1
|
Liang C, Xi-Xi X, Yun-Xiang S, Qiu-Hua X, Yang-Yong L, Yuan-Sen H, Ke B. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms. World J Microbiol Biotechnol 2023; 39:340. [PMID: 37821760 DOI: 10.1007/s11274-023-03790-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Fusarium graminearum, a devastating fungal pathogen, is the main pathogen of Fusarium head blight (FHB) in wheat globally; it results in significant yield loss and mycotoxin contamination that severely threatens global wheat production and food safety. However, despite ongoing efforts, controlling this pathogen still remains a major challenge. Surfactin, primarily synthesized by Bacillus sp. via non-ribosomal peptide synthetases, exhibits potent surfactant and antibacterial properties, but its antifungal mechanism has yet to be fully elucidated. We found that the EC50 of surfactin against hyphal growth of F. graminearum was 102.1 µg/mL, and control efficacy against wheat FHB under field conditions achieved 86.38% in wheat cultivar Huaimai 40 and 81.60% in wheat cultivar Zhoumai 36, indicating that surfactin has potential antifungal activity against F. graminearum. Accumulated intracellular ROS, decreased mitochondrial membrane potential (MMP), activated metacaspase activity and condensed chromatin, were induced by surfactin in F. graminearum hyphae, suggesting that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Furthermore, accumulated intracellular ROS was evidenced to act as a key mediator of surfactin-induced apoptosis. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that surfactin induces caspase-independent apoptosis in F. graminearum. Collectively, this study provides evidence that surfactin induces a ROS-mediated mitochondrial apoptosis in F. graminearum hyphae, and may exert its antifungal activity against F. graminearum by activating apoptosis. This study demonstrates the potential of surfactin as an antifungal agent for FHB biocontrol, provides a new perspective on the antifungal mechanism of surfactin against filamentous fungi, and contributes to the application of surfactin-producing microbes in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Chen Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xu Xi-Xi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Sun Yun-Xiang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin Qiu-Hua
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Lv Yang-Yong
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Hu Yuan-Sen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Bian Ke
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
4
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
5
|
Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0015-2016. [PMID: 28256191 PMCID: PMC11687462 DOI: 10.1128/microbiolspec.funk-0015-2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 12/13/2022] Open
Abstract
For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.
Collapse
Affiliation(s)
- Asen Daskalov
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Jens Heller
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| |
Collapse
|
6
|
Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungusAspergillus flavus. Mycologia 2017; 106:881-8. [PMID: 24895430 DOI: 10.3852/13-292] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
7
|
Strom NB, Bushley KE. Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons. Fungal Biol Biotechnol 2016; 3:4. [PMID: 28955463 PMCID: PMC5611628 DOI: 10.1186/s40694-016-0022-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
Abstract
Heterokaryosis is an integral part of the parasexual cycle used by predominantly asexual fungi to introduce and maintain genetic variation in populations. Research into fungal heterokaryons began in 1912 and continues to the present day. Heterokaryosis may play a role in the ability of fungi to respond to their environment, including the adaptation of arbuscular mycorrhizal fungi to different plant hosts. The parasexual cycle has enabled advances in fungal genetics, including gene mapping and tests of complementation, dominance, and vegetative compatibility in predominantly asexual fungi. Knowledge of vegetative compatibility groups has facilitated population genetic studies and enabled the design of innovative methods of biocontrol. The vegetative incompatibility response has the potential to be used as a model system to study biological aspects of some human diseases, including neurodegenerative diseases and cancer. By combining distinct traits through the formation of artificial heterokaryons, fungal strains with superior properties for antibiotic and enzyme production, fermentation, biocontrol, and bioremediation have been produced. Future biotechnological applications may include site-specific biocontrol or bioremediation and the production of novel pharmaceuticals.
Collapse
Affiliation(s)
- Noah B Strom
- Department of Plant Biology, University of Minnesota, 826 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, 826 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108 USA
| |
Collapse
|
8
|
Apoptosis-like death was involved in freeze-drying-preserved fungus Mucor rouxii and can be inhibited by L-proline. Cryobiology 2015; 72:41-6. [PMID: 26681175 DOI: 10.1016/j.cryobiol.2015.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Freeze-drying is one of the most effective methods to preserve fungi for an extended period. However, it is associated with a loss of viability and shortened storage time in some fungi. This study evaluated the stresses that led to the death of freeze-dried Mucor rouxii by using cell apoptotic methods. The results showed there were apoptosis-inducing stresses, such as the generation of obvious intracellular reactive oxygen species (ROS) and metacaspase activation. Moreover, nuclear condensation and a delayed cell death peak were determined after rehydration and 24 h incubation in freeze-dried M. rouxii via a propidium iodide (PI) assay, which is similar to the phenomenon of cryopreservation-induced delayed-onset cell death (CIDOCD). Then, several protective agents were tested to decrease the apoptosis-inducing stresses and to improve the viability. Finally, it was found that 1.6 mM L-proline can effectively decrease the nuclear condensation rate and increase the survival rate in freeze-dried M. rouxii. IN CONCLUSION (1) apoptosis-inducing factors occur in freeze-dried M. rouxii. (2) ROS and activated metacaspases lead to death in freeze-dried M. rouxii. (3)L-proline increases the survival rate of freeze-dried M. rouxii.
