1
|
Giannitelli SM, Peluzzi V, Raniolo S, Roscilli G, Trombetta M, Mozetic P, Rainer A. On-chip recapitulation of the tumor microenvironment: A decade of progress. Biomaterials 2024; 306:122482. [PMID: 38301325 DOI: 10.1016/j.biomaterials.2024.122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
One of the hurdles to the development of new anticancer therapies is the lack of in vitro models which faithfully reproduce the in vivo tumor microenvironment (TME). Understanding the dynamic relationships between the components of the TME in a controllable, scalable, and reliable setting would indeed support the discovery of biological targets impacting cancer diagnosis and therapy. Cancer research is increasingly shifting from traditional two-dimensional (2D) cell culture toward three-dimensional (3D) culture models, which have been demonstrated to increase the significance and predictive value of in vitro data. In this scenario, microphysiological systems (also known as organs-on-chip) have emerged as a relevant technological platform enabling more predictive investigation of cell-cell and cell-ECM interplay in cancer, attracting a significant research effort in the last years. This review illustrates one decade of progress in the field of tumor-microenvironment-on-chip (TMOC) approaches, exploiting either cell-laden microfluidic chambers or microfluidic confined tumor spheroids to model the TME. TMOCs have been designed to recapitulate several aspects of the TME, including tumor cells, the tumor-associated stroma, the immune system, and the vascular component. Significantly, the last aspect has emerged for its pivotal role in orchestrating cellular interactions and modulating drug pharmacokinetics on-chip. A further advancement has been represented by integration of TMOCs into multi-organ microphysiological systems, with the final aim to follow the metastatic cascade to target organs and to study the effects of chemotherapies at a systemic level. We highlight that the increased degree of complexity achieved by the most advanced TMOC models has enabled scientists to shed new light on the role of microenvironmental factors in tumor progression, metastatic cascade, and response to drugs.
Collapse
Affiliation(s)
- S M Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - V Peluzzi
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy.
| | - S Raniolo
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - G Roscilli
- Takis s.r.l., Via di Castel Romano 100, 00128, Rome, Italy.
| | - M Trombetta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - P Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council, via Monteroni, 73100, Lecce, Italy.
| | - A Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, via Álvaro del Portillo 200, 00128, Rome, Italy.
| |
Collapse
|
2
|
Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T, Yokokawa R. Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 2019; 229:119547. [PMID: 31710953 DOI: 10.1016/j.biomaterials.2019.119547] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Tumor vasculature creates a hostile tumor microenvironment (TME) in vivo and nourishes cancers, resulting in cancer progression and drug resistance. To mimic the biochemical and biomechanical environments of tumors in vitro, several models integrated with a vascular network have been reported. However, the tumor responses to biochemical and biomechanical stimuli were evaluated under static conditions and failed to incorporate the effects of blood flow to tumors. In this study, we present a tumor-on-a-chip platform that enables the evaluation of tumor activities with intraluminal flow in an engineered tumor vascular network. The fibroblasts in the tumor spheroid induced angiogenic sprouts, which constructed a perfusable vascular network in a tumor spheroid. The perfusability of the engineered vascular network was preserved during the culture. Moreover, perfusion for over 24 h significantly increased the proliferation activities of tumor cells and decreased cell death in the spheroid. Drug administration under perfusion condition did not show the dose-dependent effects of anticancer drugs on tumor activities in contrast to the results under static conditions. Our results demonstrate the importance of flow in a vascular network for the evaluation of tumor activities in a drug screening platform.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 980-8578, Japan; Graduate School of Engineering, Tohoku University, Miyagi, 980-8579, Japan
| | - Ryu Okada
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yuichiro Arima
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takashi Miura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan.
