1
|
Shu ST, Chen L, Gonzalez-Areizaga G, Smithgall TE. Constitutive activation of the Src-family kinases Fgr and Hck enhances the tumor burden of acute myeloid leukemia cells in immunocompromised mice. Sci Rep 2025; 15:174. [PMID: 39747387 PMCID: PMC11697302 DOI: 10.1038/s41598-024-83740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr. To induce constitutive kinase activity, Hck and Fgr were fused to the coiled-coil (CC) oligomerization domain of the breakpoint cluster region protein associated with the Bcr-Abl tyrosine kinase in chronic myeloid leukemia. Expression of CC-Hck or CC-Fgr transformed TF-1 cells to a granulocyte-macrophage colony-stimulating factor (GM-CSF)-independent phenotype that correlated with enhanced phosphorylation of the kinase domain activation loop. Both CC-Hck and CC-Fgr cell populations became sensitized to growth arrest by Src-family kinase inhibitors previously shown to suppress the growth of bone marrow cells from AML patients in vitro and decrease AML cell engraftment in immunocompromised mice. Methionine substitution of the 'gatekeeper' residue (Thr338) also stimulated Hck and Fgr kinase activity and transformed TF-1 cells to GM-CSF independence without CC fusion. TF-1 cells expressing either active form of Hck or Fgr engrafted immunocompromised mice faster and developed more extensive tumors compared to mice engrafted with the parent cell line, resulting in shorter survival. Expression of wild-type Hck also significantly enhanced bone marrow engraftment without an activating mutation. Reverse phase protein array analysis linked active Hck and Fgr to the mammalian target of rapamycin complex-1/p70 S6 ribosomal protein (mTORC-1/S6) kinase and focal adhesion kinase (Fak) signaling pathways. Combining Hck and Fgr inhibitors with existing mTORC-1/S6 kinase or Fak inhibitors may improve clinical responses and reduce the potential for acquired resistance.
Collapse
Affiliation(s)
- Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Giancarlo Gonzalez-Areizaga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
2
|
Selzer AM, Gerlach G, Gonzalez-Areizaga G, Wales TE, Cui SY, Iyer P, Engen JR, Camacho C, Ishima R, Smithgall TE. An SH3-binding allosteric modulator stabilizes the global conformation of the AML-associated Src-family kinase, Hck. J Biol Chem 2025; 301:108088. [PMID: 39675702 PMCID: PMC11786751 DOI: 10.1016/j.jbc.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
While ATP-site inhibitors for protein-tyrosine kinases are often effective drugs, their clinical utility can be limited by off-target activity and acquired resistance mutations due to the conserved nature of the ATP-binding site. However, combining ATP-site and allosteric kinase inhibitors can overcome these shortcomings in a double-drugging framework. Here we explored the allosteric effects of two pyrimidine diamines, PDA1 and PDA2, on the conformational dynamics and activity of the Src-family tyrosine kinase Hck, a promising drug target for acute myeloid leukemia. Using 1H-15N HSQC NMR, we mapped the binding site for both analogs to the SH3 domain. Despite the shared binding site, PDA1 and PDA2 had opposing effects on near-full-length Hck dynamics by hydrogen-deuterium exchange mass spectrometry, with PDA1 stabilizing and PDA2 disrupting the overall kinase conformation. Kinase activity assays were consistent with these observations, with PDA2 enhancing kinase activity while PDA1 was without effect. Molecular dynamics simulations predicted selective bridging of the kinase domain N-lobe and SH3 domain by PDA1, a mechanism of allosteric stabilization supported by site-directed mutagenesis of N-lobe contact sites. Cellular thermal shift assays confirmed SH3 domain-dependent interaction of PDA1 with WT Hck in myeloid leukemia cells and with a kinase domain gatekeeper mutant (T338M). These results identify PDA1 as a starting point for Src-family kinase allosteric inhibitor development that may work in concert with ATP-site inhibitors to suppress the evolution of resistance.