Collapse
|
9
|
|
10
|
Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol 2015; 100:323-35. [DOI: 10.1007/s00253-015-6915-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022]
|
11
|
Chen Y, Duan Z, Chen P, Shang Y, Wang C. The Bax inhibitor MrBI-1 regulates heat tolerance, apoptotic-like cell death, and virulence in Metarhizium robertsii. Sci Rep 2015; 5:10625. [PMID: 26023866 PMCID: PMC4448503 DOI: 10.1038/srep10625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Bax inhibitor 1 (BI-1) is a highly conserved protein originally identified as a suppressor of the proapoptotic protein Bax to inhibit cell death in animals and plants. The orthologs of BI-1 are widely distributed in filamentous fungi but their functions remain largely unknown. Herein, we report the identification and characterizations of MrBI-1, an ortholog of BI-1, in the entomopathogenic fungus Metarhizium robertsii. First, we found that MrBI-1 could partially rescue mammalian Bax-induced cell death in yeast. Deletion of MrBI-1 impaired fungal development, virulence and heat tolerance in M. robertsii. We also demonstrated that inactivation of MrBI-1 reduced fungal resistance to farnesol but not to hydrogen peroxide, suggesting that MrBI-1 contributes to antiapoptotic-like cell death via the endoplasmic reticulum stress-signaling pathway rather than the classical mitochondrium-dependent pathway. In particular, we found that unlike the observations in yeasts and plants, expression of mammalian Bax did not lead to a lethal effect in M. robertsii; however, it did aggravate the fungal apoptotic effect of farnesol. The results of this study advance our understanding of BI-1-like protein functions in filamentous fungi.
Collapse
Affiliation(s)
- Yixiong Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhibing Duan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Current address:Department of Neuroscience &Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway NJ, 08854, USA
| | - Peilin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfang Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Hyperthermia sensitizes Rhizopus oryzae to posaconazole and itraconazole action through apoptosis. Antimicrob Agents Chemother 2013; 57:4360-8. [PMID: 23817366 DOI: 10.1128/aac.00571-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of mucormycosis with currently available monotherapy has created interest in studying novel strategies for antifungal agents. With the exception of amphotericin B (AMB), the triazoles (posaconazole [PCZ] and itraconazole [ICZ]) are fungistatic in vitro against Rhizopus oryzae . We hypothesized that growth at a high temperature (42°C) results in fungicidal activity of PCZ and ICZ that is mediated through apoptosis. R. oryzae had high MIC values for PCZ and ICZ (16 to 64 μg/ml) at 25°C; in contrast, the MICs for PCZ and ICZ were significantly lower at 37°C (8 to 16 μg/ml) and 42°C (0.25 to 1 μg/ml). Furthermore, PCZ and ICZ dose-dependent inhibition of germination was more pronounced at 42°C than at 37°C. In addition, intracellular reactive oxygen species (ROS) increased significantly when fungi were exposed to antifungals at 42°C. Characteristic cellular changes of apoptosis in R. oryzae were induced by the accumulation of intracellular reactive oxygen species. Cells treated with PCZ or ICZ in combination with hyperthermia (42°C) exhibited characteristic markers of early apoptosis: phosphatidylserine externalization visualized by annexin V staining, membrane depolarization visualized by bis-[1,3-dibutylbarbituric acid] trimethine oxonol (DiBAC) staining, and increased metacaspase activity. Moreover, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and DAPI (4',6-diamidino-2-phenylindole) staining demonstrated DNA fragmentation and condensation, respectively. The addition of N-acetylcysteine increased fungal survival, prevented apoptosis, reduced ROS accumulation, and decreased metacaspase activation. We concluded that hyperthermia, either alone or in the presence of PCZ or ICZ, induces apoptosis in R. oryzae. Local thermal delivery could be a therapeutically useful adjunct strategy for these refractory infections.