| |
Collapse
|
3
|
Marconi A, Quadri M, Saltari A, Pincelli C. Progress in melanoma modelling in vitro. Exp Dermatol 2018; 27:578-586. [DOI: 10.1111/exd.13670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Alessandra Marconi
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Marika Quadri
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
4
|
Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Viveros-Valdez E, Morán-Martínez J. Breast Organotypic Cancer Models. Curr Top Microbiol Immunol 2018:199-223. [PMID: 29556825 DOI: 10.1007/82_2018_86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer type diagnosed in women, it represents a critical public health problem worldwide, with 1,671,149 estimated new cases and nearly 571,000 related deaths. Research on breast cancer has mainly been conducted using two-dimensional (2D) cell cultures and animal models. The usefulness of these models is reflected in the vast knowledge accumulated over the past decades. However, considering that animal models are three-dimensional (3D) in nature, the validity of the studies using 2D cell cultures has recently been questioned. Although animal models are important in cancer research, ethical questions arise about their use and usefulness as there is no clear predictivity of human disease outcome and they are very expensive and take too much time to obtain results. The poor performance or failure of most cancer drugs suggests that preclinical research on cancer has been based on an over-dependence on inadequate animal models. For these reasons, in the last few years development of alternative models has been prioritized to study human breast cancer behavior, while maintaining a 3D microenvironment, and to reduce the number of experiments conducted in animals. One way to achieve this is using organotypic cultures, which are being more frequently explored in cancer research because they mimic tissue architecture in vivo. These characteristics make organotypic cultures a valuable tool in cancer research as an alternative to replace animal models and for predicting risk assessment in humans. This chapter describes the cultures of multicellular spheroids, organoids, 3D bioreactors, and tumor slices, which are the most widely used organotypic models in breast cancer research.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Departamento de Biología Celular y Molecular, Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica del Noreste, Monterrey, Nuevo León, Mexico.
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad # 34, División de Investigación, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Irma Edith Carranza-Torres
- Departamento de Biología Celular y Molecular, Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica del Noreste, Monterrey, Nuevo León, Mexico
| | - Ezequiel Viveros-Valdez
- Departamento de Química Analítica, Ciudad Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, Mexico
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Universidad Autónoma de Coahuila, Facultad de Medicina. Centro de Investigación Biomédica, Torreón, Coahuila, Mexico
| |
Collapse
|
5
|
Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci 2018; 19:ijms19020615. [PMID: 29466296 PMCID: PMC5855837 DOI: 10.3390/ijms19020615] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer treatment is rapidly evolving toward personalized medicine, which takes into account the individual molecular and genetic variability of tumors. Sophisticated new in vitro disease models, such as three-dimensional cell cultures, may provide a tool for genetic, epigenetic, biomedical, and pharmacological research, and help determine the most promising individual treatment. Sarcomas, malignant neoplasms originating from mesenchymal cells, may have a multitude of genomic aberrations that give rise to more than 70 different histopathological subtypes. Their low incidence and high level of histopathological heterogeneity have greatly limited progress in their treatment, and trials of clinical sarcoma are less frequent than trials of other carcinomas. The main advantage of 3D cultures from tumor cells or biopsy is that they provide patient-specific models of solid tumors, and they overcome some limitations of traditional 2D monolayer cultures by reflecting cell heterogeneity, native histologic architectures, and cell-extracellular matrix interactions. Recent advances promise that these models can help bridge the gap between preclinical and clinical research by providing a relevant in vitro model of human cancer useful for drug testing and studying metastatic and dormancy mechanisms. However, additional improvements of 3D models are expected in the future, specifically the inclusion of tumor vasculature and the immune system, to enhance their full ability to capture the biological features of native tumors in high-throughput screening. Here, we summarize recent advances and future perspectives of spheroid and organoid in vitro models of rare sarcomas that can be used to investigate individual molecular biology and predict clinical responses. We also highlight how spheroid and organoid culture models could facilitate the personalization of sarcoma treatment, provide specific clinical scenarios, and discuss the relative strengths and limitations of these models.
