1
|
Li P, Zhao Y, Lu M, Chen C, Li Y, Wang L, Zeng S, Peng Y, Liang H, Zhang G. Pharmacological inhibition of PLK1/PRC1 triggers mitotic catastrophe and sensitizes lung cancers to chemotherapy. Cell Death Dis 2025; 16:374. [PMID: 40355412 PMCID: PMC12069692 DOI: 10.1038/s41419-025-07708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Polo-like kinase 1 (PLK1) signaling drives tumor malignancy and chemotherapy resistance, which is an unmet clinical need. Recruiting PLK1 to the central spindle during anaphase is necessary for its function in promoting cancer cell proliferation, which is achieved by binding to microtubule-associated protein regulating of cytokinesis (PRC1) located in the spindle. However, the role of PLK1/PRC1 signaling in chemotherapy resistance is unknown. In this study, we identified a small molecule B4 which inhibited PLK1/PRC1 signaling through disrupting the formation of PLK1/PRC1 protein complexes. In the presence of blocking PLK1/PRC1 signaling, enhanced sensitivity of drug-resistant tumors to traditional chemotherapy was found. Suppression of PLK1 activity by B4 inhibited disease progression in allograft models, and combination with cisplatin elicited dramatic regression of drug-resistant tumors. Our findings provide a promising strategy to target the PLK1 signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Pingping Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yufei Zhao
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Minghan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Chengfei Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yongkun Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Lingling Wang
- School of Comprehensive Health Management, Xihua University, Chengdu, China
| | - Shulan Zeng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yan Peng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Guohai Zhang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
- Joint Medical Research Center of Guangxi Normal University & Guilin Hospital of Chinese Traditional and Western Medicine, Guilin, China.
| |
Collapse
|
2
|
Guo S, Ding Z, Hu L, Wang X, Cao M, Kang Y, Zhang B, Pei J, Guo X. Proteomic analysis reveals changes in protein expression in yak oocytes at different meiosis stages. Int J Biol Macromol 2025; 309:142813. [PMID: 40187445 DOI: 10.1016/j.ijbiomac.2025.142813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Oocyte maturation requires close cooperation among multiple kinases and growth factors. However, the proteome landscape during yak oocyte maturation has not yet been characterized. Here, 4D-DIA (data independent acquisition) technology was used to sequence the proteome of yak oocytes at four stages, germinal vesicle (GV), germinal vesicle breakdown (GVBD), meiosis I (MI), and meiosis II (MII), and 5851 proteins were identified. During the transition from GV to GVBD, more proteins are activated to stimulate germinal vesicle breakdown. From MI to MII, the expression of most proteins was down-regulated. Bioinformatics analysis showed that GV oocytes contained a large number of proteins related to energy metabolism. The proteins in GVBD oocytes were mainly related to the activity of enzyme inhibitors. MII oocytes contained keratin family members and proteins involved in cell cycle regulation. In addition, it was found that the expression of phosphorylation modification enzymes and ubiquitination modification enzymes change dynamically during oocyte maturation. Parallel reaction monitoring (PRM) validated the expression of key differentially expressed proteins. These results provide important information for enhancing the understanding of the molecular mechanism of oocyte maturation and improving the efficiency of the in vitro maturation of yak oocytes, which are critically important for enhancing the reproductive efficiency of yak.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ben Zhang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
3
|
Xu Y, Xu J, Xu K, Zhang C, Wang F, Zhang R, Zhu P. PRC1 promotes ovarian cancer progression by binding to RPL4 and increasing MDM2-mediated p53 ubiquitination. Exp Cell Res 2025; 447:114509. [PMID: 40089132 DOI: 10.1016/j.yexcr.2025.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Ovarian cancer (OC) is one of the most fatal gynecological carcinomas, causing significant detriment to women's health. Protein regulator of cytokinesis 1 (PRC1) is a microtubule-associated protein that is found to be highly expressed in many different cancers. Despite this, the exact way in which PRC1 stimulates the growth of OC has yet to be completely understood. Our research demonstrated that PRC1 expression was increased in OC, which was closely related to poor prognosis. Moreover, PRC1 exhibited noteworthy efficacy in enhancing the proliferation and migration capacities of OC cells, as well as affecting the cell cycle in OC cells. Silencing PRC1 significantly suppressed OC growth in vivo. Mechanically, PRC1 could interact with RPL4, which caused a decrease in RPL4/MDM2 complex formation, resulting in the enhanced ubiquitination of p53 and a reduction of p53 proteins. These findings revealed that PRC1 was involved in the RPL4-MDM2-p53 pathway thus playing a tumorigenic role on OC.
Collapse
Affiliation(s)
- Yinyin Xu
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jiaxing Xu
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Kai Xu
- Department of Gynecological Oncology, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Cancan Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengmian Wang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Rong Zhang
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China; Department of Gynecological Oncology, Shanghai Geriatric Medical Center, Shanghai, China.
| | - Pengfeng Zhu
- Department of Gynecological Oncology, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| |
Collapse
|
4
|
Steckhahn D, Fiorenza S, Tai E, Forth S, Kramer PR, Betterton M. PRC1 resists microtubule sliding in two distinct resistive modes due to variations in the separation between overlapping microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630898. [PMID: 40166249 PMCID: PMC11956913 DOI: 10.1101/2024.12.31.630898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Crosslinked cytoskeletal filament networks provide cells with a mechanism to regulate cellular mechanics and force transmission. An example in the microtubule cytoskeleton is mitotic spindle elongation. The three-dimensional geometry of these networks, such as the degree of overlap length or lateral microtubule spacing, likely controls how forces can be regulated, but how these parameters evolve during filament sliding is unknown. Recent evidence suggests that PRC1, a non-motor crosslinking protein of the MAP65 family, can resist microtubule sliding by two distinct modes: a braking mode in which microtubule sliding is significantly impeded and a less resistive coasting mode. To explore how molecular-scale mechanisms influence three-dimensional network geometry in this system, we developed a computational model of sliding microtubule pairs crosslinked by PRC1 that reproduces the experimentally observed braking and coasting modes. Surprisingly, we found that the braking mode was associated with a substantially smaller lateral separation between the crosslinked microtubules than the coasting mode. This closer separation aligns the PRC1-mediated forces against sliding, increasing the resistive PRC1 force and dramatically reducing sliding speed. The model also finds an emergent similar average sliding speed due to PRC1 resistance, because higher initial sliding speed favors the transition to braking. Together, our results highlight the importance of the three-dimensional geometric relationships between crosslinkers and microtubules, which likely extends to other cytoskeletal architectures such as cilia.
Collapse
Affiliation(s)
- Daniel Steckhahn
- Department of Physics, University of Colorado Boulder, Boulder CO 80309, USA
| | - Shane Fiorenza
- Department of Physics, University of Colorado Boulder, Boulder CO 80309, USA
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička Cesta 32, 10000 Zagreb, Croatia
| | - Ellinor Tai
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY 12180, USA
| | - Scott Forth
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY 12180, USA
| | - Peter R. Kramer
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Meredith Betterton
- Department of Physics, University of Colorado Boulder, Boulder CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO 80309, USA
| |
Collapse
|
5
|
Tai E, Henglein A, Alfieri A, Saxena G, Forth S. Insights into the role of phosphorylation on microtubule cross-linking by PRC1. Mol Biol Cell 2025; 36:ar34. [PMID: 39841558 PMCID: PMC11974947 DOI: 10.1091/mbc.e24-12-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The cross-linking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase. How these biochemical changes to specific residues regulate its function and ability to organize bundles has been unclear. Here, we perform biophysical analyses on microtubule networks cross-linked by two PRC1 constructs, one a wild-type reflecting a dephosphorylated state, and one phosphomimetic construct with two threonine to glutamic acid substitutions near PRC1's microtubule binding domain. We find that the wild-type construct builds longer and larger bundles that form more rapidly and are much more resistant to mechanical disruption than the phosphomimetic PRC1. Interestingly, microtubule pairs organized by both constructs behave similarly within the same assays. Our results suggest that phosphorylation of PRC1 in metaphase could tune the protein to stabilize smaller and more flexible bundles, while removal of these post-translational modifications in anaphase would promote the assembly of larger, more mechanically robust bundles to resist chromosome and pole separation forces at the spindle midzone.
