1
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
2
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
3
|
Pang JL, Huang FH, Zhang YH, Wu Y, Ge XM, Li S, Li X. Sodium cantharidate induces Apoptosis in breast cancer cells by regulating energy metabolism via the protein phosphatase 5-p53 axis. Toxicol Appl Pharmacol 2021; 430:115726. [PMID: 34537213 DOI: 10.1016/j.taap.2021.115726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide, and despite multiple chemotherapeutic approaches, effective treatment strategies for advanced metastatic breast cancer are still lacking. Metabolic reprogramming is essential for tumor cell growth and propagation, and most cancers, including breast cancer, are accompanied by abnormalities in energy metabolism. Here, we confirmed that sodium cantharidate inhibited cell viability using the Cell Counting Kit-8, clonogenic assay, and Transwell assay. The cell cycle and apoptosis assays indicated that sodium cantharidate induced apoptosis and cell cycle arrest in breast cancer cells. Additionally, proteomic assays, western blots, and metabolic assays revealed that sodium cantharidate converted the metabolic phenotype of breast cancer cells from glycolysis to oxidative phosphorylation. Furthermore, bioinformatics analysis identified possible roles for p53 with respect to the effects of sodium cantharidate on breast cancer cells. Western blot, docking, and phosphatase assays revealed that the regulation of p53 activity by sodium cantharidate was related to its inhibition of protein phosphatase 5 activity. Moreover, sodium cantharidate significantly inhibited tumor growth in tumor-bearing nude mice. In summary, our study provides evidence for the use of sodium cantharidate as an effective and new therapeutic candidate for the treatment of human breast cancer in clinical trials.
Collapse
Affiliation(s)
- Jin-Long Pang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Fu-Hao Huang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Yu-Han Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Xian-Ming Ge
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China.
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China; New Technologies for Chinese Medicine Drinker Manufacturing Anhui Provincial Key Laboratory, Hefei City 230012, China; Postdoctoral workstation of Anhui Xiehecheng Drinker Tablets Co., Ltd, Bozhou City 236800, China.
| |
Collapse
|
4
|
Targeting protein phosphatase PP2A for cancer therapy: development of allosteric pharmaceutical agents. Clin Sci (Lond) 2021; 135:1545-1556. [PMID: 34192314 DOI: 10.1042/cs20201367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023]
Abstract
Tumor initiation is driven by oncogenes that activate signaling networks for cell proliferation and survival involving protein phosphorylation. Protein kinases in these pathways have proven to be effective targets for pharmaceutical inhibitors that have progressed to the clinic to treat various cancers. Here, we offer a narrative about the development of small molecule modulators of the protein Ser/Thr phosphatase 2A (PP2A) to reduce the activation of cell proliferation and survival pathways. These novel drugs promote the assembly of select heterotrimeric forms of PP2A that act to limit cell proliferation. We discuss the potential for the near-term translation of this approach to the clinic for cancer and other human diseases.
Collapse
|
5
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
6
|
Li Y, Sun H, Yasoob H, Tian Z, Li Y, Li R, Zheng S, Liu J, Zhang Y. Biogenetic cantharidin is a promising leading compound to manage insecticide resistance of Mythimna separata (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104769. [PMID: 33518040 DOI: 10.1016/j.pestbp.2020.104769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Cantharidin (CTD) is a natural toxin with effective toxicity to lepidopteran pests. Nevertheless, little information is available on whether pests develop resistance to CTD. After being exposed to CTD (50 mg/L to 90 mg/L) or 10 generations, the resistance ratio of laboratory selected cantharidin-resistant Mythimna separata (Cantharidin-SEL) strain was only elevated 1.95-fold. Meanwhile, the developmental time for M. separata was prolonged (delayed1.65 in males and 1.84 days in females). The reported CTD target, the serine/threonine phosphatases (PSPs), have not been shown significant activity variation during the whole process of CTD-treatment. The activity of detoxification enzymes (cytochrome monooxygenase P450, glutathione-S-transferase (GST) and carboxylesterase) were affected by CTD selection, but this change was not mathematically significant. More importantly, no obvious cross-resistance with other commonly used insecticides was observed in the M. separata population treated with CTD for 10 generations (resistance ratios were all lower 2.5). Overall, M. separata is unlikely to produce target-site insensitivity resistance, metabolic resistance to CTD. Meanwhile, cantharidin-SEL is not prone to develop cross-resistance with other insecticides. These results indicate that CTD is a promising biogenetic lead compound which can be applied in the resistance management on M. separata.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hassan Yasoob
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Entomology, UCA&ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, No.48, Yangzhou, Jiangsu Province 225009, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengli Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Gergs U, Jahn T, Werner F, Köhler C, Köpp F, Großmann C, Neumann J. Overexpression of protein phosphatase 5 in the mouse heart: Reduced contractility but increased stress tolerance - Two sides of the same coin? PLoS One 2019; 14:e0221289. [PMID: 31425567 PMCID: PMC6699691 DOI: 10.1371/journal.pone.0221289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 11/18/2022] Open
Abstract
The pathophysiological mechanisms of sepsis-induced cardiac dysfunction are largely unknown. The Toll-like receptor 4 (TLR4) is expressed in cardiac myocytes and is involved in bacterial endotoxin-mediated inflammatory disorders. TLR4 signaling leads to activation of the nuclear factor kappa B followed by increased expression of cytokines. Several protein phosphatases including PP2Cβ, PP2A or PP1 are known to act as regulators of this signaling pathway. Here, we examined the role of PP5 for the inflammatory response to the bacterial endotoxin lipopolysaccharide in the heart using a transgenic mouse model with cardiac myocyte directed overexpression of PP5. In these transgenic mice, basal cardiac contractility was reduced, in vivo as well as in vitro, but LPS-induced cardiac dysfunction was less pronounced compared to wild type mice. Quantitative RT-PCR suggested an attenuated NF-κB signaling in the heart and cardiac expression of heat shock protein 25 (HSP25) was increased in PP5 transgenic mice. From our data we assume that PP5 increases stress tolerance of cardiac myocytes by downregulation of NF-κB signaling and upregulation of HSP25 expression.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Köhler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Wang L, Yan F. Exploring the role of active site Mn2+ ions in the binding of protein phosphatase 5 with its substrate using molecular dynamics simulations. Biochem Biophys Res Commun 2019; 511:612-618. [DOI: 10.1016/j.bbrc.2019.02.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022]