Collapse
Affiliation(s)
- Ari M Selzer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gabriella Gerlach
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Giancarlo Gonzalez-Areizaga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Stephanie Y Cui
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Carlos Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Selzer AM, Alvarado JJ, Smithgall TE. Cocrystallization of the Src-Family Kinase Hck with the ATP-Site Inhibitor A-419259 Stabilizes an Extended Activation Loop Conformation. Biochemistry 2024; 63:2594-2601. [PMID: 39315638 PMCID: PMC11483750 DOI: 10.1021/acs.biochem.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src kinase family and is a promising drug target in myeloid leukemias. Here, we report the crystal structure of human Hck in complex with the pyrrolopyrimidine inhibitor A-419259, determined at a resolution of 1.8 Å. This structure reveals the complete Hck active site in the presence of A-419259, including the αC-helix, the DFG motif, and the activation loop. A-419259 binds at the ATP-site of Hck and induces an overall closed conformation of the kinase with the regulatory SH3 and SH2 domains bound intramolecularly to their respective internal ligands. A-419259 stabilizes the DFG-in/αC-helix-out conformation observed previously with Hck and the pyrazolopyrimidine inhibitor PP1 (PDB: 1QCF). However, the activation loop conformations are distinct, with PP1 inducing a folded loop structure with the tyrosine autophosphorylation site (Tyr416) pointing into the ATP binding site, while A-419259 stabilizes an extended loop conformation with Tyr416 facing out into the solvent. Autophosphorylation also induces activation loop extension and significantly reduces the Hck sensitivity to PP1 but not A-419259. In cancer cells where Hck is constitutively active, the extended autophosphorylation loop may render Hck more sensitive to inhibitors like A-419259 which prefer this kinase conformation. More generally, these results provide additional insight into targeted kinase inhibitor design and how conformational preferences of inhibitors may impact selectivity and potency.
Collapse
Affiliation(s)
- Ari M. Selzer
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| | - John J. Alvarado
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| | - Thomas E. Smithgall
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| |
Collapse
|
4
|
Orth T, Pyanova A, Lux S, Kaiser P, Reinheimer I, Nielsen DL, Khalid JA, Rognant S, Jepps TA, Matchkov VV, Schubert R. Vascular smooth muscle BK channels limit ouabain-induced vasocontraction: Dual role of the Na/K-ATPase as a hub for Src-kinase and the Na/Ca-exchanger. FASEB J 2024; 38:e70046. [PMID: 39259502 DOI: 10.1096/fj.202400628rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Large-conductance, calcium-activated potassium channels (BK channels) and the Na/K-ATPase are expressed universally in vascular smooth muscle. The Na/K-ATPase may act via changes in the intracellular Ca2+ concentration mediated by the Na/Ca exchanger (NCX) and via Src kinase. Both pathways are known to regulate BK channels. Whether BK channels functionally interact in vascular smooth muscle cells with the Na/K-ATPase remains to be elucidated. Thus, this study addressed the hypothesis that BK channels limit ouabain-induced vasocontraction. Rat mesenteric arteries were studied using isometric myography, FURA-2 fluorimetry and proximity ligation assay. The BK channel blocker iberiotoxin potentiated methoxamine-induced contractions. The cardiotonic steroid, ouabain (10-5 M), induced a contractile effect of IBTX at basal tension prior to methoxamine administration and enhanced the pro-contractile effect of IBTX on methoxamine-induced contractions. These facilitating effects of ouabain were prevented by the inhibition of either NCX or Src kinase. Furthermore, inhibition of NCX or Src kinase reduced the BK channel-mediated negative feedback regulation of arterial contraction. The effects of NCX and Src kinase inhibition were independent of each other. Co-localization of the Na/K-ATPase and the BK channel was evident. Our data suggest that BK channels limit ouabain-induced vasocontraction by a dual mechanism involving the NCX and Src kinase signaling. The data propose that the NCX and the Src kinase pathways, mediating the ouabain-induced activation of the BK channel, act in an independent manner.
Collapse
Affiliation(s)
- Tobias Orth
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anastasia Pyanova
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simon Lux
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kaiser
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Reinheimer
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Josef Ali Khalid
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rudolf Schubert
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
5
|
Zeng Q, He J, Chen X, Yuan Q, Yin L, Liang Y, Zu X, Shen Y. Recent advances in hematopoietic cell kinase in cancer progression: Mechanisms and inhibitors. Biomed Pharmacother 2024; 176:116932. [PMID: 38870631 DOI: 10.1016/j.biopha.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Hematopoietic cell kinase (Hck), a non-receptor tyrosine kinase belonging to the Src kinase family, is intricately linked to the pathogenesis of numerous human diseases, with a particularly pronounced association with cancer. Hck not only directly impacts the proliferation, migration, and apoptosis of cancer cells but also interacts with JAK/STAT, MEK/ERK, PI3K/AKT, CXCL12/CXCR4, and other pathways. Hck also influences the tumor microenvironment to facilitate the onset and progression of cancer. This paper delves into the functional role and regulatory mechanisms of Hck in various solid tumors. Additionally, it explores the implications of Hck in hematological malignancies. The review culminates with a summary of the current research status of Hck inhibitors, the majority of which are in the pre-clinical phase of investigation. Notably, these inhibitors are predominantly utilized in the therapeutic management of leukemia, with their combinatorial potential indicating promising avenues for future research. In conclusion, this review underscores the significance of the mechanism of Hck in solid tumors. This insight is crucial for comprehending the current research trends regarding Hck: targeted therapy against Hck shows great promise in both diagnosis and treatment of malignant tumors. Further investigation into the role of Hck in cancer, coupled with the development of specific inhibitors, has the potential to revolutionize approaches to cancer treatment.
