1
|
Rota A, Veríssimo A, Gaigher A. Allele co-segregation and haplotype diversity of MHC IIβ genes in the small-spotted catshark Scyliorhinus canicula. Immunogenetics 2025; 77:19. [PMID: 40164821 PMCID: PMC11958417 DOI: 10.1007/s00251-025-01376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The major histocompatibility complex (MHC) constitutes a functionally relevant multigene family playing an essential role in the adaptive immune responses of jawed vertebrates, being directly involved in pathogen recognition. MHC diversity, driven by pathogen-mediated selection, is vital for species survival and is characterized by high genetic diversity in many taxa, namely at the sequence, allelic and haplotype levels. Chondrichthyans, the most basal jawed vertebrates with an adaptive immune system, exhibit a high diversity of MHC gene lineages conservatively organized in a compact region of the genome. Such genomic architecture suggests linkage among MHC genes, where alleles from different genes possibly co-segregate together. Such condition may have major implications on immune response, individual fitness and evolution. In this study, we examine MHC IIβ haplotype diversity in a model shark species, the small spotted catshark, Scyliorhinus canicula. Making use of pedigree data, we reconstructed MHC IIβ haplotypes to understand allele transmission from parent to offspring. Results indicate allele co-segregation consistent with tight linkage among MHC IIβ genes, suggesting the presence of functional stable haplotypes inherited from parents to offspring. The reconstructed haplotypes suggested extensive haplotype diversity characterized by variable allele numbers and allelic lineage composition, as well as marked allelic divergence, consistent with previous population-level data on this species. These findings underscore the complexity of MHC genetics (and of MHC evolution) in chondrichthyans. Accurate reconstruction of MHC haplotypes and assessment of its functional significance are crucial for better understanding adaptive immune responses and MHC evolutionary dynamics in chondrichthyans.
Collapse
Affiliation(s)
- Alessia Rota
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- National Biodiversity Future Centre (NBFC), 90133, Palermo, Italy
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana Veríssimo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Arnaud Gaigher
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Gaigher A, Rota A, Neves F, Muñoz-Mérida A, Blasco-Aróstegui J, Almeida T, Veríssimo A. Extensive MHC class IIβ diversity across multiple loci in the small-spotted catshark (Scyliorhinus canicula). Sci Rep 2023; 13:3837. [PMID: 36882519 PMCID: PMC9992475 DOI: 10.1038/s41598-023-30876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The major histocompatibility complex (MHC) is a multigene family responsible for pathogen detection, and initiation of adaptive immune responses. Duplication, natural selection, recombination, and their resulting high functional genetic diversity spread across several duplicated loci are the main hallmarks of the MHC. Although these features were described in several jawed vertebrate lineages, a detailed MHC IIβ characterization at the population level is still lacking for chondrichthyans (chimaeras, rays and sharks), i.e. the most basal lineage to possess an MHC-based adaptive immune system. We used the small-spotted catshark (Scyliorhinus canicula, Carcharhiniformes) as a case-study species to characterize MHC IIβ diversity using complementary molecular tools, including publicly available genome and transcriptome datasets, and a newly developed high-throughput Illumina sequencing protocol. We identified three MHC IIβ loci within the same genomic region, all of which are expressed in different tissues. Genetic screening of the exon 2 in 41 individuals of S. canicula from a single population revealed high levels of sequence diversity, evidence for positive selection, and footprints of recombination. Moreover, the results also suggest the presence of copy number variation in MHC IIβ genes. Thus, the small-spotted catshark exhibits characteristics of functional MHC IIβ genes typically observed in other jawed vertebrates.
Collapse
Affiliation(s)
- Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| | - Alessia Rota
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Javier Blasco-Aróstegui
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Faculty of Sciences, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
3
|
Discovery of an ancient MHC category with both class I and class II features. Proc Natl Acad Sci U S A 2021; 118:2108104118. [PMID: 34903649 PMCID: PMC8713811 DOI: 10.1073/pnas.2108104118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Two classes of major histocompatibility complex (MHC) molecules, MHC class I and MHC class II, constitute the basis of our elaborate, adaptive immune system as antigen-presenting molecules. They perform distinct, critical functions: especially, MHC class I in case of antivirus and antitumor defenses, and MHC class II, in case of effective antibody responses. This important class diversification has long been enigmatic, as vestiges of the evolutionary molecular changes have not been found. The revealed ancient MHC category represents a plausible intermediate group between the two classes, and the data suggest that class II preceded class I in molecular evolution. Fundamental understanding of the molecular evolution of MHC molecules should contribute to understanding the basis of our complex biological defense system. Two classes of major histocompatibility complex (MHC) molecules, MHC class I and class II, play important roles in our immune system, presenting antigens to functionally distinct T lymphocyte populations. However, the origin of this essential MHC class divergence is poorly understood. Here, we discovered a category of MHC molecules (W-category) in the most primitive jawed vertebrates, cartilaginous fish, and also in bony fish and tetrapods. W-category, surprisingly, possesses class II–type α- and β-chain organization together with class I–specific sequence motifs for interdomain binding, and the W-category α2 domain shows unprecedented, phylogenetic similarity with β2-microglobulin of class I. Based on the results, we propose a model in which the ancestral MHC class I molecule evolved from class II–type W-category. The discovery of the ancient MHC group, W-category, sheds a light on the long-standing critical question of the MHC class divergence and suggests that class II type came first.
Collapse
|
4
|
Almeida T, Ohta Y, Gaigher A, Muñoz-Mérida A, Neves F, Castro LFC, Machado AM, Esteves PJ, Veríssimo A, Flajnik MF. A Highly Complex, MHC-Linked, 350 Million-Year-Old Shark Nonclassical Class I Lineage. THE JOURNAL OF IMMUNOLOGY 2021; 207:824-836. [PMID: 34301841 DOI: 10.4049/jimmunol.2000851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/09/2021] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish, or Chondrichthyes, are the oldest extant vertebrates to possess the MHC and the Ig superfamily-based Ag receptors, the defining genes of the gnathostome adaptive immune system. In this work, we have identified a novel MHC lineage, UEA, a complex multigene nonclassical class I family found in sharks (division Selachii) but not detected in chimaeras (subclass Holocephali) or rays (division Batoidea). This new lineage is distantly related to the previously reported nonclassical class I lineage UCA, which appears to be present only in dogfish sharks (order Squaliformes). UEA lacks conservation of the nine invariant residues in the peptide (ligand)-binding regions (PBR) that bind to the N and C termini of bound peptide in most vertebrate classical class I proteins, which are replaced by relatively hydrophobic residues compared with the classical UAA. In fact, UEA and UCA proteins have the most hydrophobic-predicted PBR of all identified chondrichthyan class I molecules. UEA genes detected in the whale shark and bamboo shark genome projects are MHC linked. Consistent with UEA comprising a very large gene family, we detected weak expression in different tissues of the nurse shark via Northern blotting and RNA sequencing. UEA genes fall into three sublineages with unique characteristics in the PBR. UEA shares structural and genetic features with certain nonclassical class I genes in other vertebrates, such as the highly complex XNC nonclassical class I genes in Xenopus, and we anticipate that each shark gene, or at least each sublineage, will have a unique function, perhaps in bacterial defense.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Arnaud Gaigher
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Fabiana Neves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - L Filipe C Castro
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| |
Collapse
|
5
|