|
9
|
The protein phosphatase gene MaPpt1 acts as a programmer of microcycle conidiation and a negative regulator of UV-B tolerance in Metarhizium acridum. Appl Microbiol Biotechnol 2019; 103:1351-1362. [DOI: 10.1007/s00253-018-9567-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
|
10
|
Assis LC, de Castro AA, Prandi IG, Mancini DT, de Giacoppo JOS, Savedra RML, de Assis TM, Carregal JB, da Cunha EFF, Ramalho TC. Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg 2+ system: molecular dynamics and quantum calculations. J Mol Model 2018; 24:303. [PMID: 30280322 DOI: 10.1007/s00894-018-3837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
The serine/threonine protein phosphatase type 5 (PP5) is a promising target for designing new antitumor drugs. This enzyme is a member of the PPP phosphatases gene family, which catalyzes a dephosphorylation reaction: a regulatory process in the signal transduction pathway that controls various biological processes. The aim of this work is to study and compare the inhibition of PP5 by ten cantharidin-like inhibitors in order to bring about contributions relevant to the better comprehension of their inhibitory activity. In this theoretical investigation, we used molecular dynamics techniques to understand the role of key interactions that occur in the protein active site; QM calculations were employed to study the interaction mode of these inhibitors in the enzyme. In addition, atoms in molecules (AIM) calculations were carried out to characterize the chemical bonds among the atoms involved and investigate the orbital interactions with their respective energy values. The obtained results suggest that the Arg275, Asn303, His304, His352, Arg400, His427, Glu428, Val429, Tyr451, and Phe446 residues favorably contribute to the interactions between inhibitors and PP5. However, the Asp271 and Asp244 amino acid residues do not favor such interactions for some inhibitors. Through the QM calculations, we can suggest that the reactional energy of the coordination mechanism of these inhibitors in the PP5 active site is quite important and is responsible for the inhibitory activity. The AIM technique employed in this work was essential to get a better comprehension of the transition states acquired from the mechanism simulation. This work offers insights of how cantharidin-like inhibitors interact with human PP5, potentially allowing the design of more specific and even less cytotoxic drugs for cancer treatments. Graphical Abstract Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg2+ system.
Collapse
Affiliation(s)
- Letícia C Assis
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Alexandre A de Castro
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Ingrid G Prandi
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Daiana T Mancini
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Juliana O S de Giacoppo
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Ranylson M L Savedra
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG, CEP 35400-000, Brazil
| | - Tamiris M de Assis
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Juliano B Carregal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho 400, Divinópolis, MG, 35501-296, Brazil
| | - Elaine F F da Cunha
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Teodorico Castro Ramalho
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil. .,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
11
|
Norris-Mullins B, Krivda JS, Smith KL, Ferrell MJ, Morales MA. Leishmania phosphatase PP5 is a regulator of HSP83 phosphorylation and essential for parasite pathogenicity. Parasitol Res 2018; 117:2971-2985. [PMID: 29982859 DOI: 10.1007/s00436-018-5994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Abstract
Leishmania parasites are responsible for important neglected diseases in humans and animals, ranging from self-healing cutaneous lesions to fatal visceral manifestations. During the infectious cycle, Leishmania differentiates from the extracellular flagellated promastigote to the intracellular pathogenic amastigote. Parasite differentiation is triggered by changes in environmental cues, mainly pH and temperature. In general, extracellular signals are translated into stage-specific gene expression by a cascade of reversible protein phosphorylation regulated by protein kinases and phosphatases. Though protein kinases have been actively studied as potential anti-parasitic drug targets, our understanding of the biology of protein phosphatases in Leishmania is poor. We have previously reported the principal analysis of a novel protein phosphatase 5 (PP5) in Leishmania species. Here, we assessed the role of PP5 in parasite pathogenicity, where we uncovered, using transgenic PP5 over-expressing and PP5 null-mutant parasites, its importance in metacyclogeneisis, maintaining HSP83 phosphorylation homeostasis and virulence. All together, our results indicate the importance of PP5 in regulating parasite stress and adaptation during differentiation, making this protein an attractive potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph S Krivda
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kathryn L Smith
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Micah J Ferrell
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Miguel A Morales
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
12
|
Zhu J, Ji Y, Yu Y, Jin Y, Zhang X, Zhou J, Chen Y. Knockdown of serine/threonine protein phosphatase 5 enhances gemcitabine sensitivity by promoting apoptosis in pancreatic cancer cells in vitro. Oncol Lett 2018; 15:8761-8769. [PMID: 29805615 PMCID: PMC5950513 DOI: 10.3892/ol.2018.8363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/22/2017] [Indexed: 12/28/2022] Open
Abstract
The targeting protein of serine/threonine protein phosphatase 5 (PPP5C) has been reported to be present in various malignancies. However, its functional role in pancreatic cancer (PC) remains unknown. In the present study, the function of PPP5C in PC cells treated with the first-line drug gemcitabine (GEM) was investigated. Short hairpin (sh)RNA targeting PPP5C was constructed to knockdown PPP5C in PANC-1 cells. Cell cycle and apoptosis analyses were performed in order to investigate the mechanisms underlying the effects induced by PPP5C silencing combined with GEM treatment. Western blot analysis was applied to detect the expression of certain key regulators of cell apoptosis in PANC-1 cells treated with GEM. shRNA against PPP5C effectively suppressed the proliferation of PANC-1 cells treated with GEM. Additionally, cell cycle analysis indicated that PPP5C knockdown resulted in a higher number of PANC-1 cells treated with GEM in G0/G1 phase arrest. Knockdown of PPP5C increased the expression of associated apoptotic markers, including cleaved caspase 3, poly (ADP-ribose) polymerase and phosphorylated (p)-p53. In addition, the combination of treatment with GEM and PPP5C silencing significantly increased the apoptosis of PANC-1 cells by affecting the expression levels of p-c-Jun N-terminal kinases and p-p38. The present study suggests that PPP5C may be a potential target for the treatment of PC and that it may enhance the gemcitabine sensitivity of PC cells.