Collapse
Affiliation(s)
- Ellinor Tai
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Austin Henglein
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Angus Alfieri
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gauri Saxena
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Scott Forth
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
6
|
Kodba S, Öztop A, van Berkum E, Katrukha EA, Iwanski MK, Nijenhuis W, Kapitein LC, Chaigne A. Aurora B controls microtubule stability to regulate abscission dynamics in stem cells. Cell Rep 2025; 44:115238. [PMID: 39854207 DOI: 10.1016/j.celrep.2025.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/11/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules. Here, we show that rather than being passive actors in abscission, microtubules control abscission speed. Using mouse embryonic stem cells, which transition from slow to fast abscission during exit from naive pluripotency, we investigate the molecular mechanism for the regulation of abscission dynamics and identify crosstalk between Aurora B activity and microtubule stability. We demonstrate that naive stem cells maintain high Aurora B activity on the bridge after cytokinesis. This high Aurora B activity leads to transient microtubule stabilization that delays abscission by decreasing MCAK recruitment to the midbody. In turn, stable microtubules promote the activity of Aurora B. Overall, our data demonstrate that Aurora B-dependent microtubule stability controls abscission dynamics.
Collapse
Affiliation(s)
- Snježana Kodba
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Amber Öztop
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Eri van Berkum
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Malina K Iwanski
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Wilco Nijenhuis
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Agathe Chaigne
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
7
|
Peled A, Abraham M, Wald H, Hay O, Hagbi S, Gamaev L, Monin J, Borthakur G, Ayoub E, Andreeff M, Rosenfeld R, Eizenberg O, Aharon A. BKT300: A Novel Anti-Leukemic Small Molecule Targeting the Protein Regulator of Cytokinesis 1 (PRC1) Pathway. RESEARCH SQUARE 2025:rs.3.rs-6017610. [PMID: 40034437 PMCID: PMC11875301 DOI: 10.21203/rs.3.rs-6017610/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Protein regulator of cytokinesis 1 (PRC1) is frequently overexpressed in various cancers and is associated with poor prognosis. BKT300 is a small molecule shown to selectively inhibit leukemic cell migration and survival by targeting the PRC1 pathways. The current work aimed to examine the role of PRC1 in acute myeloid leukemia (AML) and to assess the impact of BKT300, a small molecule PRC1 inhibitor, on AML cell viability and tumor growth in mouse xenograft AML models. BKT300 directly bound PRC1, resulting in disrupted actin and microtubule formation, G2/M cell cycle arrest, mitotic catastrophe and apoptosis via the caspase-3 pathway in AML cells. BKT300 inhibited PRC1 dephosphorylation at T481, downregulated CDC25C and upregulated p21, effectively halting the cell cycle and inhibiting leukemic cell proliferation while sparing normal cells. PRC1 was found to be overexpressed in AML patients and cell lines, with high levels associated with reduced overall patient survival. In addition, PRC1 expression levels correlated with BKT300 efficacy. BKT300 treatment led to 98% of tumor growth inhibition and 89.4% of tumor regression in mouse xenograft AML models, without notable impacts on normal hematopoiesis or biochemistry, even at high doses. As a first-in-class targeted therapy, BKT300 presents a promising new treatment option for advanced AML.
Collapse
|
8
|
Lee SH, Kwon MS, Lee T, Hohng S, Lee H. Kinesin-like protein KIF18A is required for faithful coordination of chromosome congression with cytokinesis. FEBS J 2025. [PMID: 39954259 DOI: 10.1111/febs.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
The maintenance of genetic integrity in proliferating cells requires the coordinated regulation of DNA replication, chromosome segregation, and cytokinetic abscission. Chromosome-microtubule interactions regulate mitosis, while interactions between the actin cytoskeleton and Myosin IIA dictate cytokinetic abscission. This process, crucial for the equal distribution of the duplicated genome into two daughter cells, occurs perpendicular to the axis of chromosome segregation. However, the mechanism of how microtubule-driven mitosis and actin-associated cytokinesis are precisely coordinated remains poorly understood. This study highlights the role of KIF18A, a kinesin-like protein, in linking kinetochore-microtubule dynamics to cytokinetic axis formation. KIF18A's localization changes through the cell division cycle, from the metaphase plate during chromosome congression to the central spindle in late anaphase, and finally to the spindle midbody in telophase. KIF18A depletion leads to chromosome congression failures and anaphase onset delays. Notably, cells attempting to undergo division in the absence of KIF18A exhibited disruptions in the parallel structure of the central spindle, causing mislocalization of the centralspindlin complex, such as kinesin-like protein KIF23 (also known as MKLP1) and Rac GTPase-activating protein 1 (RACGAP1). These disruptions impair cleavage furrow establishment, causing incomplete cytokinesis and the formation of mononuclear or binucleated cells. Our findings suggest that KIF18A is crucial for coordinating chromosome congression and cytokinesis by regulating the spatial and temporal assembly of the central spindle during late anaphase.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Taerim Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Korea
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| |
Collapse
|
9
|
Caspers J, Ritter A, Bahrami B, Hoock SC, Roth S, Friemel A, Oswald F, Louwen F, Kreis NN, Yuan J. Involvement of RBP-J interacting and tubulin-associated protein in the distribution of protein regulator of cytokinesis 1 in mitotic spindles. Front Cell Dev Biol 2025; 12:1472340. [PMID: 39839673 PMCID: PMC11747798 DOI: 10.3389/fcell.2024.1472340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
The protein regulator of cytokinesis 1 (PRC1) is a key regulator of microtubule crosslinking and bundling, which is crucial for spindle formation and cytokinesis. RITA, the RBP-J interacting and tubulin-associated protein, is a microtubule associated protein. We have reported that RITA localizes to mitotic spindles modulating microtubule dynamics and stability as well as to spindle poles affecting the activity of Aurora A. As defective chromosome congression and segregation are the most remarkable features of cells depleted of RITA, we aimed to explore further potential related mechanisms, using various cellular and molecular techniques, including clustered regularly interspaced short palindromic repeats technique/deactivated CRISPR-associated protein 9 (CRISPR/dCas9), mass spectrometry, confocal microscopy, immunofluorescence, immunoprecipitation and Western blot analysis. Here, we show that FLAG-RITA precipitates PRC1 and tubulin, and that these two proteins co-localize in the central region of the central spindle. Reduction of RITA enlarges the staining area of PRC1 in mitotic spindles as well as in the central spindle. Its suppression reduces the inter-centromere distance in metaphase cells. Interestingly, microtubule bundles of the central spindle are often less organized in a non-parallel pattern, as evidenced by increased angles, relative to corresponding separating chromosomes. These data suggest a novel role for RITA in mitotic distribution of PRC1 and that its deregulation may contribute to defective chromosome movement during mitosis. As both RITA and PRC1 are closely associated with malignant progression, further work is required to elucidate the detailed molecular mechanisms by which RITA acts as a modulator in central spindle formation and cytokinesis.
Collapse
Affiliation(s)
- Julia Caspers
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Badi Bahrami
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Samira Catharina Hoock
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
10
|
Wang L, Bu T, Wu X, Gao S, Yun D, Mao B, Li H, Silvestrini B, Li L, Sun F, Cheng CY. Microtubule-Associated Proteins (MAPs) Are Multifunctional Cytoskeletal Proteins in the Testis That Regulate Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:411-431. [PMID: 40301267 DOI: 10.1007/978-3-031-82990-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Microtubule-associated proteins (MAPs) refer to a large superfamily of proteins that bind to microtubules (MTs) structurally, modulating the rapid transition of MTs from a stable state (polymerized) to shrinkage (or catastrophe) via depolymerization through a meta-stable state. Changes of MTs from an assembled structure as linear protofilaments that are a packed/bundled ultrastructure to disassembled subunits of heterodimers of α-/ß-tubulins (or oligomers) can take place in milliseconds within a living cell. These heterodimers can also be rapidly phosphorylated, becoming GTP-bound, or rapidly polymerized into linear protofilaments of MT again. It is such rapid cyclic changes of MTs that support cellular development, growth, and changes in cell shape in response to changes in development or other physiological phenomena, such as the series of cellular events during spermatogenesis, cell divisions, and in response to environmental toxicants to protect cellular life. In this review, we seek to give a concise update and discussion on MAPs. Particularly, we focus on a specific member of the structural MAPs, namely MAP1a, and its interaction with the microtubule affinity regulatory kinases (MARKs, including MARK1, 2, 3, and 4, all are Ser/Thr protein kinases) in particular MARK4, and how these two MAPs work together to regulate MT dynamics in Sertoli cells to support germ cell development. This information should be helpful to investigators who seek to better understand the role of MAPs in testis biology.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical University Zhanjiang City, Guangdong Province, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Damin Yun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. Nat Commun 2024; 15:10782. [PMID: 39737931 PMCID: PMC11685634 DOI: 10.1038/s41467-024-54922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
Affiliation(s)
- Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Carlos Andrés Ramírez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
12
|
Lim WM, Chew WX, Esposito Verza A, Pesenti M, Musacchio A, Surrey T. Regulation of minimal spindle midzone organization by mitotic kinases. Nat Commun 2024; 15:9213. [PMID: 39472429 PMCID: PMC11522559 DOI: 10.1038/s41467-024-53500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
During cell division, the microtubule cytoskeleton undergoes dramatic cell cycle-driven reorganizations of its architecture. Coordinated by changes in the phosphorylation patterns of a multitude of microtubule associated proteins, the mitotic spindle first self-assembles to capture the chromosomes and then reorganizes in anaphase as the chromosomes are segregated. A key protein for this reorganization is PRC1 which is differentially phosphorylated by the mitotic kinases CDK1 and PLK1. How the phosphorylation state of PRC1 orchestrates spindle reorganization is not understood mechanistically. Here, we reconstitute in vitro the transition between metaphase and anaphase-like microtubule architectures triggered by the changes in PRC1 phosphorylation. We find that whereas PLK1 regulates its own recruitment by PRC1, CDK1 controls the affinity of PRC1 for antiparallel microtubule binding. Dephosphorylation of CDK1-phosphorylated PRC1 is required and sufficient to trigger the reorganization of a minimal anaphase midzone in the presence of the midzone length controlling kinesin KIF4A. These results demonstrate how phosphorylation-controlled affinity changes regulate the architecture of active microtubule networks, providing new insight into the mechanistic underpinnings of the cell cycle-driven reorganization of the central spindle during mitosis.