Collapse
Affiliation(s)
- Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Shih YC, Chen HF, Wu CY, Ciou YR, Wang CW, Chuang HC, Tan TH. The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling. Nat Commun 2024; 15:532. [PMID: 38225265 PMCID: PMC10789758 DOI: 10.1038/s41467-024-44843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.
Collapse
Affiliation(s)
- Ying-Chun Shih
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Hsueh-Fen Chen
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Ying Wu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ru Ciou
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
7
|
Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Nat Commun 2023; 14:6548. [PMID: 37848415 PMCID: PMC10582172 DOI: 10.1038/s41467-023-41890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.
Collapse
Affiliation(s)
- Hipólito Nicolás Cuesta-Hernández
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Julia Contreras
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Pablo Soriano-Maldonado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jana Sánchez-Wandelmer
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Wayland Yeung
- Institute of Bioinformatics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Ana Martín-Hurtado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Inés G Muñoz
- Protein Crystallography Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Natarajan Kannan
- Institute of Bioinformatics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Marta Llimargas
- Institute of Molecular Biology of Barcelona (IMBB) CSIC, 08028, Barcelona, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, IIS Biocruces Bizkaia, Building Biocruces Bizkaia 1, 48903, Cruces, Bizkaia, Spain
| | - Iván Plaza-Menacho
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Gul M, Navid A, Fakhar M, Rashid S. SHP-1 tyrosine phosphatase binding to c-Src kinase phosphor-dependent conformations: A comparative structural framework. PLoS One 2023; 18:e0278448. [PMID: 36638102 PMCID: PMC9838854 DOI: 10.1371/journal.pone.0278448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/16/2022] [Indexed: 01/14/2023] Open
Abstract
SHP-1 is a cytosolic tyrosine phosphatase that is primarily expressed in hematopoietic cells. It acts as a negative regulator of numerous signaling pathways and controls multiple cellular functions involved in cancer pathogenesis. This study describes the binding preferences of SHP-1 (pY536) to c-Srcopen (pY416) and c-Srcclose (pY527) through in silico approaches. Molecular dynamics simulation analysis revealed more conformational changes in c-Srcclose upon binding to SHP-1, as compared to its active/open conformation that is stabilized by the cooperative binding of the C-SH2 domain and C-terminal tail of SHP-1 to c-Src SH2 and KD. In contrast, c-Srcclose and SHP-1 interaction is mediated by PTP domain-specific WPD-loop (WPDXGXP) and Q-loop (QTXXQYXF) binding to c-Srcclose C-terminal tail residues. The dynamic correlation analysis demonstrated a positive correlation for SHP-1 PTP with KD, SH3, and the C-terminal tail of c-Srcclose. In the case of the c-Srcopen-SHP-1 complex, SH3 and SH2 domains of c-Srcopen were correlated to C-SH2 and the C-terminal tail of SHP-1. Our findings reveal that SHP1-dependent c-Src activation through dephosphorylation relies on the conformational shift in the inhibitory C-terminal tail that may ease the recruitment of the N-SH2 domain to phosphotyrosine residue, resulting in the relieving of the PTP domain. Collectively, this study delineates the intermolecular interaction paradigm and underlying conformational readjustments in SHP-1 due to binding with the c-Src active and inactive state. This study will largely help in devising novel therapeutic strategies for targeting cancer development.
Collapse
Affiliation(s)
- Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Navid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Fakhar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
9
|
Levillayer L, Cassonnet P, Declercq M, Santos MD, Lebreton L, Danezi K, Demeret C, Sakuntabhai A, Jacob Y, Bureau JF. SKAP2 Modular Organization Differently Recognizes SRC Kinases Depending on Their Activation Status and Localization. Mol Cell Proteomics 2022; 22:100451. [PMID: 36423812 PMCID: PMC9792355 DOI: 10.1016/j.mcpro.2022.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.