Collapse
Affiliation(s)
- Jinhui Zhu
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Ji
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuanquan Yu
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxiao Zhang
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiale Zhou
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Chen
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
13
|
Stechschulte LA, Lecka-Czernik B. Reciprocal regulation of PPARγ and RUNX2 activities in marrow mesenchymal stem cells: Fine balance between p38 MAPK and Protein Phosphatase 5. ACTA ACUST UNITED AC 2017; 3:107-113. [PMID: 29276666 DOI: 10.1007/s40610-017-0056-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of review Post-translational modifications (PTMs), specifically serine phosphorylation, are essential for determination and tuning up an activity of many proteins, including those that are involved in the control of gene transcription. Transcription factors PPARγ2 and RUNX2 are essential for mesenchymal stem cell (MSC) commitment to either adipocyte or osteoblast lineage. This review is summarizing current knowledge how serine phosphorylation PTMs regulate activities of both transcription factors and MSCs lineage commitment. Recent finding Both PPARγ2 and RUNX2 transcriptional activities are regulated by similar PTMs, however with an opposite outcome. The same p38 MAPK mediates serine phosphorylation that leads to activation of RUNX2 and inactivation of PPARγ2. The process of protein phosphorylation is balanced with a process of protein dephosphorylation. Protein phosphatase 5 simultaneously dephosphorylates both proteins, which results in activation of PPARγ2 and inactivation of RUNX2. Summary This review provides a summary of the "yinyang" fine-tuned mechanism by which p38 MAPK and PP5 regulate MSCs lineage commitment.
Collapse
Affiliation(s)
- Lance A Stechschulte
- Department of Orthopaedic Surgery.,Center for Diabetes and Endocrine Diseases, University of Toledo Health Sciences Campus, Toledo, Ohio
| | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery.,Physiology and Pharmacology.,Center for Diabetes and Endocrine Diseases, University of Toledo Health Sciences Campus, Toledo, Ohio
| |
Collapse
|
14
|
Hong TJ, Park K, Choi EW, Hahn JS. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism. Biochem Biophys Res Commun 2017; 482:215-220. [DOI: 10.1016/j.bbrc.2016.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
|
15
|
Twiner MJ, Doucette GJ, Pang Y, Fang C, Forsyth CJ, Miles CO. Structure-Activity Relationship Studies Using Natural and Synthetic Okadaic Acid/Dinophysistoxin Toxins. Mar Drugs 2016; 14:md14110207. [PMID: 27827901 PMCID: PMC5128750 DOI: 10.3390/md14110207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/07/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Okadaic acid (OA) and the closely related dinophysistoxins (DTXs) are algal toxins that accumulate in shellfish and are known serine/threonine protein phosphatase (ser/thr PP) inhibitors. Phosphatases are important modulators of enzyme activity and cell signaling pathways. However, the interactions between the OA/DTX toxins and phosphatases are not fully understood. This study sought to identify phosphatase targets and characterize their structure–activity relationships (SAR) with these algal toxins using a combination of phosphatase activity and cytotoxicity assays. Preliminary screening of 21 human and yeast phosphatases indicated that only three ser/thr PPs (PP2a, PP1, PP5) were inhibited by physiologically saturating concentrations of DTX2 (200 nM). SAR studies employed naturally-isolated OA, DTX1, and DTX2, which vary in degree and/or position of methylation, in addition to synthetic 2-epi-DTX2. OA/DTX analogs induced cytotoxicity and inhibited PP activity with a relatively conserved order of potency: OA = DTX1 ≥ DTX2 >> 2-epi-DTX. The PPs were also differentially inhibited with sensitivities of PP2a > PP5 > PP1. These findings demonstrate that small variations in OA/DTX toxin structures, particularly at the head region (i.e., C1/C2), result in significant changes in toxicological potency, whereas changes in methylation at C31 and C35 (tail region) only mildly affect potency. In addition to this being the first study to extensively test OA/DTX analogs’ activities towards PP5, these data will be helpful for accurately determining toxic equivalence factors (TEFs), facilitating molecular modeling efforts, and developing highly selective phosphatase inhibitors.
Collapse
Affiliation(s)
- Michael J Twiner
- School of Medicine, Wayne State University, Detroit, MI 48201, USA.
- Department of Natural Sciences, University of Michigan, Dearborn, MI 48128, USA.
| | - Gregory J Doucette
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, NOAA/National Ocean Service, Charleston, SC 29412, USA.
| | - Yucheng Pang
- Department of Chemistry, The Ohio State University, Columbus, OH 43220, USA.
| | - Chao Fang
- Department of Chemistry, The Ohio State University, Columbus, OH 43220, USA.
| | - Craig J Forsyth
- Department of Chemistry, The Ohio State University, Columbus, OH 43220, USA.
| | - Christopher O Miles
- Section for Chemistry and Toxicology, Norwegian Veterinary Institute, Oslo 0454, Norway.