Collapse
Affiliation(s)
- Wei Ming Lim
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Wei-Xiang Chew
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Arianna Esposito Verza
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
13
|
Lee H, Bae AN, Yang H, Lee JH, Park JH. Modulation of PRC1 Promotes Anticancer Effects in Pancreatic Cancer. Cancers (Basel) 2024; 16:3310. [PMID: 39409930 PMCID: PMC11475828 DOI: 10.3390/cancers16193310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Pancreatic cancer, while relatively uncommon, is extrapolated to become the second leading cause of cancer-related deaths worldwide. Despite identifying well-known markers like the KRAS gene, the exact regulation of pancreatic cancer progression remains elusive. Methods: Clinical value of PRC1 was analyzed using bioinformatics database. The role of PRC1 was further evaluated through cell-based assays, including viability, wound healing, and sensitivity with the drug. Results: We demonstrate that PRC1 was significantly overexpressed in pancreatic cancer compared to pancreases without cancer, as revealed through human databases and cell lines analysis. Furthermore, high PRC1 expression had a negative correlation with CD4+ T cells, which are crucial for the immune response against cancers. Additionally, PRC1 showed a positive correlation with established pancreatic cancer markers. Silencing PRC1 expression using siRNA significantly inhibited cancer cell proliferation and viability and increased chemotherapeutic drug sensitivity. Conclusions: These findings suggest that targeting PRC1 in pancreatic cancer may enhance immune cell infiltration and inhibit cancer cell proliferation, offering a promising avenue for developing anticancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jong Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
14
|
Craig O, Lee S, Pilcher C, Saoud R, Abdirahman S, Salazar C, Williams N, Ascher D, Vary R, Luu J, Cowley K, Ramm S, Li MX, Thio N, Li J, Semple T, Simpson K, Gorringe K, Holien J. A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma. NAR Genom Bioinform 2024; 6:lqae096. [PMID: 39184376 PMCID: PMC11344246 DOI: 10.1093/nargab/lqae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.
Collapse
Affiliation(s)
- Olivia Craig
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Samuel Lee
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney Pilcher
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - Rita Saoud
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Suad Abdirahman
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carolina Salazar
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nathan Williams
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert Vary
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Jennii Luu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Karla J Cowley
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Susanne Ramm
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Mark Xiang Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Tim Semple
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica K Holien
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| |
Collapse
|
15
|
Zambo B, Edelweiss E, Morlet B, Negroni L, Pajkos M, Dosztanyi Z, Ostergaard S, Trave G, Laporte J, Gogl G. Uncovering the BIN1-SH3 interactome underpinning centronuclear myopathy. eLife 2024; 13:RP95397. [PMID: 38995680 PMCID: PMC11245310 DOI: 10.7554/elife.95397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.
Collapse
Affiliation(s)
- Boglarka Zambo
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Evelina Edelweiss
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztanyi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Soren Ostergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, Maaloev, Denmark
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergo Gogl
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| |
Collapse
|
16
|
Li P, Li Y, Ma X, Li L, Zeng S, Peng Y, Liang H, Zhang G. Identification of naphthalimide-derivatives as novel PBD-targeted polo-like kinase 1 inhibitors with efficacy in drug-resistant lung cancer cells. Eur J Med Chem 2024; 271:116416. [PMID: 38657480 DOI: 10.1016/j.ejmech.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 μM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yongkun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
17
|
Zhang C, Qin C. Protein regulator of cytokinesis 1 accentuates cholangiocarcinoma progression via mTORC1-mediated glycolysis. Hum Cell 2024; 37:739-751. [PMID: 38416277 DOI: 10.1007/s13577-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276034, Shandong, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584115. [PMID: 38559033 PMCID: PMC10979866 DOI: 10.1101/2024.03.08.584115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division. PLK1 activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate PLK1 in mitosis remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
|
19
|
Kim P, Mahboob S, Nguyen HT, Eastman S, Fiala O, Sousek M, Gaussoin RE, Brungardt JL, Jackson-Ziems TA, Roston R, Alfano JR, Clemente TE, Guo M. Characterization of Soybean Events with Enhanced Expression of the Microtubule-Associated Protein 65-1 (MAP65-1). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:62-71. [PMID: 37889205 DOI: 10.1094/mpmi-09-23-0134-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Microtubule-associated protein 65-1 (MAP65-1) protein plays an essential role in plant cellular dynamics through impacting stabilization of the cytoskeleton by serving as a crosslinker of microtubules. The role of MAP65-1 in plants has been associated with phenotypic outcomes in response to various environmental stresses. The Arabidopsis MAP65-1 (AtMAP65-1) is a known virulence target of plant bacterial pathogens and is thus a component of plant immunity. Soybean events were generated that carry transgenic alleles for both AtMAP65-1 and GmMAP65-1, the soybean AtMAP65-1 homolog, under control of cauliflower mosaic virus 35S promoter. Both AtMAP65-1 and GmMAP65-1 transgenic soybeans are more resistant to challenges by the soybean bacterial pathogen Pseudomonas syringae pv. glycinea and the oomycete pathogen Phytophthora sojae, but not the soybean cyst nematode, Heterodera glycines. Soybean plants expressing AtMAP65-1 and GmMAP65-1 also display a tolerance to the herbicide oryzalin, which has a mode of action to destabilize microtubules. In addition, GmMAP65-1-expressing soybean plants show reduced cytosol ion leakage under freezing conditions, hinting that ectopic expression of GmMAP65-1 may enhance cold tolerance in soybean. Taken together, overexpression of AtMAP65-1 and GmMAP65-1 confers tolerance of soybean plants to various biotic and abiotic stresses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Panya Kim
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Samira Mahboob
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Hanh T Nguyen
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Olivia Fiala
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Matthew Sousek
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Roch E Gaussoin
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Jae L Brungardt
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Tamra A Jackson-Ziems
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Rebecca Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - James R Alfano
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A. (deceased)
| | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Ming Guo
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
20
|
Gluszek‐Kustusz A, Craske B, Legal T, McHugh T, Welburn JPI. Phosphorylation controls spatial and temporal activities of motor-PRC1 complexes to complete mitosis. EMBO J 2023; 42:e113647. [PMID: 37592895 PMCID: PMC10620760 DOI: 10.15252/embj.2023113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP-E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin-4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP-E slides antiparallel PRC1-crosslinked microtubules. We find that the regulation of CENP-E -PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1-microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor-PRC1 complexes to couple chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Agata Gluszek‐Kustusz
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Benjamin Craske
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
- McGill UniversityMontrealQCCanada
| | - Toni McHugh
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Julie PI Welburn
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
21
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
22
|
Seitz BC, Mucelli X, Majano M, Wallis Z, Dodge AC, Carmona C, Durant M, Maynard S, Huang LS. Meiosis II spindle disassembly requires two distinct pathways. Mol Biol Cell 2023; 34:ar98. [PMID: 37436806 PMCID: PMC10551701 DOI: 10.1091/mbc.e23-03-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
During exit from meiosis II, cells undergo several structural rearrangements, including disassembly of the meiosis II spindles and cytokinesis. Each of these changes is regulated to ensure that they occur at the proper time. Previous studies have demonstrated that both SPS1, which encodes a STE20-family GCKIII kinase, and AMA1, which encodes a meiosis-specific activator of the Anaphase Promoting Complex, are required for both meiosis II spindle disassembly and cytokinesis in the budding yeast Saccharomyces cerevisiae. We examine the relationship between meiosis II spindle disassembly and cytokinesis and find that the meiosis II spindle disassembly failure in sps1Δ and ama1∆ cells is not the cause of the cytokinesis defect. We also see that the spindle disassembly defects in sps1Δ and ama1∆ cells are phenotypically distinct. We examined known microtubule-associated proteins Ase1, Cin8, and Bim1, and found that AMA1 is required for the proper loss of Ase1 and Cin8 on meiosis II spindles while SPS1 is required for Bim1 loss in meiosis II. Taken together, these data indicate that SPS1 and AMA1 promote distinct aspects of meiosis II spindle disassembly, and that both pathways are required for the successful completion of meiosis.
