1
|
Fitzsimons S, Muñoz-San Martín M, Nally F, Dillon E, Fashina IA, Strowitzki MJ, Ramió-Torrentà L, Dowling JK, De Santi C, McCoy CE. Inhibition of pro-inflammatory signaling in human primary macrophages by enhancing arginase-2 via target site blockers. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:941-959. [PMID: 37701067 PMCID: PMC10494319 DOI: 10.1016/j.omtn.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.
Collapse
Affiliation(s)
- Stephen Fitzsimons
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - María Muñoz-San Martín
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Frances Nally
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Moritz J. Strowitzki
- Department of General, Visceral & Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lluís Ramió-Torrentà
- Neuroinflammation and Neurodegeneration Group, Girona Biomedical Research Institute (IDIBGI), CERCA Programme/Generalitat de Catalunya, Salt, Girona, Spain
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
3
|
Kuziel G, Moore BN, Haugstad GP, Arendt LM. Fibrocytes enhance mammary gland fibrosis in obesity. FASEB J 2023; 37:e23049. [PMID: 37342915 PMCID: PMC10316715 DOI: 10.1096/fj.202300399rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity rates continue to rise, and obese individuals are at higher risk for multiple types of cancer, including breast cancer. Obese mammary fat is a site of chronic, macrophage-driven inflammation, which enhances fibrosis within adipose tissue. Elevated fibrosis within the mammary gland may contribute to risk for obesity-associated breast cancer. To understand how inflammation due to obesity enhanced fibrosis within mammary tissue, we utilized a high-fat diet model of obesity and elimination of CCR2 signaling in mice to identify changes in immune cell populations and their impact on fibrosis. We observed that obesity increased a population of CD11b+ cells with the ability to form myofibroblast-like colonies in vitro. This population of CD11b+ cells is consistent with fibrocytes, which have been identified in wound healing and chronic inflammatory diseases but have not been examined in obesity. In CCR2-null mice, which have limited ability to recruit myeloid lineage cells into obese adipose tissue, we observed reduced mammary fibrosis and diminished fibrocyte colony formation in vitro. Transplantation of myeloid progenitor cells, which are the cells of origin for fibrocytes, into the mammary glands of obese CCR2-null mice resulted in significantly increased myofibroblast formation. Gene expression analyses of the myeloid progenitor cell population from obese mice demonstrated enrichment for genes associated with collagen biosynthesis and extracellular matrix remodeling. Together these results show that obesity enhances recruitment of fibrocytes to promote obesity-induced fibrosis in the mammary gland.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
4
|
Targeting IKKβ Activity to Limit Sterile Inflammation in Acetaminophen-Induced Hepatotoxicity in Mice. Pharmaceutics 2023; 15:pharmaceutics15020710. [PMID: 36840032 PMCID: PMC9959252 DOI: 10.3390/pharmaceutics15020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity. To understand the importance of IKKβ activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKβ activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKβ inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKβ, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKβ activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.
Collapse
|
5
|
Zhang X, Liu Z, Li W, Kang Y, Xu Z, Li X, Gao Y, Qi Y. MAPKs/AP-1, not NF-κB, is responsible for MCP-1 production in TNF-α-activated adipocytes. Adipocyte 2022; 11:477-486. [PMID: 35941819 PMCID: PMC9367654 DOI: 10.1080/21623945.2022.2107786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Obesity is associated with the infiltration of monocytes/macrophages into adipose
tissue in which MCP-1 plays a crucial role. But the regulatory mechanism of
MCP-1 expression in adipocytes is not well defined. Our results demonstrated that TNF-α induced abundant MCP-1 production in adipocytes, including 3T3-L1 pre- (≈ 9 to 18-fold), mature adipocytes (≈ 4 to 6-fold), and primary adipocytes(< 2-fold), among which 3T3-L1 pre-adipocytes showed the best reactiveness. Thus, 3T3-L1 pre-adipocytes were used for the most of following experiments. At the transcriptional level, TNF-α (20 ng/mL) also promoted the mRNA expression of MCP-1. It is well recognized that the engagement of TNF-α with its receptor can trigger both NF-κB and AP-1 signalling, which was also confirmed in our study (5-fold and 2-fold). Unexpectedly and counterintuitively, multiple NF-κB inhibitors with different mechanisms failed to suppress TNF-α-induced MCP-1 production, but rather the inhibitors for any one of MAPKs (JNK, ERK and p38) could do. This study, for the first time, reveals that MAPKs/AP-1 but not NF-κB signalling is responsible for MCP-1 production in TNF-α-activated adipocytes. These findings provide important insight into the role of AP-1 signalling in adipose tissue, and may lead to the development of therapeutical repositioning strategies in metaflammation. Abbreviations:
AP-1, activator protein-1; CHX, cycloheximide; IR, insulin resistance; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor κB; RT-qPCR, quantitative real-time PCR; T2DM, type 2 diabetes mellitus; TRE, triphorbol acetate-response element.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Zhuangzhuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Wenjing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Zhenlu Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Haidian, China
| |
Collapse
|
6
|
Maqdasy S, Lecoutre S, Renzi G, Frendo-Cumbo S, Rizo-Roca D, Moritz T, Juvany M, Hodek O, Gao H, Couchet M, Witting M, Kerr A, Bergo MO, Choudhury RP, Aouadi M, Zierath JR, Krook A, Mejhert N, Rydén M. Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nat Metab 2022; 4:190-202. [PMID: 35165448 PMCID: PMC8885409 DOI: 10.1038/s42255-022-00525-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.
Collapse
Grants
- SM was supported by the Université Clermont Auvergne, Société Francophone du Diabète and Fondation Bettencourt Schueller.
- S.F.C. is supported by a Novo Nordisk postdoctoral fellowship run in partnership with Karolinska Institutet.
- the NovoNordisk Foundation (NNF20OC0061149), CIMED, Swedish Research Council.
- Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- Margareta af Uggla’s foundation, the Swedish Research Council, ERC-SyG SPHERES (856404 to M.R.), the NovoNordisk Foundation (including the Tripartite Immuno-metabolism Consortium Grant Number NNF15CC0018486, the MSAM consortium NNF15SA0018346 and the MeRIAD consortium Grant number 0064142), Knut and Alice Wallenbergs Foundation, CIMED, the Swedish Diabetes Foundation, the Stockholm County Council and the Strategic Research Program in Diabetes at Karolinska Institutet.
Collapse
Affiliation(s)
- Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
- CHU Clermont-Ferrand, Service d'endocrinologie, diabétologie et maladies métaboliques, Clermont-Ferrand, France
- Laboratoire GReD, Université Clermont Auvergne, Faculté de Médecine, Clermont Ferrand, France
| | - Simon Lecoutre
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Gianluca Renzi
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - David Rizo-Roca
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Juvany
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Morgane Couchet
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Michael Witting
- Metabolomics and proteomics core (MPC), Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Freising, Germany
| | - Alastair Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Comprehensive Cancer Center, Karolinska Institutet, Huddinge, Sweden
| | | | - Myriam Aouadi
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.
| |
Collapse
|
7
|
Schubert M, Kluge S, Brunner E, Pace S, Birringer M, Werz O, Lorkowski S. The α-tocopherol-derived long-chain metabolite α-13'-COOH mediates endotoxin tolerance and modulates the inflammatory response via MAPK and NFκB pathways. Free Radic Biol Med 2022; 178:83-96. [PMID: 34848369 DOI: 10.1016/j.freeradbiomed.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
SCOPE The long-chain metabolites of (LCM) vitamin E are proposed as the active regulatory metabolites of vitamin E providing, with their anti-inflammatory properties, an explanatory approach for the inconsistent effects of vitamin E on inflammatory-driven diseases. We examined the modulation of cytokine expression and release from macrophages, a fundamental process in many diseases, to gain insights into the anti-inflammatory mechanisms of the α-tocopherol-derived LCM α-13'-COOH. METHODS AND RESULTS Suppressed gene expression of C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf), and interleukin (Il) 6 in response to lipopolysaccharides by 24 h pre-treatment with α-13'-COOH in RAW264.7 macrophages was revealed using quantitative reverse transcription PCR. Further, reduced secretion of IL1β and CCL2 was found in this setup using flow cytometry. In contrast, 1 h pre-treatment suppressed only CCL2. Consequent gene expression analysis within 24 h of α-13'-COOH treatment revealed the induction of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) negative feedback regulators including the 'master regulators' dual-specificity phosphatase 1 (Dusp1/Mkp1) and tumor necrosis factor induced protein 3 (Tnfaip3/A20). Approaches with immunoblots and chemical antagonists suggest a feedback induction via activation of extracellular-signal regulated kinase (ERK), p38 MAPK and NFκB pathways. CONCLUSIONS CCL2 is suppressed in murine macrophages by α-13'-COOH and the indirect suppression of MAPK and NFκB pathways is likely a relevant process contributing to anti-inflammatory actions of α-13'-COOH. These results improve the understanding of the effects of α-13'-COOH and provide a basis for new research strategies in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Elena Brunner
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Simona Pace
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Germany; Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
8
|
Ohnishi T, Hisadome M, Joji K, Chiba N, Amir MS, Kanekura T, Matsuguchi T. Ultraviolet B irradiation decreases CXCL10 expression in keratinocytes through endoplasmic reticulum stress. J Cell Biochem 2021; 122:1141-1156. [PMID: 33909926 DOI: 10.1002/jcb.29936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 01/24/2023]
Abstract
Ultraviolet radiation is one of the standard treatment selections for psoriasis. interferon (IFN)-γ and IFN-γ-induced CXCL10, which are highly expressed by keratinocytes in psoriasis lesion, are therapeutic targets for psoriasis. In this study, we found that ultraviolet B (UVB) irradiation inhibited IFN-γ signaling events, including STAT1 phosphorylation and induction of CXCL10 messenger RNA (mRNA) expression in keratinocytes. IFN-γ-induced expression of CXCL10 mRNA in HaCaT cells, a human keratinocyte cell line, and human epithelial keratinocytes were also inhibited by H2 O2 or endoplasmic reticulum (ER) stress inducers. Conversely, a mixture of antioxidants, Trolox and ascorbic acid, and the ER stress inhibitor salubrinal partially counteracted the inhibitory effect of UVB on IFN-γ-induced CXCL10 mRNA expression in HaCaT cells. We also found that UVB and ER stress reduced IFN-γ receptor 1 protein levels in the plasma membrane fraction of keratinocytes. These observations suggested that ER stress and the generation of reactive oxygen species are essential for the inhibitory effect of UVB on IFN-γ-induced CXCL10 mRNA in keratinocytes.