| |
Collapse
|
16
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
17
|
Lajarín-Cuesta R, Arribas RL, De Los Ríos C. Ligands for Ser/Thr phosphoprotein phosphatases: a patent review (2005-2015). Expert Opin Ther Pat 2016; 26:389-407. [DOI: 10.1517/13543776.2016.1135903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Yamaguchi F, Tsuchiya M, Shimamoto S, Fujimoto T, Tokumitsu H, Tokuda M, Kobayashi R. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity. TOHOKU J EXP MED 2016; 240:67-78. [DOI: 10.1620/tjem.240.67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Mitsumasa Tsuchiya
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| | - Seiko Shimamoto
- Laboratory of Oncology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation
| | - Tomohito Fujimoto
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| | - Hiroshi Tokumitsu
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University
| | - Ryoji Kobayashi
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| |
Collapse
|
19
|
Zheng X, Zhang L, Jin B, Zhang F, Zhang D, Cui L. Knockdown of protein phosphatase 5 inhibits ovarian cancer growth in vitro. Oncol Lett 2015; 11:168-172. [PMID: 26870184 DOI: 10.3892/ol.2015.3828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related mortality. Serine/threonine protein phosphatase 5 (PP5, PPP5C) has been recognized to be involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, including cell growth, differentiation, proliferation, motility and apoptosis. In this study, to evaluate the functional role of PP5 in ovarian cancer cells, lentivirus-mediated RNA interference (RNAi) was applied to silence PPP5C in the human ovarian cancer cell line CAOV-3. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell colony forming ability was measured by colony formation. Cell cycle progression was determined by propidium iodide staining and flow cytometry. The results demonstrated that lentivirus-mediated RNAi specifically suppressed the expression of PPP5C at the mRNA and protein levels in CAOV-3 cells. Further investigations revealed that PP5 knockdown significantly inhibited the proliferation and colony formation of CAOV-3 cells. Moreover, the cell cycle of CAOV-3 cells was arrested at the G0/G1 phase following PP5 knockdown. This study highlights the crucial role of PP5 in promoting ovarian cancer cell proliferation, and provides a foundation for further study into the clinical potential of lentiviral-mediated delivery of PP5 RNAi therapy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lianxiao Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bohong Jin
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Fubin Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Duoyi Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lining Cui
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
20
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
21
|
Liu JY, Chen XE, Zhang YL. Insights into the key interactions between human protein phosphatase 5 and cantharidin using molecular dynamics and site-directed mutagenesis bioassays. Sci Rep 2015; 5:12359. [PMID: 26190207 PMCID: PMC4507179 DOI: 10.1038/srep12359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5) is a promising novel target for anticancer therapies. This work aims to uncover the key interactions at the atomic level between PP5 and three inhibitors (cantharidin, norcantharidin and endothall). We found that, unlike previous report, Arg 100 contributes less to PP5-inhibitor binding, and the residues His 69, Asn 128, His 129, Arg 225, His 252 and Arg 250 are of importance to PP5-inhibitor binding. The hydrophobic interactions established between the residues Val 254, Phe 271 and Tyr 276, especially Glu 253, are very important to enhance the inhibitive interaction. We suggested that, to increase the inhibitory activity, the interactions of inhibitor with three negatively charged unfavorable interaction residues, Asp 99, Glu 130 and Asp 213, should be avoided. However, the interactions of inhibitor with favorable interaction residue Arg 250 could enhance the inhibitory activity. The Manganese ion 2 (MN2) unfavorably contribute to the total interaction free energies. The coordination between MN2 and chemical group of inhibitor should be eliminated. This work provides insight into how cantharidin and its analogs bind to PP5c at the atomic level and will facilitate modification of cantharidin-like chemicals to rationally develop more specific and less cytotoxic anti-cancer drugs.
Collapse
Affiliation(s)
- Ji-Yuan Liu
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi-En Chen
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
22
|
Decreased adipogenesis and adipose tissue in mice with inactivated protein phosphatase 5. Biochem J 2015; 466:163-76. [DOI: 10.1042/bj20140428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
White adipose tissue levels are decreased and preadipoctye differentiation to adipocytes is retarded in mice with inactivated protein phosphatase 5. Increased phosphate in the glucocorticoid receptor mediates this phenotype by altering expression of several proteins in the pathway of adipogenesis.
Collapse
|
23
|
TSUCHIYA MITSUMASA, YAMAGUCHI FUMINORI, SHIMAMOTO SEIKO, FUJIMOTO TOMOHITO, TOKUMITSU HIROSHI, TOKUDA MASAAKI, KOBAYASHI RYOJI. Oxidized S100A4 inhibits the activation of protein phosphatase 5 through S100A1 in MKN-45 gastric carcinoma cells. Int J Mol Med 2014; 34:1713-9. [DOI: 10.3892/ijmm.2014.1947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/23/2014] [Indexed: 11/06/2022] Open
|
24
|
Cho BR, Lee P, Hahn JS. CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae. Mol Microbiol 2014; 93:306-16. [PMID: 24894977 DOI: 10.1111/mmi.12660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
Ethanol, the major fermentation product of Saccharomyces cerevisiae, has long been known as an inducer of heat shock response, but the underlying mechanisms by which ethanol activates heat shock transcription factor (HSF) are not well understood. We demonstrate that CK2-dependent phosphorylation on S608 is an ethanol stress-specific repression mechanism of Hsf1, which does not affect the basal or heat-induced activity of Hsf1. This repression is relieved by dephosphorylation by Ppt1 which directly interacts with Hsf1 via its tetratricopeptide repeat (TPR) domain. In response to ethanol stress, PPT1 deletion and CK2 overexpression exert synergistic inhibitory effects on Hsf1 activation, whereas Hsf1(S608A) mutant shows enhanced activation. Therefore, regulation of the Hsf1 S608 phosphorylation status by reciprocal actions of CK2 and Ppt1 might play an important role to determine Hsf1 sensitivity towards ethanol stress.
Collapse
Affiliation(s)
- Bo-Ram Cho
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea
| | | | | |
Collapse
|
25
|
Norris-Mullins B, Vacchina P, Morales MA. Catalytic activity of a novel serine/threonine protein phosphatase PP5 from Leishmania major. ACTA ACUST UNITED AC 2014; 21:25. [PMID: 24890370 PMCID: PMC4042446 DOI: 10.1051/parasite/2014027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/24/2014] [Indexed: 11/14/2022]
Abstract
Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. Our knowledge of protein phosphatases (PPs) and their implication in signaling events is very limited. Here we report the expression, characterization and mutagenesis analysis of a novel protein phosphatase 5 (PP5) in Leishmania major. Recombinant PP5 is a bona fide phosphatase and is enzymatically active. Site-directed mutagenesis revealed auto-inhibitory roles of the N-terminal region. This is a rational first approach to understand the role of PP5 in the biology of the parasite better as well as its potential future applicability to anti-parasitic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paola Vacchina
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Miguel A Morales
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|
27
|
Ribeiro AJM, Alberto ME, Ramos MJ, Fernandes PA, Russo N. The Catalytic Mechanism of Protein Phosphatase 5 Established by DFT Calculations. Chemistry 2013; 19:14081-9. [DOI: 10.1002/chem.201301565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Indexed: 11/07/2022]
|
28
|
Barajas-López JDD, Kremnev D, Shaikhali J, Piñas-Fernández A, Strand Å. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One 2013; 8:e60305. [PMID: 23555952 PMCID: PMC3612061 DOI: 10.1371/journal.pone.0060305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/25/2013] [Indexed: 12/17/2022] Open
Abstract
The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5) was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative regulator of PhANG expression during chloroplast biogenesis and development.