Collapse
|
13
|
Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2012; 2:97. [PMID: 22891165 PMCID: PMC3412994 DOI: 10.3389/fonc.2012.00097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
Collapse
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Nir Goldfinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| |
Collapse
|
14
|
Barcellos FG, Hungria M, Pizzirani-Kleiner AA. Limited vegetative compatibility as a cause of somatic recombination in Trichoderma pseudokoningii. Braz J Microbiol 2011; 42:1625-37. [PMID: 24031797 PMCID: PMC3768707 DOI: 10.1590/s1517-83822011000400050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/16/2011] [Indexed: 11/21/2022] Open
Abstract
With the aim of a better characterization of the somatic recombination process in Trichoderma pseudokoningii, a progeny from crossings between T. pseudokoningii strains contrasting for auxotroph markers was characterized by RAPD markers and PFGE (electrophoretic karyotype). Cytological studies of the conidia, conidiogenesis and heterokaryotic colonies were also performed. The genotypes of the majority of the recombinant strains analyzed were similar to only one of the parental strains and the low frequency of polymorphic RAPD bands suggested that the nuclear fusions may not occur into the heterokaryon. In some heterokaryotic regions the existence of intensely staining hyphae might be related to cell death. We proposed that a mechanism of somatic recombination other than parasexuality might occur, being related to limited vegetative compatibility after postfusion events, as described for other Trichoderma species.
Collapse
|
15
|
Abstract
Genetic variation between individuals is essential to evolution and adaptation. However, intra-organismic genetic variation also shapes the life histories of many organisms, including filamentous fungi. A single fungal syncytium can harbor thousands or millions of mobile and potentially genotypically different nuclei, each having the capacity to regenerate a new organism. Because the dispersal of asexual or sexual spores propagates individual nuclei in many of these species, selection acting at the level of nuclei creates the potential for competitive and cooperative genome dynamics. Recent work in Neurospora crassa and Sclerotinia sclerotiorum has illuminated how nuclear populations are coordinated for fungal growth and other behaviors and has revealed both molecular and physical mechanisms for preventing and policing inter-genomic conflict. Recent results from population-level genomic studies in a variety of filamentous fungi suggest that nuclear exchange between mycelia and recombination between heterospecific nuclei may be of more importance to fungal evolution, diversity and the emergence of newly virulent strains than has previously been recognized.
Collapse
Affiliation(s)
- Marcus Roper
- Department of Mathematics, University of California, Berkeley, USA
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Chris Ellison
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| |
Collapse
|
16
|
van der Nest MA, Steenkamp ET, Slippers B, Mongae A, van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Gene expression associated with vegetative incompatibility in Amylostereum areolatum. Fungal Genet Biol 2011; 48:1034-43. [PMID: 21889597 DOI: 10.1016/j.fgb.2011.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022]
Abstract
In filamentous fungi, vegetative compatibility among individuals of the same species is determined by the genes encoded at the heterokaryon incompatibility (het) loci. The hyphae of genetically similar individuals that share the same allelic specificities at their het loci are able to fuse and intermingle, while different allelic specificities at the het loci result in cell death of the interacting hyphae. In this study, suppression subtractive hybridization (SSH) followed by pyrosequencing and quantitative reverse transcription PCR were used to identify genes that are selectively expressed when vegetatively incompatible individuals of Amylostereum areolatum interact. The SSH library contained genes associated with various cellular processes, including cell-cell adhesion, stress and defence responses, as well as cell death. Some of the transcripts encoded proteins that were previously implicated in the stress and defence responses associated with vegetative incompatibility. Other transcripts encoded proteins known to be associated with programmed cell death, but have not previously been linked with vegetative incompatibility. Results of this study have considerably increased our knowledge of the processes underlying vegetative incompatibility in Basidiomycetes in general and A. areolatum in particular.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Purin S, Morton JB. In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. MYCORRHIZA 2011; 21:505-514. [PMID: 21221661 DOI: 10.1007/s00572-010-0356-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form obligate symbiotic associations with plants. As a result, the role of hyphal interactions in the establishment and maintenance of common mycorrhizal networks is poorly understood because of constraints on methods for in situ analysis. We designed a rhizohyphatron that allows the examination of intact mycelia growing from whole mycorrhizal plants. Plants preinoculated with spores were cultivated in a compartment with a connecting tube from which hyphae extend through a fine nylon mesh onto agar-coated slides. Species selected from each of the five AMF genera were used to assess and characterize the anastomosis behavior in the rhizohyphatron. Hyphal networks of Paraglomus occultum, Ambispora leptoticha, Scutellospora heterogama, and Gigaspora gigantea growing on the agar-coated slides showed no evidence of hyphal fusion. In contrast, anastomosis occurred in the hyphal networks of Glomus clarum and Glomus intraradices at an average frequency of less than 15% for both species. The rhizohyphatron developed in this study will provide knowledge of the biology and genetics of self/non-self recognition in AMF and help to better understand Glomeromycotan life history strategies.