Collapse
Affiliation(s)
- Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mitsuhiro Hisadome
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kusuyama Joji
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
9
|
Quintanilla ME, Morales P, Ezquer F, Ezquer M, Herrera-Marschitz M, Israel Y. Administration of N-acetylcysteine Plus Acetylsalicylic Acid Markedly Inhibits Nicotine Reinstatement Following Chronic Oral Nicotine Intake in Female Rats. Front Behav Neurosci 2021; 14:617418. [PMID: 33633548 PMCID: PMC7902020 DOI: 10.3389/fnbeh.2020.617418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nicotine is the major addictive component of cigarette smoke and the prime culprit of the failure to quit smoking. Common elements perpetuating the use of addictive drugs are (i) cues associated with the setting in which drug was used and (ii) relapse/reinstatement mediated by an increased glutamatergic tone (iii) associated with drug-induced neuroinflammation and oxidative stress. Aims The present study assessed the effect of the coadministration of the antioxidant N-acetylcysteine (NAC) plus the anti-inflammatory acetylsalicylic acid (ASA) on oral nicotine reinstatement intake following a post-deprivation re-access in female rats that had chronically and voluntarily consumed a nicotine solution orally. The nicotine-induced oxidative stress and neuroinflammation in the hippocampus and its effects on the glutamate transporters GLT-1 and XCT mRNA levels in prefrontal cortex were also analyzed. Results The oral coadministration of NAC (40 mg/kg/day) and ASA (15 mg/kg/day) inhibited by 85% of the oral nicotine reinstatement intake compared to control (vehicle), showing an additive effect of both drugs. Acetylsalicylic acid and N-acetylcysteine normalized hippocampal oxidative stress and blunted the hippocampal neuroinflammation observed upon oral nicotine reinstatement. Nicotine downregulated GLT-1 and xCT gene expression in the prefrontal cortex, an effect reversed by N-acetylcysteine, while acetylsalicylic acid reversed the nicotine-induced downregulation of GLT-1 gene expression. The inhibitory effect of N-acetylcysteine on chronic nicotine intake was blocked by the administration of sulfasalazine, an inhibitor of the xCT transporter. Conclusion Nicotine reinstatement, following post-deprivation of chronic oral nicotine intake, downregulates the mRNA levels of GLT-1 and xCT transporters, an effect reversed by the coadministration of N-acetylcysteine and acetylsalicylic acid, leading to a marked inhibition of nicotine intake. The combination of these drugs may constitute a valuable adjunct in the treatment of nicotine-dependent behaviors.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Sindhu S, Akhter N, Wilson A, Thomas R, Arefanian H, Al Madhoun A, Al-Mulla F, Ahmad R. MIP-1α Expression Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-α Involves the TLR4-IRF3 Pathway and Is Amplified by Oxidative Stress. Cells 2020; 9:1799. [PMID: 32751118 PMCID: PMC7465096 DOI: 10.3390/cells9081799] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Metabolic inflammation is associated with increased expression of saturated free fatty acids, proinflammatory cytokines, chemokines, and adipose oxidative stress. Macrophage inflammatory protein (MIP)-1α recruits the inflammatory cells such as monocytes, macrophages, and neutrophils in the adipose tissue; however, the mechanisms promoting the MIP-1α expression remain unclear. We hypothesized that MIP-1α co-induced by palmitate and tumor necrosis factor (TNF)-α in monocytic cells/macrophages could be further enhanced in the presence of reactive oxygen species (ROS)-mediated oxidative stress. To investigate this, THP-1 monocytic cells and primary human macrophages were co-stimulated with palmitate and TNF-α and mRNA and protein levels of MIP-1α were measured by using quantitative reverse transcription, polymerase chain reaction (qRT-PCR) and commercial enzyme-linked immunosorbent assays (ELISA), respectively. The cognate receptor of palmitate, toll-like receptor (TLR)-4, was blunted by genetic ablation, neutralization, and chemical inhibition. The involvement of TLR4-downstream pathways, interferon regulatory factor (IRF)-3 or myeloid differentiation (MyD)-88 factor, was determined using IRF3-siRNA or MyD88-deficient cells. Oxidative stress was induced in cells by hydrogen peroxide (H2O2) treatment and ROS induction was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The data show that MIP-1α gene/protein expression was upregulated in cells co-stimulated with palmitate/TNF-α compared to those stimulated with either palmitate or TNF-α (P < 0.05). Further, TLR4-IRF3 pathway was implicated in the cooperative induction of MIP-1α in THP-1 cells, and this cooperativity between palmitate and TNF-α was clathrin-dependent and also required signaling through c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Notably, ROS itself induced MIP-1α and could further promote MIP-1α secretion together with palmitate and TNF-α. In conclusion, palmitate and TNF-α co-induce MIP-1α in human monocytic cells via the TLR4-IRF3 pathway and signaling involving c-Jun/NF-κB. Importantly, oxidative stress leads to ROS-driven MIP-1α amplification, which may have significance for metabolic inflammation.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Nadeem Akhter
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Ajit Wilson
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Reeby Thomas
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Hossein Arefanian
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Ashraf Al Madhoun
- Animal & Imaging Core Facility, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
- Genetics & Bioinformatics, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| |
Collapse
|
11
|
Kuroda M, Nishiguchi M, Ugawa N, Ishikawa E, Kawabata Y, Okamoto S, Sasaki W, Miyatake Y, Sebe M, Masumoto S, Tsutsumi R, Harada N, Sakaue H. Interferon regulatory factor 7 mediates obesity-associated MCP-1 transcription. PLoS One 2020; 15:e0233390. [PMID: 32437400 PMCID: PMC7241760 DOI: 10.1371/journal.pone.0233390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
Hypertrophy, associated with adipocyte dysfunction, causes increased pro-inflammatory adipokine, and abnormal glucose and lipid metabolism, leading to insulin resistance and obesity-related-health problems. By combining DNA microarray and genomic data analyses to predict DNA binding motifs, we identified the transcription factor Interferon Regulatory Factor 7 (IRF7) as a possible regulator of genes related to adipocyte hypertrophy. To investigate the role of IRF7 in adipocytes, we examined gene expression patterns in 3T3-L1 cells infected with a retrovirus carrying the IRF7 gene and found that enforced IRF7 expression induced the expression of monocyte chemoattractant protein-1 (MCP-1), a key initial adipokine in the chronic inflammation of obesity. CRISPR/Cas9 mediated-suppression of IRF7 significantly reduced MCP-1 mRNA. Luciferase assays, chromatin immunoprecipitation PCR analysis and gel shift assay showed that IRF7 transactivates the MCP-1 gene by binding to its proximal Interferon Stimulation Response Element (ISRE), a putative IRF7 binding motif. IRF7 knockout mice exhibited lower expression of MCP-1 in epidydimal white adipose tissue under high-fat feeding conditions, suggesting the transcription factor is physiologically important for inducing MCP-1. Taken together, our results suggest that IRF7 transactivates MCP-1 mRNA in adipocytes, and it may be involved in the adipose tissue inflammation associated with obesity.