Collapse
Affiliation(s)
- Brian C. Seitz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Xheni Mucelli
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Maira Majano
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Zoey Wallis
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Ashley C. Dodge
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Catherine Carmona
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Matthew Durant
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Sharra Maynard
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
23
|
Hasan MAM, Maniruzzaman M, Shin J. Differentially expressed discriminative genes and significant meta-hub genes based key genes identification for hepatocellular carcinoma using statistical machine learning. Sci Rep 2023; 13:3771. [PMID: 36882493 PMCID: PMC9992474 DOI: 10.1038/s41598-023-30851-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common lethal malignancy of the liver worldwide. Thus, it is important to dig the key genes for uncovering the molecular mechanisms and to improve diagnostic and therapeutic options for HCC. This study aimed to encompass a set of statistical and machine learning computational approaches for identifying the key candidate genes for HCC. Three microarray datasets were used in this work, which were downloaded from the Gene Expression Omnibus Database. At first, normalization and differentially expressed genes (DEGs) identification were performed using limma for each dataset. Then, support vector machine (SVM) was implemented to determine the differentially expressed discriminative genes (DEDGs) from DEGs of each dataset and select overlapping DEDGs genes among identified three sets of DEDGs. Enrichment analysis was performed on common DEDGs using DAVID. A protein-protein interaction (PPI) network was constructed using STRING and the central hub genes were identified depending on the degree, maximum neighborhood component (MNC), maximal clique centrality (MCC), centralities of closeness, and betweenness criteria using CytoHubba. Simultaneously, significant modules were selected using MCODE scores and identified their associated genes from the PPI networks. Moreover, metadata were created by listing all hub genes from previous studies and identified significant meta-hub genes whose occurrence frequency was greater than 3 among previous studies. Finally, six key candidate genes (TOP2A, CDC20, ASPM, PRC1, NUSAP1, and UBE2C) were determined by intersecting shared genes among central hub genes, hub module genes, and significant meta-hub genes. Two independent test datasets (GSE76427 and TCGA-LIHC) were utilized to validate these key candidate genes using the area under the curve. Moreover, the prognostic potential of these six key candidate genes was also evaluated on the TCGA-LIHC cohort using survival analysis.
Collapse
Affiliation(s)
- Md Al Mehedi Hasan
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.,Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Maniruzzaman
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.,Statistics Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.
| |
Collapse
|
24
|
Nair S, Welch EL, Moravec CE, Trevena RL, Hansen CL, Pelegri F. The midbody component Prc1-like is required for microtubule reorganization during cytokinesis and dorsal determinant segregation in the early zebrafish embryo. Development 2023; 150:dev200564. [PMID: 36789950 PMCID: PMC10112900 DOI: 10.1242/dev.200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
We show that the zebrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1 family of microtubule-associated proteins. Embryos from tmi homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that Prc1l has a role in midbody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal Prc1l function is also essential for the reorganization of vegetal pole microtubules required for the segregation of dorsal determinants. Whereas Prc1 is widely regarded to crosslink microtubules in an antiparallel conformation, our studies provide evidence for an additional function of Prc1l in the bundling of parallel microtubules in the vegetal cortex of the early embryo during cortical rotation and prior to mitotic cycling. These findings highlight common yet distinct aspects of microtubule reorganization that occur during the egg-to-embryo transition, driven by maternal product for the midbody component Prc1l and required for embryonic cell division and pattern formation.
Collapse
Affiliation(s)
- Sreelaja Nair
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Elaine L. Welch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara E. Moravec
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan L. Trevena
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christina L. Hansen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Hanselmann S, Gertzmann D, Shin WJ, Ade CP, Gaubatz S. Expression of the cytokinesis regulator PRC1 results in p53-pathway activation in A549 cells but does not directly regulate gene expression in the nucleus. Cell Cycle 2023; 22:419-432. [PMID: 36135961 PMCID: PMC9879178 DOI: 10.1080/15384101.2022.2122258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023] Open
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule-binding protein with essential roles in mitosis and cytokinesis. PRC1 is frequently overexpressed in cancer cells where it could contribute to chromosomal instability. Due to its nuclear localization in interphase, it has been speculated that PRC1 has additional functions that are involved in its pro-tumorigenic functions. In this study we investigated the potential nuclear functions of PRC1 in a lung cancer cell line. Genome wide expression profiling by RNA sequencing revealed that the expression of PRC1 results in activation of the p53 pathway and inhibition of the pro-proliferative E2F-dependent gene expression. A mutant of PRC1 that is unable to enter into the nucleus regulated the same gene sets as wildtype PRC1, suggesting that PRC1 has no nuclear-exclusive functions in A549 cells. Instead, induction of p53 by PRC1 correlates with multinucleation and depends on the localization of PRC1 to the midbody, suggesting that the induction of p53 is a consequence of overexpressed PRC1 to interfere with the normal function of PRC1 during cytokinesis. Activation of p53 by PRC1 results in cellular senescence but not in apoptosis. In conclusion, while PRC1 is frequently overexpressed in many cancers, the p53 pathways may initially protect cancer cells from the negative effects of PRC1 overexpression on cytokinesis. Because depletion of PRC1 also results in p53-pathway activation and senescence, levels of PRC1 need to be tightly regulated to allow unperturbed proliferation. Targeting the expression or function of PRC1 could create a therapeutic vulnerability for the treatment of cancer.
Collapse
Affiliation(s)
- Steffen Hanselmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Dörthe Gertzmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Woo Jin Shin
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Carsten P. Ade
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
26
|
Vermeulen S, Van Puyvelde B, Bengtsson del Barrio L, Almey R, van der Veer BK, Deforce D, Dhaenens M, de Boer J. Micro-Topographies Induce Epigenetic Reprogramming and Quiescence in Human Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203880. [PMID: 36414384 PMCID: PMC9811462 DOI: 10.1002/advs.202203880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.
Collapse
Affiliation(s)
- Steven Vermeulen
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Laura Bengtsson del Barrio
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
| | - Ruben Almey
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU LeuvenLeuven3000Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
27
|
Coupling of microtubule bundles isolates them from local disruptions to set the structural stability of the anaphase spindle. Proc Natl Acad Sci U S A 2022; 119:e2204068119. [PMID: 36122237 PMCID: PMC9522340 DOI: 10.1073/pnas.2204068119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation requires load-bearing interactions across kinetochore fibers and antiparallel microtubule bundles, which constitute the spindle midzone. Mechanical properties of kinetochore fibers have been characterized during metaphase, when the mitotic spindle achieves steady state. However, it has been difficult to probe the mechanics of the spindle midzone that elongates during anaphase. Here, we combine superresolution expansion and electron microscopies, lattice light-sheet imaging, and laser microsurgery to examine how midzone organization sets its mechanics. We find that individual midzone bundles extend out to multiple positions across chromosomes and form multiple apparent microtubule-based connections with each other. Across the spindle's short axis, these microtubule bundles exhibit restricted, submicrometer-amplitude motions, which are weakly correlated on <10s timescales. Severing individual midzone bundles near their center does not substantially affect positions of neighboring bundles, nor the overall structural stability of the midzone. In contrast, severing multiple midzone bundles or individual bundles at their chromosome-proximal ends significantly displaces neighboring microtubule bundles. Together, these data suggest a model wherein multiple midzone connections both reinforce its structure and mechanically isolate individual bundles from local perturbations. This feature sets the robust midzone architecture to accommodate disruptions, including those which result from lagging chromosomes, and achieve stereotypic outputs, such as proper chromosome separation.