Collapse
Affiliation(s)
- Sonia Purin
- West Virginia University, 1090 Agricultural Sciences Building, Morgantown, WV, 26506, USA.
| | - Joseph B Morton
- West Virginia University, 1090 Agricultural Sciences Building, Morgantown, WV, 26506, USA
| |
Collapse
|
18
|
Inoue K, Kanematsu S, Park P, Ikeda K. Cytological analysis of mycelial incompatibility in Helicobasidium mompa. FEMS Microbiol Lett 2010; 315:94-100. [PMID: 21182537 DOI: 10.1111/j.1574-6968.2010.02174.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
When the mycelia of Helicobasidium mompa encounter mycelia with a different genetic background, distinct demarcation lines form. The hyphae of H. mompa induce heterogenic incompatibility accompanied by active programmed cell death (PCD) process. In this study, we observed hyphal interaction between compatible and incompatible H. mompa pairs by means of light and electron microscopy. PCD started with one of the two approaching hyphae. Heterochromatin condensation and genomic DNA laddering were not observed. Moreover, cell damage began with the tonoplast and continued with the plasma membrane and nuclear membrane, suggesting that the PCD observed in heterogenic incompatibility of H. mompa is a vacuole-mediated process.
Collapse
Affiliation(s)
- Kanako Inoue
- Stress Cytology Laboratory, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
19
|
Hall C, Welch J, Kowbel DJ, Glass NL. Evolution and diversity of a fungal self/nonself recognition locus. PLoS One 2010; 5:e14055. [PMID: 21124910 PMCID: PMC2988816 DOI: 10.1371/journal.pone.0014055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Self/nonself discrimination is an essential feature for pathogen recognition and graft rejection and is a ubiquitous phenomenon in many organisms. Filamentous fungi, such as Neurospora crassa, provide a model for analyses of population genetics/evolution of self/nonself recognition loci due to their haploid nature, small genomes and excellent genetic/genomic resources. In N. crassa, nonself discrimination during vegetative growth is determined by 11 heterokaryon incompatibility (het) loci. Cell fusion between strains that differ in allelic specificity at any of these het loci triggers a rapid programmed cell death response. METHODOLOGY/PRINCIPAL FINDINGS In this study, we evaluated the evolution, population genetics and selective mechanisms operating at a nonself recognition complex consisting of two closely linked loci, het-c (NCU03493) and pin-c (NCU03494). The genomic position of pin-c next to het-c is unique to Neurospora/Sordaria species, and originated by gene duplication after divergence from other species within the Sordariaceae. The het-c pin-c alleles in N. crassa are in severe linkage disequilibrium and consist of three haplotypes, het-c1/pin-c1, het-c2/pin-c2 and het-c3/pin-c3, which are equally frequent in population samples and exhibit trans-species polymorphisms. The absence of recombinant haplotypes is correlated with divergence of the het-c/pin-c intergenic sequence. Tests for positive and balancing selection at het-c and pin-c support the conclusion that both of these loci are under non-neutral balancing selection; other regions of both genes appear to be under positive selection. Our data show that the het-c2/pin-c2 haplotype emerged by a recombination event between the het-c1/pin-c1 and het-c3/pin-c3 approximately 3-12 million years ago. CONCLUSIONS/SIGNIFICANCE These results support models by which loci that confer nonself discrimination form by the association of polymorphic genes with genes containing HET domains. Distinct allele classes can emerge by recombination and positive selection and are subsequently maintained by balancing selection and divergence of intergenic sequence resulting in recombination blocks between haplotypes.
Collapse
Affiliation(s)
- Charles Hall
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Juliet Welch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - David J. Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Inoue K, Kanematsu S, Park P, Ikeda K. Cytological analysis of mycelial incompatibility in Rosellinia necatrix. Fungal Biol 2010; 115:87-95. [PMID: 21215959 DOI: 10.1016/j.funbio.2010.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/11/2010] [Accepted: 10/27/2010] [Indexed: 09/30/2022]
Abstract
When the mycelia of Rosellinia necatrix encounter mycelia with a different genetic background, distinct barrage lines form. In this study, we observed hyphal interactions between compatible and incompatible R. necatrix pairs by means of light and electron microscopy. Although we observed perfect hyphal anastomosis in compatible pairs of isolates, the hyphae never anastomosed in incompatible pairs (i.e., the hyphae remained parallel or crossed over without merging). These behaviours appeared to result from the detection of or failure to detect one or more diffusible factors. The attraction to other hyphae in pairs of incompatible isolates was increased by supplementation of the growing medium with activated charcoal, although no anastomosis was observed and ultrastructural observation confirmed a lack of hyphal anastomosis. Programmed cell death (PCD) started with one of the two approaching hyphae. Heterochromatin condensation and genomic DNA fragmentation were not observed. Moreover, cell damage began with the tonoplast and continued with the plasma and nuclear membranes, suggesting that the PCD observed in heterogenic incompatibility of R. necatrix was a vacuole-mediated process.