Collapse
Affiliation(s)
- Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Misa Nishiguchi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Naho Ugawa
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Etsuko Ishikawa
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yasuyo Kawabata
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Saya Okamoto
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Waka Sasaki
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Mayu Sebe
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Saeko Masumoto
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima-city, Fukushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, Izumo-city, Shimane, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Diabetes Therapeutics and Research Center, Tokushima University, Tokushima-city, Tokushima, Japan
- * E-mail:
| |
Collapse
|
12
|
Du S, Li Z, Xie X, Xu C, Shen X, Wang N, Shen Y. IL-17 stimulates the expression of CCL2 in cardiac myocytes via Act1/TRAF6/p38MAPK-dependent AP-1 activation. Scand J Immunol 2019; 91:e12840. [PMID: 31630418 DOI: 10.1111/sji.12840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
IL-17 participates in the development of many autoimmune diseases by promoting the expression of some chemokines. Chemokine C-C motif ligand 2 (CCL2) is an important factor at the infiltration of mononuclear cells in the myocardial tissue of viral myocarditis (VMC). It was found that IL-17 could aggravate myocardial injury by upregulating CCL2. But the underlying mechanism involved in CCL2 secretion induced by IL-17 in cardiac myocytes remains unclear. This study investigated the role of transcription factor AP-1 in IL-17 induced CCL2 expression. The results showed that IL-17 mediated the activation of Act1, TRAF6, p38MAPK and c-Jun/AP-1 not Wnt or PI3K signalling pathway to upregulate CCL2 expression in cardiac myocytes. After blocking Act1/TRAF6/p38MAPK cascade and interfering AP-1 with Curcumin or c-Jun siRNA, CCL2 expression induced by IL-17 was significantly attenuated at both mRNA and protein levels. Furthermore, the phosphorylation of c-Jun was suppressed when cardiac myocytes were treated with Act1 siRNA, TRAF6 siRNA, SB203580 (p38MAPK inhibitor) or SP600125 (JNK inhibitor) in cardiac myocytes. In conclusion, IL-17 could stimulate the expression of CCL2 in cardiac myocytes via Act1/TRAF6/p38MAPK-dependent AP-1 activation, which may provide a new target for the diagnosis and treatment of VMC.
Collapse
Affiliation(s)
- Shiyou Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xin Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Congfeng Xu
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhe Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Sindhu S, Kochumon S, Shenouda S, Wilson A, Al-Mulla F, Ahmad R. The Cooperative Induction of CCL4 in Human Monocytic Cells by TNF-α and Palmitate Requires MyD88 and Involves MAPK/NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20184658. [PMID: 31546972 PMCID: PMC6770648 DOI: 10.3390/ijms20184658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic low-grade inflammation, also known as metabolic inflammation, is a hallmark of obesity and parallels with the presence of elevated circulatory levels of free fatty acids and inflammatory cytokines/chemokines. CCL4/MIP-1β chemokine plays a key role in the adipose tissue monocyte recruitment. Increased circulatory levels of TNF-α, palmitate and CCL4 are co-expressed in obesity. We asked if the TNF-α/palmitate could interact cooperatively to augment the CCL4 production in human monocytic cells and macrophages. THP-1 cells/primary macrophages were co-treated with TNF-α/palmitate and CCL4 mRNA/protein expression was assessed using qRT-PCR/ELISA. TLR4 siRNA, a TLR4 receptor-blocking antibody, XBlue™-defMyD cells and pathway inhibitors were used to decipher the signaling mechanisms. We found that TNF-α/palmitate co-stimulation augmented the CCL4 expression in monocytic cells and macrophages compared to controls (p < 0.05). TLR4 suppression or neutralization abrogated the CCL4 expression in monocytic cells. Notably, CCL4 cooperative induction in monocytic cells was: (1) Markedly less in MyD88-deficient cells, (2) IRF3 independent, (3) clathrin dependent and (4) associated with the signaling mechanism involving ERK1/2, c-Jun, JNK and NF-κB. In conclusion, TNF-α/palmitate co-stimulation promotes the CCL4 expression in human monocytic cells through the mechanism involving a TLR4-MyD88 axis and MAPK/NF-κB pathways. These findings unravel a novel mechanism of the cooperative induction of CCL4 by TNF-α and palmitate which could be relevant to metabolic inflammation.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Shihab Kochumon
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Steve Shenouda
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Ajit Wilson
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Rasheed Ahmad
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| |
Collapse
|
14
|
Wang XZ, Zhang HH, Qian YL, Tang LF. Sonic hedgehog (Shh) and CC chemokine ligand 2 signaling pathways in asthma. J Chin Med Assoc 2019; 82:343-350. [PMID: 31058710 DOI: 10.1097/jcma.0000000000000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways in which many cells are involved, including mast cells, eosinophils, T lymphocytes, and so on. During the process, many chemokines and mediators are released to engage in recruiting and activating eosinophils and other inflammatory cells. Also, some signaling pathways are involved in the pathobiology of asthma. Sonic hedgehog (Shh) is one of the members of hedgehog gene families. Shh signaling plays a critical role in the embryonic development, including the lung. Previous findings from our team reveal that Shh is involved in the asthma pathogenesis. Recombinant Shh could induce the CC chemokine ligand 2 (CCL2) overexpressing and Smo inhibitor GDC-O449 could inhibit CCL2 expression in airway epithelial cells, monocytes, or macrophages. Hence, we reviewed the effects of Shh and CCL2 signaling pathways, and the interaction between signaling pathways in asthma.
Collapse
Affiliation(s)
- Xiang-Zhi Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang-Hu Zhang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Yu-Ling Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Zhou Y, Tao H, Wang A, Zhong Z, Wu X, Wang M, Bian Z, Wang S, Wang Y. Chinese herb pair Paeoniae Radix Alba and Atractylodis Macrocephalae Rhizoma suppresses LPS-induced inflammatory response through inhibiting MAPK and NF-κB pathway. Chin Med 2019; 14:2. [PMID: 30728853 PMCID: PMC6352364 DOI: 10.1186/s13020-019-0224-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Background The combination of Radix Paeoniae Alba (RPA) and Rhizoma Atractylodis Macrocephalae (RAM) has long been used as a classic herb pair for the treatment of gynecologic and gastrointestinal diseases, but the underlying mechanisms of the herb pair remain unknown. This study aims to explore the anti-inflammatory potentials of RPA–RAM herb pair and to elucidate the underlying mechanisms. Methods The bioactive parts of RPA–RAM were extracted and screened through the inhibitory effects against nitric oxide (NO) production. The effects of optimized RPA–RAM extracts (OPAE) on inflammation-associated mediators were investigated by Western blotting, real-time quantitative PCR (RT-qPCR), Enzyme-linked immunosorbent (ELISA) and immunofluorescence staining. Results OPAE potently suppressed the productions of NO, TNF-α, IL-6 and MCP-1 in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, concentration-dependently inhibited protein level of inducible nitric oxide synthase (iNOS), dramatically downregulated mRNA expression of iNOS, TNF-α, IL-6 and MCP-1. In addition, OPAE significantly prevented phosphorylation and degradation of inhibitory kappa Bα (IκBα) and subsequently restrained the nuclear translocation of NF-κB p65. Pretreatment with OPAE also attenuated the LPS-induced phosphorylation of ERK, JNK and p38. Conclusions Our findings demonstrated that OPAE suppressed inflammatory responses in LPS-stimulated RAW 264.7 macrophages by decreasing critical molecules involved in MAPK and NF-κB pathway, suggesting that the herb pair could be a promising therapeutic candidate for inflammation-related diseases. Electronic supplementary material The online version of this article (10.1186/s13020-019-0224-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Xu Wu
- 2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan China
| | - Mei Wang
- 3Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Zhaoxiang Bian
- 4School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China.,3Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| |
Collapse
|
16
|
Ahmad R, Al-Roub A, Kochumon S, Akther N, Thomas R, Kumari M, Koshy MS, Tiss A, Hannun YA, Tuomilehto J, Sindhu S, Rosen ED. The Synergy between Palmitate and TNF-α for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 200:3599-3611. [PMID: 29632147 DOI: 10.4049/jimmunol.1701552] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
The chemokine CCL2 (also known as MCP-1) is a key regulator of monocyte infiltration into adipose tissue, which plays a central role in the pathophysiology of obesity-associated inflammation and insulin resistance. It remains unclear how CCL2 production is upregulated in obese humans and rodents. Because elevated levels of the free fatty acid (FFA) palmitate and TNF-α have been reported in obesity, we studied whether these agents interact to trigger CCL2 production. Our data show that treatment of THP-1 and primary human monocytic cells with palmitate and TNF-α led to a marked increase in CCL2 production compared with either treatment alone. Mechanistically, we found that cooperative production of CCL2 by palmitate and TNF-α did not require MyD88, but it was attenuated by blocking TLR4 or TRIF. IRF3-deficient cells did not show synergistic CCL2 production in response to palmitate/TNF-α. Moreover, IRF3 activation by polyinosinic-polycytidylic acid augmented TNF-α-induced CCL2 secretion. Interestingly, elevated NF-κB/AP-1 activity resulting from palmitate/TNF-α costimulation was attenuated by TRIF/IRF3 inhibition. Diet-induced C57BL/6 obese mice with high FFAs levels showed a strong correlation between TNF-α and CCL2 in plasma and adipose tissue and, as expected, also showed increased adipose tissue macrophage accumulation compared with lean mice. Similar results were observed in the adipose tissue samples from obese humans. Overall, our findings support a model in which elevated FFAs in obesity create a milieu for TNF-α to trigger CCL2 production via the TLR4/TRIF/IRF3 signaling cascade, representing a potential contribution of FFAs to metabolic inflammation.