Collapse
|
6
|
Riffle S, Hegde RS. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:102. [PMID: 28774341 PMCID: PMC5543535 DOI: 10.1186/s13046-017-0570-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Under hypoxic conditions, tumor cells undergo a series of adaptations that promote evolution of a more aggressive tumor phenotype including the activation of DNA damage repair proteins, altered metabolism, and decreased proliferation. Together these changes mitigate the negative impact of oxygen deprivation and allow preservation of genomic integrity and proliferative capacity, thus contributing to tumor growth and metastasis. As a result the presence of a hypoxic microenvironment is considered a negative clinical feature of many solid tumors. Hypoxic niches in tumors also represent a therapeutically privileged environment in which chemo- and radiation therapy is less effective. Although the negative impact of tumor hypoxia has been well established, the precise effect of oxygen deprivation on tumor cell behavior, and the molecular signals that allow a tumor cell to survive in vivo are poorly understood. Multicellular tumor spheroids (MCTS) have been used as an in vitro model for the avascular tumor niche, capable of more accurately recreating tumor genomic profiles and predicting therapeutic response. However, relatively few studies have used MCTS to study the molecular mechanisms driving tumor cell adaptations within the hypoxic tumor environment. Here we will review what is known about cell proliferation, DNA damage repair, and metabolic pathways as modeled in MCTS in comparison to observations made in solid tumors. A more precise definition of the cell populations present within 3D tumor models in vitro could better inform our understanding of the heterogeneity within tumors as well as provide a more representative platform for the testing of therapeutic strategies.
Collapse
Affiliation(s)
- Stephen Riffle
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17:1-15. [PMID: 25622895 PMCID: PMC4309685 DOI: 10.1016/j.neo.2014.12.004] [Citation(s) in RCA: 816] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France.
| | - Dominique Bellet
- Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8151 CNRS-U1022 Inserm, Sorbonne Paris Cité, Paris, France
| | - Virginie Dangles-Marie
- Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France; Département de Recherche Translationnelle, Research Center, Institut Curie, Paris, France.
| |
Collapse
|
8
|
Pérard M, Le Clerc J, Watrin T, Meary F, Pérez F, Tricot-Doleux S, Pellen-Mussi P. Spheroid model study comparing the biocompatibility of Biodentine and MTA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1527-1534. [PMID: 23515903 DOI: 10.1007/s10856-013-4908-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
The primary objective of this study was to assess the biological effects of a new dentine substitute based on Ca₃SiO₅ (Biodentine™) for use in pulp-capping treatment, on pseudo-odontoblastic (MDPC-23) and pulp (Od-21) cells. The secondary objective was to evaluate the effects of Biodentine and mineral trioxide aggregate (MTA) on gene expression in cultured spheroids. We used the acid phosphatase assay to compare the biocompatibility of Biodentine and MTA. Cell differentiation was investigated by RT-qPCR. We investigated the expression of genes involved in odontogenic differentiation (Runx2), matrix secretion (Col1a1, Spp1) and mineralisation (Alp). ANOVA and PLSD tests were used for data analysis. MDPC-23 cells cultured in the presence of MTA had higher levels of viability than those cultured in the presence of Biodentine and control cells on day 7 (P = 0.0065 and P = 0.0126, respectively). For Od-21 cells, proliferation rates on day 7 were significantly lower in the presence of Biodentine or MTA than for control (P < 0.0001). Col1a1 expression levels were slightly lower in cells cultured in the presence of MTA than in those cultured in the presence of Biodentine and in control cells. Biodentine and MTA may modify the proliferation of pulp cell lines. Their effects may fluctuate over time, depending on the cell line considered. The observed similarity between Biodentine and MTA validates the indication for direct pulp-capping claimed by the manufacturers.
Collapse
Affiliation(s)
- Matthieu Pérard
- Faculté d'Odontologie, Univ Rennes1, UEB, Bât. 15, 2 Av du Professeur Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Andasari V, Roper RT, Swat MH, Chaplain MAJ. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion. PLoS One 2012; 7:e33726. [PMID: 22461894 PMCID: PMC3312894 DOI: 10.1371/journal.pone.0033726] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/16/2012] [Indexed: 01/01/2023] Open
Abstract
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.