Collapse
Affiliation(s)
- Kanako Inoue
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
21
|
Ruiz-Roldán MC, Köhli M, Roncero MIG, Philippsen P, Di Pietro A, Espeso EA. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. EUKARYOTIC CELL 2010; 9:1216-24. [PMID: 20543061 PMCID: PMC2918926 DOI: 10.1128/ec.00040-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/04/2010] [Indexed: 11/20/2022]
Abstract
In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum. Hyphae of F. oxysporum have uninucleated cells and exhibit an acropetal nuclear pedigree, where only the nucleus in the apical compartment is mitotically active. In contrast, conidiation follows a basopetal pattern, whereby mononucleated microconidia are generated by repeated mitotic cycles of the subapical nucleus in the phialide, followed by septation and cell abscission. Vegetative hyphal fusion is preceded by directed growth of the fusion hypha toward the receptor hypha and followed by a series of postfusion nuclear events, including mitosis of the apical nucleus of the fusion hypha, migration of a daughter nucleus into the receptor hypha, and degradation of the resident nucleus. These previously unreported patterns of nuclear dynamics in F. oxysporum could be intimately related to its pathogenic lifestyle.
Collapse
Affiliation(s)
- M Carmen Ruiz-Roldán
- Departamento de Genética, Universidad de Córdoba, Edificio Gregor Mendel, Campus de Rabanales, 14071 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Liu P, Luo L, Guo J, Liu H, Wang B, Deng B, Long CA, Cheng Y. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia 2010; 102:311-8. [PMID: 20361499 DOI: 10.3852/09-176] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study was conducted to evaluate the effect of farnesol (FOH) on the growth of P. expansum. The viability of P. expansum cells was determined by counting the colony forming units (CFU) after each FOH treatment. Morphological changes of FOH-treated fungal cells were analyzed by staining with Hoechst 33258, TUNEL (terminal deoxynucleotidyl transferase fluorescein-12-dUTP nick end labeling), Annexin-V FITC and the oxidant-sensitive probe H2DCFDA (dichlorodihydro-fluorescein diacetate). FOH strongly inhibited the growth of hyphae. The hyphal cells showed the hallmarks of apoptosis including chromatin condensation, DNA fragmentation, phosphatidylserine (PS) externalization, caspases activation, intracellular reactive oxygen species (ROS) generation but without nucleosomal ladder production. The abnormal cellular ultrastructure observed by transmission electron microscope (TEM) indicated that disintegration of cellular ultrastructure (especially for mitochondria) was linked to FOH-induced cell death. Taken together we demonstrated that FOH inhibits the growth of P. expansum and promotes apoptosis via activation of metacaspases, production of ROS and disintegration of cellular ultrastructure.
Collapse
Affiliation(s)
- Pu Liu
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hutchison E, Brown S, Tian C, Glass NL. Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death. MICROBIOLOGY-SGM 2009; 155:3957-3970. [PMID: 19696111 DOI: 10.1099/mic.0.032284-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterokaryon incompatibility (HI) is a nonself recognition phenomenon occurring in filamentous fungi that is important for limiting resource plundering and restricting viral transfer between strains. Nonself recognition and HI occurs during hyphal fusion between strains that differ at het loci. If two strains undergo hyphal fusion, but differ in allelic specificity at a het locus, the fusion cell is compartmentalized and undergoes a rapid programmed cell death (PCD). Incompatible heterokaryons show a macroscopic phenotype of slow growth and diminished conidiation, and a microscopic phenotype of hyphal compartmentation and cell death. To understand processes associated with HI and PCD, we used whole-genome microarrays for Neurospora crassa to assess transcriptional differences associated with induction of HI mediated by differences in het-c pin-c haplotype. Our data show that HI is a dynamic and transcriptionally active process. The production of reactive oxygen species is implicated in the execution of HI and PCD in N. crassa, as are several genes involved in phosphatidylinositol and calcium signalling pathways. However, genes encoding mammalian homologues of caspases or apoptosis-inducing factor (AIF) are not required for HI or programmed cell death. These data indicate that PCD during HI occurs via a novel and possibly fungal-specific mechanism, making this pathway an attractive drug target for control of fungal infections.