Collapse
|
28
|
Lacroix B, Lorca T, Castro A. Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis. Front Cell Dev Biol 2022; 10:967909. [PMID: 36105360 PMCID: PMC9465306 DOI: 10.3389/fcell.2022.967909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Anna Castro
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
- *Correspondence: Anna Castro,
| |
Collapse
|
29
|
Batman U, Deretic J, Firat-Karalar EN. The ciliopathy protein CCDC66 controls mitotic progression and cytokinesis by promoting microtubule nucleation and organization. PLoS Biol 2022; 20:e3001708. [PMID: 35849559 PMCID: PMC9333452 DOI: 10.1371/journal.pbio.3001708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies. The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.
Collapse
Affiliation(s)
- Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
30
|
The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin. Curr Biol 2022; 32:2480-2493.e6. [PMID: 35537456 PMCID: PMC9235856 DOI: 10.1016/j.cub.2022.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Forces produced by motor proteins and microtubule dynamics within the mitotic spindle are crucial for proper chromosome segregation. In addition to linear forces, rotational forces or torques are present in the spindle, which are reflected in the left-handed twisted shapes of microtubule bundles that make the spindle chiral. However, the biological role and molecular origins of spindle chirality are unknown. By developing methods for measuring the spindle twist, we show that spindles are most chiral near the metaphase-to-anaphase transition. To assess the role of chirality in spindle mechanics, we compressed the spindles along their axis. This resulted in a stronger left-handed twist, suggesting that the twisted shape allows for a mechanical response to forces. Inhibition or depletion of motor proteins that perform chiral stepping, Eg5/kinesin-5, Kif18A/kinesin-8, MKLP1/kinesin-6, and dynein, decreased the left-handed twist or led to right-handed twist, implying that these motors regulate the twist by rotating microtubules within their antiparallel overlaps or at the spindle pole. A right-handed twist was also observed after the depletion of the microtubule nucleator augmin, indicating its contribution to the twist through the nucleation of antiparallel bridging microtubules. The uncovered switch from left-handed to right-handed twist reveals the existence of competing mechanisms that promote twisting in opposite directions. As round spindles are more twisted than the elongated ones are, we infer that bending and twisting moments are generated by similar molecular mechanisms and propose a physiological role for spindle chirality in allowing the spindle to absorb mechanical load. Video abstract
Spindle twist depends on torque-generating motors Eg5, Kif18A, MKLP1, and dynein Without the microtubule nucleator augmin, spindles show right-handed twist Compression of the spindle along the axis increases the left-handed twist Rounder spindles are more twisted than elongated ones are
Collapse
|
31
|
Li X, Li J, Xu L, Wei W, Cheng A, Zhang L, Zhang M, Wu G, Cai C. CDK16 promotes the progression and metastasis of triple-negative breast cancer by phosphorylating PRC1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:149. [PMID: 35449080 PMCID: PMC9027050 DOI: 10.1186/s13046-022-02362-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Background Cyclin-dependent kinase 16 (CDK16) is an atypical PCTAIRE kinase, and its activity is dependent on the Cyclin Y (CCNY) family. Ccnys have been reported to regulate mammary stem cell activity and mammary gland development, and CCNY has been recognized as an oncoprotein in various cancers, including breast cancer. However, it remains unclear whether CDK16 has a role in breast cancer and whether it can be used as a therapeutic target for breast cancer. Methods Publicly available breast cancer datasets analyses and Kaplan-Meier survival analyses were performed to reveal the expression and clinical relevance of atypical CDKs in breast cancer. CDK16 protein expression was further examined by immunohistochemical and immunoblot analyses of clinical samples. Cell proliferation was measured by colony formation and MTT analyses. Cell cycle and apoptosis were examined by fluorescence-activated cell sorting (FACS) analysis. Wound-healing and trans-well invasion assays were conducted to test cell migration ability. The functions of CDK16 on tumorigenesis and metastasis were evaluated by cell line-derived xenograft, patient-derived organoid/xenograft, lung metastasis and systemic metastasis mouse models. Transcriptomic analysis was performed to reveal the potential molecular mechanisms involved in the function of CDK16. Pharmacological inhibition of CDK16 was achieved by the small molecular inhibitor rebastinib to further assess the anti-tumor utility of targeting CDK16. Results CDK16 is highly expressed in breast cancer, particularly in triple-negative breast cancer (TNBC). The elevated CDK16 expression is correlated with poor outcomes in breast cancer patients. CDK16 can improve the proliferation and migration ability of TNBC cells in vitro, and promote tumor growth and metastasis of TNBC in vivo. Both genetic knockdown and pharmacological inhibition of CDK16 significantly suppress the tumor progression of TNBC. Mechanistically, CDK16 exerts its function by phosphorylating protein regulator of cytokinesis 1 (PRC1) to regulate spindle formation during mitosis. Conclusion CDK16 plays a critical role in TNBC and is a novel promising therapeutic target for TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02362-w.
Collapse
Affiliation(s)
- Xiao Li
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liming Xu
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Anyi Cheng
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lingxian Zhang
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
32
|
N-Terminus-Mediated Solution Structure of Dimerization Domain of PRC1. Curr Issues Mol Biol 2022; 44:1626-1645. [PMID: 35723369 PMCID: PMC9164050 DOI: 10.3390/cimb44040111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are essential for the accurate division of a cell into two daughter cells. These proteins target specific microtubules to be incorporated into the spindle midzone, which comprises a special array of microtubules that initiate cytokinesis during anaphase. A representative member of the MAPs is Protein Regulator of Cytokinesis 1 (PRC1), which self-multimerizes to cross-link microtubules, the malfunction of which might result in cancerous cells. The importance of PRC1 multimerization makes it a popular target for structural studies. The available crystal structure of PRC1 has low resolution (>3 Å) and accuracy, limiting a better understanding of the structure-related functions of PRC1. Therefore, we used NMR spectroscopy to better determine the structure of the dimerization domain of PRC1. The NMR structure shows that the PRC1 N terminus is crucial to the overall structure integrity, but the crystal structure bespeaks otherwise. We systematically addressed the role of the N terminus by generating a series of mutants in which N-terminal residues methionine (Met1) and arginine (Arg2) were either deleted, extended or substituted with other rationally selected amino acids. Each mutant was subsequently analyzed by NMR spectroscopy or fluorescence thermal shift assays for its structural or thermal stability; we found that N-terminal perturbations indeed affected the overall protein structure and that the solution structure better reflects the conformation of PRC1 under solution conditions. These results reveal that the structure of PRC1 is governed by its N terminus through hydrophobic interactions with other core residues, such hitherto unidentified N-terminal conformations might shed light on the structure−function relationships of PRC1 or other proteins. Therefore, our study is of major importance in terms of identifying a novel structural feature and can further the progress of protein folding and protein engineering.
Collapse
|
33
|
Du Y, Han Y, Wang X, Wang H, Qu Y, Guo K, Ma W, Fu L. Identification of Immune-Related Breast Cancer Chemotherapy Resistance Genes via Bioinformatics Approaches. Front Oncol 2022; 12:772723. [PMID: 35387129 PMCID: PMC8978268 DOI: 10.3389/fonc.2022.772723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy resistance in breast cancer is an important factor affecting the prognosis of breast cancer patients. We computationally analyzed the differences in gene expression before and after chemotherapy in breast cancer patients, drug-sensitive groups, and drug-resistant groups. Through functional enrichment analysis, immune microenvironment analysis, and other computational analysis methods, we identified PRC1, GGTLC1, and IRS1 as genes that may mediate breast cancer chemoresistance through the immune pathway. After validation of certain other clinical datasets and in vitro cellular assays, we found that the above three genes influenced drug resistance in breast cancer patients and were closely related to the tumor immune microenvironment. Our finding that chemoresistance in breast cancer could be influenced by the mediation of tumor immunity expanded our knowledge of how to address this problem and could guide future research involving chemoresistance.