Collapse
Affiliation(s)
- Vivi Andasari
- Division of Mathematics, University of Dundee, Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Lin RZ, Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2009; 3:1172-84. [PMID: 18566957 DOI: 10.1002/biot.200700228] [Citation(s) in RCA: 874] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.
Collapse
Affiliation(s)
- Ruei-Zeng Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | | | | |
Collapse
|
11
|
Bartosh T, Wang Z, Rosales AA, Dimitrijevich SD, Roque RS. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 2008; 105:612-23. [DOI: 10.1002/jcb.21862] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 2008; 83:849-71. [PMID: 18058370 DOI: 10.1080/09553000701727531] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). RESULTS AND CONCLUSIONS Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.
Collapse
|
13
|
Delsanto P, Condat C, Pugno N, Gliozzi A, Griffa M. A multilevel approach to cancer growth modeling. J Theor Biol 2008; 250:16-24. [DOI: 10.1016/j.jtbi.2007.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
|
14
|
Zietarska M, Maugard CM, Filali-Mouhim A, Alam-Fahmy M, Tonin PN, Provencher DM, Mes-Masson AM. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol Carcinog 2007; 46:872-85. [PMID: 17455221 DOI: 10.1002/mc.20315] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial ovarian cancer (EOC) cell lines are useful tools for the molecular and biological characterization of ovarian cancer. The use of an in vitro multidimensional (3-D) culture model recapitulates some of the growth conditions encountered by tumor cells in vivo. Here we describe a molecular comparison of spheroid based 3D EOC models versus monolayer cultures and xenografts using cell lines from malignant ovarian tumors (TOV-21G and TOV-112D) and ascites (OV-90) previously established and characterized in our laboratory. Gene expression analyses of the three models were performed using the Affymetrix HG-U133A high density DNA array. Cluster analysis identified a set of genes that stratified expression profiles from the EOC cell lines grown as spheroids and xenografts from that of monolayer cultures. The gene expression analysis results were validated by Q-PCR analyses on an independent set of RNAs. Differential expression observed for the S100A6 gene between the monolayer, spheroid cultures and xenografts was confirmed at the protein level by immunohistochemistry. The analysis was extended to various ovarian tumor tissues using an EOC tissue array. This result represents an example of a gene that, if studied in vitro, is more representative of the in vivo disease in a 3D model rather than the monolayer culture. Identification of genes in spheroid models that mimic the in vivo tumor gene expression patterns may allow a better understanding of the community effect observed in human disease that is determined by direct or indirect interactions of cells with their environment or other surrounding cells.
Collapse
Affiliation(s)
- Magdalena Zietarska
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal /Institut du Cancer de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Ghosh S, Joshi MB, Ivanov D, Feder-Mengus C, Spagnoli GC, Martin I, Erne P, Resink TJ. Use of multicellular tumor spheroids to dissect endothelial cell-tumor cell interactions: a role for T-cadherin in tumor angiogenesis. FEBS Lett 2007; 581:4523-8. [PMID: 17765896 DOI: 10.1016/j.febslet.2007.08.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/19/2007] [Indexed: 01/19/2023]
Abstract
This study addresses establishment of an "in vitro" melanoma angiogenesis model using multicellular tumor spheroids (MCTS) of differentiated (HBL) or undifferentiated (NA8) melanoma cell lines. DNA microarray assay and qRT-PCR indicated upregulation of pro-angiogenic factors IL-8, VEGF, Ephrin A1 and ANGPTL4 in NA8-MCTSs (vs. monolayers) whereas these were absent in MCTS and monolayer cultures of HBL. Upon co-culture with endothelial cell line HMEC-1 NA8-MCTS attract, whereas HBL-MCTS repulse, HMEC-1. Overexpression of T-cadherin in HMEC-1 leads to their increased invasion and network formation within NA8-MCTS. Given an appropriate angiogenic tumor microenvironment, T-cadherin upregulation on endothelial cells may potentiate intratumoral angiogenesis.