Wu Y, Zhang N, Wei X, Lu S, Li S, Hashimoto K, Dijkstra JM, Xia C. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between β 2-Microglobulin and H Chain Conserved in Evolution. THE JOURNAL OF IMMUNOLOGY 2021; 207:308-321. [PMID: 34145057 DOI: 10.4049/jimmunol.2001165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Cartilaginous fish are the most primitive extant species with MHC molecules. Using the nurse shark, the current study is, to the best of our knowledge, the first to present a peptide-loaded MHC class I (pMHC-I) structure for this class of animals. The overall structure was found to be similar between cartilaginous fish and bony animals, showing remarkable conservation of interactions between the three pMHC-I components H chain, β2-microglobulin (β2-m), and peptide ligand. In most previous studies, relatively little attention was given to the details of binding between the H chain and β2-m, and our study provides important new insights. A pronounced conserved feature involves the insertion of a large β2-m F56+W60 hydrophobic knob into a pleat of the β-sheet floor of the H chain α1α2 domain, with the knob being surrounded by conserved residues. Another conserved feature is a hydrogen bond between β2-m Y10 and a proline in the α3 domain of the H chain. By alanine substitution analysis, we found that the conserved β2-m residues Y10, D53, F56, and W60-each binding the H chain-are required for stable pMHC-I complex formation. For the β2-m residues Y10 and F56, such observations have not been reported before. The combined data indicate that for stable pMHC-I complex formation β2-m should not only bind the α1α2 domain but also the α3 domain. Knowing the conserved structural features of pMHC-I should be helpful for future elucidations of the mechanisms of pMHC-I complex formation and peptide editing.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shuangshuang Lu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
6
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
7
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
8
|
Dijkstra JM, Yamaguchi T, Grimholt U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 2017; 70:459-476. [DOI: 10.1007/s00251-017-1050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
9
|
Chen Z, Zhang N, Qi J, Chen R, Dijkstra JM, Li X, Wang Z, Wang J, Wu Y, Xia C. The Structure of the MHC Class I Molecule of Bony Fishes Provides Insights into the Conserved Nature of the Antigen-Presenting System. THE JOURNAL OF IMMUNOLOGY 2017; 199:3668-3678. [PMID: 29055007 DOI: 10.4049/jimmunol.1600229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/15/2017] [Indexed: 01/02/2023]
Abstract
MHC molecules evolved with the descent of jawed fishes some 350-400 million years ago. However, very little is known about the structural features of primitive MHC molecules. To gain insight into these features, we focused on the MHC class I Ctid-UAA of the evolutionarily distant grass carp (Ctenopharyngodon idella). The Ctid-UAA H chain and β2-microglobulin (Ctid-β2m) were refolded in vitro in the presence of peptides from viruses that infect carp. The resulting peptide-Ctid-UAA (p/Ctid-UAA) structures revealed the classical MHC class I topology with structural variations. In comparison with known mammalian and chicken peptide-MHC class I (p/MHC I) complexes, p/Ctid-UAA structure revealed several distinct features. Notably, 1) although the peptide ligand conventionally occupied all six pockets (A-F) of the Ag-binding site, the binding mode of the P3 side chain to pocket D was not observed in other p/MHC I structures; 2) the AB loop between β strands of the α1 domain of p/Ctid-UAA complex comes into contact with Ctid-β2m, an interaction observed only in chicken p/BF2*2101-β2m complex; and 3) the CD loop of the α3 domain, which in mammals forms a contact with CD8, has a unique position in p/Ctid-UAA that does not superimpose with the structures of any known p/MHC I complexes, suggesting that the p/Ctid-UAA to Ctid-CD8 binding mode may be distinct. This demonstration of the structure of a bony fish MHC class I molecule provides a foundation for understanding the evolution of primitive class I molecules, how they present peptide Ags, and how they might control T cell responses.
Collapse
Affiliation(s)
- Zhaosan Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; and
| | - Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenbao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Junya Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; .,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Haidian District, Beijing 100094, China
| |
Collapse
|
10
|
Larson SE, Daly-Engel TS, Phillips NM. Review of Current Conservation Genetic Analyses of Northeast Pacific Sharks. ADVANCES IN MARINE BIOLOGY 2017; 77:79-110. [PMID: 28882215 DOI: 10.1016/bs.amb.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conservation genetics is an applied science that utilizes molecular tools to help solve problems in species conservation and management. It is an interdisciplinary specialty in which scientists apply the study of genetics in conjunction with traditional ecological fieldwork and other techniques to explore molecular variation, population boundaries, and evolutionary relationships with the goal of enabling resource managers to better protect biodiversity and identify unique populations. Several shark species in the northeast Pacific (NEP) have been studied using conservation genetics techniques, which are discussed here. The primary methods employed to study population genetics of sharks have historically been nuclear microsatellites and mitochondrial (mt) DNA. These markers have been used to assess genetic diversity, mating systems, parentage, relatedness, and genetically distinct populations to inform management decisions. Novel approaches in conservation genetics, including next-generation DNA and RNA sequencing, environmental DNA (eDNA), and epigenetics are just beginning to be applied to elasmobranch evolution, physiology, and ecology. Here, we review the methods and results of past studies, explore future directions for shark conservation genetics, and discuss the implications of molecular research and techniques for the long-term management of shark populations in the NEP.
Collapse
Affiliation(s)
| | | | - Nicole M Phillips
- The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
11
|
Cao Z, He M, Chen X, Wang S, Cai Y, Xie Z, Sun Y, Zhou Y. Identification, polymorphism and expression of MHC class Iα in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:55-65. [PMID: 28554837 DOI: 10.1016/j.fsi.2017.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The classical major histocompatibility complex class I (MHC I) plays a vital role in the immune system. In this study, we cloned and identified golden pompano (Trachinotus ovatus) MHC Iα (Trov-MHC Iα), which encodes 351 amino acid residues including a leader peptide, α1, α2, α3 domain, a transmembrane region and a cytoplasmic domain. Twenty six different sequences, which encoded various numbers of amino acid residues ranging from 348 to 354, were obtained from 12 individuals. Highly genetic polymorphism was found in the Trov-MHC Iα, especially in the α1 and α2 domains. Meanwhile, in the α1 and α2 domains, 21 positive selected positions were revealed by site models, indicating the diversity of Trov-MHC Iα may be mainly generated by positive selection. Moreover, quantitative real-time reverse transcription PCR and western blotting analyses demonstrated that Trov-MHC Iα was ubiquitously expressed in the nine tested tissues and more highly expressed in intestine, head kidney, gill, and spleen. In the head kidney and spleen, Trov-MHC Iα was significantly upregulated under LPS or poly I:C stimulation. The results of this study provide valuable insight into molecular polymorphism, evolutionary mechanism, expression and function of MHC Iα in the immune system of golden pompano.
Collapse
Affiliation(s)
- Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
| | - Mingwang He
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan 570228, China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China
| | - Yan Cai
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
12
|
Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci U S A 2016; 113:E5014-23. [PMID: 27493218 DOI: 10.1073/pnas.1607602113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates.
Collapse
|
13
|
MR1 discovery. Immunogenetics 2016; 68:491-8. [PMID: 27464703 DOI: 10.1007/s00251-016-0943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
The moment of MR1 discovery is described. The MR1 gene is the first and the last reported human MHC-related gene intentionally isolated from the human genome composed of three billion base pairs. Evolutionary considerations formed the basis of its isolation. Some details surrounding the moment and some retrospective descriptions with various kinds of encounters are also included.
