1
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:672-683. [PMID: 30092403 PMCID: PMC6083003 DOI: 10.1016/j.omtn.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Delivery of genes to mouse liver is routinely accomplished by tail-vein injections of viral vectors or naked plasmid DNA. While viral vectors are typically injected in a low-pressure and -volume fashion, uptake of naked plasmid DNA to hepatocytes is facilitated by high pressure and volumes, also known as hydrodynamic delivery. In this study, we compare the efficacy and specificity of delivery of vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentiviral vectors to mouse liver by a number of injection schemes. Exploiting in vivo bioluminescence imaging as a readout after lentiviral gene transfer, we compare delivery by (1) “conventional” tail-vein injections, (2) “primed” injections, (3) “hydrodynamic” injections, or (4) direct “intrahepatic” injections into exposed livers. Reporter gene activity demonstrate potent and targeted delivery to liver by hydrodynamic injections. Enhanced efficacy is confirmed by analysis of liver sections from mice treated with GFP-encoding vectors, demonstrating 10-fold higher transduction rates and gene delivery to ∼80% of hepatocytes after hydrodynamic vector delivery. In summary, lentiviral vector transfer to mouse liver can be strongly augmented by hydrodynamic tail-vein injections, resulting in both reduced off-target delivery and transduction of the majority of hepatocytes. Our findings pave the way for more effective use of lentiviral gene delivery in the mouse.
Collapse
|
3
|
Translational Advances of Hydrofection by Hydrodynamic Injection. Genes (Basel) 2018; 9:genes9030136. [PMID: 29494564 PMCID: PMC5867857 DOI: 10.3390/genes9030136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Hydrodynamic gene delivery has proven to be a safe and efficient procedure for gene transfer, able to mediate, in murine model, therapeutic levels of proteins encoded by the transfected gene. In different disease models and targeting distinct organs, it has been demonstrated to revert the pathologic symptoms and signs. The therapeutic potential of hydrofection led different groups to work on the clinical translation of the procedure. In order to prevent the hemodynamic side effects derived from the rapid injection of a large volume, the conditions had to be moderated to make them compatible with its use in mid-size animal models such as rat, hamster and rabbit and large animals as dog, pig and primates. Despite the different approaches performed to adapt the conditions of gene delivery, the results obtained in any of these mid-size and large animals have been poorer than those obtained in murine model. Among these different strategies to reduce the volume employed, the most effective one has been to exclude the vasculature of the target organ and inject the solution directly. This procedure has permitted, by catheterization and surgical procedures in large animals, achieving protein expression levels in tissue close to those achieved in gold standard models. These promising results and the possibility of employing these strategies to transfer gene constructs able to edit genes, such as CRISPR, have renewed the clinical interest of this procedure of gene transfer. In order to translate the hydrodynamic gene delivery to human use, it is demanding the standardization of the procedure conditions and the molecular parameters of evaluation in order to be able to compare the results and establish a homogeneous manner of expressing the data obtained, as ‘classic’ drugs.
Collapse
|
4
|
Abstract
Hydrodynamic delivery (HD) is a broadly used procedure for DNA and RNA delivery in rodents, serving as a powerful tool for gene/protein drug discovery, gene function analysis, target validation, and identification of elements in regulating gene expression in vivo. HD involves a pressurized injection of a large volume of solution into a vasculature. New procedures are being developed to satisfy the need for a safe and efficient gene delivery in clinic. Here, we summarize the fundamentals of HD, its applications, and future perspectives for clinical use.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, School of Pharmacy, Athens, GA, USA
| |
Collapse
|
5
|
Mah CS, Soustek MS, Todd AG, McCall A, Smith BK, Corti M, Falk DJ, Byrne BJ. Adeno-associated virus-mediated gene therapy for metabolic myopathy. Hum Gene Ther 2014; 24:928-36. [PMID: 24164240 DOI: 10.1089/hum.2013.2514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabolic myopathies are a diverse group of rare diseases in which impaired breakdown of stored energy leads to profound muscle dysfunction ranging from exercise intolerance to severe muscle wasting. Metabolic myopathies are largely caused by functional deficiency of a single gene and are generally subcategorized into three major types of metabolic disease: mitochondrial, lipid, or glycogen. Treatment varies greatly depending on the biochemical nature of the disease, and unfortunately no definitive treatments exist for metabolic myopathy. Since this group of diseases is inherited, gene therapy is being explored as an approach to personalized medical treatment. Adeno-associated virus-based vectors in particular have shown to be promising in the treatment of several forms of metabolic myopathy. This review will discuss the most recent advances in gene therapy efforts for the treatment of metabolic myopathies.