Collapse
Affiliation(s)
- Sourabh Ghosh
- ICFS, Departments of Surgery and Research, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Walles T, Weimer M, Linke K, Michaelis J, Mertsching H. The Potential of Bioartificial Tissues in Oncology Research and Treatment. Oncol Res Treat 2007; 30:388-94. [PMID: 17596750 DOI: 10.1159/000102544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review article addresses the relevance and potential of bioartificial tissues in oncologic research and therapy and reconstructive oncologic surgery. In order to translate the findings from basic cellular research into clinical applications, cell-based models need to recapitulate both the 3D organization and multicellular complexity of an organ but at the same time accommodate systematic experimental intervention. Here, tissue engineering, the generation of human tissues and organs in vitro, provides new perspectives for basic and applied research by offering 3D tissue cultures resolving fundamental obstacles encountered in currently applied 2D and 3D cell culture systems. Tissue engineering has already been applied to create replacement structures for reconstructive surgery. Applied in vitro, these complex multicellular 3D tissue cultures mimic the microenvironment of human tissues. In contrast to the currently available cell culture systems providing only limited insight into the complex interactions in tissue differentiation, carcinogenesis, angiogenesis and the stromal reaction, the more realistic (micro)environment afforded by the bioartificial tissuespecific 3D test systems may accelerate the progress in design and development of cancer therapies.
Collapse
Affiliation(s)
- Thorsten Walles
- Abteilung für Thoraxchirurgie, Klinik Schillerhöhe, Gerlingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Burchill SA. What do, can and should we learn from models to evaluate potential anticancer agents? Future Oncol 2006; 2:201-11. [PMID: 16563089 DOI: 10.2217/14796694.2.2.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transfer of new anticancer agents from bench to clinical trial takes in excess of 10 years and costs up to US $500 million. Despite this massive commitment, many more new agents fail in the clinical trials than are successful. The poor performance of many investigational anticancer agents in the clinic implies that the preclinical models used to evaluate them are flawed, inappropriately used or the information they generate is misinterpreted. This article reviews current practice and the range of preclinical models available. The author provides a personal perspective on what information is needed and how in the future this might best be obtained from preclinical models to more effectively inform the transfer of novel, active agents into clinical practice.
Collapse
Affiliation(s)
- Susan A Burchill
- Candlelighter's Children's Cancer Research Laboratory, Leeds University, UK.
| |
Collapse
|
18
|
Kunz-Schughart LA, Schroeder JA, Wondrak M, van Rey F, Lehle K, Hofstaedter F, Wheatley DN. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol 2006; 290:C1385-98. [PMID: 16601149 DOI: 10.1152/ajpcell.00248.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of vessel-like structures in vitro to mimic as well as to realize the possibility of tissue-engineered small vascular networks presents a major challenge to cell biologists and biotechnologists. We aimed to establish a three-dimensional (3-D) culture system with an endothelial network that does not require artificial substrates or ECM compounds. By using human skin fibroblasts and endothelial cells (ECs) from the human umbilical vein (HUVECs) in diverse spheroid coculture strategies, we verified that fibroblast support and modulate EC migration, viability, and network formation in a 3-D tissue-like stromal environment. In mixed spheroid cultures consisting of human ECs and fibroblasts, a complex 3-D network with EC tubular structures, lumen formation, pinocytotic activity, and tight junction complexes has been identified on the basis of immunohistochemical and transmission electron microscopic imaging. Tubular networks with extensions up to 400 μm were achieved. When EC suspensions were used, EC migration and network formation were critically affected by the status of the fibroblast. However, the absence of EC migration into the center of 14-day, but not 3-day, precultured fibroblast spheroids could not be attributed to loss of F viability. In parallel, it was also confirmed that migrated ECs that entered cluster-like formations became apoptotic, whereas the majority of those forming vessel-like structures remained viable for >8 days. Our protocols allow us to study the nature of tubule formation in a manner more closely related to the in vivo situation as well as to understand the basis for the integration of capillary networks in tissue grafts and develop methods of quantifying the amount of angiogenesis in spheroids using fibroblast and other cells isolated from the same patient, along with ECs.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