Collapse
Affiliation(s)
- Elizabeth Hutchison
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| | - Sarah Brown
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| | - Chaoguang Tian
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
24
|
Sharon A, Finkelstein A, Shlezinger N, Hatam I. Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 2009; 33:833-54. [PMID: 19416362 DOI: 10.1111/j.1574-6976.2009.00180.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cells of all living organisms are programmed to self-destruct under certain conditions. The most well known form of programmed cell death is apoptosis, which is essential for proper development in higher eukaryotes. In fungi, apoptotic-like cell death occurs naturally during aging and reproduction, and can be induced by environmental stresses and exposure to toxic metabolites. The core apoptotic machinery in fungi is similar to that in mammals, but the apoptotic network is less complex and of more ancient origin. Only some of the mammalian apoptosis-regulating proteins have fungal homologs, and the number of protein families is drastically reduced. Expression in fungi of animal proteins that do not have fungal homologs often affects apoptosis, suggesting functional conservation of these components despite the absence of protein-sequence similarity. Functional analysis of Saccharomyces cerevisiae apoptotic genes, and more recently of those in some filamentous species, has revealed partial conservation, along with substantial differences in function and mode of action between fungal and human proteins. It has been suggested that apoptotic proteins might be suitable targets for novel antifungal treatments. However, implementation of this approach requires a better understanding of fungal apoptotic networks and identification of the key proteins regulating apoptotic-like cell death in fungi.
Collapse
Affiliation(s)
- Amir Sharon
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
25
|
Martins RB, Maffia LA, Mizubuti ESG. Genetic variability of Cercospora coffeicola from organic and conventional coffee plantings, characterized by vegetative compatibility. PHYTOPATHOLOGY 2008; 98:1205-1211. [PMID: 18943409 DOI: 10.1094/phyto-98-11-1205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cercospora leaf spot is a destructive fungal disease that has become a threat to the coffee industry in Brazil. Nevertheless, little is known about populations of its causal agent, Cercospora coffeicola. We evaluated the potential of using nitrogen-nonutilizing (nit) mutants and vegetative compatibility groups (VCGs) to characterize the genetic variability of the C. coffeicola population associated with coffee plantings in Minas Gerais state (MG), Brazil. A total of 90 monosporic isolates were obtained from samples collected according to a hierarchical sampling scheme: (i) state geographical regions (Sul, Mata, and Triângulo), and (ii) production systems (conventional and organic). Nit mutants were obtained and 28 VCGs were identified. The 10 largest VCGs included 72.31% of all isolates, whereas each of the remaining 18 VCGs included 1.54% of the isolates. Isolates of the largest VCGs were found in the three regions sampled. Based on the frequencies of VCGs at each sampled level, we estimated the Shannon diversity index, as well as its richness and evenness components. Genetic variability was high at all hierarchical levels, and a high number of VCGs was found in populations of C. coffeicola associated with both conventional and organic coffee plantings.
Collapse
Affiliation(s)
- R B Martins
- Departamento de Fitopatologia, Unviersidade Federal de Viçosa, MG, Brazil
| | | | | |
Collapse
|
26
|
Vegetative Incompatibility Among Monoconidial Isolates of Bipolaris sorokiniana. Curr Microbiol 2008; 58:153-8. [DOI: 10.1007/s00284-008-9292-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
27
|
Hamann A, Brust D, Osiewacz HD. Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 2008; 16:276-83. [PMID: 18440231 DOI: 10.1016/j.tim.2008.03.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/22/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Apoptosis is one type of programmed cell death with great importance for development and homeostasis of multicellular organisms. Unexpectedly, during the past decade, evidence has been obtained for the existence of a basal apoptosis machinery in yeast, as unicellular fungus, and in some filamentous fungi, a group of microorganisms that are neither true unicellular nor true multicellular biological systems but something in between. Here, we review evidence for a role of apoptotic processes in fungal pathogenicity, competitiveness, propagation, ageing and lifespan control.