Collapse
Affiliation(s)
- Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yikai Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanrong Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhong Qu
- Oncology Department of Laiyang People's Hospital, Laiyang, China
| | - Kaiyuan Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Tokunaga Y, Otsuyama KI, Hayashida N. Cell Cycle Regulation by Heat Shock Transcription Factors. Cells 2022; 11:cells11020203. [PMID: 35053319 PMCID: PMC8773920 DOI: 10.3390/cells11020203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cell division and cell cycle mechanism has been studied for 70 years. This research has revealed that the cell cycle is regulated by many factors, including cyclins and cyclin-dependent kinases (CDKs). Heat shock transcription factors (HSFs) have been noted as critical proteins for cell survival against various stresses; however, recent studies suggest that HSFs also have important roles in cell cycle regulation-independent cell-protective functions. During cell cycle progression, HSF1, and HSF2 bind to condensed chromatin to provide immediate precise gene expression after cell division. This review focuses on the function of these HSFs in cell cycle progression, cell cycle arrest, gene bookmarking, mitosis and meiosis.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
| | - Ken-Ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
| | - Naoki Hayashida
- Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
35
|
Brüning-Richardson A, Shaw GC, Tams D, Brend T, Sanganee H, Barry ST, Hamm G, Goodwin RJA, Swales JG, King H, Steele L, Morton R, Widyadari A, Ward TA, Esteves F, Boissinot M, Mavria G, Droop A, Lawler SE, Short SC. GSK-3 Inhibition Is Cytotoxic in Glioma Stem Cells through Centrosome Destabilization and Enhances the Effect of Radiotherapy in Orthotopic Models. Cancers (Basel) 2021; 13:5939. [PMID: 34885051 PMCID: PMC8657225 DOI: 10.3390/cancers13235939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous data on glycogen synthase kinase 3 (GSK-3) inhibition in cancer models support a cytotoxic effect with selectivity for tumor cells compared to normal tissue but the effect of these inhibitors in glioma has not been widely studied. Here, we investigate their potential as cytotoxics in glioma. METHODS We assessed the effect of pharmacologic GSK-3 inhibition on established (U87, U251) and patient-derived (GBM1, GBM4) glioblastoma (GBM) cell lines using cytotoxicity assays as well as undertaking a detailed investigation of the effect on cell cycle, mitosis, and centrosome biology. We also assessed drug uptake and efficacy of GSK-3 inhibition alone and in combination with radiation in xenograft models. RESULTS Using the selective GSK-3 inhibitor AZD2858, we demonstrated single agent cytotoxicity in two patient-derived glioma cell lines (GBM1, GBM4) and two established cell lines (U251 and U87) with IC50 in the low micromolar range promoting centrosome disruption, failed mitosis, and S-phase arrest. Glioma xenografts exposed to AZD2858 also showed growth delay compared to untreated controls. Combined treatment with radiation increased the cytotoxic effect of clinical radiation doses in vitro and in orthotopic glioma xenografts. CONCLUSIONS These data suggest that GSK-3 inhibition promotes cell death in glioma through disrupting centrosome function and promoting mitotic failure and that AZD2858 is an effective adjuvant to radiation at clinical doses.
Collapse
Affiliation(s)
- Anke Brüning-Richardson
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Gary C. Shaw
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Daniel Tams
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Tim Brend
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Hitesh Sanganee
- Discovery Sciences BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK;
| | - Simon T. Barry
- Bioscience, Early Oncology, Oncology R&D, AstraZeneca, Cambridge CB2 8PA, UK;
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - Richard J. A. Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - John G. Swales
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - Henry King
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Lynette Steele
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Ruth Morton
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Anastasia Widyadari
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Thomas A. Ward
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Filomena Esteves
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Marjorie Boissinot
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Georgia Mavria
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Alastair Droop
- Leeds MRC Medical Bioinformatics Centre, University of Leeds, Leeds LS9 7TF, UK;
| | - Sean E. Lawler
- Pathology & Laboratory Medicine, Brown University Cancer Center, Brown University, Providence, RI 02903, USA;
| | - Susan C. Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| |
Collapse
|
36
|
Jiang H, Garcia V, Yanum JA, Lee J, Dai G. Circadian clock core component Bmal1 dictates cell cycle rhythm of proliferating hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2021; 321:G389-G399. [PMID: 34431407 PMCID: PMC8560370 DOI: 10.1152/ajpgi.00204.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.NEW & NOTEWORTHY We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules.
Collapse
Affiliation(s)
- Huaizhou Jiang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
37
|
Asthana J, Cade NI, Normanno D, Lim WM, Surrey T. Gradual compaction of the central spindle decreases its dynamicity in PRC1 and EB1 gene-edited cells. Life Sci Alliance 2021; 4:4/12/e202101222. [PMID: 34580180 PMCID: PMC8500333 DOI: 10.26508/lsa.202101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Although different anaphase proteins bind with characteristically different strength to the central spindle, the overall central spindle dynamicity slows down as mitosis proceeds. During mitosis, the spindle undergoes morphological and dynamic changes. It reorganizes at the onset of the anaphase when the antiparallel bundler PRC1 accumulates and recruits central spindle proteins to the midzone. Little is known about how the dynamic properties of the central spindle change during its morphological changes in human cells. Using gene editing, we generated human cells that express from their endogenous locus fluorescent PRC1 and EB1 to quantify their native spindle distribution and binding/unbinding turnover. EB1 plus end tracking revealed a general slowdown of microtubule growth, whereas PRC1, similar to its yeast orthologue Ase1, binds increasingly strongly to compacting antiparallel microtubule overlaps. KIF4A and CLASP1 bind more dynamically to the central spindle, but also show slowing down turnover. These results show that the central spindle gradually becomes more stable during mitosis, in agreement with a recent “bundling, sliding, and compaction” model of antiparallel midzone bundle formation in the central spindle during late mitosis.
Collapse
Affiliation(s)
- Jayant Asthana
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Davide Normanno
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Wei Ming Lim
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- The Francis Crick Institute, London, UK .,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
38
|
Swartz SZ, Nguyen HT, McEwan BC, Adamo ME, Cheeseman IM, Kettenbach AN. Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes. eLife 2021; 10:70588. [PMID: 34342579 PMCID: PMC8370769 DOI: 10.7554/elife.70588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Meiosis is a specialized cell cycle that requires sequential changes to the cell division machinery to facilitate changing functions. To define the mechanisms that enable the oocyte-to-embryo transition, we performed time-course proteomics in synchronized sea star oocytes from prophase I through the first embryonic cleavage. Although we found that protein levels were broadly stable, our analysis reveals that dynamic waves of phosphorylation underlie each meiotic stage. We found that the phosphatase PP2A-B55 is reactivated at the meiosis I/meiosis II (MI/MII) transition, resulting in the preferential dephosphorylation of threonine residues. Selective dephosphorylation is critical for directing the MI/MII transition as altering PP2A-B55 substrate preferences disrupts key cell cycle events after MI. In addition, threonine to serine substitution of a conserved phosphorylation site in the substrate INCENP prevents its relocalization at anaphase I. Thus, through its inherent phospho-threonine preference, PP2A-B55 imposes specific phosphoregulated behaviors that distinguish the two meiotic divisions.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Hieu T Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Brennan C McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| |
Collapse
|
39
|
Lin J, Chen Z, Li Z, Nong D, Li X, Huang G, Hao N, Liang J, Li W. Screening of hub genes and evaluation of the growth regulatory role of CD44 in metastatic prostate cancer. Oncol Rep 2021; 46:196. [PMID: 34296309 PMCID: PMC8317150 DOI: 10.3892/or.2021.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer type in men worldwide. Currently, the management of metastatic PCa (mPCa) remains a challenge to urologists. The analysis of hub genes and pathways may facilitate the understanding of the molecular mechanism of PCa. In the present study, to identify the hub genes in the mPCa, the three datasets GSE3325, GSE6919 and GSE38241 were downloaded from the platform of the Gene Expression Omnibus and function enrichment analysis of differentially expressed genes (DEGs) was performed. A total of 168 DEGs were obtained and the DEGs were significantly enriched in ‘cell junction’ and ‘cell adhesion’, among others. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that DEGs were enriched in three pathways including ‘focal adhesion’, ‘renal cell carcinoma’ and ‘Hippo signaling pathway’. The results of the protein-protein interaction network revealed that the hub genes in mPCa were separately PTEN, Rac GTPase-activating protein 1, protein regulator of cytokinesis 1, PDZ binding kinase, centromere-associated protein E, NUF2 component of NDC80 kinetochore complex, TPX2 microtubule nucleation factor, SOX2, CD44 and ubiquitin-like with PHD and ring finger domains 1. As a hub gene, CD44 was differentially expressed in PCa, as determined by Oncomine analysis. Further experiments in vivo demonstrated that SB-3CT, a selective matrix metalloproteinase inhibitor that has been reported to block CD44 cleavage and inhibit the downstream signaling pathway, suppressed the tumorigenicity of PCa cells by decreasing the expression levels of pyruvate dehydrogenase kinase 1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4. Moreover, the combination therapy with SB-3CT and docetaxel was more effective in inhibiting PCa compared with monotherapy. In conclusion, the identification of DEGs and the in vivo experimental results helped to elucidate the molecular mechanisms of PCa and provided a potential strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Junhao Lin
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi Chen
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zuan Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deyong Nong
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ximing Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guihai Huang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Nan Hao
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianbo Liang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
40
|
Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure 2021; 29:1266-1278.e4. [PMID: 34237274 DOI: 10.1016/j.str.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
In many eukaryotes, coordination of chromosome segregation with cell cleavage relies on the patterned interaction of specific microtubules with actin filaments through dedicated microtubule plus-end tracking proteins (+TIPs). However, how these +TIPs are spatially controlled is unclear. The yeast +TIP Kar9 drives one of the spindle aster microtubules along actin cables to align the mitotic spindle with the axis of cell division. Here, we report the crystal structure of Kar9's folded domain, revealing spectrin repeats reminiscent of the +TIPs MACF/ACF7/Shot and PRC1/Ase1. Point mutations abrogating spectrin-repeat-mediated dimerization of Kar9 reduced and randomized Kar9 distribution to microtubule tips, and impaired spindle positioning. Six Cdk1 sites surround the Kar9 dimerization interface. Their phosphomimetic substitution inhibited Kar9 dimerization, displaced Kar9 from microtubules, and affected its interaction with the myosin motor Myo2. Our results provide molecular-level understanding on how diverse cell types may regulate and pattern microtubule-actin interactions to orchestrate their divisions.