Collapse
Affiliation(s)
- Laurine Levillayer
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Marion Declercq
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Mélanie Dos Santos
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Louis Lebreton
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Katerina Danezi
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France,For correspondence: Jean-François Bureau
| |
Collapse
|
10
|
Du S, Alvarado JJ, Wales TE, Moroco JA, Engen JR, Smithgall TE. ATP-site inhibitors induce unique conformations of the acute myeloid leukemia-associated Src-family kinase, Fgr. Structure 2022; 30:1508-1517.e3. [PMID: 36115344 PMCID: PMC9637690 DOI: 10.1016/j.str.2022.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
The Src-family kinase Fgr is expressed primarily in myeloid hematopoietic cells and contributes to myeloid leukemia. Here, we present X-ray crystal structures of Fgr bound to the ATP-site inhibitors A-419259 and TL02-59, which show promise as anti-leukemic agents. A-419259 induces a closed Fgr conformation, with the SH3 and SH2 domains engaging the SH2-kinase linker and C-terminal tail, respectively. In the Fgr:A-419259 complex, the activation loop of one monomer inserts into the active site of the other, providing a snapshot of trans-autophosphorylation. By contrast, TL02-59 binding induced SH2 domain displacement from the C-terminal tail and SH3 domain release from the linker. Solution studies using HDX MS were consistent with the crystal structures, with A-419259 reducing and TL02-59 enhancing solvent exposure of the SH3 domain. These structures demonstrate that allosteric connections between the kinase and regulatory domains of Src-family kinases are regulated by the ligand bound to the active site.
Collapse
Affiliation(s)
- Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jamie A Moroco
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
11
|
Aryal M, Lin D, Regan K, Du S, Shi H, Alvarado JJ, Ilina TV, Andreotti AH, Smithgall TE. The HIV-1 protein Nef activates the Tec family kinase Btk by stabilizing an intermolecular SH3-SH2 domain interaction. Sci Signal 2022; 15:eabn8359. [PMID: 36126115 PMCID: PMC9830684 DOI: 10.1126/scisignal.abn8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Nef protein produced by the viruses HIV-1 and SIV drives efficient viral replication partially by inducing constitutive activation of host cell tyrosine kinases, including members of the Src and Tec families. Here, we uncovered the mechanism by which both HIV-1 and SIV Nef enhanced the activity of the Tec family kinase Btk in vitro and in cells. A Nef mutant that could not bind to the SH3 domain of Src family kinases activated Btk to the same extent as did wild-type Nef, demonstrating that Nef activated Src and Tec family kinases by distinct mechanisms. The Btk SH3-SH2 region formed a homodimer requiring the CD loop in the SH2 domain, which was stabilized by the binding of Nef homodimers. Alanine substitution of Pro327 in the CD loop of the Btk SH2 domain destabilized SH3-SH2 dimers, abolished the interaction with Nef, and prevented activation by Nef in vitro. In cells, Nef stabilized and activated wild-type but not P327A Btk homodimers at the plasma membrane. These data reveal that the interaction with Nef stabilizes Btk dimers through the SH3-SH2 interface to promote kinase activity and show that the HIV-1 Nef protein evolved distinct mechanisms to activate Src and Tec family tyrosine kinases to enhance viral replication.
Collapse
Affiliation(s)
- Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - David Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Kiera Regan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15260 USA
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| |
Collapse
|
12
|
Shinobu A, Re S, Sugita Y. Practical Protocols for Efficient Sampling of Kinase-Inhibitor Binding Pathways Using Two-Dimensional Replica-Exchange Molecular Dynamics. Front Mol Biosci 2022; 9:878830. [PMID: 35573746 PMCID: PMC9099257 DOI: 10.3389/fmolb.2022.878830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular dynamics (MD) simulations are increasingly used to study various biological processes such as protein folding, conformational changes, and ligand binding. These processes generally involve slow dynamics that occur on the millisecond or longer timescale, which are difficult to simulate by conventional atomistic MD. Recently, we applied a two-dimensional (2D) replica-exchange MD (REMD) method, which combines the generalized replica exchange with solute tempering (gREST) with the replica-exchange umbrella sampling (REUS) in kinase-inhibitor binding simulations, and successfully observed multiple ligand binding/unbinding events. To efficiently apply the gREST/REUS method to other kinase-inhibitor systems, we establish modified, practical protocols with non-trivial simulation parameter tuning. The current gREST/REUS simulation protocols are tested for three kinase-inhibitor systems: c-Src kinase with PP1, c-Src kinase with Dasatinib, and c-Abl kinase with Imatinib. We optimized the definition of kinase-ligand distance as a collective variable (CV), the solute temperatures in gREST, and replica distributions and umbrella forces in the REUS simulations. Also, the initial structures of each replica in the 2D replica space were prepared carefully by pulling each ligand from and toward the protein binding sites for keeping stable kinase conformations. These optimizations were carried out individually in multiple short MD simulations. The current gREST/REUS simulation protocol ensures good random walks in 2D replica spaces, which are required for enhanced sampling of inhibitor dynamics around a target kinase.
