP1−/− mice develop normally; however, in the setting of MI, they exhibit cardioprotective properties, as shown by reduced cardiac infarct size determined via NBT staining, improved cardiac function determined via left ventricular catheter measurements, decreased AQP1-dependent myocardial edema determined via water content assays, and decreased apoptosis determined via TUNEL analysis. Cardiac ischemia caused by hypoxia secondary to AQP1 deficiency stabilized the expression of HIF-1α in endothelial cells and subsequently decreased microvascular permeability, resulting in the development of edema. The AQP1-dependent myocardial edema and apoptosis contributed to the development of MI. AQP1 deficiency protected cardiac function from ischemic injury following MI. Furthermore, AQP1 deficiency reduced microvascular permeability via the stabilization of HIF-1α levels in endothelial cells and decreased cellular apoptosis following MI.
Collapse
|
48
|
Dahle GO, Salminen PR, Moen CA, Eliassen F, Jonassen AK, Haaverstad R, Matre K, Grong K. Esmolol added in repeated, cold, oxygenated blood cardioplegia improves myocardial function after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2015; 29:684-93. [PMID: 25575405 DOI: 10.1053/j.jvca.2014.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study investigated if the β-receptor blocking agent esmolol, added to standard oxygenated blood cardioplegia, improved myocardial function after weaning from bypass. DESIGN A block-randomized, blinded study. SETTING A university laboratory. PARTICIPANTS Twenty anesthetized pigs, Norwegian Landrace. INTERVENTIONS After cardiopulmonary bypass, cardiac arrest was induced with cold (12°C), oxygenated blood cardioplegia, enriched with either esmolol or vehicle, repeated every 20 minutes. After 100 minutes the heart was reperfused and weaned. MEASUREMENTS AND MAIN RESULTS Left ventricular function was evaluated with pressure-volume loops, local myocardial function with multilayer strain and strain rate by epicardial short-axis tissue Doppler imaging. One hour after declamping, preload recruitable stroke work did not differ between groups, but increased to 72±3 mmHg in esmolol-treated animals v 57±4 mmHg (p<0.001) in controls after 3 hours. Radial peak ejection strain rate also was increased by esmolol; 6.0±1.0 s(-1)v 2.9±0.3 s(-1) (p<0.001) in subendocardium and 3.9±0.5 s(-1)v 2.3±0.2 s(-1) (p<0.005) in the midmyocardium. Cardiac index was increased, 4.0±0.2 L/min/m(2) by esmolol v 3.3±0.1 L/min/m(2) for controls (p<0.05). Isovolumetric relaxation time constant was reduced by esmolol, 23±1 ms v 26±1 ms (p<0.025). Troponin-T did not differ and was 339±48 ng/L for the esmolol group and 357±55 ng/L for the control group (p = 0.81). CONCLUSIONS Esmolol added to blood cardioplegia preserved systolic cardiac function during the first 3 hours after reperfusion in a porcine model with 100 minutes of cardioplegic arrest.
Collapse
Affiliation(s)
- Geir O Dahle
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science.
| | - Pirjo-Riitta Salminen
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science
| | | | - Finn Eliassen
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Anne K Jonassen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rune Haaverstad
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science
| | | | | |
Collapse
|
49
|
Lowalekar SK, Treanor PR, Thatte HS. Cardioplegia at subnormothermia facilitates rapid functional resuscitation of hearts preserved in SOMAH for transplants. J Cardiothorac Surg 2014; 9:155. [PMID: 25238790 PMCID: PMC4182865 DOI: 10.1186/s13019-014-0155-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 01/30/2023] Open
Abstract
Objectives Hearts preserved ex vivo at 4°C undergo time-dependent irreversible injury due to extreme hypothermia. Studies using novel organ preservative solution SOMAH, suggest that hearts are optimally `preserved' at subnormothermic temperature of 21°C. Present study evaluates relative efficacy of SOMAH `cardioplegia' at 4 and 21°C in preservation of optimum heart function after in vitro storage at subnormothermia. Methods Porcine hearts arrested with SOMAH cardioplegia at 4 or 21°C were stored in SOMAH for 5-hour at 21°C (n = 5). At the end of storage, the weight of hearts was recorded and biopsies taken for cardiac tissue high energy phosphate level measurements. The hearts were then attached to a reperfusion apparatus and biochemical parameters including cardiac enzyme release and myocardial oxygen consumption and lactate production were determined in perfusate samples at regular intervals during ex vivo perfusion experiment. Functional evaluation of the hearts intraoperatively and ex vivo was performed by 2D echocardiography using trans-esophageal echocardiography probe. Results Post-storage heart weights were unaltered in both groups, while available high-energy phosphates (HEP) were greater in the 21°C group. Upon ex vivo reperfusion, coronary flow was significantly greater (p < 0.05) in 21°C group. 2D echo revealed a greater cardiac output, fractional area change and ejection fraction in 21°C group that was not significantly different than the 4°C group. However, unlike 4°C hearts, 21°C hearts did not require inotropic intervention. Upon reperfusion, rate of cardiac enzyme release temporally resolved in 21°C group, but not in the 4°C group. 21°C working hearts maintained their energy state during the experimental duration but not the 4°C group; albeit, both groups demonstrated robust metabolism and function during this period. Conclusions Rapid metabolic switch, increased synthesis of HEP, decreased injury and optimal function provides evidence that hearts arrested at 21°C remain viably and functionally superior to those arrested at 4°C when stored in SOMAH at ambient temperature pre-transplant. Ultramini-abstract Cardioplegic arrest and preservation of hearts in SOMAH at ambient temperature efficiently conserves metabolism and function in in vitro porcine model of heart transplant. Electronic supplementary material The online version of this article (doi:10.1186/s13019-014-0155-z) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Tracking the wily speckle in darkest sepsis. Crit Care Med 2014; 42:1577-9. [PMID: 24836808 DOI: 10.1097/ccm.0000000000000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|