Collapse
Affiliation(s)
| | - Dmitry Kremnev
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jehad Shaikhali
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Aurora Piñas-Fernández
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
29
|
Zhou BH, Wang HW, Zhao ZS, Liu M, Yan WC, Zhao J, Zhang Z, Xue FQ. A novel serine/threonine protein phosphatase type 5 from second-generation merozoite of Eimeria tenella is associated with diclazuril-induced apoptosis. Parasitol Res 2013; 112:1771-80. [PMID: 23417098 DOI: 10.1007/s00436-013-3336-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/31/2013] [Indexed: 11/25/2022]
Abstract
Screening the anticoccidial drug targets is very important for developing novel drugs and revealing the molecular basis of drug resistance in coccidia. Due to high effectivity and safety, diclazuril was used widely in the poultry industry. To assess the roles of the serine/threonine protein phosphatase type 5 of second-generation merozoites in Eimeria tenella (EtPP5) in the anticoccidial activity of diclazuril against chicken coccidiosis, EtPP5 was cloned using reverse transcriptase polymerase chain reaction and rapid amplification of cDNA ends. Ultrastructural changes in second-generation merozoites and mRNA expression level of EtPP5 were monitored by transmission electron microscopy (TEM) and quantitative real-time PCR, respectively. The results showed that the full length of the cloned EtPP5 cDNA (2,495 bp) encompassed a 1,647-bp open reading frame encoding a polypeptide of 548 residues with an estimated molecular mass of 60.82 kDa and a theoretical isoelectric point of 5.89. Molecular analysis of EtPP5 reveals the presence of a C-terminal phosphatase domain and an extended N-terminal tetratricopeptide repeat motif, a typical feature of protein phosphatases. The cDNA sequence has been submitted to the GenBank database with accession number JX987508. EtPP5 shared 89% homology with the published sequence of a PP5 ortholog of Toxoplasma gondii at the amino acid level (GenBank XP_002364442.1). TEM observed that diclazuril induced ultrastructural changes in second-generation merozoites. Quantitative real-time PCR analysis showed that compared with the control group, the level of EtPP5 mRNA expression was significantly downregulated by 51.4% by diclazuril treatment. The high similarity of EtPP5 to previously described PP5 of other organisms, as well as its downregulated expression and connection with apoptosis in the second-generation merozoites induced by diclazuril, suggests that it could act an important role in understanding the signaling mechanism underlining the diclazuril-induced merozoites apoptosis.
Collapse
Affiliation(s)
- Bian-hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, 70 Tianjin Road, Jianxi, Luoyang, Hehan, 471003, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mamidala P, Wijeratne AJ, Wijeratne S, Poland T, Qazi SS, Doucet D, Cusson M, Beliveau C, Mittapalli O. Identification of odor-processing genes in the emerald ash borer, Agrilus planipennis. PLoS One 2013; 8:e56555. [PMID: 23424668 PMCID: PMC3570424 DOI: 10.1371/journal.pone.0056555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/15/2013] [Indexed: 01/13/2023] Open
Abstract
Background Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. Methodology and Principal Findings We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. Conclusions and Significance The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.
Collapse
Affiliation(s)
- Praveen Mamidala
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Asela J. Wijeratne
- Department of Molecular and Cellular Imaging Center, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Saranga Wijeratne
- Department of Molecular and Cellular Imaging Center, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Therese Poland
- USDA Forest Service, Northern Research Station, Michigan State University, East Lansing, Michigan, United States of America
| | - Sohail S. Qazi
- Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Daniel Doucet
- Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | | | | | - Omprakash Mittapalli
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Shimada M, Nakanishi M. Response to DNA damage: why do we need to focus on protein phosphatases? Front Oncol 2013; 3:8. [PMID: 23386996 PMCID: PMC3560363 DOI: 10.3389/fonc.2013.00008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/09/2013] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR). Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University Nagoya, Japan
| | | |
Collapse
|
32
|
Taira J, Higashimoto Y. Caveolin-1 interacts with protein phosphatase 5 and modulates its activity in prostate cancer cells. Biochem Biophys Res Commun 2013; 431:724-8. [PMID: 23352616 DOI: 10.1016/j.bbrc.2013.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/12/2013] [Indexed: 12/31/2022]
Abstract
Caveolin-1 is highly expressed in prostate cancer cells, and is implicated in disease progression. Here, we identified protein phosphatase 5 (PP5) as a novel cellular binding partner of caveolin-1 using a pull-down approach in combination with mass spectrometry-based proteomic analyses. In situ proximity ligation assays demonstrated co-localization and physical interaction of caveolin-1 and PP5 in the cytoplasm of PC-3 human prostate cancer cells. Using yeast two-hybrid analysis, we found that caveolin-1 interacted with the catalytic domain of PP5. We also found that PP5 activity was elevated about 1.7-fold in the presence of 2 μM caveolin-1, and that the scaffolding domain of caveolin-1 is required for this activation. Our results suggest that caveolin-1 is a novel physiological activator of PP5.
Collapse
Affiliation(s)
- Junichi Taira
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | |
Collapse
|
33
|
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing Res Rev 2013; 12:39-49. [PMID: 22771380 DOI: 10.1016/j.arr.2012.06.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby that might contributes to tau aggregation. Thus, understanding the regulation modes of tau dephosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these lesions in AD. Among the possible and relatively specific interventions that reverse tau phosphorylation is the stimulation of certain tau phosphatases. Here, we reviewed tau protein phosphatases, their physiological roles and regulation, their involvement in tau phosphorylation and the relevance to AD. We also reviewed the most common compounds acting on each tau phosphatase including PP2A.