Collapse
Affiliation(s)
- Ai Shinobu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Suyong Re
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki, Japan
| | - Yuji Sugita
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- RIKEN Center for Computational Science, Kobe, Japan
- *Correspondence: Yuji Sugita,
| |
Collapse
|
13
|
Li M, Xu Y, Guo J. Insights into the negative regulation of EGFR upon the binding of an allosteric inhibitor. Chem Biol Drug Des 2022; 99:650-661. [DOI: 10.1111/cbdd.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Miaomiao Li
- College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yan Xu
- College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Jingjing Guo
- College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
14
|
Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. J Mol Biol 2022; 434:167400. [PMID: 34902430 PMCID: PMC8752512 DOI: 10.1016/j.jmb.2021.167400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023]
Abstract
Arrestins regulate a wide range of signaling events, most notably when bound to active G protein-coupled receptors (GPCRs). Among the known effectors recruited by GPCR-bound arrestins are Src family kinases, which regulate cellular growth and proliferation. Here, we focus on arrestin-3 interactions with Fgr kinase, a member of the Src family. Previous reports demonstrated that Fgr exhibits high constitutive activity, but can be further activated by both arrestin-dependent and arrestin-independent pathways. We report that arrestin-3 modulates Fgr activity with a hallmark bell-shaped concentration-dependence, consistent with a role as a signaling scaffold. We further demonstrate using NMR spectroscopy that a polyproline motif within arrestin-3 interacts directly with the SH3 domain of Fgr. To provide a framework for this interaction, we determined the crystal structure of the Fgr SH3 domain at 1.9 Å resolution and developed a model for the GPCR-arrestin-3-Fgr complex that is supported by mutagenesis. This model suggests that Fgr interacts with arrestin-3 at multiple sites and is consistent with the locations of disease-associated Fgr mutations. Collectively, these studies provide a structural framework for arrestin-dependent activation of Fgr.
Collapse
Affiliation(s)
- Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Manuel A Castro
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | | | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - T M Iverson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA.
| |
Collapse
|
15
|
Yeung W, Kwon A, Taujale R, Bunn C, Venkat A, Kannan N. Evolution of functional diversity in the holozoan tyrosine kinome. Mol Biol Evol 2021; 38:5625-5639. [PMID: 34515793 PMCID: PMC8662651 DOI: 10.1093/molbev/msab272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of multicellularity is strongly correlated with the expansion of tyrosine kinases, a conserved family of signaling enzymes that regulates pathways essential for cell-to-cell communication. Although tyrosine kinases have been classified from several model organisms, a molecular-level understanding of tyrosine kinase evolution across all holozoans is currently lacking. Using a hierarchical sequence constraint-based classification of diverse holozoan tyrosine kinases, we construct a new phylogenetic tree that identifies two ancient clades of cytoplasmic and receptor tyrosine kinases separated by the presence of an extended insert segment in the kinase domain connecting the D and E-helices. Present in nearly all receptor tyrosine kinases, this fast-evolving insertion imparts diverse functionalities, such as post-translational modification sites and regulatory interactions. Eph and EGFR receptor tyrosine kinases are two exceptions which lack this insert, each forming an independent lineage characterized by unique functional features. We also identify common constraints shared across multiple tyrosine kinase families which warrant the designation of three new subgroups: Src module (SrcM), insulin receptor kinase-like (IRKL), and fibroblast, platelet-derived, vascular, and growth factor receptors (FPVR). Subgroup-specific constraints reflect shared autoinhibitory interactions involved in kinase conformational regulation. Conservation analyses describe how diverse tyrosine kinase signaling functions arose through the addition of family-specific motifs upon subgroup-specific features and coevolving protein domains. We propose the oldest tyrosine kinases, IRKL, SrcM, and Csk, originated from unicellular premetazoans and were coopted for complex multicellular functions. The increased frequency of oncogenic variants in more recent tyrosine kinases suggests that lineage-specific functionalities are selectively altered in human cancers.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Annie Kwon
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Claire Bunn
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Kondo Y, Paul JW, Subramaniam S, Kuriyan J. New insights into Raf regulation from structural analyses. Curr Opin Struct Biol 2021; 71:223-231. [PMID: 34454301 DOI: 10.1016/j.sbi.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023]
Abstract
BRAF is a highly regulated protein kinase that controls cell fate in animal cells. Recent structural analyses have revealed how active and inactive forms of BRAF bind to dimers of the scaffold protein 14-3-3. Inactive BRAF binds to 14-3-3 as a monomer and is held in an inactive conformation by interactions with ATP and the substrate kinase MEK, a striking example of enzyme inhibition by substrate binding. A change in the phosphorylation state of BRAF shifts the stoichiometry of the BRAF:14-3-3 complex from 1:2 to 2:2, resulting in stabilization of the active dimeric form of the kinase. These new findings uncover unexpected features of the regulatory mechanisms underlying Raf biology and help explain the paradoxical activation of Raf by small-molecule inhibitors.