Collapse
Affiliation(s)
- Rasheed Ahmad
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Areej Al-Roub
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Shihab Kochumon
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Nadeem Akther
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Reeby Thomas
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard School of Medicine, Boston, MA 02215
| | - Merin S Koshy
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Ali Tiss
- Proteomics Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; and
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Jaakko Tuomilehto
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Sardar Sindhu
- Immunology Unit, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard School of Medicine, Boston, MA 02215
| |
Collapse
|
17
|
Lopes N, Charaix J, Cédile O, Sergé A, Irla M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat Commun 2018; 9:1262. [PMID: 29593265 PMCID: PMC5872006 DOI: 10.1038/s41467-018-03619-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Medullary thymic epithelial cells (mTEC) purge the T cell repertoire of autoreactive thymocytes. Although dendritic cells (DC) reinforce this process by transporting innocuous peripheral self-antigens, the mechanisms that control their thymic entry remain unclear. Here we show that mTEC-CD4+ thymocyte crosstalk regulates the thymus homing of SHPS-1+ conventional DCs (cDC), plasmacytoid DCs (pDC) and macrophages. This homing process is controlled by lymphotoxin α (LTα), which negatively regulates CCL2, CCL8 and CCL12 chemokines in mTECs. Consequently, Ltα-deficient mice have increased expression of these chemokines that correlates with augmented classical NF-κB subunits and increased thymic recruitment of cDCs, pDCs and macrophages. This enhanced migration depends mainly on the chemokine receptor CCR2, and increases thymic clonal deletion. Altogether, this study identifies a fine-tuning mechanism of T cell repertoire selection and paves the way for therapeutic interventions to treat autoimmune disorders.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Oriane Cédile
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, 5000, Odense C, Denmark
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105, 13273 cedex 09, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France.
| |
Collapse
|
18
|
Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol 2018; 15:335-345. [PMID: 29375123 DOI: 10.1038/cmi.2017.135] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the most abundant leukocyte populations infiltrating tumor tissues and can exhibit both tumoricidal and tumor-promoting activities. In 1989, we reported the purification of monocyte chemoattractant protein-1 (MCP-1) from culture supernatants of mitogen-activated peripheral blood mononuclear cells and tumor cells. MCP-1 is a potent monocyte-attracting chemokine, identical to the previously described lymphocyte-derived chemotactic factor or tumor-derived chemotactic factor, and greatly contributes to the recruitment of blood monocytes into sites of inflammatory responses and tumors. Because in vitro-cultured tumor cells often produce significant amounts of MCP-1, tumor cells are considered to be the main source of MCP-1. However, various non-tumor cells in the tumor stroma also produce MCP-1 in response to stimuli. Studies performed in vitro and in vivo have provided evidence that MCP-1 production in tumors is a consequence of complex interactions between tumor cells and non-tumor cells and that both tumor cells and non-tumor cells contribute to the production of MCP-1. Although MCP-1 production was once considered to be a part of host defense against tumors, it is now believed to regulate the vicious cycle between tumor cells and macrophages that promotes the progression of tumors.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Kita-ku, Okayama, Japan.
| |
Collapse
|
19
|
Mohammadi Najafabadi M, Shamsasenjan K, Akbarzadehlaleh P. The Angiogenic Chemokines Expression Profile of Myeloid Cell Lines Co-Cultured with Bone Marrow-Derived Mesenchymal Stem Cells. CELL JOURNAL 2017; 20:19-24. [PMID: 29308614 PMCID: PMC5759676 DOI: 10.22074/cellj.2018.4924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/03/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Angiogenesis, the process of formation of new blood vessels, is essential for development of solid tumors. At first, it was first assumed that angiogenesis is not implicated in the development of acute myeloid leukemia (AML) as a liquid tumor. One of the most important elements in bone marrow microenvironment is mesenchymal stem cells (MSCs). These cells possess an intrinsic tropism for sites of tumor in various types of cancers and have an impact on solid tumors growth by affecting the angiogenic process. But so far, our knowledge is limited about MSCs' role in liquid tumors angiogenesis. By increasing our knowledge about the role of MSCs on angiogenesis, new therapeutic strategies can be used to improve the status of patients with leukemia. MATERIALS AND METHODS In this experimental study, HL-60, K562 and U937 cells were separately co-cultured with bone marrow derived-MSCs and after 8, 16 and 24 hours, alterations in the expression of 10 chemokine genes involved in angiogenesis, were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR). Mono-cultures of leukemia cell lines were used as controls. RESULTS We observed that in HL-60 and K562 cells co-cultured with MSCs, the expression of CXCL10 and CXCL3 genes are increased, respectively as compared to the control cells. Also, in U937 cells co-cultured with MSCs, the expression of CXCL6 gene was upgraded. Moreover in U937 cells, CCL2 gene expression in the first 16 hours was lower than the control cells, while within 24 hours its expression augmented. CONCLUSIONS Our observations, for the first time, demonstrated that bone marrow (BM)-MSCs are able to alter the expression profile of chemokine genes involved in angiogenesis, in acute myeloid leukemia cell lines. MSCs cause different effects on angiogenesis in different leukemia cell lines; in some cases, MSCs promote angiogenesis, and in others, inhibit it.
Collapse
Affiliation(s)
| | - Karim Shamsasenjan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
He J, Chen Y, Lin Y, Zhang W, Cai Y, Chen F, Liao Q, Yin Z, Wang Y, Tao S, Lin X, Huang P, Cui L, Shao Y. Association study of MCP-1 promoter polymorphisms with the susceptibility and progression of sepsis. PLoS One 2017; 12:e0176781. [PMID: 28472164 PMCID: PMC5417587 DOI: 10.1371/journal.pone.0176781] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022] Open
Abstract
Previous studies have indicated that the monocyte chemo-attractant protein 1 (MCP-1), also referred to as C-C motif chemokine ligand 2 (CCL2), plays a significant role in the pathogenesis of sepsis, and this study investigated the clinical relevance of two MCP-1 gene polymorphisms on sepsis onset and progression. The Multiplex SNaPshot genotyping method was used to detect MCP-1 gene polymorphisms in the Chinese Han population (403 sepsis patients and 400 controls). MCP-1 mRNA expression levels were measured using real-time quantitative PCR, and enzyme-linked immunosorbent assays were used to analyze MCP-1, tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and interleukin-1 beta (IL-1β) plasma concentrations. The rs1024611 polymorphism analysis showed lower frequencies of minor homozygous genotype (AA) and allele (A) in sepsis patients compared to the healthy controls (19.4% vs. 31.5%, P = 0.0001 and 45.9% vs. 54.8%, P = 0.0004, respectively). And the frequencies of GG genotype and G allele were lower in sepsis patients compared to the controls (19.6% vs. 31.3%, P = 0.0002 and 46.0% vs. 54.5%, P = 0.0007, respectively). The rs1024611 AG/GG and rs2857656 GC/CC genotypes were both overrepresented in patients with severe sepsis (both P = 0.0005) and septic shock (P = 0.010 and P = 0.015, respectively) compared to the patients with mild sepsis. Moreover, among sepsis patients, the rs1024611 AG/GG and rs2857656 GC/CC carriers exhibited significant increases in expression levels of MCP-1 (P = 0.025), TNF-α (P = 0.034) and IL-6 (P = 0.043) compared with the rs1024611 AA or rs2857656 GG carriers. This study provides valuable clinical evidence that the MCP-1/CCL2 polymorphisms rs1024611 and rs2857656 are associated with sepsis susceptibility and development. We conclude that MCP-1/CCL2 plays a significant role in the pathogenesis of sepsis, which has potentially important therapeutic implications.
Collapse
Affiliation(s)
- Junbing He
- The Intensive Care Unit, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuhua Chen
- The Department of Endocrinology and Metabolism, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yao Lin
- The Department of Stomatology, Jieyang Affiliated Hospital, SunYat-sen University, Jieyang, Guangdong, China
| | - Wenying Zhang
- The Intensive Care Unit, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yujie Cai
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Feng Chen
- The Intensive Care Unit, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qinghui Liao
- The Department of Endocrinology and Metabolism, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Zihan Yin
- The Intensive Care Unit, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Wang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shoubao Tao
- The Intensive Care Unit, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoli Lin
- The Department of Stomatology, Jieyang Affiliated Hospital, SunYat-sen University, Jieyang, Guangdong, China
| | - Pengru Huang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Cui
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- * E-mail: (LC); (YS)
| | - Yiming Shao
- The Intensive Care Unit, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- * E-mail: (LC); (YS)
| |
Collapse
|
21
|
Aqel SI, Hampton JM, Bruss M, Jones KT, Valiente GR, Wu LC, Young MC, Willis WL, Ardoin S, Agarwal S, Bolon B, Powell N, Sheridan J, Schlesinger N, Jarjour WN, Young NA. Daily Moderate Exercise Is Beneficial and Social Stress Is Detrimental to Disease Pathology in Murine Lupus Nephritis. Front Physiol 2017; 8:236. [PMID: 28491039 PMCID: PMC5405126 DOI: 10.3389/fphys.2017.00236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily moderate exercise (DME) and stress management are underemphasized in the care of patients with lupus nephritis (LN) due to a poor comprehensive understanding of their potential roles in controlling the inflammatory response. To investigate these effects on murine LN, disease progression was monitored with either DME or social disruption stress (SDR) induction in NZM2410/J mice, which spontaneously develop severe, early-onset LN. SDR of previously established social hierarchies was performed daily for 6 days and DME consisted of treadmill walking (8.5 m/min for 45 min/day). SDR significantly enhanced kidney disease when compared to age-matched, randomly selected control counterparts, as measured by histopathological analysis of H&E staining and immunohistochemistry for complement component 3 (C3) and IgG complex deposition. Conversely, while 88% of non-exercised mice displayed significant renal damage by 43 weeks of age, this was reduced to 45% with exercise. DME also reduced histopathology in kidney tissue and significantly decreased deposits of C3 and IgG complexes. Further examination of renal infiltrates revealed a macrophage-mediated inflammatory response that was significantly induced with SDR and suppressed with DME, which also correlated with expression of inflammatory mediators. Specifically, SDR induced IL-6, TNF-α, IL-1β, and MCP-1, while DME suppressed IL-6, TNF-α, IL-10, CXCL1, and anti-dsDNA autoantibodies. These data demonstrate that psychological stressors and DME have significant, but opposing effects on the chronic inflammation associated with LN; thus identifying and characterizing stress reduction and a daily regimen of physical activity as potential adjunct therapies to complement pharmacological intervention in the management of autoimmune disorders, including LN.