Collapse
Affiliation(s)
- Ludovic Martin
- Groupe de Neurobiologie Cellulaire, Homéostasie cellulaire et pathologies, Faculté de Médecine, Limoges, France.
| | | | | | | | | | | |
Collapse
|
34
|
Grankvist N, Amable L, Honkanen RE, Sjöholm A, Ortsäter H. Serine/threonine protein phosphatase 5 regulates glucose homeostasis in vivo and apoptosis signalling in mouse pancreatic islets and clonal MIN6 cells. Diabetologia 2012; 55:2005-15. [PMID: 22526606 DOI: 10.1007/s00125-012-2541-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/02/2012] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS During the development of type 2 diabetes mellitus, beta cells are often exposed to a high glucose/hyperlipidaemic environment, in which the levels of reactive oxygen species (ROS) are elevated. In turn, ROS can trigger an apoptotic response leading to beta cell death, by activating mitogen-activated protein kinase (MAPK) signalling cascades. Here we test the hypothesis that serine/threonine protein phosphatase 5 (PP5) acts to suppress proapoptotic c-Jun N-terminal kinase (JNK) signalling in beta cells. METHODS Ppp5c(-/-) and Ppp5c(+/+) mice were subjected to intraperitoneal glucose (IPGTT) or insulin tolerance tests. Pancreatic islets from Ppp5c(-/-) and Ppp5c(+/+) mice or MIN6 cells treated with short-interfering RNA targeting PP5 were exposed to palmitate or H(2)O(2) to activate MAPK signalling. Changes in protein phosphorylation, mRNA expression, apoptosis and insulin secretion were detected by western blot analysis, quantitative RT-PCR or ELISA. RESULTS Ppp5c(-/-) mice weighed less and exhibited reduced fasting glycaemia and improved glucose tolerance during IPGTT, but retained normal insulin sensitivity and islet volume. Comparison of MAPK signalling in islets from Ppp5c(-/-) mice and MIN6 cells revealed that the lack of PP5 was associated with enhanced H(2)O(2)-induced phosphorylation of JNK and c-Jun. Cells with reduced PP5 also showed enhanced JNK phosphorylation and apoptosis after palmitate treatment. PP5 suppression in MIN6 cells correlated with hypersecretion of insulin in response to glucose. CONCLUSIONS/INTERPRETATION PP5 deficiency in mice is associated with reduced weight gain, lower fasting glycaemia, and improved glucose tolerance during IPGTT. At a molecular level, PP5 helps suppress apoptosis in beta cells by a mechanism that involves regulation of JNK phosphorylation.
Collapse
Affiliation(s)
- N Grankvist
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Bouazza B, Krytska K, Debba-Pavard M, Amrani Y, Honkanen RE, Tran J, Tliba O. Cytokines alter glucocorticoid receptor phosphorylation in airway cells: role of phosphatases. Am J Respir Cell Mol Biol 2012; 47:464-73. [PMID: 22592921 DOI: 10.1165/rcmb.2011-0364oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticosteroid insensitivity (CSI) represents a profound challenge in managing patients with asthma. We recently demonstrated that short exposure of airway smooth muscle cells (ASMCs) to proasthmatic cytokines drastically reduced their responsiveness to glucocorticoids (GCs), an effect that was partially mediated via interferon regulatory factor-1, suggesting the involvement of additional mechanisms (Am J Respir Cell Mol Biol 2008;38:463-472). Although GC receptor (GR) can be phosphorylated at multiple serines in the N-terminal region, the major phosphorylation sites critical for GR transcriptional activity are serines 211 (Ser211) and 226 (Ser226). We tested the novel hypothesis that cytokine-induced CSI in ASMCs is due to an impaired GR phosphorylation. Cells were treated with TNF-α (10 ng/ml) and IFN-γ (500 UI/ml) for 6 hours and/or fluticasone (100 nm) added 2 hours before. GR was constitutively phosphorylated at Ser226 but not at Ser211 residues. Cytokines dramatically suppressed fluticasone-induced phosphorylation of GR on Ser211 but not on Ser226 residues while increasing the expression of Ser/Thr protein phosphatase (PP)5 but not that of PP1 or PP2A. Transfection studies using a reporter construct containing GC responsive elements showed that the specific small interfering RNA-induced mRNA knockdown of PP5, but not that of PP1 or PP2A, partially prevented the cytokine suppressive effects on GR-meditated transactivation activity. Similarly, cytokines failed to inhibit GC-induced GR-Ser211 phosphorylation when expression of PP5 was suppressed. We propose that the novel mechanism that proasthmatic cytokine-induced CSI in ASMCs is due, in part, to PP5-mediated impairment of GR-Ser211 phosphorylation.
Collapse
Affiliation(s)
- Belaid Bouazza
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107-5233, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H. Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 2012; 11:2397-408. [DOI: 10.1021/pr201134p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thiemo B. Schreiber
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nina Mäusbacher
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joanna Soroka
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Sebastian K. Wandinger
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Henrik Daub
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
37
|
Yamaguchi F, Umeda Y, Shimamoto S, Tsuchiya M, Tokumitsu H, Tokuda M, Kobayashi R. S100 proteins modulate protein phosphatase 5 function: a link between CA2+ signal transduction and protein dephosphorylation. J Biol Chem 2012; 287:13787-98. [PMID: 22399290 DOI: 10.1074/jbc.m111.329771] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PP5 is a unique member of serine/threonine phosphatases comprising a regulatory tetratricopeptide repeat (TPR) domain and functions in signaling pathways that control many cellular responses. We reported previously that Ca(2+)/S100 proteins directly associate with several TPR-containing proteins and lead to dissociate the interactions of TPR proteins with their client proteins. Here, we identified protein phosphatase 5 (PP5) as a novel target of S100 proteins. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, and S100B proteins specifically interact with PP5-TPR and inhibited the PP5-Hsp90 interaction. In addition, the S100 proteins activate PP5 by using a synthetic phosphopeptide and a physiological protein substrate, Tau. Overexpression of S100A1 in COS-7 cells induced dephosphorylation of Tau. However, S100A1 and permanently active S100P inhibited the apoptosis signal-regulating kinase 1 (ASK1) and PP5 interaction, resulting the inhibition of dephosphorylation of phospho-ASK1 by PP5. The association of the S100 proteins with PP5 provides a Ca(2+)-dependent regulatory mechanism for the phosphorylation status of intracellular proteins through the regulation of PP5 enzymatic activity or PP5-client protein interaction.