Collapse
|
41
|
Hanicinec V, Brynychova V, Rosendorf J, Palek R, Liska V, Oliverius M, Kala Z, Mohelnikova-Duchonova B, Krus I, Soucek P. Gene expression of cytokinesis regulators PRC1, KIF14 and CIT has no prognostic role in colorectal and pancreatic cancer. Oncol Lett 2021; 22:598. [PMID: 34188700 PMCID: PMC8228381 DOI: 10.3892/ol.2021.12859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers and pancreatic cancer is among the most fatal and difficult to treat. New prognostic biomarkers are urgently needed to improve the treatment of colorectal and pancreatic cancer. Protein regulating cytokinesis 1 (PRC1), kinesin family member 14 (KIF14) and citron Rho-interacting serine/threonine kinase (CIT) serve important roles in cytokinesis, are strongly associated with cancer progression and have prognostic potential. The present study aimed to investigate the prognostic relevance of the PRC1, KIF14 and CIT genes in colorectal and pancreatic cancer. PRC1, KIF14 and CIT transcript expression was assessed by reverse transcription-quantitative PCR in tumors and paired distant unaffected mucosa from 67 patients with colorectal cancer and tumors and paired non-neoplastic control tissues from 48 patients with pancreatic cancer. The extent of transcript dysregulation between tumor and control tissues and between groups of patients divided by main clinical characteristics, namely patients' age and sex, disease stage, localization and grade, was determined. Finally, the associations of transcript levels in tumors with disease-free interval and overall survival time were evaluated. PRC1, KIF14 and CIT transcripts were upregulated in tumors compared with control tissues. PRC1, KIF14 and CIT levels strongly correlated to each other in both colorectal and pancreatic tumor and control tissues after correction for multiple testing. However, no significant associations were found among the transcript levels of PRC1, KIF14 and CIT and disease-free interval or overall survival time. In summary, the present study demonstrated mutual correlation of PRC1, KIF14 and CIT cytokinesis regulators with no clear prognostic value in pancreatic and colorectal cancers. Hence, according to the results of the present study, transcript levels of these genes cannot be clinically exploited as prognostic biomarkers in colorectal or pancreatic cancer patients.
Collapse
Affiliation(s)
- Vojtech Hanicinec
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Veronika Brynychova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Deparment of Surgery, Teaching Hospital and Faculty of Medicine in Pilsen, Charles University, 30460 Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Deparment of Surgery, Teaching Hospital and Faculty of Medicine in Pilsen, Charles University, 30460 Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Deparment of Surgery, Teaching Hospital and Faculty of Medicine in Pilsen, Charles University, 30460 Pilsen, Czech Republic
| | - Martin Oliverius
- Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic
| | - Ivona Krus
- Department of Toxicogenomics, National Institute of Public Health, Prague 10042, Czech Republic
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Department of Toxicogenomics, National Institute of Public Health, Prague 10042, Czech Republic
| |
Collapse
|
42
|
Mani N, Jiang S, Neary AE, Wijeratne SS, Subramanian R. Differential regulation of single microtubules and bundles by a three-protein module. Nat Chem Biol 2021; 17:964-974. [PMID: 34083810 PMCID: PMC8387365 DOI: 10.1038/s41589-021-00800-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
A remarkable feature of the microtubule cytoskeleton is co-existence of sub-populations having different dynamic properties. A prominent example is the anaphase spindle, where stable antiparallel bundles exist alongside dynamic microtubules and provide spatial cues for cytokinesis. How are dynamics of spatially proximal arrays differentially regulated? We reconstitute a minimal system of three midzone proteins: microtubule-crosslinker PRC1, and its interactors CLASP1 and Kif4A, proteins that promote and suppress microtubule elongation, respectively. We find their collective activity promotes elongation of single microtubules, while simultaneously stalling polymerization of crosslinked bundles. This differentiation arises from (i) Strong rescue activity of CLASP1, which overcomes weaker effects of Kif4A on single microtubules, (ii) Lower microtubule and PRC1-binding affinity of CLASP1, which permit dominance of Kif4A at overlaps. In addition to canonical mechanisms where antagonistic regulators set microtubule lengths, our findings illuminate design principles by which collective regulator activity creates microenvironments of arrays with distinct dynamic properties.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shuo Jiang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alex E Neary
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Barisic M, Rajendraprasad G, Steblyanko Y. The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux. Semin Cell Dev Biol 2021; 117:99-117. [PMID: 34053864 DOI: 10.1016/j.semcdb.2021.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
44
|
Zhou CJ, Wang DH, Kong XW, Han Z, Hao X, Wang XY, Wen X, Liang CG. Protein regulator of cytokinesis 1 regulates chromosome dynamics and cytoplasmic division during mouse oocyte meiotic maturation and early embryonic development. FEBS J 2021; 287:5130-5147. [PMID: 32562308 DOI: 10.1111/febs.15458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
In contrast to the homeokinesis of mitosis, asymmetric division of cytoplasm is the conspicuous feature of meiosis in mammalian oocytes. Protein regulator of cytokinesis 1 (PRC1) is an important regulator during mitotic spindle assembly and cytoplasmic division, but its functions in oocyte meiosis and early embryo development have not been fully elucidated. In this study, we detected PRC1 expression and localization and revealed a nuclear, spindle midzone-related dynamic pattern throughout meiotic and mitotic progressions. Treatment of oocytes with the reagents taxol or nocodazole disturbed the distribution of PRC1 in metaphase II oocytes. Further, PRC1 depletion led to failure of first polar body (PB1) extrusion and spindle migration, aneuploidy and defective kinetochore-microtubule attachment and spindle assembly. Overexpression of PRC1 resulted in PB1 extrusion failure, aneuploidy and serious defects of spindle assembly. To investigate PRC1 function in early embryos, we injected Prc1 morpholino into zygotes and 2-cell stage embryos. Depletion of PRC1 in zygotes impaired 4-cell, morula and blastocyst formation. Loss of PRC1 in single or double blastomeres in 2-cell stage embryos significantly impaired cell division, indicating its indispensable role in early embryo development. Co-immunoprecipitation showed that PRC1 interacts with polo-like kinase 1 (PLK1), and functional knockdown and rescue experiments demonstrated that PRC1 recruits PLK1 to the spindle midzone to regulate cytoplasmic division during meiosis. Finally, kinesin family member 4 knockdown downregulates PRC1 expression and leads to PRC1 localization failure. Taken together, our data suggest PRC1 plays an important role during oocyte maturation and early embryonic development by regulating chromosome dynamics and cytoplasmic division.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Dong-Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China.,Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, Sichuan Province, China
| | - Xiang-Wei Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
45
|
Huang R, Liu J, Li H, Zheng L, Jin H, Zhang Y, Ma W, Su J, Wang M, Yang K. Identification of Hub Genes and Their Correlation With Immune Infiltration Cells in Hepatocellular Carcinoma Based on GEO and TCGA Databases. Front Genet 2021; 12:647353. [PMID: 33995482 PMCID: PMC8120231 DOI: 10.3389/fgene.2021.647353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with extremely high mortality in worldwide. HCC is hard to diagnose and has a poor prognosis due to the less understanding of the molecular pathological mechanisms and the regulation mechanism on immune cell infiltration during hepatocarcinogenesis. Herein, by performing multiple bioinformatics analysis methods, including the RobustRankAggreg (RRA) rank analysis, weighted gene co-expression network analysis (WGCNA), and a devolution algorithm (CIBERSORT), we first identified 14 hub genes (NDC80, DLGAP5, BUB1B, KIF20A, KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM, FOXM1, TPX2, UBE2C, and PRC1) in HCC, whose expression levels were significantly up-regulated and negatively correlated with overall survival time. Moreover, we found that the expression of these hub genes was significantly positively correlated with immune infiltration cells, including regulatory T cells (Treg), T follicular helper (TFH) cells, macrophages M0, but negatively correlated with immune infiltration cells including monocytes. Among these hub genes, KIF2C and UBE2C showed the most significant correlation and were associated with immune cell infiltration in HCC, which was speculated as the potential prognostic biomarker for guiding immunotherapy.