De Witt Hamer PC, Jonker A, Leenstra S, Ruijter JM, Van Noorden CJF. Quantification of viability in organotypic multicellular spheroids of human malignant glioma using lactate dehydrogenase activity: a rapid and reliable automated assay. J Histochem Cytochem 2005; 53:23-34. [PMID: 15637335 DOI: 10.1177/002215540505300104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Organotypic spheroids from malignant glioma resemble the biological complexity of the original tumor and are therefore appealing to study anticancer drug responses. Accurate and reproducible quantification of response effect has been lacking to determine drug responses in this three-dimensional tumor model. Lactate dehydrogenase (LDH) activity was demonstrated in cryostat sections of spheroids using the tetrazolium salt method. Calibrated digital image acquisition of the stained cryostat sections enables quantification of LDH activity. Fully automated image cytometry reliably demarcates LDH-active and LDH-inactive tissue areas by thresholding at specific absorbance values. The viability index (VI) was calculated as ratio of LDH-active areas and total spheroid tissue areas. Duplicate staining and processing on the same tissue showed good correlation and therefore reproducibility. Sodium azide incubation of spheroids induced reduction in VI to almost zero. We conclude that quantification of viability in cryostat sections of organotypic multicellular spheroids from malignant glioma can be performed reliably and reproducibly with this approach.
Collapse
Affiliation(s)
- Philip C De Witt Hamer
- Academic Medical Centre, University of Amsterdam, Dept. of Neurosurgery, Room H2-230, PO Box 22660, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. ACTA ACUST UNITED AC 2004; 9:273-85. [PMID: 15191644 DOI: 10.1177/1087057104265040] [Citation(s) in RCA: 552] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93042 Regensburg, Germany.
| | | | | | | |
Collapse
|
21
|
Krueger S, Kalinski T, Wolf H, Kellner U, Roessner A. Interactions between human colon carcinoma cells, fibroblasts and monocytic cells in coculture--regulation of cathepsin B expression and invasiveness. Cancer Lett 2004; 223:313-22. [PMID: 15896466 DOI: 10.1016/j.canlet.2004.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 09/20/2004] [Accepted: 09/26/2004] [Indexed: 12/21/2022]
Abstract
To elucidate the importance of the tumor/host interaction in malignant tumors, we investigated the colon carcinoma cell line HT-29 in coculture with monocytic cells (THP-1) and fibroblasts (175BR) for cathepsin B expression and activity. The tumor cells were grown in monolayer cultures or as multicellular tumor spheroids. After coculture, the three cell types were separated by labeled magnetic beads for cathepsin B mRNA and protein analysis. The invasive potential was studied in in vitro invasion assays. The expression level of cathepsin B was found to be 10-fold increased in three dimensional spheroids of HT-29 compared to HT-29 monolayers. The coculture of HT-29 with THP-1 cells and/or human fibroblasts led to a considerable increase in cathepsin B mRNA expression in both tumor and tumor-associated cells. The invasive potential of the tumor cells was 5 times increased by adding monocytic cells to the assay system. This is dependent on the functional activity of cathepsin B as shown by specific siRNA's and seems to be regulated by activation of ERK1/2 and p38 signal transduction pathways.
Collapse
Affiliation(s)
- Sabine Krueger
- Department of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Timmins NE, Dietmair S, Nielsen LK. Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 2004; 7:97-103. [PMID: 15516830 DOI: 10.1007/s10456-004-8911-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The establishment of a vascular network within tumours is a key step in the progression towards an aggressive, metastatic state, with poor prognosis. We have developed a novel in vitro model to specifically capture the interaction between endothelial cells and solid tumours. Micro-vascularised in vitro tumour constructs were produced by introducing endothelial cells to multicellular spheroids formed in hanging drops. Upon introduction, the endothelial cells migrated into the tumour spheroid, establishing tubular networks and luminal structures. This system relies on the natural pro-angiogenic capacity of multicellular spheroids, and does not require the addition of exogenous angiogenic factors, or use of extracellular-matrix substitutes.