Collapse
Affiliation(s)
- Fuminori Yamaguchi
- Department of Cell Physiology, Kagawa University Faculty of Medicine, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Gergs U, Boknik P, Buchwalow IB, Fabritz L, Gründker N, Kucerova D, Matus M, Werner F, Schmitz W, Neumann J. Modulation of cardiac contractility by serine/threonine protein phosphatase type 5. Int J Cardiol 2012; 154:116-21. [DOI: 10.1016/j.ijcard.2010.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/28/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
|
39
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
40
|
Hinds TD, Stechschulte LA, Cash HA, Whisler D, Banerjee A, Yong W, Khuder SS, Kaw MK, Shou W, Najjar SM, Sanchez ER. Protein phosphatase 5 mediates lipid metabolism through reciprocal control of glucocorticoid receptor and peroxisome proliferator-activated receptor-γ (PPARγ). J Biol Chem 2011; 286:42911-22. [PMID: 21994940 DOI: 10.1074/jbc.m111.311662] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor-α (GRα) and peroxisome proliferator-activated receptor-γ (PPARγ) regulate adipogenesis by controlling the balance between lipolysis and lipogenesis. Here, we show that protein phosphatase 5 (PP5), a nuclear receptor co-chaperone, reciprocally modulates the lipometabolic activities of GRα and PPARγ. Wild-type and PP5-deficient (KO) mouse embryonic fibroblast cells were used to show binding of PP5 to both GRα and PPARγ. In response to adipogenic stimuli, PP5-KO mouse embryonic fibroblast cells showed almost no lipid accumulation with reduced expression of adipogenic markers (aP2, CD36, and perilipin) and low fatty-acid synthase enzymatic activity. This was completely reversed following reintroduction of PP5. Loss of PP5 increased phosphorylation of GRα at serines 212 and 234 and elevated dexamethasone-induced activity at prolipolytic genes. In contrast, PPARγ in PP5-KO cells was hyperphosphorylated at serine 112 but had reduced rosiglitazone-induced activity at lipogenic genes. Expression of the S112A mutant rescued PPARγ transcriptional activity and lipid accumulation in PP5-KO cells pointing to Ser-112 as an important residue of PP5 action. This work identifies PP5 as a fulcrum point in nuclear receptor control of the lipolysis/lipogenesis equilibrium and as a potential target in the treatment of obesity.
Collapse
Affiliation(s)
- Terry D Hinds
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kutuzov MA, Andreeva AV. Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life. Funct Integr Genomics 2011; 12:11-23. [DOI: 10.1007/s10142-011-0254-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 12/12/2022]
|
42
|
Park JH, Lee SY, Kim WY, Jung YJ, Chae HB, Jung HS, Kang CH, Shin MR, Kim SY, Su'udi M, Yun DJ, Lee KO, Kim MG, Lee SY. Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 191:692-705. [PMID: 21564098 DOI: 10.1111/j.1469-8137.2011.03734.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
• This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a protein phosphatase, foldase chaperone, and holdase chaperone. The enzymatic activities of this versatile protein are closely associated with its oligomeric status, ranging from low oligomeric protein species to HMW complexes. • The phosphatase and foldase chaperone functions of AtPP5 are associated primarily with the low-molecular-weight (LMW) form, whereas the HMW form exhibits holdase chaperone activity. Transgenic over-expression of AtPP5 conferred enhanced heat shock resistance to wild-type A. thaliana and a T-DNA insertion knock-out mutant was defective in acquired thermotolerance. A recombinant phosphatase mutant (H290N) showed markedly increased holdase chaperone activity. • In addition, enhanced thermotolerance was observed in transgenic plants over-expressing H290N, which suggests that the holdase chaperone activity of AtPP5 is primarily responsible for AtPP5-mediated thermotolerance. • Collectively, the results from this study provide the first evidence that AtPP5 performs multiple enzymatic activities that are mediated by conformational changes induced by heat-shock stress.
Collapse
Affiliation(s)
- Jin Ho Park
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Sun Yong Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Woe Yeon Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Young Jun Jung
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research, Korea Basic Science Institute, 52 Eoeun-dong, Daejeon 305-333, Korea
| | - Chang Ho Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Mi Rim Shin
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Sun Young Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Mukhamad Su'udi
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Dae Jin Yun
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Min Gab Kim
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
43
|
Pereira SR, Vasconcelos VM, Antunes A. The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins. Crit Rev Toxicol 2011; 41:83-110. [PMID: 21288162 DOI: 10.3109/10408444.2010.515564] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phosphoprotein phosphatases (PPPs) constitute one of three otherwise unrelated families of enzymes that specialize in removing the phosphate group from phosphorylated serine and threonine residues. The involvement of PPP enzymes in the regulation of processes such as gene expression, DNA replication, morphogenesis, synaptic transmission, glycogen metabolism, and apoptosis has underscored their potential as targets for the treatment of a variety of conditions such as cancer, diabetes, or Alzheimer's disease. Interestingly, PPP enzymes also constitute the physiological target of multiple naturally occurring toxins, including microcystins from cyanobacteria and cantharidin from beetles. This review is devoted to the PPP family of enzymes--with a focus on the human PPPs--and the naturally occurring toxins that are known to potently impair their activity. The interaction of the toxins with the enzymes is evaluated in atomic detail to obtain insight on two complementary aspects: (1) which specific structural differences within the similarly folded catalytic core of the PPP enzymes explain their diverse sensitivities to toxin inhibition and (2) which structural features presented by the various toxins account for the differential inhibitory potency towards each PPP. These analyses take advantage of numerous site-directed mutagenesis studies, structure-activity evaluations, and recent crystallographic structures of PPPs bound to different toxins.