Collapse
Affiliation(s)
- Saba I Aqel
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Jeffrey M Hampton
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Michael Bruss
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Kendra T Jones
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Giancarlo R Valiente
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Lai-Chu Wu
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | | | - William L Willis
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Stacy Ardoin
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Sudha Agarwal
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Brad Bolon
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared ResourceColumbus, OH, USA
| | - Nicole Powell
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,Institute for Behavioral Medicine Research, Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - John Sheridan
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,Institute for Behavioral Medicine Research, Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical SchoolNew Brunswick, NJ, USA
| | - Wael N Jarjour
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Nicholas A Young
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
22
|
Fernandez‐Patron C, Kassiri Z, Leung D. Modulation of Systemic Metabolism by MMP‐2: From MMP‐2 Deficiency in Mice to MMP‐2 Deficiency in Patients. Compr Physiol 2016; 6:1935-1949. [DOI: 10.1002/cphy.c160010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Morooka N, Ueguri K, Yee KKL, Yanase T, Sato T. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation. Biochem Biophys Res Commun 2016; 477:895-901. [PMID: 27392713 DOI: 10.1016/j.bbrc.2016.06.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue.
Collapse
Affiliation(s)
- Nobukatsu Morooka
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
| | - Kei Ueguri
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Karen Kar Lye Yee
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan; Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takashi Sato
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| |
Collapse
|
24
|
Chen W, Wang J, Jia L, Liu J, Tian Y. Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan. Cell Death Dis 2016; 7:e2115. [PMID: 26913605 PMCID: PMC4849159 DOI: 10.1038/cddis.2016.33] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/17/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
Abstract
Programmed cell death-1 (PD-1) is a member of the CD28 superfamily that delivers negative signals on interaction with its 2 ligands, PD-L1 and PD-L2. We assessed the contribution of the PD-1 pathway to regulating the polarization of macrophages that promote inflammation induced by zymosan. We found that PD-1−/− mice developed robust peritonitis with more abundant infiltration of M1 macrophages, accompanied by higher levels of pro-inflammation factors, especially monocyte chemotactic protein-1 (MCP-1) compared with wild-type controls ex vivo and in vitro. Our results indicated that PD-1 deficiency promotes M1 rather than M2 polarization of macrophages by enhancing the expression of p-STAT1/p-NF-κB p65 and downregulating p-STAT6. We found that PD-1 engagement followed by zymosan stimulation might primarily attenuate the phosphorylation of tyrosine residue in PD-1 receptor/ligand and the recruitment of SHP-2 to PD-1 receptor/ligand, leading to the reduction of M1 type cytokine production.
Collapse
Affiliation(s)
- W Chen
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - J Wang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Graduate Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - L Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - J Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Y Tian
- Medical College, University of South China, Hengyang, China
| |
Collapse
|
25
|
Busch R, Murti K, Liu J, Patra AK, Muhammad K, Knobeloch KP, Lichtinger M, Bonifer C, Wörtge S, Waisman A, Reifenberg K, Ellenrieder V, Serfling E, Avots A. NFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages from Saccharomyces cerevisiae infected mice. Eur J Immunol 2016; 46:634-46. [PMID: 26631626 DOI: 10.1002/eji.201545925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
Abstract
The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all encoding CCR2 agonists. CN inhibitors block the CCR2-dependent recruitment of inflammatory monocytes (IM) to the peritoneal cavities of S. cerevisiae infected mice. In myeloid cells, NFATc1/β proteins represent the most prominent NFATc1 isoforms. NFATc1/β ablation leads to a decrease of CCR2 chemokines, impaired mobilization of IMs, and delayed clearance of infection. We show that, upon binding to a composite NFAT/BCL6 regulatory element within the Ccl2 promoter, NFATc1/β proteins release the BCL6-dependent repression of Ccl2 gene in macrophages. These findings suggest a novel CN-dependent cross-talk between NFAT and BCL6 transcription factors, which may affect the outcome of opportunistic fungal infections in immunocompromised patients.
Collapse
Affiliation(s)
- Rhoda Busch
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Krisna Murti
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Jiming Liu
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Amiya K Patra
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | | | - Monika Lichtinger
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simone Wörtge
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Volker Ellenrieder
- Clinic of Gastroenterology and Gastrointestinal Oncology, University of Goettingen, Goettingen, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
26
|
Fernandez-Patron C, Leung D. Emergence of a metalloproteinase / phospholipase A2 axis of systemic inflammation. ACTA ACUST UNITED AC 2015; 2:29-38. [PMID: 26491703 DOI: 10.2147/mnm.s48748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We review select aspects of the biology of matrix metalloproteinases (MMPs) with a focus on the modulation of inflammatory responses by MMP-2. MMP-2 is a zinc- and calcium-dependent endoprotease with substrates including extracellular matrix proteins, vasoactive peptides and chemokines. Humans and mice with MMP-2 deficiency exhibit a predominantly inflammatory phenotype. Recent research shows that MMP-2 deficient mice display elevated activity of a secreted phospholipase A2 in the heart. Additionally, MMP-2 deficient mice exhibit abnormally high prostaglandin E2 levels in various organs (i.e., the heart, brain and liver), signs of inflammation and exacerbated lipopolysaccharide-induced fever. We briefly review the biology of sPLA2 enzymes to propose the existence of a heart-centric MMP-2/sPLA2 axis of systemic inflammation. Moreover, we postulate that PLA2 activation is induced by chemokines, whose ability to signal inflammation is regulated in a tissue-specific fashion by MMPs. Thus, genetic and pharmacologically induced MMP-deficiencies can be expected to perturb PLA2-mediated inflammatory mechanisms.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Department of Biochemistry, Cardiovascular Research Group and Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dickson Leung
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone 2015; 74:76-82. [PMID: 25603464 DOI: 10.1016/j.bone.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022]
Abstract
Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction.
Collapse
Affiliation(s)
- Aya Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
28
|
Lennard Richard ML, Nowling TK, Brandon D, Watson DK, Zhang XK. Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation. Mol Immunol 2014; 63:566-73. [PMID: 25108845 DOI: 10.1016/j.molimm.2014.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/29/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
Regulation of proinflammatory cytokines and chemokines is a primary role of the innate immune response. MCP-1 is a chemokine that recruits immune cells to sites of inflammation. Expression of MCP-1 is reduced in primary kidney endothelial cells from mice with a heterozygous knockout of the Fli-1 transcription factor. Fli-1 is a member of the Ets family of transcription factors, which are evolutionarily conserved across several organisms including Drosophilla, Xenopus, mouse and human. Ets family members bind DNA through a consensus sequence GGAA/T, or Ets binding site (EBS). Fli-1 binds to EBSs within the endogenous MCP-1 promoter by ChIP assay. In this study, transient transfection assays indicate that the Fli-1 gene actively promotes transcription from the MCP-1 gene promoter in a dose-dependent manner. Mutation of the DNA binding domain of Fli-1 demonstrated that Fli-1 activates transcription of MCP-1 both directly, by binding to the promoter, and indirectly, likely through interactions with other transcription factors. Another Ets transcription factor, Ets-1, was also tested, but failed to promote transcription. While Ets-1 failed to drive transcription independently, a weak synergistic activation of the MCP-1 promoter was observed between Ets-1 and Fli-1. In addition, Fli-1 and the NFκB family member p65 were found to interact synergistically to activate transcription from the MCP-1 promoter, while Sp1 and p50 inhibit this interaction. Deletion studies identified that EBSs in the distal and proximal MCP-1 promoter are critical for Fli-1 activation from the MCP-1 promoter. Together, these results demonstrate that Fli-1 is a novel regulator of the proinflammatory chemokine MCP-1, that interacts with other transcription factors to form a complex transcriptional mechanism for the activation of MCP-1 and mediation of the inflammatory response.