Collapse
|
14
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
15
|
Fleming-Canepa X, Jensen SM, Mesa CM, Diaz-Satizabal L, Roth AJ, Parks-Dely JA, Moon DA, Wong JP, Evseev D, Gossen DA, Tetrault DG, Magor KE. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. THE JOURNAL OF IMMUNOLOGY 2016; 197:783-94. [PMID: 27342841 DOI: 10.4049/jimmunol.1502450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shawna M Jensen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Christine M Mesa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexa J Roth
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Julie A Parks-Dely
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Debra A Moon
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Janet P Wong
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danyel Evseev
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Desolie A Gossen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - David G Tetrault
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Katharine E Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
16
|
Hirano M. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases. Bioessays 2015. [PMID: 26212221 DOI: 10.1002/bies.201400178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All surviving jawed vertebrate representatives achieve diversity in immunoglobulin-based B and T cell receptors for antigen recognition through recombinatorial rearrangement of V(D)J segments. However, the extant jawless vertebrates, lampreys and hagfish, instead generate three types of variable lymphocyte receptors (VLRs) through a template-mediated combinatorial assembly of different leucine-rich repeat (LRR) sequences. The clonally diverse VLRB receptors are expressed by B-like lymphocytes, while the VLRA and VLRC receptors are expressed by lymphocyte lineages that resemble αβ and γδ T lymphocytes, respectively. These findings suggest that three basic types of lymphocytes, one B-like and two T-like, are an essential feature of vertebrate adaptive immunity. Around 500 million years ago, a common ancestor of jawed and jawless vertebrates evolved a genetic program for the development of prototypic lymphoid cells as a foundation for an adaptive immune system. This acquisition preceded the convergent evolution of alternative types of clonally diverse receptors for antigens in all vertebrates, as reviewed in this article.
Collapse
Affiliation(s)
- Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Lillie M, Shine R, Belov K. Characterisation of major histocompatibility complex class I in the Australian cane toad, Rhinella marina. PLoS One 2014; 9:e102824. [PMID: 25093458 PMCID: PMC4122387 DOI: 10.1371/journal.pone.0102824] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
The Major Histocompatibility Complex (MHC) class I is a highly variable gene family that encodes cell-surface receptors vital for recognition of intracellular pathogens and initiation of immune responses. The MHC class I has yet to be characterised in bufonid toads (Order: Anura; Suborder: Neobatrachia; Family: Bufonidae), a large and diverse family of anurans. Here we describe the characterisation of a classical MHC class I gene in the Australian cane toad, Rhinella marina. From 25 individuals sampled from the Australian population, we found only 3 alleles at this classical class I locus. We also found large number of class I alpha 1 alleles, implying an expansion of class I loci in this species. The low classical class I genetic diversity is likely the result of repeated bottleneck events, which arose as a result of the cane toad's complex history of introductions as a biocontrol agent and its subsequent invasion across Australia.
Collapse
Affiliation(s)
- Mette Lillie
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
19
|
Progress in crystallization of major histocompatibility complex class I in vertebrates. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
|
21
|
Shen T, Lei M, Wang J, He X, Li X, Li J. Molecular cloning, organization, expression and 3D structural analysis of the MHC class Ia gene in the whitespotted bamboo shark (Chiloscyllium plagiosum). Vet Immunol Immunopathol 2014; 157:111-8. [DOI: 10.1016/j.vetimm.2013.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
22
|
Boehm T, Iwanami N, Hess I. Evolution of the immune system in the lower vertebrates. Annu Rev Genomics Hum Genet 2012; 13:127-49. [PMID: 22703179 DOI: 10.1146/annurev-genom-090711-163747] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolutionary emergence of vertebrates was accompanied by the invention of adaptive immunity. This is characterized by extraordinarily diverse repertoires of somatically assembled antigen receptors and the facility of antigen-specific memory, leading to more rapid and efficient secondary immune responses. Adaptive immunity emerged twice during early vertebrate evolution, once in the lineage leading to jawless fishes (such as lamprey and hagfish) and, independently, in the lineage leading to jawed vertebrates (comprising the overwhelming majority of extant vertebrates, from cartilaginous fishes to mammals). Recent findings on the immune systems of jawless and jawed fishes (here referred to as lower vertebrates) impact on the identification of general principles governing the structure and function of adaptive immunity and its coevolution with innate defenses. The discovery of conserved features of adaptive immunity will guide attempts to generate synthetic immunological functionalities and thus provide new avenues for intervening with faulty immune functions in humans.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | | | | |
Collapse
|
23
|
Nakanishi T, Toda H, Shibasaki Y, Somamoto T. Cytotoxic T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1317-1323. [PMID: 21530578 DOI: 10.1016/j.dci.2011.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/11/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
The presence of antigen-specific cytotoxic T cells has been suggested in a number of in vivo and in vitro studies in fish. Acute allograft rejection with an accelerated response on second-set grafts and the presence of graft-versus-host reaction (GVHR) has been reported in teleost. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ex vivo studies in ginbuna and rainbow trout. In addition, alloantigen-specific cytotoxic T cell clones have been produced in cultures initiated with peripheral blood leukocytes (PBL) from an alloantigen-immunized channel catfish. Over the last decade several fish genomes have been sequenced and genetic information is rapidly accumulating. Thanks to these genome data bases and EST analysis, mRNA expression of T cell surface marker genes in alloantigen- or virus-specific effector cells has been reported in some fish species, e.g. TCR α or β and CD8α in ginbuna and rainbow trout, and TCR α, β or γ in channel catfish. These findings suggest the presence of CD8(+) cytotoxic T lymphocyte (CTL) in fish similar to those of higher vertebrates. Recently, monoclonal antibodies against CD8α and CD4 antigens have been produced in some fish species. Investigation on the characteristics of CTL and cell-mediated immune mechanisms is now possible at defined T cell subsets, although identification of T cell subset is limited in a few fish species at present. In this review, we describe the recent progress in this field focusing on cells involved in antigen specific cytotoxicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Carps/genetics
- Carps/immunology
- Cytotoxicity, Immunologic
- Gene Expression/immunology
- Genomics
- Ictaluridae/genetics
- Ictaluridae/immunology
- Immunity, Cellular
- Isoantigens/genetics
- Isoantigens/immunology
- Oncorhynchus mykiss/genetics
- Oncorhynchus mykiss/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Virus Diseases/immunology
- Virus Diseases/virology
- Viruses/immunology
Collapse
Affiliation(s)
- Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | | | | | | |
Collapse
|
24
|
Nonaka MI, Aizawa K, Mitani H, Bannai HP, Nonaka M. Retained orthologous relationships of the MHC Class I genes during euteleost evolution. Mol Biol Evol 2011; 28:3099-112. [PMID: 21613237 DOI: 10.1093/molbev/msr139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules play a pivotal role in immune defense system, presenting the antigen peptides to cytotoxic CD8+ T lymphocytes. Most vertebrates possess multiple MHC class I loci, but the analysis of their evolutionary relationships between distantly related species has difficulties because genetic events such as gene duplication, deletion, recombination, and/or conversion have occurred frequently in these genes. Human MHC class I genes have been conserved only within the primates for up to 46-66 My. Here, we performed comprehensive analysis of the MHC class I genes of the medaka fish, Oryzias latipes, and found that they could be classified into four groups of ancient origin. In phylogenetic analysis using these genes and the classical and nonclassical class I genes of other teleost fishes, three extracellular domains of the class I genes showed quite different evolutionary histories. The α1 domains generated four deeply diverged lineages corresponding to four medaka class I groups with high bootstrap values. These lineages were shared with salmonid and/or other acanthopterygian class I genes, unveiling the orthologous relationships between the classical MHC class I genes of medaka and salmonids, which diverged approximately 260 Ma. This suggested that the lineages must have diverged in the early days of the euteleost evolution and have been maintained for a long time in their genome. In contrast, the α3 domains clustered by species or fish groups, regardless of classical or nonclassical gene types, suggesting that this domain was homogenized in each species during prolonged evolution, possibly retaining the potential for CD8 binding even in the nonclassical genes. On the other hand, the α2 domains formed no apparent clusters with the α1 lineages or with species, suggesting that they were diversified partly by interlocus gene conversion, and that the α1 and α2 domains evolved separately. Such evolutionary mode is characteristic to the teleost MHC class I genes and might have contributed to the long-term conservation of the α1 domain.