Collapse
Affiliation(s)
- Cathryn S Mah
- 1 Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida , Gainesville, FL 32610
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Keeler AM, Flotte TR. Cell and gene therapy for genetic diseases: inherited disorders affecting the lung and those mimicking sudden infant death syndrome. Hum Gene Ther 2012; 23:548-56. [PMID: 22642257 PMCID: PMC3392613 DOI: 10.1089/hum.2012.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Some of the first human gene therapy trials targeted diseases of the lung and provided important information that will continue to help shape future trials. Here we describe both cell and gene therapies for lung diseases such as cystic fibrosis and alpha-1 antitrypsin disorder as well as fatty acid oxidation disorders that mimic sudden infant death syndrome (SIDS). Human clinical gene therapy trials for cystic fibrosis and alpha-1 antitrypsin have been performed using a variety of vectors including adenovirus, adeno-associated virus, and nonviral vectors. No human clinical gene therapy trials have been performed for disorders of fatty acid oxidation; however, important proof-of-principle studies have been completed for multiple fatty acid oxidation disorders. Important achievements have been made and have yet to come for cell and gene therapies for disorders of the lung and those mimicking SIDS.
Collapse
Affiliation(s)
- Allison M Keeler
- Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
7
|
Bonamassa B, Hai L, Liu D. Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 2011; 28:694-701. [PMID: 21191634 PMCID: PMC3064722 DOI: 10.1007/s11095-010-0338-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/24/2010] [Indexed: 02/01/2023]
Abstract
Hydrodynamic delivery has emerged as the simplest and most effective method for intracellular delivery of membrane-impermeable substances in rodents. The system employs a physical force generated by a rapid injection of large volume of solution into a blood vessel to enhance the permeability of endothelium and the plasma membrane of the parenchyma cells to allow delivery of substance into cells. The procedure was initially established for gene delivery in mice, and its applications have been extended to the delivery of proteins, oligo nucleotides, genomic DNA and RNA sequences, and small molecules. The focus of this review is on applications of hydrodynamic delivery in pharmaceutical research. Examples are provided to highlight the use of hydrodynamic delivery for study of transcriptional regulation of CYP enzymes, for establishment of animal model for viral infections, and for gene drug discovery and gene function analysis.
Collapse
Affiliation(s)
- Barbara Bonamassa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| | - Li Hai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dexi Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
8
|
Goetzman ES. Modeling Disorders of Fatty Acid Metabolism in the Mouse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:389-417. [DOI: 10.1016/b978-0-12-384878-9.00010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Beattie SG, Goetzman E, Conlon T, Germain S, Walter G, Campbell-Thompson M, Matern D, Vockley J, Flotte TR. Biochemical correction of short-chain acyl-coenzyme A dehydrogenase deficiency after portal vein injection of rAAV8-SCAD. Hum Gene Ther 2008; 19:579-88. [PMID: 18500942 DOI: 10.1089/hum.2007.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated viral vectors pseudotyped with serotype 5 and 8 capsids (AAV5 and AAV8) have been shown to be efficient gene transfer reagents for the liver. We have produced AAV5 and AAV8 vectors that express mouse short-chain acyl-CoA dehydrogenase (mSCAD) cDNA under the transcriptional control of the cytomegalovirus-chicken beta-actin hybrid promoter. We hypothesized that these vectors would produce sufficient hepatocyte transduction (after administration via the portal vein) and thus sufficient SCAD enzyme to correct the phenotype observed in the SCAD-deficient (BALB/cByJ) mouse, which includes elevated blood butyrylcarnitine and hepatic steatosis. Ten weeks after portal vein injection into 8-week-old mice, AAV8-treated livers contained acyl-CoA dehydrogenase activity (14.3 mU/mg) toward butyryl-CoA, compared with 7.6 mU/mg in mice that received phosphate-buffered saline. Immunohistochemistry showed expression of mSCAD within rAAV8-mSCAD-transduced hepatocytes, as seen by light microscopy. A significant reduction of circulating butyrylcarnitine was seen in AAV5-mSCAD- and AAV8-mSCAD-injected mice. Magnetic resonance spectroscopy of fasted mice demonstrated a significant reduction in relative lipid content within the livers of AAV8-mSCAD-treated mice. These results demonstrate biochemical correction of SCAD deficiency after AAV8-mediated SCAD gene delivery.