Collapse
Affiliation(s)
- Mara L Lennard Richard
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Danielle Brandon
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xian K Zhang
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA.
| |
Collapse
|
29
|
Ramsey JE, Fontes JD. The zinc finger transcription factor ZXDC activates CCL2 gene expression by opposing BCL6-mediated repression. Mol Immunol 2013; 56:768-80. [PMID: 23954399 DOI: 10.1016/j.molimm.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022]
Abstract
The zinc finger X-linked duplicated (ZXD) family of transcription factors has been implicated in regulating transcription of major histocompatibility complex class II genes in antigen presenting cells; roles beyond this function are not yet known. The expression of one gene in this family, ZXD family zinc finger C (ZXDC), is enriched in myeloid lineages and therefore we hypothesized that ZXDC may regulate myeloid-specific gene expression. Here we demonstrate that ZXDC regulates genes involved in myeloid cell differentiation and inflammation. Overexpression of the larger isoform of ZXDC, ZXDC1, activates expression of monocyte-specific markers of differentiation and synergizes with phorbol 12-myristate 13-acetate (which causes differentiation) in the human leukemic monoblast cell line U937. To identify additional gene targets of ZXDC1, we performed gene expression profiling which revealed multiple inflammatory gene clusters regulated by ZXDC1. Using a combination of approaches we show that ZXDC1 activates transcription of a gene within one of the regulated clusters, chemokine (C-C motif) ligand 2 (CCL2; monocyte chemoattractant protein 1; MCP1) via a previously defined distal regulatory element. Further, ZXDC1-dependent up-regulation of the gene involves eviction of the transcriptional repressor B-cell CLL/lymphoma 6 (BCL6), a factor known to be important in resolving inflammatory responses, from this region of the promoter. Collectively, our data show that ZXDC1 is a regulator in the process of myeloid function and that ZXDC1 is responsible for Ccl2 gene de-repression by BCL6.
Collapse
Affiliation(s)
- Jon E Ramsey
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS3030, Kansas City, KS 66160, USA.
| | | |
Collapse
|
30
|
Li X, Tai HH. Activation of thromboxane A2 receptor (TP) increases the expression of monocyte chemoattractant protein -1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) and recruits macrophages to promote invasion of lung cancer cells. PLoS One 2013; 8:e54073. [PMID: 23349788 PMCID: PMC3547941 DOI: 10.1371/journal.pone.0054073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022] Open
Abstract
Thromboxane synthase (TXAS) and thromboxane A2 receptor (TP), two critical components for thromboxane A2 (TXA2) signaling, have been suggested to be involved in cancer invasion and metastasis. However, the mechanisms by which TXA2 promotes these processes are still unclear. Here we show that TXA2 mimetic, I-BOP, induced monocyte chemoattractant protein -1(MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) expression at both mRNA and protein levels in human lung adenocarcinoma A549 cells stably over-expressing TP receptor α isoform (A549-TPα). The induction of MCP-1 was also found in other lung cancer cells H157 and H460 that express relatively high levels of endogenous TP. Using specific inhibitors of several signaling molecules and promoter/luciferase assay, we identified that transcription factor SP1 mediates I-BOP-induced MCP-1 expression. Furthermore, supernatants from I-BOP-treated A549-TPα cells enhanced MCP-1-dependent migration of RAW 264.7 macrophages. Moreover, co-culture of A549 cells with RAW 264.7 macrophages induced expression of MMPs, VEGF and MCP-1 genes, and increased the invasive potential in A549 cells. These findings suggest that TXA2 may stimulate invasion of cancer cells through MCP-1-mediated macrophage recruitment.
Collapse
Affiliation(s)
- Xiuling Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hsin-Hsiung Tai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
31
|
Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60:1-12. [PMID: 22766373 DOI: 10.1016/j.cyto.2012.06.018] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
Abstract
Monocyte Chemoattractant Protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past two decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| |
Collapse
|
32
|
Wang H, Chan YL, Li TL, Wu CJ. Improving cachectic symptoms and immune strength of tumour-bearing mice in chemotherapy by a combination of Scutellaria baicalensis and Qing-Shu-Yi-Qi-Tang. Eur J Cancer 2012; 48:1074-84. [DOI: 10.1016/j.ejca.2011.06.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/25/2011] [Accepted: 06/20/2011] [Indexed: 01/22/2023]
|
33
|
Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit: an anti-inflammatory small molecule that modulates the NFκB pathway. Cell Cycle 2012; 11:159-69. [PMID: 22189654 DOI: 10.4161/cc.11.1.18559] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases (including lupus nephritis, arthritis and pancreatitis). The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the "early inflammatory response," although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.
Collapse
Affiliation(s)
- Eugenio Mora
- Center for Epigenetics and Metabolism, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
34
|
Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP. PLoS One 2011; 6:e22052. [PMID: 21760952 PMCID: PMC3132772 DOI: 10.1371/journal.pone.0022052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/15/2011] [Indexed: 11/20/2022] Open
Abstract
CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.
Collapse
|
35
|
Pietras EM, Miller LS, Johnson CT, O'Connell RM, Dempsey PW, Cheng G. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge. Cell Res 2011; 21:1068-79. [PMID: 21467996 PMCID: PMC3193491 DOI: 10.1038/cr.2011.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/25/2010] [Accepted: 12/15/2010] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-γ (IFNγ)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFNγ, and IFNγR-deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFNγR-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFNγR expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFNγ production signals via IFNγR expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.
Collapse
Affiliation(s)
- Eric M Pietras
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lloyd S Miller
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carl T Johnson
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan M O'Connell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul W Dempsey
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Current address: Cynvenio Biosystems LLC, Westlake Village, CA 91361, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Bonello GB, Pham MH, Begum K, Sigala J, Sataranatarajan K, Mummidi S. An evolutionarily conserved TNF-alpha-responsive enhancer in the far upstream region of human CCL2 locus influences its gene expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:7025-38. [PMID: 21551367 DOI: 10.4049/jimmunol.0900643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Comparative cross-species genomic analysis has served as a powerful tool to discover novel noncoding regulatory regions that influence gene expression in several cytokine loci. In this study, we have identified several evolutionarily conserved regions (ECRs) that are shared between human, rhesus monkey, dog, and horse and that are upstream of the promoter regions that have been previously shown to play a role in regulating CCL2 gene expression. Of these, an ECR that was ~16.5 kb (-16.5 ECR) upstream of its coding sequence contained a highly conserved NF-κB site. The region encompassing the -16.5 ECR conferred TNF-α responsiveness to homologous and heterologous promoters. In vivo footprinting demonstrated that specific nucleotide residues in the -16.5 ECR were protected or became hypersensitive after TNF-α treatment. The footprinted regions were found to bind NF-κB subunits in vitro and in vivo. Mutation/deletion of the conserved NF-κB binding site in the -16.5 ECR led to loss of TNF-α responsiveness. After TNF-α stimulation, the -16.5 ECR showed increased sensitivity to nuclease digestion and loss of histone signatures that are characteristic of a repressive chromatin. Chromosome conformation capture assays indicated that -16.5 ECR physically interacts with the CCL2 proximal promoter after TNF-α stimulation. Taken together, these results suggest that the -16.5 ECR may play a critical role in the regulation of CCL2.
Collapse
Affiliation(s)
- Grégory B Bonello
- Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
37
|
Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T. Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int Immunopharmacol 2011; 11:1150-9. [PMID: 21443976 DOI: 10.1016/j.intimp.2011.03.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/11/2023]
Abstract
Flavonoids are widely distributed in many fruits and plants, and it has been shown that most flavonoids have anti-inflammatory activity; however, the mechanisms of how the flavonoids exhibit their anti-inflammatory activity have not been clarified. We therefore focus on flavonoids Apigenin, Luteolin and Fisetin because of their related structure. We found that these compounds significantly inhibited TNFα-induced NF-κB transcriptional activation; however, they had no effect on the degradation of IκB proteins and the nuclear translocation and DNA binding activity of NF-κB p65. Interestingly, the suppression of NF-κB activation by these flavonoids is due to inhibition of the transcriptional activation of NF-κB, since the compounds markedly inhibited the transcriptional activity of GAL4-NF-κB p65 fusion protein. In addition, while Apigenin and Luteolin slightly inhibited TNFα-induced JNK activation, they had no effect on TNFα-induced activation of ERK and p38. Unexpectedly, Fisetin enhanced and sustained activation of ERK and JNK but not p38 in response to TNFα. Strikingly, TNFα-induced expression of CCL2/MCP-1 and CXCL1/KC was significantly inhibited by Apigenin and Luteolin but not Fisetin. Furthermore, the administration of Apigenin and Luteolin markedly inhibited acute carrageenan-induced paw edema in mice; however, Fisetin failed to have an effect. These observations strongly suggest that the slight structural difference in flavonoids may cause a defective effect of Fisetin on these inflammatory responses, and this may be due to the differences in their direction of the effect on the activation pathways of MAP kinases.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | | | | | | | | |
Collapse
|
38
|
Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 2011; 34:590-601. [PMID: 21458307 DOI: 10.1016/j.immuni.2011.02.016] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/14/2010] [Accepted: 02/17/2011] [Indexed: 12/14/2022]
Abstract
Inflammatory (Ly6C(hi) CCR2+) monocytes provide defense against infections but also contribute to autoimmune diseases and atherosclerosis. Monocytes originate from bone marrow and their entry into the bloodstream requires stimulation of CCR2 chemokine receptor by monocyte chemotactic protein-1 (MCP1). How monocyte emigration from bone marrow is triggered by remote infections remains unclear. We demonstrated that low concentrations of Toll-like receptor (TLR) ligands in the bloodstream drive CCR2-dependent emigration of monocytes from bone marrow. Bone marrow mesenchymal stem cells (MSCs) and their progeny, including CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells, rapidly expressed MCP1 in response to circulating TLR ligands or bacterial infection and induced monocyte trafficking into the bloodstream. Targeted deletion of MCP1 from MSCs impaired monocyte emigration from bone marrow. Our findings suggest that bone marrow MSCs and CAR cells respond to circulating microbial molecules and regulate bloodstream monocyte frequencies by secreting MCP1 in proximity to bone marrow vascular sinuses.