Collapse
Affiliation(s)
- Mayumi I Nonaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
25
|
Honda Y, Kondo H, Caipang CMA, Hirono I, Aoki T. cDNA cloning of the immunoglobulin heavy chain genes in banded houndshark Triakis scyllium. FISH & SHELLFISH IMMUNOLOGY 2010; 29:854-861. [PMID: 20688169 DOI: 10.1016/j.fsi.2010.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/16/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
In this study, cDNAs encoding the secreted forms of the immunoglobulin (Ig) heavy chains of IgM, IgNAR, and IgW were cloned from the banded houndshark Triakis scyllium. Two clones for the IgM heavy chains encoded 569 and 570 amino acids, whose conserved (C) region showed 47-70% amino acid identities to those reported in other cartilaginous fish. Four clones for the IgNAR encoded 673-670 amino acids with conserved Ig-superfamily domains. The IgNAR C region showed 56-69% amino acid identities to those so far reported. High-throughput sequencing revealed that in most of the IgNAR sequences, the two variable regions (CDR1 and CDR3) each possess a cysteine residue. Three types of IgW were identified; one contained Ig-superfamily domains that are in other cartilaginous fish, one lacks the 3rd domain in the constant region, and one lacks the 3rd to 5th domains. Despite these differences, the IgW isoforms clustered with IgWs of other cartilaginous fishes and the C regions showed 47-89% amino acid identities. mRNAs for IgM and IgNAR were detected in various tissues, while IgW mRNA was mainly detected in pancreas. The banded hounded shark also has IgM, IgW and IgNAR as well as the other cartilaginous fish with unique IgW isoform.
Collapse
Affiliation(s)
- Yuka Honda
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
26
|
Evolutionary analysis of two classical MHC class I loci of the medaka fish, Oryzias latipes: haplotype-specific genomic diversity, locus-specific polymorphisms, and interlocus homogenization. Immunogenetics 2010; 62:319-32. [PMID: 20174921 DOI: 10.1007/s00251-010-0426-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
The major histocompatibility complex (MHC) region of the teleost medaka (Oryzias latipes) contains two classical class I loci, UAA and UBA, whereas most lower vertebrates possess or express a single locus. To elucidate the allelic diversification and evolutionary relationships of these loci, we compared the BAC-based complete genomic sequences of the MHC class I region of three medaka strains and the PCR-based cDNA sequences of two more strains and two wild individuals, representing nine haplotypes. These were derived from two geographically distinct medaka populations isolated for four to five million years. Comparison of the genomic sequences showed a marked diversity in the region encompassing UAA and UBA even between the strains derived from the same population, and also showed an ancient divergence of these loci. cDNA analysis indicated that the peptide-binding domains of both UAA and UBA are highly polymorphic and that most of the polymorphisms were established in a locus-specific manner before the divergence of the two populations. Interallelic recombination between exons 2 and 3 encoding these domains was observed. The second intron of the UAA genes contains a highly conserved region with a palindromic sequence, suggesting that this region contributed to the recombination events. In contrast, the alpha3 domain is extremely homogenized not only within each locus but also between UAA and UBA regardless of populations. Two lineages of the transmembrane and cytoplasmic regions are also shared by UAA and UBA, suggesting that these two loci evolved with intimate genetic interaction through gene conversion or unequal crossing over.
Collapse
|
27
|
Kasahara M, Kasamatsu J, Sutoh Y. Two types of antigen receptor systems in vertebrates. Zoolog Sci 2009; 25:969-75. [PMID: 19267632 DOI: 10.2108/zsj.25.969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extant jawless vertebrates, represented by lampreys and hagfishes, have innate immune receptors with variable domains structurally resembling those of T/B-cell receptors. However, they appear to lack cardinal elements of adaptive immunity shared by all jawed vertebrates: major histocompatibility complex molecules and T/B-cell receptors. Thus, it was widely believed that adaptive immunity is unique to jawed vertebrates. Recently, this belief was overturned by the discovery of agnathan antigen receptors named variable lymphocyte receptors. These receptors generate diversity in their antigen-binding sites through assembling highly diverse leucine-rich repeat modules. The crystal structures of hagfish variable lymphocyte receptor monomers indicate that they adopt a horseshoe-shaped structure and likely bind antigens through the hypervariable concave surface. Secreted variable lymphocyte receptors form pentamers or tetramers of dimers and bind antigens with high specificity and avidity. The fact that variable lymphocyte receptors are structurally unrelated to T/B-cell receptors indicates that jawed and jawless vertebrates have developed antigen receptors independently.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | | | |
Collapse
|
28
|
Comparative genomic analysis of the major histocompatibility complex class I region in the teleost genus Oryzias. Immunogenetics 2009; 61:385-99. [DOI: 10.1007/s00251-009-0371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/20/2009] [Indexed: 11/27/2022]
|
29
|
Inoue Y, Morinaga A, Takizawa F, Saito T, Endo M, Haruta C, Nakai T, Moritomo T, Nakanishi T. Molecular cloning and preliminary expression analysis of banded dogfish (Triakis scyllia) TNF decoy receptor 3 (TNFRSF6B). FISH & SHELLFISH IMMUNOLOGY 2008; 24:360-365. [PMID: 18201904 DOI: 10.1016/j.fsi.2007.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/04/2007] [Accepted: 08/10/2007] [Indexed: 05/25/2023]
Abstract
Decoy receptor 3 (DcR3), a member of TNF receptor superfamily, is a soluble receptor without death domain and cytoplasmic domain, and secreted by cells and binds with FasL, LIGHT and TL1A. The principal function of DcR3 is the inhibition of apoptosis by the binding cytotoxic ligands. Expression of DcR3 has been reported in a wide array of normal human tissues as well as tumors and tumor cell lines. Recently, DcR3 was reported to modulate a variety of immune responses in mammals. TNFR or DcR3 has been identified in some teleost fishes. However, DcR3 is not reported in cartilaginous fish which is the lowest vertebrate possessing the adaptive immune system. Here we identified DcR3 cDNA in shark (Trsc-DcR3) from an SSH library prepared from peripheral white blood cells stimulated with PMA. Four cysteine-rich domains (CRDs) in common with TNF receptor family members are present in the Trsc-DcR3 sequence. The deduced amino acid sequence of Trsc-DcR3 showed highest identity with the chicken (50.4%), followed by human (46.8%) and rainbow trout (36.5%) DcR3. In a phylogenetic tree of known TNFRSF sequences, the Trsc-DcR3 grouped with the chicken and human DcR3. Trsc-DcR3 mRNA was detected strongly in the gill, moderately in the brain, and weakly in the kidney, thymus and leydig. These data strongly suggest that the gene encoding Trsc-DcR3 in banded dogfish is a homolog of the human gene. mRNA expression of Trsc-DcR3 in the thymus and leydig suggests that DcR3 may act as a modulator in the immune system even at the phylogenetic level of cartilaginous fish.
Collapse
Affiliation(s)
- Yuuki Inoue
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 2007; 27:885-99. [PMID: 18083574 DOI: 10.1016/j.immuni.2007.11.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 10/10/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
Little is known about the structure of major histocompatibility complex (MHC) molecules outside of mammals. Only one class I molecule in the chicken MHC is highly expressed, leading to strong genetic associations with infectious pathogens. Here, we report two structures of the MHC class I molecule BF2*2101 from the B21 haplotype, which is known to confer resistance to Marek's disease caused by an oncogenic herpesvirus. The binding groove has an unusually large central cavity, which confers substantial conformational flexibility to the crucial residue Arg9, allowing remodeling of key peptide-binding sites. The coupled variation of anchor residues from the peptide, utilizing a charge-transfer system unprecedented in MHC molecules, allows peptides with conspicuously different sequences to be bound. This promiscuous binding extends our understanding of ways in which MHC class I molecules can present peptides to the immune system and might explain the resistance of the B21 haplotype to Marek's disease.