Collapse
Affiliation(s)
- Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Joseph W Paul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA; Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Feng J, Zhang X, Shan C, Xia J, Zhang Z, Shi H, Leng K, Wu Y, Ji C, Zhong T. Src family kinases involved in the differentiation of human preadipocytes. Mol Cell Endocrinol 2021; 533:111323. [PMID: 34000351 DOI: 10.1016/j.mce.2021.111323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Obesity is characterized by the excess accumulation of white adipose tissue (WAT). Src family kinases (SFKs) are non-receptor tyrosine kinases consisting of eight members (SRC, FYN, YES1, HCK, LCK, LYN, FGR and BLK) that have been studied extensively in mammalian cells. Although individual members in murine cells provide some clues that are associated with the regulation of adipogenesis, the specific role of this family in adipocyte differentiation has rarely been assessed, especially in human adipocytes. METHODS Herein, we first explored the expression profiles of SFKs during human preadipocyte differentiation. Then, we used the pyrazolo-pyrimidinyl-amine compound PP1, a potent SFK inhibitor, to evaluate the function of SFKs during adipocyte differentiation. Furthermore, we adopted a loss-of-function strategy with siRNAs to determine the role of FGR in adipocyte differentiation. RESULTS Here, we found that SRC, FYN, YES1, LYN and FGR were expressed in human preadipocytes and induced after the initiation of differentiation. Furthermore, the SFK inhibitor PP1 suppressed adipocyte differentiation. We also found that PP1 significantly suppressed the SFK activity in preadipocytes and decreased the expression of adipogenic genes in early and late differentiation. Given that FGR exhibited the most expression enhancement in mature adipocytes, we focused on FGR and found that its knockdown reduced lipid accumulation and adipogenic gene expression. CONCLUSIONS Collectively, these findings suggest that SFKs, especially FGR, are involved in the differentiation of human preadipocytes. Our results lay a foundation for further understanding the role of SFKs in adipocyte differentiation and provide new clues for anti-obesity therapies.
Collapse
Affiliation(s)
- Jie Feng
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China; Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, China
| | - Xiaoxiao Zhang
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Chunjian Shan
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Jiaai Xia
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Zhenxing Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guang Zhou Road, Nanjing, Jiangsu 210029, China
| | - Hui Shi
- Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, China
| | - Kai Leng
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guang Zhou Road, Nanjing, Jiangsu 210029, China; Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yangyang Wu
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China.
| | - Tianying Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China.
| |
Collapse
|
18
|
Li X, Li X, Liu F, Li S, Shi D. Rational Multitargeted Drug Design Strategy from the Perspective of a Medicinal Chemist. J Med Chem 2021; 64:10581-10605. [PMID: 34313432 DOI: 10.1021/acs.jmedchem.1c00683] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of multitarget-directed ligands (MTDLs) has become a widely focused research topic, but rational design remains as an enormous challenge. This paper reviews and discusses the design strategy of incorporating the second activity into an existing single-active ligand. If the binding sites of both targets share similar endogenous substrates, MTDLs can be designed by merging two lead compounds with similar functional groups. If the binding sites are large or adjacent to the solution, two key pharmacophores can be fused directly. If the binding regions are small and deep inside the proteins, the linked-pharmacophore strategy might be the only way. The added pharmacophores of second targets should not affect the binding mode of the original ones. Moreover, the inhibitory activities of the two targets need to be adjusted to achieve an optimal ratio.