Collapse
Affiliation(s)
- Stuart G Beattie
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Efficient and safe methods for delivering genetic materials into cells must be developed before the clinical potential of gene therapy can be fully realized. Recently, hydrodynamic gene delivery using a rapid injection of a relatively large volume of DNA solution has opened up a new avenue for gene therapy studies in vivo. This method is superior to the existing delivery systems because of its simplicity, efficiency, and versatility. Wide success in applying hydrodynamic principles to delivery of DNA, RNA, proteins, and synthetic compounds, into the cells in various tissues of small animals, has inspired the recent attempts at establishing a hydrodynamic procedure for clinical use. In this review, we provide an overview of the theory and practice of hydrodynamic gene delivery so as to aid researchers for the use of this method in their pre-clinical and translational gene therapy studies.
Collapse
Affiliation(s)
- Takeshi Suda
- 1Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
11
|
Kragh PM, Pedersen CB, Schmidt SP, Winter VS, Vajta G, Gregersen N, Bolund L, Corydon TJ. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice. Mol Genet Metab 2007; 91:128-37. [PMID: 17462936 DOI: 10.1016/j.ymgme.2007.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 03/12/2007] [Indexed: 01/15/2023]
Abstract
To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C>T and hSCAD-625G>A. The transgenic mice were mated with an SCAD-deficient mouse strain (BALB/cByJ) and, in the second generation, three mouse lines were obtained without endogenous SCAD expression but harboring hSCAD-wt, hSCAD-319C>T, and hSCAD-625G>A transgenes, respectively. All three lines had expression of the transgene at the RNA level in liver, muscle or brain tissues. Expression at the protein level was detected only in the brain tissue of hSCAD-wt mice, but here it was significantly higher than the level of endogenous SCAD protein in control mouse brains--in correlation with expression at the RNA level. The results may indicate that the two hSCAD folding variants are degraded by the mouse mitochondrial protein quality control system. Indeed, pulse-chase studies with isolated mitochondria revealed that soluble variant hSCAD protein was rapidly eliminated. This is in agreement with the fact that no disease phenotype developed for any of the lines transgenic for the hSCAD folding variants. The indicated remarkable efficiency of the mouse protein quality control system in the degradation of SCAD folding variants should be further substantiated and investigated, since it might indicate ways to prevent disease-causing effects.
Collapse
Affiliation(s)
- Peter M Kragh
- Institute of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Over the last few years, hydrodynamic tail vein delivery has established itself as a simple, yet very effective method for gene transfer into small rodents. Hydrodynamic delivery of plasmid DNA expression vectors or small interfering RNA allows for a broad range of in vivo experiments, including the testing of regulatory elements, antibody generation, evaluation of gene therapy approaches, basic biology and disease model creation (non-heritable transgenics). The recent development of the hydrodynamic limb vein procedure provides a safe nucleic acid delivery technique with equally high efficiency in small and large research animals and, importantly, the prospects for clinical translation.
Collapse
|
13
|
Conlon TJ, Walter G, Owen R, Cossette T, Erger K, Gutierrez G, Goetzman E, Matern D, Vockley J, Flotte TR. Systemic correction of a fatty acid oxidation defect by intramuscular injection of a recombinant adeno-associated virus vector. Hum Gene Ther 2006; 17:71-80. [PMID: 16409126 DOI: 10.1089/hum.2006.17.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial beta-oxidation of fatty acids is required to meet physiologic energy requirements during illness and periods of fasting or physiologic stress, and is most active in liver and striated muscle. Acyl-CoA dehydrogenases of varying chain-length specificities represent the first step in the mitochondria for each round of beta-oxidation, each of which removes two-carbon units as acetyl-CoA for entry into the tricarboxylic acid cycle. We have used recombinant adeno-associated virus (rAAV) vectors expressing short-chain acyl-CoA dehydrogenase (SCAD) to correct the accumulation of fatty acyl-CoA intermediates in deficient cell lines. The rAAV-SCAD vector was then packaged into either rAAV serotype 1 or 2 capsids and injected intramuscularly into SCAD-deficient mice. A systemic effect was observed as judged by restoration of circulating butyryl- carnitine levels to normal. Total lipid content at the injection site was also decreased as demonstrated by noninvasive magnetic resonance spectroscopy (MRS). SCAD enzyme activity in the injected muscle was found at necropsy to be above the normal control mouse level. This study is the first to demonstrate the systemic correction of a fatty acid oxidation disorder with rAAV and the utility of MRS as a noninvasive method to monitor SCAD correction after in vivo gene therapy.