Collapse
Affiliation(s)
- Michael Koch
- Cancer Research UK Receptor Structure Research Group, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The recognition more than a decade ago that lipids presented by CD1 could function as T cell antigens revealed a startling and previously unappreciated complexity to the adaptive immune system. The initial novelty of lipid antigen presentation by CD1 has since given way to a broader perspective of the immune system's capacity to sense and respond to a diverse array of macromolecules. Some immune recognition systems such as Toll-like receptors can trace their origins back into the deep history of sea urchins and arthropods. Others such as the major histocompatibility complex (MHC) appear relatively recently and interestingly, only in animals that also possess a jaw. The natural history of CD1 is thus part of the wider story of immune system evolution and should be considered in this context. Most evidence indicates that CD1 probably evolved from a classical MHC class I (MHC I) gene at some point during vertebrate evolution. This chapter reviews the evidence for this phylogenetic relationship and attempts to connect CD1 to existing models of MHC evolution. This endeavor is facilitated today by the recent availability of whole genome sequence data from a variety of species. Investigators have used these data to trace the ultimate origin of the MHC to a series of whole genome duplications that occurred roughly 500 million years ago. Sequence data have also revealed homologs of the mammalian MHC I and MHC II gene families in virtually all jawed vertebrates including sharks, bony fishes, reptiles, and birds. In contrast, CD1 genes have thus far been found only in a subset of these animal groups. This pattern of CD1 occurrence in the genomes of living species suggests the emergence of CD 1 in an early terrestrial vertebrate.
Collapse
Affiliation(s)
- C C Dascher
- Center for Immunobiology, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1630, New York, NY 10029, USA.
| |
Collapse
|
32
|
Yang TY, Hao HF, Jia ZH, Chen WH, Xia C. Characterisation of grass carp (Ctenopharyngodon idellus) MHC class I domain lineages. FISH & SHELLFISH IMMUNOLOGY 2006; 21:583-91. [PMID: 16857387 DOI: 10.1016/j.fsi.2006.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 02/17/2006] [Accepted: 03/10/2006] [Indexed: 05/10/2023]
Abstract
In order to characterise grass carp MHC class I (Ctid-MHC I) sequences, 26 Ctid-MHC I genes were cloned from 12 individuals and their alpha domain lineages were analysed. Simultaneously, a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) assay was developed to detect Ctid-MHC I tissue-specific expression. The results suggested that Ctid-MHC I could be divided into eight lineages (Ctid-NA-Ctid-NH). Based on whether they contained the motif of eight key amino acids (YYRTKWYY), Ctid-MHC I lineages were divided into two groups [Ctid-MHC I (8(+)) and Ctid-MHC I (8(-))]. The expression analysis showed that the Ctid-MHC I locus/loci appeared in the kidney, gill, intestine, heart, spleen, liver, and brain. A GenBank homology BLAST was performed independently with each alpha domain, and Ctid-MHC I alpha1, alpha2, and alpha3 were categorised into two (V and IX), five (II, IV-VII), and four (IV-VII) domain lineages, respectively. Based on the alphabetic labelling system created in our earlier studies, one alpha1 (IX), four alpha2 (IV-VII), and unique alpha3 (V-VII) domain lineages were observed in grass carp and across the teleostean species.
Collapse
Affiliation(s)
- Tian-Yao Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | |
Collapse
|
33
|
Dijkstra JM, Kiryu I, Yoshiura Y, Kumánovics A, Kohara M, Hayashi N, Ototake M. Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2006; 58:152-67. [PMID: 16518622 DOI: 10.1007/s00251-006-0086-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022]
Abstract
As part of an ongoing elucidation of rainbow trout major histocompatibility complex (MHC) class I, the polymorphism of two MHC class Ib loci was analyzed. These loci, Onmy-UCA and Onmy-UDA, are situated head-to-tail and share more than 89% nucleotide identity in their open reading frames. They share 80% identity with some trout Ia alleles. The deduced amino acid sequences suggest that the UCA and UDA molecules are transported to endosomal compartments and may bind peptides in their binding groove. Our survey revealed seven UCA and eight UDA alleles. Similarity indices overlap when comparing within and between UCA and UDA alleles and some cross-locus motif variation is observed. In most trout both UCA and UDA transcripts were found. However, there probably is functional redundancy, because some trout lacked transcription of one of the two loci. Furthermore, for some UCA and UDA alleles, splicing deficiencies, early stop codons, and upstream start codons were found, which may interfere with efficient protein expression. The present study is the first extensive report on MHC class Ib polymorphism assigned to locus in ectotherm species.
Collapse
Affiliation(s)
- Johannes Martinus Dijkstra
- Inland Station, Fisheries Research Agency, National Research Institute of Aquaculture, Tamaki, Mie 519-0423, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Moon DA, Veniamin SM, Parks-Dely JA, Magor KE. The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. THE JOURNAL OF IMMUNOLOGY 2006; 175:6702-12. [PMID: 16272326 DOI: 10.4049/jimmunol.175.10.6702] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I proteins mediate a variety of functions in antiviral defense. In humans and mice, three MHC class I loci each contribute one or two alleles and each can present a wide variety of peptide Ags. In contrast, many lower vertebrates appear to use a single MHC class I locus. Previously we showed that a single locus was predominantly expressed in the mallard duck (Anas platyrhynchos) and that locus was adjacent to the polymorphic transporter for the Ag-processing (TAP2) gene. Characterization of a genomic clone from the same duck now allows us to compare genes to account for their differential expression. The clone carried five MHC class I genes and the TAP genes in the following gene order: TAP1, TAP2, UAA, UBA, UCA, UDA, and UEA. We designated the predominantly expressed gene UAA. Transcripts corresponding to the UDA locus were expressed at a low level. No transcripts were found for three loci, UBA, UCA, and UEA. UBA had a deletion within the promoter sequences. UCA carried a stop codon in-frame. UEA did not have a polyadenylation signal sequence. All sequences differed primarily in peptide-binding pockets and otherwise had the hallmarks of classical MHC class I alleles. Despite the presence of additional genes in the genome, the duck expresses predominantly one MHC class I gene. The limitation to one expressed MHC class I gene may have functional consequences for the ability of ducks to eliminate viral pathogens, such as influenza.
Collapse
Affiliation(s)
- Debra A Moon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
35
|
Azuma T, Dijkstra JM, Kiryu I, Sekiguchi T, Terada Y, Asahina K, Fischer U, Ototake M. Growth and behavioral traits in Donaldson rainbow trout (Oncorhynchus mykiss) cosegregate with classical major histocompatibility complex (MHC) class I genotype. Behav Genet 2005; 35:463-78. [PMID: 15971027 DOI: 10.1007/s10519-004-0863-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/05/2004] [Indexed: 11/26/2022]
Abstract
Although polymorphism in major histocompatibility complex (MHC) genes has been thought to confer populations with protection against widespread decimation by pathogens, this hypothesis cannot explain the type of large allelic diversity in classical MHC class I (Ia) in rainbow trout. Based on expression of Onmy-UBA (MHC class Ia) in trout neurons, we hypothesized that polymorphism in trout class Ia may contribute to polymorphism in behavioral traits. The present study examined whether polymorphism in Onmy-UBA was associated with behavioral variation in Donaldson rainbow trout (Oncorhynchus mykiss) using experiments on food competition, lure-catch, fright recovery, diel locomotor activity and activity characterized as dominance or aggression. These behavioral traits were investigated in fish having Onmy-UBA*401/*401 or *4901/*4901 homozygous, or Onmy-UBA*401/*4901 heterozygous genotypes (referred to as BB, FF and BF, respectively). The BB fish exhibited boldness, aggression, faster growth and crepuscular activity, while the FF fish showed little boldness, smaller body size, and diurnal activity with no aggressive behavior. The BF fish displayed traits intermediary to those of the BB and FF fish. These results are consistent with polymorphism in a single MHC class Ia locus driving variation in neural circuits, thereby creating behavioral variation in the trout. This is the first study in any animal to show a potential correlation between polymorphism in MHC class Ia genes with polymorphism of behavioral traits such as aggression.