Collapse
Affiliation(s)
- Chao Shi
- Immunology Program, Sloan Kettering Institute, Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Muratori C, Mangino G, Affabris E, Federico M. Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFα in macrophages. Glia 2011; 58:1893-904. [PMID: 20737475 DOI: 10.1002/glia.21059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of human immunodeficiency virus (HIV)-infected macrophages in the parenchyma of central nervous system is an hallmark of acquired immunodeficiency syndrome-related neuroinflammation. Once penetrated the blood-brain barrier (BBB), macrophages closely interact with astrocytes, beginning with those lying beneath the BBB endothelium. By investigating the consequences of the cell-cell interaction between HIV-infected macrophages and astrocytes, we observed that the HIV-1 expression in macrophagic cells correlated with increased chemotactic activity in supernatants of astroglial cells. Gene array analysis revealed an impressive increase in the transcription of the gene for the CCL2/MCP-1 chemokine in astroglial cells isolated from HIV-1-infected co-cultures compared with cells from uninfected co-cultures. This phenomenon coupled with the increase in CCL2 release and depended on the cell-cell contact. In addition, it was a consequence of the HIV-1-induced enhancement of membrane-associated tumor necrosis factor-α in macrophagic cells, and correlated with increased levels of nuclear factor kappaB activation in astroglial cells. These observations could mirror a mechanism of recruitment of leukocytes through the BBB, likely contributing to the increase in both viral load and inflammation in central nervous system of HIV-infected patients.
Collapse
|
40
|
Happel C, Kutzler M, Rogers TJ. Opioid-induced chemokine expression requires NF-κB activity: the role of PKCζ. J Leukoc Biol 2010; 89:301-9. [PMID: 20952659 DOI: 10.1189/jlb.0710402] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioid receptor agonists induce broad immunomodulatory activity, which substantially alters host defense and the inflammatory response. Previous studies have shown that the MOR selective agonist DAMGO has the capacity to increase the expression of the proinflammatory chemokines CCL2, CCL5, and CXCL10 in human PBMCs. NF-κB is a transcription factor that plays a pivotal role in innate and adaptive immune responses. We report that NF-κB is a vital player in the DAMGO-induced, MOR-mediated regulation of chemokine expression. Results show that NF-κB inhibitors prevent the induction of CCL2 expression in response to DAMGO administration and that the NF-κB subunit, p65, is phosphorylated at serine residues 311 and 536 in response to MOR activation. Furthermore, we demonstrate that PKCζ is phosphorylated following DAMGO-induced MOR activation, and this kinase is essential for NF-κB activation as well as CCL2 expression and transcriptional activity. Finally, ChIP analysis shows that DAMGO administration induces binding of p65 to the enhancer region of the CCL2 promoter. These data are consistent with the notion that MOR activation promotes a proinflammatory response, which involves NF-κB activation. Our results also suggest a significant and novel role for PKCζ as an essential participant in the MOR-mediated regulation of proinflammatory chemokine expression.
Collapse
Affiliation(s)
- Christine Happel
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
41
|
Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 2010; 411:1570-9. [PMID: 20633546 DOI: 10.1016/j.cca.2010.07.006] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Monocyte Chemoattractant Protein (MCP)-1, a potent monocyte attractant, is a member of the CC chemokine subfamily. MCP-1 exerts its effects through binding to G-protein-coupled receptors on the surface of leukocytes targeted for activation and migration. Role of MCP-1 and its receptor CCR2 in monocyte recruitment during infection or under other inflammatory conditions is well known. METHOD A comprehensive literature search was conducted from the websites of the National Library of Medicine (http://www.ncbl.nlm.nih.gov) and Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature (http://www.pubmedcentral.nih.gov/). The data was assessed from books and journals that published relevant articles in this field. RESULT Recent and ongoing research indicates the role of MCP-1 in various allergic conditions, immunodeficiency diseases, bone remodelling, and permeability of blood - brain barrier, atherosclerosis, nephropathies and tumors. CONCLUSION MCP-1 plays an important role in pathogenesis of various disease states and hence MCP-1 inhibition may have beneficial effects in such conditions.
Collapse
Affiliation(s)
- Amita Yadav
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi-110001, India
| | | | | |
Collapse
|
42
|
Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol 2010; 84:7703-12. [PMID: 20484496 DOI: 10.1128/jvi.02560-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) was identified to be the causative agent of SARS with atypical pneumonia. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV. It is not clear whether ACE2 conveys signals from the cell surface to the nucleus and regulates expression of cellular genes upon SARS-CoV infection. To understand the pathogenesis of SARS-CoV, human type II pneumocyte (A549) cells were incubated with the viral spike protein or with SARS-CoV virus-like particles containing the viral spike protein to examine cytokine modulation in lung cells. Results from oligonucleotide-based microarray, real-time PCR, and enzyme-linked immunosorbent assays indicated an upregulation of the fibrosis-associated chemokine (C-C motif) ligand 2 (CCL2) by the viral spike protein and the virus-like particles. The upregulation of CCL2 by SARS-CoV spike protein was mainly mediated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and AP-1 but not the IkappaBalpha-NF-kappaB signaling pathway. In addition, Ras and Raf upstream of the ERK1/2 signaling pathway were involved in the upregulation of CCL2. Furthermore, ACE2 receptor was activated by casein kinase II-mediated phosphorylation in cells pretreated with the virus-like particles containing spike protein. These results indicate that SARS-CoV spike protein triggers ACE2 signaling and activates fibrosis-associated CCL2 expression through the Ras-ERK-AP-1 pathway.
Collapse
|
43
|
Tse AKW, Zhu GY, Wan CK, Shen XL, Yu ZL, Fong WF. 1α,25-Dihydroxyvitamin D3 inhibits transcriptional potential of nuclear factor kappa B in breast cancer cells. Mol Immunol 2010; 47:1728-38. [DOI: 10.1016/j.molimm.2010.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/28/2010] [Accepted: 03/04/2010] [Indexed: 11/16/2022]
|
44
|
Hacke K, Rincon-Orozco B, Buchwalter G, Siehler SY, Wasylyk B, Wiesmüller L, Rösl F. Regulation of MCP-1 chemokine transcription by p53. Mol Cancer 2010; 9:82. [PMID: 20406462 PMCID: PMC2864217 DOI: 10.1186/1476-4598-9-82] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/20/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Our previous studies showed that the expression of the monocyte-chemoattractant protein (MCP)-1, a chemokine, which triggers the infiltration and activation of cells of the monocyte-macrophage lineage, is abrogated in human papillomavirus (HPV)-positive premalignant and malignant cells. In silico analysis of the MCP-1 upstream region proposed a putative p53 binding side about 2.5 kb upstream of the transcriptional start. The aim of this study is to monitor a physiological role of p53 in this process. RESULTS The proposed p53 binding side could be confirmed in vitro by electrophoretic-mobility-shift assays and in vivo by chromatin immunoprecipitation. Moreover, the availability of p53 is apparently important for chemokine regulation, since TNF-alpha can induce MCP-1 only in human keratinocytes expressing the viral oncoprotein E7, but not in HPV16 E6 positive cells, where p53 becomes degraded. A general physiological role of p53 in MCP-1 regulation was further substantiated in HPV-negative cells harboring a temperature-sensitive mutant of p53 and in Li-Fraumeni cells, carrying a germ-line mutation of p53. In both cases, non-functional p53 leads to diminished MCP-1 transcription upon TNF-alpha treatment. In addition, siRNA directed against p53 decreased MCP-1 transcription after TNF-alpha addition, directly confirming a crosstalk between p53 and MCP-1. CONCLUSION These data support the concept that p53 inactivation during carcinogenesis also affects immune surveillance by interfering with chemokine expression and in turn communication with cells of the immunological compartment.
Collapse
Affiliation(s)
- Katrin Hacke
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Infektion und Krebs, Abteilung Virale Transformationsmechanismen, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Montfort A, de Badts B, Douin-Echinard V, Martin PGP, Iacovoni J, Nevoit C, Therville N, Garcia V, Bertrand MA, Bessières MH, Trombe MC, Levade T, Benoist H, Ségui B. FAN stimulates TNF(alpha)-induced gene expression, leukocyte recruitment, and humoral response. THE JOURNAL OF IMMUNOLOGY 2009; 183:5369-78. [PMID: 19786552 DOI: 10.4049/jimmunol.0803384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Factor associated with neutral sphingomyelinase activation (FAN) is an adaptor protein that constitutively binds to TNF-R1. Microarray analysis was performed in fibroblasts derived from wild-type or FAN knockout mouse embryos to evaluate the role of FAN in TNF-induced gene expression. Approximately 70% of TNF-induced genes exhibited lower expression levels in FAN-deficient than in wild-type fibroblasts. Of particular interest, TNF-induced expression of cytokines/chemokines, such as IL-6 and CXCL-2, was impaired in FAN-deficient cells. This was confirmed by real time RT-PCR and ELISA. Upon i.p. TNF or thioglycollate injection, neutrophil recruitment into the peritoneal cavity was reduced by more than 50% in FAN-deficient mice. Nevertheless, FAN-deficient animals did not exhibit an increased susceptibility to different microorganisms including bacteria and parasites, indicating that FAN is not essential for pathogen clearance. Specific Ab response to BSA was substantially impaired in FAN-deficient mice and this was associated with a reduced content of leukocytes in the spleen of BSA-challenged FAN-deficient mice as compared with their wild-type counterparts. Altogether, our results indicate the involvement of FAN in TNF-induced gene expression and leukocyte recruitment, contributing to the establishment of the specific immune response.