Collapse
Affiliation(s)
- Andrea Hamann
- Institute for Molecular Biosciences, Department of Biosciences and Cluster of Excellence Macromolecular Complexes, J.W. Goethe-University, Max-von-Laue-Strasse 9, Frankfurt, Germany
| | | | | |
Collapse
|
28
|
Wichmann G, Sun J, Dementhon K, Glass NL, Lindow SE. A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Mol Microbiol 2008; 68:672-89. [PMID: 18363647 DOI: 10.1111/j.1365-2958.2008.06175.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The phytopathogen Pseudomonas syringae competes with other epiphytic organisms, such as filamentous fungi, for resources. Here we characterize a gene in P. syringae pv. syringae B728a and P. syringae pv. tomato DC3000, termed phcA, that has homology to a filamentous fungal gene called het-c. phcA is conserved in many P. syringae strains, but is absent in one of the major clades, which includes the P. syringae pathovar phaseolicola. In the filamentous fungus Neurospora crassa, HET-C regulates a conserved programmed cell death pathway called heterokaryon incompatibility (HI). Ectopic expression of phcA in N. crassa induced HI and cell death that was dependent on the presence of a functional het-c pin-c haplotype. Further, by co-immunoprecipitation experiments, a heterocomplex between N. crassa HET-C1 and PhcA was associated with phcA-induced HI. P. syringae was able to attach and extensively colonize N. crassa hyphae, while an Escherichia coli control showed no association with the fungus. We further show that the P. syringae is able to use N. crassa as a sole nutrient source. Our results suggest that P. syringae has the potential to utilize phcA to acquire nutrients from fungi in nutrient-limited environments like the phyllosphere by the novel mechanism of HI induction.
Collapse
Affiliation(s)
- Gale Wichmann
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
29
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Barhoom S, Sharon A. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol 2007; 44:32-43. [PMID: 16950636 DOI: 10.1016/j.fgb.2006.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 06/05/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Proteins belonging to the Bcl-2 family regulate apoptosis in mammals by controlling mitochondria efflux of cytochrome c and other apoptosis-related proteins. Homologues of human Bcl-2 proteins are found in different metazoan organisms where they play a similar role, while they seem to be absent in plants and fungi. Nonetheless, Bcl-2 protein members can induce or prevent yeast cell death, suggesting that enough functional conservation exists between apoptotic machineries of mammals and fungi. Here we show that induction or prevention of apoptosis by Bcl-2 proteins in the fungal plant pathogen Colletotrichum gloeosporioides is tightly linked with growth and morphogenetic adaptation that occur throughout the entire fungal life cycle. Isolates expressing the pro-apoptotic Bax protein underwent cell death with apoptotic characteristics, and showed alterations in conidial germination that are associated with pathogenic and non-pathogenic life styles. Isolates expressing the anti-apoptotic Bcl-2 protein had prolonged longevity, were protected from Bax-induced cell death, and exhibited enhanced stress resistance. These isolates also had enhanced mycelium and conidia production, and were hyper virulent to host plants. Our findings show that apoptotic-associated machinery regulates morphogenetic switches, which are critical for proper responses and adaptation fungi to different environments.
Collapse
Affiliation(s)
- Sima Barhoom
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
31
|
Glass NL, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 2006; 9:553-8. [PMID: 17035076 DOI: 10.1016/j.mib.2006.09.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Non-self recognition resulting in programmed cell death is a ubiquitous phenomenon in filamentous ascomycete fungi and is termed heterokaryon incompatibility (HI). Recent analyses show that genes containing predicted HET domains are often involved in HI; however, the function of the HET domain is unknown. Autophagy is induced as a consequence of HI, whereas the presence of a predicted transcription factor, VIB-1, is required for HI. Morphological features associated with apoptosis in filamentous fungi are induced by various stresses and drugs, and also during HI. Future analyses will reveal whether common or different genetic mechanisms trigger death by non-self recognition and death by various environmental onslaughts.
Collapse
Affiliation(s)
- N Louise Glass
- The Plant and Microbial Biology Department, The University of California Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
32
|
Dementhon K, Iyer G, Glass NL. VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa. EUKARYOTIC CELL 2006; 5:2161-73. [PMID: 17012538 PMCID: PMC1694810 DOI: 10.1128/ec.00253-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as Neurospora crassa, nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at het loci. In N. crassa, mutations at the vib-1 locus suppress nonself recognition and HI mediated by genetic differences at het-c/pin-c, mat, and un-24/het-6. vib-1 is a homolog of Saccharomyces cerevisiae NDT80, which is a transcriptional activator of genes during meiosis. For this study, we determined that vib-1 encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI. vib-1 is required for the expression of genes involved in nonself recognition and HI, including pin-c, tol, and het-6; all of these genes encode proteins containing a HET domain. vib-1 is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in N. crassa.