Collapse
Affiliation(s)
- Teruo Azuma
- Nikko Branch, National Research Institute of Aquaculture, Chugushi, Nikko, Tochigi, 321-1661, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Numerous studies of the mammalian immune system have begun to uncover profound interrelationships, as well as fundamental differences, between the adaptive and innate systems of immune recognition. Coincident with these investigations, the increasing experimental accessibility of non-mammalian jawed vertebrates, jawless vertebrates, protochordates and invertebrates has provided intriguing new information regarding the likely patterns of emergence of immune-related molecules during metazoan phylogeny, as well as the evolution of alternative mechanisms for receptor diversification. Such findings blur traditional distinctions between adaptive and innate immunity and emphasize that, throughout evolution, the immune system has used a remarkably extensive variety of solutions to meet fundamentally similar requirements for host protection.
Collapse
MESH Headings
- Animals
- Evolution, Molecular
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/immunology
- Genes, Immunoglobulin/genetics
- Genes, Immunoglobulin/immunology
- Genes, RAG-1/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/genetics
- Invertebrates/immunology
- Phylogeny
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Vertebrates/genetics
- Vertebrates/immunology
Collapse
Affiliation(s)
- Gary W Litman
- Department of Pediatrics, University of South Florida College of Medicine, All Children's Hospital Children's Research Institute, 830 First Street South, Saint Petersburg, Florida 33701, USA.
| | | | | |
Collapse
|
37
|
Tsukamoto K, Hayashi S, Matsuo MY, Nonaka MI, Kondo M, Shima A, Asakawa S, Shimizu N, Nonaka M. Unprecedented intraspecific diversity of the MHC class I region of a teleost medaka, Oryzias latipes. Immunogenetics 2005; 57:420-31. [PMID: 16003465 DOI: 10.1007/s00251-005-0009-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
The major histocompatibility complex (MHC) is present at a single chromosomal locus of all jawed vertebrate analyzed so far, from sharks to mammals, except for teleosts whose orthologs of the mammalian MHC-encoded genes are dispersed at several chromosomal loci. Even in teleosts, several class IA genes and those genes directly involved in class I antigen presentation preserve their linkage, defining the teleost MHC class I region. We determined the complete nucleotide sequence of the MHC class I region of the inbred HNI strain of medaka, Oryzias latipes (northern Japan population-derived), from four overlapping bacterial artificial chromosome (BAC) clones spanning 540,982 bp, and compared it with the published sequence of the corresponding region of the inbred Hd-rR strain of medaka (425,935 bp, southern Japan population-derived) as the first extensive study of intraspecies polymorphisms of the ectotherm MHC regions. A segment of about 100 kb in the middle of the compared sequences encompassing two class Ia genes and two immunoproteasome subunit genes, PSMB8 and PSMB10, was so divergent between these two inbred strains that a reliable sequence alignment could not be made. The rest of the compared region (about 320 kb) showed a fair correspondence, and an approximately 96% nucleotide identity was observed upon gap-free segmental alignment. These results indicate that the medaka MHC class I region contains an approximately 100-kb polymorphic core, which is most probably evolving adaptively by accumulation of point mutations and extensive genetic rearrangements such as insertions, deletions, and duplications.
Collapse
Affiliation(s)
- Kentaro Tsukamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xia C, Hu T, Yang T, Wang L, Xu G, Lin C. cDNA cloning, genomic structure and expression analysis of the goose (Anser cygnoides) MHC class I gene. Vet Immunol Immunopathol 2005; 107:291-302. [PMID: 16005079 DOI: 10.1016/j.vetimm.2005.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
To provide data for studies on avian disease resistance, goose MHC class I cDNA (Ancy-MHC I) was cloned from a goose cDNA library, it's genomic structure and expression analysis were investigated. The mature peptides of Ancy-MHC I cDNA encoded 333 amino acids. The genomic organization is composed of eight exons and seven introns. Based on the genetic distance, six Ancy-MHC I genes from six individuals can be classified into four lineages. A total of nineteen amino acid positions in peptide-binding domain showed high scores by Wu-kabat index analysis. The Ancy-MHC I amino acid sequence displayed seven critical HLA-A2 amino acids that bind with antigen polypeptides, and have an 85.4-98.9% amino acid homology with each genes, and a 59.8-66.0% amino acid homology with chicken MHC class I. Expression analyses using Q-RT-PCR to detect the tissue-specific expression of Ancy-MHC I mRNA in an adult goose. The result appeared that Ancy-MHC I cDNA was expressed in the liver, spleen, intestine, kidney, lung, pancreas, heart, brain, and skin. The phylogenetic tree appears to branch in an order consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.
| | | | | | | | | | | |
Collapse
|
39
|
Kiryu I, Dijkstra JM, Sarder RI, Fujiwara A, Yoshiura Y, Ototake M. New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. FISH & SHELLFISH IMMUNOLOGY 2005; 18:243-254. [PMID: 15519543 DOI: 10.1016/j.fsi.2004.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/29/2004] [Accepted: 07/19/2004] [Indexed: 05/24/2023]
Abstract
Major histocompatibility complex (MHC) class Ia genes in salmonid fishes are encoded by a single locus with probably the highest allelic diversity ever described. Various combinations of very different domain lineages contribute to the diversity of alleles. An extensive PCR survey distinguishing most domain lineages and their combinations was established. This survey has practical value for researchers investigating salmonid MHC class Ia variation. In the present study it was used to find new domain lineages. Applied for 24 hatchery strains in Japan, the survey identified two new rainbow trout alpha1 lineages and one new rainbow trout alpha2 lineage. The alpha2 lineage and one of the alpha1 lineages had been described in Atlantic salmon, but the other alpha1 lineage is novel. The newly identified trout alpha1 lineages are evolutionary very old. The present study should be the most extensive description of very deep MHC class Ia lineages to date: six trout alpha1 lineages cluster with non-salmonid sequences whereas previous studies mentioned this for only two salmonid alpha1 lineages. Although exon-shuffling events significantly contributed to salmonid MHC class Ia variation, analysis of 800 trout siblings did not detect such events within a single generation.
Collapse
Affiliation(s)
- Ikunari Kiryu
- Inland Station/National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie 519-0423, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Shiina T, Dijkstra JM, Shimizu S, Watanabe A, Yanagiya K, Kiryu I, Fujiwara A, Nishida-Umehara C, Kaba Y, Hirono I, Yoshiura Y, Aoki T, Inoko H, Kulski JK, Ototake M. Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry. Immunogenetics 2005; 56:878-93. [PMID: 15696305 DOI: 10.1007/s00251-004-0755-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 11/17/2004] [Indexed: 10/25/2022]
Abstract
Salmonid fishes are among the few animal taxa with a probable recent tetraploid ancestor. The present study is the first to compare large (>100 kb) duplicated genomic sequence fragments in such species. Two contiguous stretches with major histocompatibility complex (MHC) class I genes were detected in a rainbow trout BAC library, mapped and sequenced. The MHC class I duplicated regions, mapped by fluorescence in situ hybridization (FISH), were shown to be located on different metaphase chromosomes, Chr 14 and 18. Gene organization in both duplications is similar to that in other fishes, in that the class I loci are tightly linked with the PSMB8, PSMB9, PSMB10 and ABCB3 genes. Whereas one region, Onmy-IA, has a classical MHC class I locus (UBA), Onmy-IB encodes only non-classical class Ib proteins. The nucleotide diversity between the Onmy-IA and Onmy-IB noncoding regions is about 14%. This suggests that the MHC class I duplication event has occurred about 60 mya close to the time of an hypothesized ancestral tetraploid event. The present article is the first convincing report on the co-existence of two closely related MHC class I core regions on two different chromosomes. The interchromosomal duplication and the homology levels are supportive of the tetraploid model.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2004; 56:683-95. [PMID: 15605248 DOI: 10.1007/s00251-004-0717-7] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a gene dense region found in all jawed vertebrates examined to date. The MHC contains a high percentage of immune genes, in particular genes involved in antigen presentation, which are generally highly polymorphic. The region plays an important role in disease resistance. The clustering of MHC genes could be advantageous for co-evolution or regulation, and its study in many species is desirable. Even though some linkage of MHC genes is apparent in all gnathostomes, the genomic organization can differ greatly by species, suggesting rapid evolution of MHC genes after divergence from a common ancestor. Previous reviews of comparative MHC organization have been written when relatively fragmentary sequence and mapping data were available on many species. This review compares maps of MHC gene orders in commonly studied species, where extensive sequencing has been performed.