Collapse
|
46
|
Park MJ, Lee EK, Heo HS, Kim MS, Sung B, Kim MK, Lee J, Kim ND, Anton S, Choi JS, Yu BP, Chung HY. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J Med Food 2009; 12:351-8. [PMID: 19459737 DOI: 10.1089/jmf.2008.0006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Kaempferol, one of the phytoestrogens, is found in berries and Brassica and Allium species and is known to have antioxidative and anti-inflammatory properties. In the present study, we examined the molecular mechanisms underlying the anti-inflammation effect of kaempferol in an aged animal model. To examine the effect of kaempferol in aged Sprague-Dawley rats, kaempferol was fed at 2 or 4 mg/kg/day for 10 days. The data show that kaempferol exhibited the ability to maintain redox balance. Kaempferol suppressed nuclear factor-kappaB (NF-kappaB) activation and expression of its target genes cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and regulated upon activation, and normal T-cell expressed and secreted in aged rat kidney and in tert-butylhydroperoxide-induced YPEN-1 cells. Furthermore, kaempferol suppressed the increase of the pro-inflammatory NF-kappaB cascade through modulation of nuclear factor-inducing kinase (NIK)/IkappaB kinase (IKK) and mitogen-activated protein kinases (MAPKs) in aged rat kidney. Based on these results, we concluded that anti-oxidative kaempferol suppressed the activation of inflammatory NF-kappaB transcription factor through NIK/IKK and MAPKs in aged rat kidney.
Collapse
Affiliation(s)
- Min Ju Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jia T, Leiner I, Dorothee G, Brandl K, Pamer EG. MyD88 and Type I interferon receptor-mediated chemokine induction and monocyte recruitment during Listeria monocytogenes infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:1271-8. [PMID: 19553532 DOI: 10.4049/jimmunol.0900460] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monocytes play a central role in defense against infection, but the mechanisms promoting monocyte recruitment and activation remain incompletely defined. Defense against Listeria monocytogenes, an intracellular bacterial pathogen, requires in vivo MCP-1 induction and CCR2-dependent recruitment of Ly6C(high) monocytes from bone marrow to sites of infection. Herein, we demonstrate that infection of bone marrow-derived macrophages with virulent L. monocytogenes induces MCP-1 expression in two phases. The first phase is rapid, induces low-level production of MCP-1, and is dependent on TLR/MyD88 signaling. The second phase promotes prolonged, higher level MCP-1 secretion and is dependent on signaling via the type I IFN receptor (IFNAR). Although attenuated L. monocytogenes strains that remain confined to the phagosome trigger TLR/MyD88-mediated signals and induce low-level MCP-1 expression, only cytosol-invasive bacteria promote IFNAR-dependent MCP-1 expression. In vivo, deficiency of either MyD88 or IFNAR signaling does not impair early monocyte emigration from bone marrow and recruitment to infected spleen. Loss of both MyD88 and IFNAR-mediated MCP-1 induction, however, results in deficient Ly6C(high) monocyte recruitment and increased susceptibility to L. monocytogenes infection. Our studies demonstrate that distinct but partially overlapping signal transduction pathways provide redundancy that ensures optimal monocyte recruitment to sites of microbial infection.
Collapse
Affiliation(s)
- Ting Jia
- Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
48
|
Safronova O, Pluemsampant S, Nakahama KI, Morita I. Regulation of chemokine gene expression by hypoxia via cooperative activation of NF-kappaB and histone deacetylase. Int J Biochem Cell Biol 2009; 41:2270-80. [PMID: 19446037 DOI: 10.1016/j.biocel.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 11/28/2022]
Abstract
Hypoxia is a microenvironmental factor frequently associated with tumors and inflammation. This study addresses the question of how hypoxia modulates the basal and IL-1 beta-induced production of cytokines and aims to identify the underlying mechanism of hypoxic transcriptional repression. We found that despite the similarities of the promoter structures of IL-8 and MCP-1, these chemokines were differently regulated by hypoxia (an increase in IL-8, but a decrease in MCP-1 mRNA and protein expression). Such differences were not observed in a reporter gene assay, in which both of the promoters were activated by hypoxia. The difference in the response to hypoxia between MCP-1 expression and the promoter assay was not due to mRNA instability. Using proteosome inhibitor MG132 and I kappaB overexpression we demonstrated that an NF-kappaB-dependent mechanism was involved in both the activation of IL-8 and the repression of MCP-1 mRNA expression in response to hypoxia. The histone deacetylase inhibitor Trihostatin A abolished the inhibitory actions of hypoxia on IL-1 beta-induced MCP-1 gene expression. Furthermore, hypoxia induced histone deacetylase activity in the nuclear extracts. Although stimulation with IL-1 beta and/or hypoxia increased the acetylation of histones H3 and H4 in the presence of Trihostatin A, histone acetylation remained unchanged when the cells were treated without histone deacetylase inhibitor. Collectively, our findings suggest that transiently transfected promoters are not subject to the same NF-kappaB regulatory mechanisms as their chromatinized counterparts. NF-kappaB, activated by hypoxia, can act as a transcriptional repressor via a mechanism that involves deacetylation of histones.
Collapse
Affiliation(s)
- Olga Safronova
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
49
|
Sinquett FL, Dryer RL, Marcelli V, Batheja A, Covey LR. Single nucleotide changes in the human Igamma1 and Igamma4 promoters underlie different transcriptional responses to CD40. THE JOURNAL OF IMMUNOLOGY 2009; 182:2185-93. [PMID: 19201872 DOI: 10.4049/jimmunol.0802700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analysis of subclass-specific germline transcription in activated peripheral B cells revealed a highly biased expression pattern of the four Igamma transcripts to signals through CD40 and IL-4. This difference was most pronounced when comparing the profile of Igamma1 and Igamma4 transcripts and was not expected given the very high degree of sequence conservation between promoters. In this report, the influence of sequence differences on the regulation of the Igamma1 and Igamma4 promoters has been investigated given the highly muted transcriptional activity of the Igamma4 promoter. Two regions were analyzed where single nucleotide differences corresponded to major changes in transcriptional activity. These regions were the previously defined CD40 response region containing three putative NF-kappaB-binding sites and the downstream 36-bp region containing CREB/activating transcription factor and kappaB6 sites. Mutation of a single nucleotide at position 6 within the Igamma4 kappaB6 site increased promoter activity to approximately 50% of the activity of the Igamma1 promoter. Furthermore, elevated promoter strength corresponded with increased binding of p50, p65, c-Rel, RelB, and p300 proteins to a level comparable with that of Igamma1. Minor nucleotide changes to both the Igamma4 CD40 response region and the 36-bp element resulted in a response undistinguishable from an Igamma1 response, suggesting cooperation between the two regulatory regions for optimal transcriptional activity. Collectively, these mutational analyses suggest that minor sequence differences contribute to the composition and affinity of transcriptional protein complexes regulating subclass-specific germline transcription, which in part impacts the overall level of class switch recombination to targeted C(H) regions.
Collapse
Affiliation(s)
- Frank L Sinquett
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
50
|
Leroy V, De Seigneux S, Agassiz V, Hasler U, Rafestin-Oblin ME, Vinciguerra M, Martin PY, Féraille E. Aldosterone activates NF-kappaB in the collecting duct. J Am Soc Nephrol 2008; 20:131-44. [PMID: 18987305 DOI: 10.1681/asn.2008020232] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Besides its classical effects on salt homeostasis in renal epithelial cells, aldosterone promotes inflammation and fibrosis and modulates cell proliferation. The proinflammatory transcription factor NF-kappaB has been implicated in cell proliferation, apoptosis, and regulation of transepithelial sodium transport. The effect of aldosterone on the NF-kappaB pathway in principal cells of the cortical collecting duct, a major physiologic target of aldosterone, is unknown. Here, in both cultured cells and freshly isolated rat cortical collecting duct, aldosterone activated the canonical NF-kappaB signaling pathway, leading to increased expression of several NF-kappaB-targeted genes (IkappaBalpha, plasminogen activator inhibitor 1, monocyte chemoattractant protein 1, IL-1beta, and IL-6). Small interfering RNA-mediated knockdown of the serum and glucocorticoid-inducible kinase SGK1, a gene induced early in the response to aldosterone, but not pharmacologic inhibition of extracellular signal-regulated kinase and p38 kinase, attenuated aldosterone-induced NF-kappaB activation. Pharmacologic antagonism or knockdown of the mineralocorticoid receptor prevented aldosterone-induced NF-kappaB activity. In addition, activation of the glucocorticoid receptor inhibited the transactivation of NF-kappaB by aldosterone. In agreement with these in vitro findings, spironolactone prevented NF-kappaB-induced transcriptional activation observed in cortical collecting ducts of salt-restricted rats. In summary, aldosterone activates the canonical NF-kappaB pathway in principal cells of the cortical collecting duct by activating the mineralocorticoid receptor and by inducing SGK1.
Collapse
Affiliation(s)
- Valérie Leroy
- Foundation for Medical Research, University of Geneva, 64 Avenue de la Roseraie, CH-1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|