Collapse
Affiliation(s)
- Rui Huang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Jinying Liu
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Hui Li
- Lanzhou Maternity and Child Health Care Hospital, Lanzhou, China
| | - Lierui Zheng
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Haojun Jin
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Yaqing Zhang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Wei Ma
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Kun Yang
- Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
46
|
Chen Y, Jin L, Jiang Z, Liu S, Feng W. Identifying and Validating Potential Biomarkers of Early Stage Lung Adenocarcinoma Diagnosis and Prognosis. Front Oncol 2021; 11:644426. [PMID: 33937050 PMCID: PMC8085413 DOI: 10.3389/fonc.2021.644426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. At present, most patients with LUAD are diagnosed at an advanced stage, and the prognosis of advanced LUAD is poor. Hence, we aimed to identify novel biomarkers for the diagnosis and treatment of early stage LUAD and to explore their predictive value. Methods The microarray datasets GSE63459, GSE27262, and GSE33532 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. The DEGs were subjected to gene ontology (GO) and pathway enrichment analyses using METASCAPE. A protein–protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was performed using MCODE. Overall survival (OS) analysis and analysis of the mRNA expression levels of genes identified by MCODE were performed with UALCAN. Western blot analysis of hub genes in LUAD patients, MTS assays, and clonogenic assays were performed to test the effects of the hub genes on cell proliferation in vitro. Results A total of 341 DEGs were obtained, which were mainly enriched in terms related to blood vessel development, growth factor binding, and extracellular matrix organization. A PPI network consisting of 300 nodes and 1140 edges was constructed, and a significant module including 15 genes was identified. Elevated expression of ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T was associated with poor OS in LUAD patients. In the protein level, the hub gene was overexpressed in LUAD patients. In vitro experiments showed that knockdown of the hub genes in the LUAD cell lines could promote cell proliferation. Conclusions DEGs are potential biomarkers for early stage lung adenocarcinoma and could have utility for the diagnosis and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
47
|
Sofroni K, Takatsuka H, Yang C, Dissmeyer N, Komaki S, Hamamura Y, Böttger L, Umeda M, Schnittger A. CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. J Cell Biol 2021; 219:151917. [PMID: 32609301 PMCID: PMC7401817 DOI: 10.1083/jcb.201907016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Precise control of cytoskeleton dynamics and its tight coordination with chromosomal events are key to cell division. This is exemplified by formation of the spindle and execution of cytokinesis after nuclear division. Here, we reveal that the central cell cycle regulator CYCLIN DEPENDENT KINASE A;1 (CDKA;1), the Arabidopsis homologue of Cdk1 and Cdk2, partially in conjunction with CYCLIN B3;1 (CYCB3;1), is a key regulator of the microtubule cytoskeleton in meiosis. For full CDKA;1 activity, the function of three redundantly acting CDK-activating kinases (CAKs), CDKD;1, CDKD;2, and CDKD;3, is necessary. Progressive loss of these genes in combination with a weak loss-of-function mutant in CDKA;1 allowed a fine-grained dissection of the requirement of cell-cycle kinase activity for meiosis. Notably, a moderate reduction of CDKA;1 activity converts the simultaneous cytokinesis in Arabidopsis, i.e., one cytokinesis separating all four meiotic products concurrently into two successive cytokineses with cell wall formation after the first and second meiotic division, as found in many monocotyledonous species.
Collapse
Affiliation(s)
- Kostika Sofroni
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Hirotomo Takatsuka
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Chao Yang
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology, University of Osnabrück, Osnabrück, Germany
| | - Shinichiro Komaki
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Yuki Hamamura
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Lev Böttger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Masaaki Umeda
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Arp Schnittger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| |
Collapse
|
48
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
49
|
Morii M, Kubota S, Hasegawa C, Takeda Y, Kometani S, Enomoto K, Suzuki T, Yanase S, Sato R, Akatsu A, Hirata K, Honda T, Kuga T, Tomonaga T, Nakayama Y, Yamaguchi N, Yamaguchi N. Src-mediated tyrosine phosphorylation of PRC1 and kinastrin/SKAP on the mitotic spindle. Sci Rep 2021; 11:2616. [PMID: 33510346 PMCID: PMC7844303 DOI: 10.1038/s41598-021-82189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis. Centrosomal Fyn increased in the G2 phase in a microtubule polymerization-dependent manner. A mass spectrometry analysis using mitotic spindle preparations was performed to identify tyrosine-phosphorylated substrates. Protein regulator of cytokinesis 1 (PRC1) and kinastrin/small kinetochore-associated protein (kinastrin/SKAP) were identified as SFK substrates. SFKs mainly phosphorylated PRC1 at Tyr-464 and kinastrin at Tyr-87. Although wild-type PRC1 is associated with microtubules, phosphomimetic PRC1 impaired the ability to bind microtubules. Phosphomimetic kinastrin at Tyr-87 also impaired binding with microtubules. Collectively, these results suggest that tyrosine phosphorylation of PRC1 and kinastrin plays a role in their delocalization from microtubules during mitosis.
Collapse
Affiliation(s)
- Mariko Morii
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Sho Kubota
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Chizu Hasegawa
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Yumi Takeda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Shiori Kometani
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Kyoko Enomoto
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Takayuki Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Sayuri Yanase
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Rika Sato
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Aki Akatsu
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Kensuke Hirata
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
50
|
Jagrić M, Risteski P, Martinčić J, Milas A, Tolić IM. Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces. eLife 2021; 10:61170. [PMID: 33480356 PMCID: PMC7924949 DOI: 10.7554/elife.61170] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here, we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promote chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers. Before cells divide to create copies of themselves, they need to duplicate their genetic material. To help split their DNA evenly, they build a machine called the mitotic spindle. The mitotic spindle is made of fine, tube-like structures called microtubules, which catch the chromosomes containing the genetic information and line them up at the center of the spindle. Microtubules push and pull the chromosomes by elongating or shortening their tips. But it remains unclear how the microtubules know when the chromosomes have reached center point. One way to find out is to remove proteins that accumulate in the middle of the spindle during division, such as the protein PRC1, which helps to assemble a subset of microtubules called bridging fibers, and the proteins Kif4A and Kif18A, which work like molecular rulers, shortening long microtubules. Usually, scientists would delete one of these proteins to see what impact this has. However, these experiments take days, giving the cell enough time to adapt and thus making it difficult to study the role of each of the proteins. Here, Jagrić, Risteski, Martinčić et al. used light to manipulate proteins at the exact moment of chromosome alignment and to move PRC1 from the spindle to the cell membrane. Consequently, Kif4A and Kif18A were removed from the spindle center. This caused the bridging fibers, which overlap with the microtubules that connect to the chromosomes, to become thinner. Jagrić et al. discovered that without the molecular ruler proteins, the bridging fibers were also too long. This increased the overlap between the microtubules in the center of the spindle, causing the chromosomes to migrate away from the center. This suggests that the alignment of chromosomes in the middle of the spindle depends on the bridging microtubules, which need to be of a certain length to effectively move and keep the chromosomes at the center. Thus, forces that move the chromosomes are generated both at the tips of the microtubules and along the wall of microtubules. These results might inspire other researchers to reassess the role of bridging fibers in cell division. The optogenetic technique described here could also help to determine the parts other proteins have to play. Ultimately, this might allow researchers to identify all the proteins needed to align the chromosomes.
Collapse
Affiliation(s)
- Mihaela Jagrić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Martinčić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|