Collapse
Affiliation(s)
- Karine Dementhon
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
33
|
Robson GD. Programmed cell death in the aspergilli and other filamentous fungi. Med Mycol 2006; 44:S109-S114. [DOI: 10.1080/13693780600835765] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
34
|
Fedorova ND, Badger JH, Robson GD, Wortman JR, Nierman WC. Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 2005; 6:177. [PMID: 16336669 PMCID: PMC1325252 DOI: 10.1186/1471-2164-6-177] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 12/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. RESULTS Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. CONCLUSION Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
Collapse
Affiliation(s)
- Natalie D Fedorova
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Jonathan H Badger
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Geoff D Robson
- Faculty of Life Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer R Wortman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - William C Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, 2300 Eye Street, NW Washington, DC 20837, USA
| |
Collapse
|
35
|
Maheshwari R. Nuclear behavior in fungal hyphae. FEMS Microbiol Lett 2005; 249:7-14. [PMID: 16002240 DOI: 10.1016/j.femsle.2005.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/07/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022] Open
Abstract
A characteristic feature of fungal hypha is the presence of large number of nuclei in a common cytoplasmic environment. Where it has been examined, the coenocytic mycelium is commonly heterokaryotic. The nuclei cooperate, compete or combat. It is proposed that in addition to their classical role in heredity, supernumerary nuclei in filamentous fungi serve as store house for nitrogen and phosphorus in the form of DNA which is degraded by regulated autophagy. The breakdown products recycled, giving hyphal tips the capability of persistent extension and foraging in new areas.
Collapse
Affiliation(s)
- Ramesh Maheshwari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
36
|
Ganem S, Lu SW, Lee BN, Chou DYT, Hadar R, Turgeon BG, Horwitz BA. G-protein beta subunit of Cochliobolus heterostrophus involved in virulence, asexual and sexual reproductive ability, and morphogenesis. EUKARYOTIC CELL 2005; 3:1653-63. [PMID: 15590838 PMCID: PMC539015 DOI: 10.1128/ec.3.6.1653-1663.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work established that mutations in mitogen-activated protein (MAP) kinase (CHK1) and heterotrimeric G-protein alpha (Galpha) subunit (CGA1) genes affect the development of several stages of the life cycle of the maize pathogen Cochliobolus heterostrophus. The effects of mutating a third signal transduction pathway gene, CGB1, encoding the Gbeta subunit, are reported here. CGB1 is the sole Gbeta subunit-encoding gene in the genome of this organism. cgb1 mutants are nearly wild type in vegetative growth rate; however, Cgb1 is required for appressorium formation, female fertility, conidiation, regulation of hyphal pigmentation, and wild-type virulence on maize. Young hyphae of cgb1 mutants grow in a straight path, in contrast to those of the wild type, which grow in a wavy pattern. Some of the phenotypes conferred by mutations in CGA1 are found in cgb1 mutants, suggesting that Cgb1 functions in a heterotrimeric G protein; however, there are also differences. In contrast to the deletion of CGA1, the loss of CGB1 is not lethal for ascospores, evidence that there is a Gbeta subunit-independent signaling role for Cga1 in mating. Furthermore, not all of the phenotypes conferred by mutations in the MAP kinase CHK1 gene are found in cgb1 mutants, implying that the Gbeta heterodimer is not the only conduit for signals to the MAP kinase CHK1 module. The additional phenotypes of cgb1 mutants, including severe loss of virulence on maize and of the ability to produce conidia, are consistent with CGB1 being unique in the genome. Fluorescent DNA staining showed that there is often nuclear degradation in mature hyphae of cgb1 mutants, while comparable wild-type cells have intact nuclei. These data may be genetic evidence for a novel cell death-related function of the Gbeta subunit in filamentous fungi.
Collapse
Affiliation(s)
- Sherif Ganem
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Freitag M, Hickey PC, Raju NB, Selker EU, Read ND. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 2004; 41:897-910. [PMID: 15341912 DOI: 10.1016/j.fgb.2004.06.008] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/28/2004] [Indexed: 11/21/2022]
Abstract
We report the construction of a versatile GFP expression plasmid and demonstrate its utility in Neurospora crassa. To visualize nuclei and microtubules, we generated carboxy-terminal fusions of sgfp to Neurospora histone H1 (hH1) and beta-tubulin (Bml). Strong expression of GFP fusion proteins was achieved with the inducible Neurospora ccg-1 promoter. Nuclear and microtubule organization and dynamics were observed in live vegetative hyphae, developing asci, and ascospores by conventional and confocal laser scanning fluorescence microscopy. Observations of GFP fusion proteins in live cells largely confirmed previous results obtained by examination of fixed cells with various microscopic techniques. H1-GFP revealed dynamic nuclear shapes. Microtubules were mostly aligned parallel to the growth axis in apical compartments but more randomly arranged in sub-apical compartments. Time-lapse imaging of beta-tubulin-GFP in germinating macroconidia revealed polymerization and depolymerization of microtubules. In heterozygous crosses, H1-GFP and beta-tubulin-GFP expression was silenced, presumably by meiotic silencing. H1-GFP was translated in the vicinity of hH1+-sgfp+ nuclei in the common cytoplasm of giant Banana ascospores, but it diffused into all nuclei, another illustration of the utility of GFP fusion proteins.
Collapse
Affiliation(s)
- Michael Freitag
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|