Collapse
Affiliation(s)
- Thomas J Conlon
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, and Department of Pediatrics, Children's Hospital of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Merritt JL, Matern D, Vockley J, Daniels J, Nguyen TV, Schowalter DB. In vitro characterization and in vivo expression of human very-long chain acyl-CoA dehydrogenase. Mol Genet Metab 2006; 88:351-8. [PMID: 16621643 DOI: 10.1016/j.ymgme.2006.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 01/02/2023]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a disorder of fatty acid beta-oxidation that can present at any age with cardiomyopathy, rhabdomyolysis, hepatic dysfunction, and/or nonketotic hypoglycemia. Through the expansion of newborn screening programs an increasing number of individuals with VLCAD deficiency are being identified prior to the onset of symptoms allowing early initiation of therapy. The development of a safe, durable, and effective VLCAD gene delivery system for use at the time of diagnosis could result in a significant improvement in the quality and duration of life for patients with VLCAD deficiency. To this end, we developed a construct containing the human VLCAD cDNA under the control of the strong CMV promoter (pCMV-hVLCAD). A novel rabbit polyclonal anti-VLCAD antibody was prepared using a 24 amino-acid peptide unique to the human VLCAD protein to study human VLCAD expression in immune competent mice. Antibody specificity was demonstrated in Western blots of human VLCAD deficient fibroblasts and in pCMV-hVLCAD transiently transfected VLCAD deficient fibroblasts. Transfected fibroblasts showed correction of the metabolic block as demonstrated by normalization of C14- and C16-acylcarnitine species in cell culture media and restoration of VLCAD activity in cells. Following tail vein injection of pCMV-hVLCAD into mice, we demonstrated expression of hVLCAD in liver. Altogether, these steps are important in the development of a durable gene therapy for VLCAD deficiency.
Collapse
Affiliation(s)
- J Lawrence Merritt
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
15
|
Conlon TJ, Walter G, Owen R, Cossette T, Erger K, Gutierrez G, Goetzman E, Matern D, Vockley J, Flotte TR. Systemic Correction of a Fatty Acid Oxidation Defect by Intramuscular Injection of a Recombinant Adeno-Associated Virus Vector. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Corydon TJ, Hansen J, Bross P, Jensen TG. Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab 2005; 85:260-70. [PMID: 15927499 DOI: 10.1016/j.ymgme.2005.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 04/11/2005] [Indexed: 11/21/2022]
Abstract
We have analyzed the role of the highly abundant molecular chaperone Hsp60 in the biogenesis of medium-chain acyl-CoA dehydrogenase (MCAD) using RNA interference (RNAi). MCAD is a mitochondrial enzyme involved in the fatty acid metabolism and previous studies in isolated rat mitochondria or prokaryotic expression systems have shown that Hsp60 and GroEL are involved in the folding of MCAD proteins. To elucidate the impact of Hsp60 levels for folding and assembly of MCAD proteins in intact mammalian cells, we report the design and in vivo synthesis of anti-human Hsp60 small-hairpin RNAs (shRNAs). Quantitative PCR analysis of transfected HEK-293 cells showed significant down-regulation of endogenous Hsp60 mRNA 48 h post-transfection and Western blot analysis confirmed the reduced levels of Hsp60 protein. Furthermore, expression of exogenous Myc-tagged Hsp60 was decreased in shRNA-transfected cells. Flow cytometry showed that shRNA-treatment only affects green fluorescent protein targeted to mitochondria, demonstrating that the shRNA effect is specific. In cells with reduced Hsp60 levels both the amounts of total MCAD proteins and folded MCAD were reduced for MCAD wild-type and the two disease-associated variants studied. A similar effect was observed in cells expressing mitochondrial short-chain acyl-CoA dehydrogenase. Thus, in intact human cells we demonstrate that Hsp60 is involved in the folding of MCAD variant proteins. The present system can be used to study the requirement of Hsp60 for folding of other mitochondrial proteins and to assess the role of Hsp60 for the severity of genetic defects involving these proteins.