Collapse
Affiliation(s)
- Susana R Pereira
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
44
|
Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1). Int J Biochem Cell Biol 2010; 42:1816-22. [PMID: 20674765 DOI: 10.1016/j.biocel.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H(2)O(2), expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H(2)O(2)-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology (MC 868), University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
45
|
Yu L, Zhao J, Feng J, Fang J, Feng C, Jiang Y, Cao Y, Jiang L. Candida albicans CaPTC6 is a functional homologue for Saccharomyces cerevisiae ScPTC6 and encodes a type 2C protein phosphatase. Yeast 2009; 27:197-206. [PMID: 20033882 DOI: 10.1002/yea.1743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ions. There are seven PP2C genes, ScPTC1, ScPTC2, ScPTC3, ScPTC4, ScPTC5, ScPTC6 and ScPTC7, in Saccharomyces cerevisiae. PTC6 is highly conserved in pathogenic and nonpathogenic yeasts. In the current study we have demonstrated that the Candida albicans CaPTC6 gene could complement the functions of ScPTC6 in the rapamycin and caffeine sensitivities of S. cerevisiae cells, indicating that they are functional homologues. We have also demonstrated that the CaPTC6-encoded protein is a typical PP2C enzyme and that CaPtc6p is localized in the mitochondrion of yeast-form and hyphal cells. However, deletion of CaPTC6 neither affects cell and hyphal growth nor renders Candida cells sensitive to rapamycin and caffeine. Therefore, possibly with a functional redundancy to other mitochondrial phosphatases, CaPtc6p is likely to be involved in the regulation of a mitochondrial physiology.
Collapse
Affiliation(s)
- Liquan Yu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Andreeva AV, Kutuzov MA. PPEF/PP7 protein Ser/Thr phosphatases. Cell Mol Life Sci 2009; 66:3103-10. [PMID: 19662497 PMCID: PMC11115641 DOI: 10.1007/s00018-009-0110-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
PPEF/PP7 represents one of the five subfamilies of the PPP protein Ser/Thr phosphatases. Studies published in recent years point to a role of plant PP7 at a crossroad of different pathways of light and stress signalling. In animals, PPEFs are highly expressed in sensory neurons, and Drosophila PPEF phosphatase, rdgC, is essential for dephosphorylation of rhodopsin. Expression profiling suggests that mammalian PPEF may play a role in stress-protective responses, cell survival, growth, proliferation, and oncogenesis. Despite structural similarities of the catalytic domains and the fact that some of these phosphatases are involved in light perception both in animals and in plants, the plant and non-plant representatives of this group have distinct domain architecture and appear not to be orthologues.
Collapse
Affiliation(s)
- Alexandra V. Andreeva
- Department of Pharmacology (M/C 868), College of Medicine, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612 USA
| | - Mikhail A. Kutuzov
- Department of Pharmacology (M/C 868), College of Medicine, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612 USA
| |
Collapse
|
48
|
Kang Y, Lee JH, Hoan NN, Sohn HM, Chang IY, You HJ. Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage. J Biol Chem 2009; 284:9845-53. [PMID: 19176521 DOI: 10.1074/jbc.m809272200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
53BP1 (p53-binding protein 1) is a conserved nuclear protein that is phosphorylated in response to DNA damage and rapidly recruited to the site of DNA double strand breaks, demonstrating its role in the early events to DNA damage and repair of damaged DNA. In this study, we used the yeast two-hybrid system to identify proteins that interact with 53BP1. Identification and characterization of 53BP1 protein interactions may help to further elucidate the function and regulation of 53BP1. We identified protein phosphatase 5 (PP5), a serine/threonine phosphatase that has been implicated in multiple cellular function, as a 53BP1-binding protein. This interaction further confirmed that 53BP1 interacts with PP5 in PP5-overexpressing U2OS cells, after radiomimetic agent neocarzinostatin (NCS) treatment. 53BP1 dephosphorylation at Ser-25 and Ser-1778 was accelerated in PP5-overexpressing U2OS cells following NCS treatment, and its dephosphorylation was correlated with reduced phospho-53BP1 foci formation. In contrast, the overexpression of PP5 had no effect on NCS-activated BRCA1-Ser-1524 phosphorylation. Additionally, PP5 down-regulation inhibited the dephosphorylation of 53BP1 on Ser-1778 and the disappearance of phospho-53BP1 foci following NCS treatment. Moreover, non-homologous end-joining activity was reduced in PP5-overexpressing U2OS cells. These findings indicate that PP5 plays an important role in the regulation of 53BP1 phosphorylation and activity in vivo.
Collapse
Affiliation(s)
- Yoonsung Kang
- Departments of Pharmacology, Bio-materials, Orthopedic Surgery, and Anatomy, Chosun University, 375 Seosuk-dong, Gwangju 501-759, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Kutuzov MA, Andreeva AV. Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 2008; 161:81-90. [PMID: 18619495 DOI: 10.1016/j.molbiopara.2008.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is an important mechanism implicated in physiology of any organism, including parasitic protozoa. Enzymes that control protein phosphorylation (kinases and phosphatases) are considered promising targets for drug development. This review attempts to provide the first account of the current understanding of the structure, regulation and biological functions of protein Ser/Thr phosphatases in unicellular parasites. We have examined the complements of phosphatases ("phosphatomes") of the PPP and PPM families in several species of Apicomplexa (including malaria parasite Plasmodium), as well as Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. Apicomplexans have homologues (in most cases represented by single isoforms) of all human PPP subfamilies. Some apicomplexan PPP phosphatases have no orthologues in their vertebrate hosts, including a previously unrecognised group of pseudo-phosphatases with putative Ca(2+)-binding domains, which we designate as EFPP. We also describe the presence of previously undetected Zn finger motifs in PPEF phosphatases from kinetoplastids, and a likely case of convergent evolution of tetratricopeptide repeat domain-containing phosphatases in G. lamblia. Among the parasites examined, E. cuniculi has the smallest Ser/Thr phosphatome (5 PPP and no PPM), while T. vaginalis shows the largest expansion of the PPP family (169 predicted phosphatases). Most protozoan PPM phosphatases cluster separately from human sequences. The structural peculiarities or absence of human orthologues of a number of protozoan protein Ser/Thr phosphatases makes them potentially suitable targets for chemotherapy and thus warrants their functional assessment.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology, University of Illinois at Chicago, 909 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|
50
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|