Collapse
Affiliation(s)
- Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
19
|
Li Y, Bao Y, Zheng H, Qin Y, Hua B. The nonreceptor protein tyrosine kinase Src participates in every step of cancer-induced bone pain. Biomed Pharmacother 2021; 141:111822. [PMID: 34147901 DOI: 10.1016/j.biopha.2021.111822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is a refractory form of pain that has a high incidence in advanced tumors. Src protein tyrosine kinase is mainly composed of six domains, with two states of automatic inhibition and activation. The modular domain allows Src to conveniently regulate by and communicate with a variety of proteins, directly or indirectly participate in each step of the CIBP process. Src is beneficial to the growth and proliferation of tumor cells, and it can promote the metastases of primary tumors to bone. In the microenvironment of bone metastasis, it mainly mediates bone resorption, activates related peripheral receptors to participate in the formation of pain signals, and may promote the generation of pathological sensory nerve fibers. In the process of pain signal transmission, it mainly mediates NMDAR and central glial cells to regulate pain signal intensity and central sensitization, but it is not limited to these two aspects. Both basic experimentation and clinical research have shown encouraging potential, providing new ideas and inspiration for the prevention and treatment of CIBP.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Zhao D, Yin Z, Soellner MB, Martin BR. Scribble sub-cellular localization modulates recruitment of YES1 to regulate YAP1 phosphorylation. Cell Chem Biol 2021; 28:1235-1241.e5. [PMID: 33730553 DOI: 10.1016/j.chembiol.2021.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
The multi-domain scaffolding protein Scribble (Scrib) regulates cell polarity and growth signaling at cell-cell junctions. In epithelial cancers, Scrib mislocalization and overexpression paradoxically transform Scrib from a basolateral tumor suppressor to a cytosolic driver of tumorigenicity. To address the function of Scrib (mis)localization, a Scrib-HaloTag fusion was genome engineered in polarized epithelial cells. Expression of the epithelial to mesenchymal transcription factor Snail displaced Scrib-HaloTag from cell junctions, mirroring the mislocalization observed in cancers. Interestingly, Snail expression promotes Yes-associated protein-1 (YAP1) nuclear localization independent of hippo pathway-regulated YAP-S127 phosphorylation. Furthermore, Scrib HaloPROTAC degradation attenuates YAP1-Y357 phosphorylation. Halo-ligand affinity purification mass spectrometry analysis identified the Src family kinase YES1 as a mislocalized Scrib interaction partner, preferentially recruiting the kinase active and open global conformation (αC helix in). Altogether, mislocalized Scrib enhances YAP1 phosphorylation by scaffolding active YES1.
Collapse
Affiliation(s)
- Dongyu Zhao
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew B Soellner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brent R Martin
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Scorpion Therapeutics, Inc., 888 Boylston Street, Suite 1111, Boston, MA 02199, USA.
| |
Collapse
|
21
|
Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biol 2021; 41:101934. [PMID: 33765616 PMCID: PMC8022254 DOI: 10.1016/j.redox.2021.101934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The Src Family Kinases (SFKs) are pivotal regulators of cellular signal transduction and highly sought-after targets in drug discovery. Their actions within cells are controlled by alterations in protein phosphorylation that switch the SFKs from autoinhibited to active states. The SFKs are also well recognized to contain redox-active cysteine residues where oxidation of certain residues directly contribute to kinase function. To more completely understand the factors that influence cysteine oxidation within the SFKs, a review is presented of the local structural environments surrounding SFK cysteine residues compared to their quantified oxidation in vivo from the Oximouse database. Generally, cysteine local structure and degree of redox sensitivity vary with respect to sequence conservation. Cysteine residues found in conserved positions are more mildly redox-active as they are found in hydrophobic environments and not fully exposed to solvent. Non-conserved redox-active cysteines are generally the most reactive with direct solvent access and/or in hydrophilic environments. Results from this analysis motivate future efforts to conduct comprehensive proteome-wide analysis of redox-sensitivity, conservation, and local structural environments of proteins containing reactive cysteine residues.
Collapse
|
22
|
Chakraborty MP, Bhattacharyya S, Roy S, Bhattacharya I, Das R, Mukherjee A. Selective targeting of the inactive state of hematopoietic cell kinase (Hck) with a stable curcumin derivative. J Biol Chem 2021; 296:100449. [PMID: 33617879 PMCID: PMC7946438 DOI: 10.1016/j.jbc.2021.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Hck, a Src family nonreceptor tyrosine kinase (SFK), has recently been established as an attractive pharmacological target to improve pulmonary function in COVID-19 patients. Hck inhibitors are also well known for their regulatory role in various malignancies and autoimmune diseases. Curcumin has been previously identified as an excellent DYRK-2 inhibitor, but curcumin's fate is tainted by its instability in the cellular environment. Besides, small molecules targeting the inactive states of a kinase are desirable to reduce promiscuity. Here, we show that functionalization of the 4-arylidene position of the fluorescent curcumin scaffold with an aryl nitrogen mustard provides a stable Hck inhibitor (Kd = 50 ± 10 nM). The mustard curcumin derivative preferentially interacts with the inactive conformation of Hck, similar to type-II kinase inhibitors that are less promiscuous. Moreover, the lead compound showed no inhibitory effect on three other kinases (DYRK2, Src, and Abl). We demonstrate that the cytotoxicity may be mediated via inhibition of the SFK signaling pathway in triple-negative breast cancer and murine macrophage cells. Our data suggest that curcumin is a modifiable fluorescent scaffold to develop selective kinase inhibitors by remodeling its target affinity and cellular stability.