Collapse
Affiliation(s)
- Nicholas E Timmins
- Laboratory for Biological Engineering, Department of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
23
|
Rossi L, Corvò R. Retinoic acid modulates the radiosensitivity of head-and-neck squamous carcinoma cells grown in collagen gel. Int J Radiat Oncol Biol Phys 2002; 53:1319-27. [PMID: 12128135 DOI: 10.1016/s0360-3016(02)02865-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Collagen gels are increasingly regarded as reliable scaffolds for studying cells in vitro, displaying the same three-dimensional network of collagen fibers as encountered in vivo. As a contribution to therapeutic control of head-and-neck cancer, we grew HSCO86 cells in collagen gel and assessed their behavior in the presence of retinoic acid (RA) and radiation. METHODS AND MATERIALS The malignant epithelial cell line HSCO86 was isolated from a postirradiation human oropharyngeal squamous carcinoma; it was EGFR-negative by immunocytochemical criteria. The cells were embedded in hydrated collagen I at a density of 10(6) cells/mL, and on Days 8, 10, and 12 of culture, they were treated with 10(-5) M retinoic acid. Radiation was administered using two different schedules: simultaneously with RA in three daily doses totaling 10 Gy, or with a single dose of 8 Gy on Day 29 of culture, after the effects of RA had taken place. Cell proliferation was evaluated by the MTT assay, whereas morphometric characteristics were detected in the cultured gels directly or in the gels after they were fixed and stained with hematoxylin. RESULTS Contrary to growth in monolayer, where HSCO86 cells displayed a high proliferation rate, in collagen gel only a tiny fraction of the cells, usually less than 0.02%, survived the environmental stress; these cells spontaneously organized themselves into clonal multicellular spheroids growing up to 0.8 mm in diameter. After exposure to 10(-5) M retinoic acid, cell proliferation first declined and then, about 15 days after treatment, it started to increase to a level far above that in the control group. This surge in proliferation was ascribed to the appearance of numerous fibroblast-like cells at the edge of the spheroids. These cells, called HSCO-F, were the result of epithelial-to-mesenchymal conversion. When the gels were disaggregated by collagenase, and the cells were seeded in monolayer, HSCO-F cells reversed their morphology into parental HSCO86 cells. Treatment of collagen gels with 10 Gy, fractionated in three daily doses, did not substantially affect the growth of HSCO86 spheroids. However, when radiation was given simultaneously with RA, cell growth was significantly inhibited, both in terms of cell proliferation and size of spheroids (p < 0.0001 vs. untreated controls). This synergism applied mainly to parental HSCO86 cells, because no significant damage was induced by radiation on the HSCO-F cells previously generated by treatment with RA. CONCLUSION Differences in the radiosensitivity of HSCO86 and HSCO-F cells are surprising in view of their common origin; this suggests a scenario in which, to overcome a microenvironmental stress, head-and-neck carcinoma cells can temporarily shift from an epithelial to a mesenchymal phenotype. In particular, morphologic and functional data suggested that HSCO-F cells were transformed into vascular endothelial cells whose characteristics included the following: (1) distinctive expression of Factor VIII and beta(1)-integrin, not detected in parental HSCO86 cells; (2) active migration in the collagen network by extruded pseudopodia, frequently appearing as colonies of filamentous cells aligned along the radial axis of the spheroids; and (3) efficient contraction of floating collagen gels. The implication of our study is that head-and-neck carcinomas may respond to RA treatment by selecting cell populations both resistant to radiation and capable of migrating inside the connective tissue, mimicking the behavior of vascular capillaries.
Collapse
Affiliation(s)
- Lorenzo Rossi
- Laboratory of Comparative Oncology, University of Genoa, Genoa, Italy.
| | | |
Collapse
|