Collapse
Affiliation(s)
- James Kelley
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | |
Collapse
|
42
|
Inoue Y, Saito T, Endo M, Haruta C, Nakai T, Moritomo T, Nakanishi T. Molecular cloning and preliminary expression analysis of banded dogfish (Triakis scyllia) CC chemokine cDNAs by use of suppression subtractive hybridization. Immunogenetics 2004; 56:722-34. [PMID: 15592825 DOI: 10.1007/s00251-004-0730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Suppression subtractive hybridization was carried out by using cDNAs of peripheral white blood cells (PWBCs) of banded dogfish (Triakis scyllia) after phorbol 12-myristate 13-acetate (PMA) stimulation. The Trsc-SCYA107, MIP3alpha1 and MIP3alpha2 clones contained an open reading frame encoding 97, 99 and 97 amino acids, respectively. Comparison of the deduced amino acids showed that the banded dogfish MIP3alpha1 and MIP3alpha2 sequences shared 42.3% and 40.0% identity with human SCYA20, respectively, while the Trsc-SCYA107 sequence shared 50.6, 44.2 and 42.0% identity with the catshark (Scyliorhinus canicula) Scca-SCYA107, rainbow trout (Oncorhynchus mykiss) CK4A and CK4B, respectively. The genomic sequences of banded dogfish Trsc-SCYA107, MIP3alpha1 and MIP3alpha2 contain four exons and three introns, and MIP3alpha1 and MIP3alpha2 shared the same intron/exon organization with that of human. The MIP3alpha1 and MIP3alpha2 genes of lipopolysaccharide (LPS)-unstimulated banded dogfish were expressed in gill, kidney and liver, while Trsc-SCYA107 mRNA was detected in various tissues except for brain. However, the constitutive expression of MIP3alpha2 gene was much lower than the Trsc-SCYA107 and MIP3alpha1 genes. RT-PCR analysis of the Trsc-SCYA107 expression in tissues of LPS-stimulated fish showed enhanced expression at 24 h poststimulation in the gill, heart, leydig, spleen and testes, while the expression of MIP3alpha1 and MIP3alpha2 was not influenced by LPS-stimulation in vivo. Furthermore, a relative increase in the expression of the Trsc-SCYA107 and MIP3alpha2 genes in PWBCs was observed at 1-12 h poststimulation with PMA and LPS, with maximal expression observed at 3 h, while MIP3alpha1 expression was observed at 3-12 h poststimulation only with PMA.
Collapse
Affiliation(s)
- Yuuki Inoue
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Anderson MK, Pant R, Miracle AL, Sun X, Luer CA, Walsh CJ, Telfer JC, Litman GW, Rothenberg EV. Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. THE JOURNAL OF IMMUNOLOGY 2004; 172:5851-60. [PMID: 15128764 DOI: 10.4049/jimmunol.172.10.5851] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of lymphocytes can be traced by phylogenetic comparisons of key features. Homologs of rearranging TCR and Ig (B cell receptor) genes are present in jawed vertebrates, but have not been identified in other animal groups. In contrast, most of the transcription factors that are essential for the development of mammalian T and B lymphocytes belong to multigene families that are represented by members in the majority of the metazoans, providing a potential bridge to prevertebrate ancestral roles. This work investigates the structure and regulation of homologs of specific transcription factors known to regulate mammalian T and B cell development in a representative of the earliest diverging jawed vertebrates, the clearnose skate (Raja eglanteria). Skate orthologs of mammalian GATA-3, GATA-1, EBF-1, Pax-5, Pax-6, Runx2, and Runx3 have been characterized. GATA-3, Pax-5, Runx3, EBF-1, Spi-C, and most members of the Ikaros family are shown throughout ontogeny to be 1) coregulated with TCR or Ig expression, and 2) coexpressed with each other in combinations that for the most part correspond to known mouse T and B cell patterns, supporting conservation of function. These results indicate that multiple components of the gene regulatory networks that operate in mammalian T cell and B cell development were present in the common ancestor of the mammals and the cartilaginous fish. However, certain factors relevant to the B lineage differ in their tissue-specific expression patterns from their mouse counterparts, suggesting expanded or divergent B lineage characteristics or tissue specificity in these animals.
Collapse
Affiliation(s)
- Michele K Anderson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The adaptive immune system, which utilizes RAG-mediated recombination to diversify immune receptors, arose in ancestors of the jawed vertebrates approximately 500 million years ago. Homologs of immunoglobulins (Igs), T cell antigen receptors (TCRs), major histocompatibility complex (MHC) I and II, and the recombination activating genes (RAGs) have been identified in all extant classes of jawed vertebrates; however, no definitive ortholog of any of these genes has been identified in jawless vertebrates or invertebrates. Although the identity of the "primoridal" receptor that likely was interrupted by the recombination mechanism in the common ancestor of jawed vertebrates may never be established, many different families of genes that exhibit predicted characteristics of such a receptor have been described both within and outside the jawed vertebrates. Various model systems point toward a range of immune receptor diversity, encompassing many different families of recognition molecules, including non-diversified and diversified Ig-type variable (V) regions, as well as diversified VJ domains, whose functions are integrated in an organism's response to pathogenic invasion. The transition from the primordial antigen receptor to the monomeric Ig-/TCR-like domain and subsequent antigen-specific heterodimer likely involved progressive refinement of unique intermolecular associations in parallel with the acquisition of combinatorial diversity and antigen-specific recognition through somatic modification of the V region. RAG-mediated recombination and associated junctional diversification of both Ig and TCR genes occurs in all jawed vertebrates. In the case of Igs, somatic variation is expanded further through class switching, gene conversion, and somatic hypermutation. Various approaches, including both genomic and protein functional analyses, currently are being applied in jawless vertebrates, protochordates and other invertebrate deuterostome model systems in order to examine both RAG-mediated and alternative forms of antigen receptor diversification. Such studies have uncovered previously unknown mechanisms of generating receptor diversity.