Collapse
Affiliation(s)
- Thomas J Corydon
- Institute of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
17
|
Schowalter DB, Matern D, Vockley J. In vitro correction of medium chain acyl CoA dehydrogenase deficiency with a recombinant adenoviral vector. Mol Genet Metab 2005; 85:88-95. [PMID: 15896652 DOI: 10.1016/j.ymgme.2005.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/30/2022]
Abstract
Defects of mitochondrial beta-oxidation are a growing group of disorders with variable clinical presentations ranging from mild hypotonia to sudden infant death. Current therapy involves avoidance of fasting, dietary restrictions, and cofactor supplementation. Unfortunately, times of acute illness and noncompliance can interfere with these therapies and result in a rapid clinical decline. The development of a safe, durable, and effective gene delivery system remains an attractive alternative therapy for individuals with these disorders. To this end, a recombinant first-generation adenovirus vector (Ad/cmv-hMCAD) has been prepared that constitutively expresses the human medium chain acyl CoA dehydrogenase (MCAD) protein under the control of the CMV promoter and bovine polyadenylation signal. Characterization of human fibroblasts deficient in MCAD infected with Ad/cmv-hMCAD including Western analysis, immunohistological staining visualized with confocal microscopy, electron transfer protein (ETF) reduction assay, and palmitate loading studies was performed. Infection of MCAD deficient fibroblast with Ad/cmv-hmcad resulted in the production of a 55kDa protein that co-localized in cells with a mitochondrial marker. Extracts prepared from Ad/cmv-hMCAD infected deficient fibroblasts demonstrated correction of the block seen in the MCAD catalyzed reduction of ETF in the presence of octanoyl CoA. Finally, MCAD deficient fibroblasts infected with increasing amounts of Ad/cmv-hMCAD showed a stepwise improvement of the abnormal acylcarnitine profile exhibited by the deficient cells. Together these studies demonstrate our ability to express and monitor the expression of MCAD in treated cells and support further in vivo murine studies to assess toxicity and duration of correction with this and other MCAD recombinant vectors.
Collapse
Affiliation(s)
- David B Schowalter
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | |
Collapse
|
18
|
Kobayashi N, Nishikawa M, Takakura Y. The hydrodynamics-based procedure for controlling the pharmacokinetics of gene medicines at whole body, organ and cellular levels. Adv Drug Deliv Rev 2005; 57:713-31. [PMID: 15757757 DOI: 10.1016/j.addr.2004.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022]
Abstract
Hydrodynamics-based gene delivery, involving a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), gives a significantly high level of transgene expression in vivo. This has attracted a lot of attention and has been used very frequently as an efficient, simple and convenient transfection method for laboratory animals. Until recently, however, little information has been published on the pharmacokinetics of the injected DNA molecules and of the detailed mechanisms underlying the efficient gene transfer. We and other groups have very recently demonstrated that the mechanism for the hydrodynamics-based gene transfer would involve, in part, the direct cytosolic delivery of pDNA through the cell membrane due to transiently enhanced permeability. Along with the findings in our series of studies, this article reviews the cumulative reports and other intriguing information on the controlled pharmacokinetics of naked pDNA in the hydrodynamics-based gene delivery. In addition, we describe various applications reported so far, as well as the current attempts and proposals to develop novel gene medicines for future gene therapy using the concept of the hydrodynamics-based procedure. Furthermore, the issues associated with the clinical feasibility of its seemingly invasive nature, which is probably the most common concern about this hydrodynamics-based procedure, are discussed along with its future prospects and challenges.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
19
|
Al-Dosari MS, Knapp JE, Liu D. Hydrodynamic Delivery. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 2 2005; 54:65-82. [PMID: 16096008 DOI: 10.1016/s0065-2660(05)54004-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrodynamic delivery has emerged as a near-perfect method for intracellular DNA delivery in vivo. For gene delivery to parenchymal cells, only essential DNA sequences need to be injected via a selected blood vessel, eliminating safety concerns associated with current viral and synthetic vectors. When injected into the bloodstream, DNA is capable of reaching cells in the different tissues accessible to the blood. Hydrodynamic delivery employs the force generated by the rapid injection of a large volume of solution into the incompressible blood in the circulation to overcome the physical barriers of endothelium and cell membranes that prevent large and membrane-impermeable compounds from entering parenchymal cells. In addition to the delivery of DNA, this method is useful for the efficient intracellular delivery of RNA, proteins, and other small compounds in vivo. This review discusses the development, current application, and clinical potential of hydrodynamic delivery.
Collapse
Affiliation(s)
- Mohammed S Al-Dosari
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|