Collapse
MESH Headings
- Animals
- Evolution, Molecular
- Gene Rearrangement
- Genetic Variation/genetics
- Immunity, Innate/genetics
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Protein Structure, Tertiary
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombination, Genetic
- Vertebrates/genetics
- Vertebrates/immunology
Collapse
Affiliation(s)
- Donna D Eason
- Department of Pediatrics, Children's Research Institute, University of South Florida College of Medicine, 830 First Street South, St. Petersburg, FL 33701, USA
| | | | | | | | | | | |
Collapse
|
45
|
Xia C, Lin CY, Xu GX, Hu TJ, Yang TY. cDNA cloning and genomic structure of the duck (Anas platyrhynchos) MHC class I gene. Immunogenetics 2004; 56:304-9. [PMID: 15197511 DOI: 10.1007/s00251-004-0685-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/27/2004] [Indexed: 11/28/2022]
Abstract
In order to provide data for studies on disease resistance, duck MHC class I cDNA (Anpl-MHC I) was cloned from a duck cDNA library and the genome structure was investigated. Anpl-MHC I genes encoded 344-355 amino acids. The genomic organization is composed of eight exons and seven introns. Based on the genetic distance, Anpl-MHC I cDNA from six individuals can be classified into four lineages (from Anpl-UAA to Anpl-UDA). A total of 28 amino acid positions in the peptide-binding domain (PBD) showed high scores by Wu-kabat index analysis. The Anpl-MHC amino acid sequence displayed seven critical HLA-A2amino acids that bind with antigen polypeptides, and have an 83.6-88.5% amino acid homology with each lineage, a 55.2-64.6% amino-acid homology with chicken MHC class I (B-FIV21, B-FIV2, Rfp-Y), and a 40.3-42.8% homology with mammalian MHC class I. Nested PCR detected that Anpl-MHC I can be expressed in the brain, heart, kidney, intestines and bursa. Compared with the human HLA-A2 tertiary structure of the PBD, Anpl-MHC I had an insertion or deletion variation in four domains (A-D). The phlyogenetic tree appears to branch in an order consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- C Xia
- The Key Laboratory of Veterinary Molecular Biology, College of Veterinary Medicine, China Agricultural University, 100094 Beijing, PR China.
| | | | | | | | | |
Collapse
|
46
|
Mesa CM, Thulien KJ, Moon DA, Veniamin SM, Magor KE. The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics 2004; 56:192-203. [PMID: 15205935 DOI: 10.1007/s00251-004-0672-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 03/16/2004] [Indexed: 01/03/2023]
Abstract
We are investigating the expression and linkage of major histocompatibility complex (MHC) class I genes in the duck ( Anas platyrhynchos) with a view toward understanding the susceptibility of ducks to two medically important viruses: influenza A and hepatitis B. In mammals, there are multiple MHC class I loci, and alleles at a locus are polymorphic and co-dominantly expressed. In contrast, in lower vertebrates the expression of one locus predominates. Southern-blot analysis and amplification of genomic sequences suggested that ducks have at least four loci encoding MHC class I. To identify expressed MHC genes, we constructed an unamplified cDNA library from the spleen of a single duck and screened for MHC class I. We sequenced 44 positive clones and identified four MHC class I sequences, each sharing approximately 85% nucleotide identity. Allele-specific oligonucleotide hybridization to a Northern blot indicated that only two of these sequences were abundantly expressed. In chickens, the dominantly expressed MHC class I gene lies adjacent to the transporter of antigen processing ( TAP2) gene. To investigate whether this organization is also found in ducks, we cloned the gene encoding TAP2 from the cDNA library. PCR amplification from genomic DNA allowed us to determine that the dominantly expressed MHC class I gene was adjacent to TAP2. Furthermore, we amplified two alleles of the TAP2 gene from this duck that have significant and clustered amino acid differences that may influence the peptides transported. This organization has implications for the ability of ducks to eliminate viral pathogens.
Collapse
Affiliation(s)
- Christine M Mesa
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, AB T6G 2E9, Edmonton, Canada
| | | | | | | | | |
Collapse
|
47
|
Yada T, Nakanishi T. Interaction between endocrine and immune systems in fish. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 220:35-92. [PMID: 12224552 DOI: 10.1016/s0074-7696(02)20003-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diseases in fish are serious problems for the development of aquaculture. The outbreak of fish disease is largely dependent on environmental and endogenous factors resulting in opportunistic infection. Recent studies, particularly on stress response, have revealed that bidirectional communication between the endocrine and immune systems via hormones and cytokines exists at the level of teleost fish. Recently information on such messengers and receptors has accumulated in fish research particularly at the molecular level. Furthermore, it has become apparent in fish that cells of the immune system produce or express hormones and their receptors and vice versa to exchange information between the two systems. This review summarizes and updates the knowledge on endocrine-immune interactions in fish with special emphasis on the roles of such mediators or receptors for their interactions.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Branch, National Research Institute of Aquaculture, Tochigi, Japan
| | | |
Collapse
|
48
|
Inoue Y, Haruta C, Usui K, Moritomo T, Nakanishi T. Molecular cloning and sequencing of the banded dogfish (Triakis scyllia) interleukin-8 cDNA. FISH & SHELLFISH IMMUNOLOGY 2003; 14:275-281. [PMID: 12703484 DOI: 10.1006/fsim.2002.0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The dogfish (Triakis scyllia) interleukin-8 (IL-8) cDNA was isolated from mitogen-stimulated peripheral white blood cells (WBCs) utilising the polymerase chain reaction (PCR). The cDNA sequence showed that the dogfish IL-8 clones contained an open reading frame encoding 101 amino acids. A short 5' untranslated region (UTR) of 70 nucleotides and a long 3' UTR of 893 nucleotides were also present in this 1.2-kb cDNA. Furthermore, the 3' UTR of the mRNA contained the AUUUA sequence that has been implicated in shortening of the half-life of several cytokines and growth factors. The predicted IL-8 peptide had one potential N-linked glycosylation site (Asn-72-Thr-74) that is not conserved in other vertebrates. It also contained four cysteine residues (Cys-34, 36, 61 and 77), which are characteristic of CXC subfamily cytokines and found in all vertebrates, to date. The dogfish IL-8 lacked an ELR motif as found in the lamprey and trout. Comparison of the deduced amino acids showed that the dogfish IL-8 sequence shared 50.5, 41.2, 37.1 and 40.4-45.5% identity with the chicken, lamprey, trout and mammalian IL-8 sequences, respectively.
Collapse
Affiliation(s)
- Yuuki Inoue
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-8510, Japan.
| | | | | | | | | |
Collapse
|
49
|
Fujiwara A, Kiryu I, Dijkstra JM, Yoshiura Y, Nishida-Umehara C, Ototake M. Chromosome mapping of MHC class I in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2003; 14:171-175. [PMID: 12526880 DOI: 10.1006/fsim.2002.0426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The major histocompatibility complex (MHC) is well-studied in mammals. Much research has addressed the genomic organisation of MHC genes and it is well established that human MHC class I genes are located on chromosome 6. However, information on the organisation of the MHC complex in rainbow trout is only beginning to become available. In the present study it was determined that rainbow trout MHC class I sequences are located on chromosome 18. This is the first reported use of fluorescence in situ hybridisation (FISH) to identify the chromosomal location of genes involved in the immune system of fish.
Collapse
Affiliation(s)
- Atushi Fujiwara
- Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan 4, Minato-ku, Tokyo, 108-8477, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Cannon JP, Haire RN, Litman GW. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol 2002; 3:1200-7. [PMID: 12415263 DOI: 10.1038/ni849] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Accepted: 09/10/2002] [Indexed: 11/09/2022]
Abstract
The evolutionary origin of adaptive immune receptors is not understood below the phylogenetic level of the jawed vertebrates. We describe here a strategy for the selective cloning of cDNAs encoding secreted or transmembrane proteins that uses a bacterial plasmid (Amptrap) with a defective beta-lactamase gene. This method requires knowledge of only a single target motif that corresponds to as few as three amino acids; it was validated with major histocompatibility complex genes from a cartilaginous fish. Using this approach, we identified families of genes encoding secreted proteins with two diversified immunoglobulin-like variable (V) domains and a chitin-binding domain in amphioxus, a protochordate. Thus, multigenic families encoding diversified V regions exist in a species lacking an adaptive immune response.
Collapse
Affiliation(s)
- John P Cannon
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL 33612, USA
| | | | | |
Collapse
|