Collapse
Affiliation(s)
- Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Sudipta Bhattacharyya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Souryadip Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India.
| | - Arindam Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India.
| |
Collapse
|
23
|
Ruan H, Kiselar J, Zhang W, Li S, Xiong R, Liu Y, Yang S, Lai L. Integrative structural modeling of a multidomain polo-like kinase. Phys Chem Chem Phys 2020; 22:27581-27589. [PMID: 33236741 DOI: 10.1039/d0cp05030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator and coordinator for mitotic signaling that contains two major functional units of a kinase domain (KD) and a polo-box domain (PBD). While individual domain structures of the KD and the PBD are known, how they interact and assemble into a functional complex remains an open question. The structural model from the KD-PBD-Map205PBM heterotrimeric crystal structure of zebrafish PLK1 represents a major step in understanding the KD and the PBD interactions. However, how these two domains interact when connected by a linker in the full length PLK1 needs further investigation. By integrating different sources of structural data from small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational sampling, here we report an overall architecture for PLK1 multidomain assembly between the KD and the PBD. Our model revealed that the KD uses its C-lobe to interact with the PBD via the site near the phosphopeptide binding site in its auto-inhibitory state in solution. Disruption of this auto-inhibition via site-directed mutagenesis at the KD-PBD interface increases its kinase activity, supporting the functional role of KD-PBD interactions predicted for regulating the PLK1 kinase function. Our results indicate that the full length human PLK1 takes dynamic structures with a variety of domain-domain interfaces in solution.
Collapse
Affiliation(s)
- Hao Ruan
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome. Int J Mol Sci 2020; 21:ijms21207637. [PMID: 33076458 PMCID: PMC7588962 DOI: 10.3390/ijms21207637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.
Collapse
|
25
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
26
|
Huang L, Wright M, Yang S, Blachowicz L, Makowski L, Roux B. Glycine substitution in SH3-SH2 connector of Hck tyrosine kinase causes population shift from assembled to disassembled state. Biochim Biophys Acta Gen Subj 2020; 1864:129604. [PMID: 32224253 PMCID: PMC7366498 DOI: 10.1016/j.bbagen.2020.129604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022]
Abstract
A combination of small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations based on a coarse grained model is used to examine the effect of glycine substitutions in the short connector between the SH3 and SH2 domains of Hck, a member of the Src-family kinases. It has been shown previously that the activity of cSrc kinase is upregulated by substitution of 3 residues by glycine in the SH3-SH2 connector. Here, analysis of SAXS data indicates that the population of Hck in the disassembled state increases from 25% in the wild type kinase to 76% in the glycine mutant. This is consistent with the results of free energy perturbation calculations showing that the mutation in the connector shifts the equilibrium from the assembled to the disassembled state. This study supports the notion that the SH3-SH2 connector helps to regulate the activity of tyrosine kinases by shifting the population of the active state of the multidomain protein independent of C-terminal phosphorylation.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Michelle Wright
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Lydia Blachowicz
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America; Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, United States of America.
| |
Collapse
|
27
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
28
|
Spassov DS, Ruiz-Saenz A, Piple A, Moasser MM. A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src. Cell Rep 2019; 25:449-463.e4. [PMID: 30304684 PMCID: PMC6226010 DOI: 10.1016/j.celrep.2018.09.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
The mode of regulation of Src kinases has been elucidated by crystallographic studies identifying conserved structured protein modules involved in an orderly set of intramolecular associations and ligand interactions. Despite these detailed insights, much of the complex behavior and diversity in the Src family remains unexplained. A key missing piece is the function of the unstructured N-terminal region. We report here the function of the N-terminal region in binding within a hydrophobic pocket in the kinase domain of a dimerization partner. Dimerization substantially enhances autophosphorylation and phosphorylation of selected substrates, and interfering with dimerization is disruptive to these functions. Dimerization and Y419 phosphorylation are codependent events creating a bistable switch. Given the versatility inherent in this intrinsically disordered region, its multisite phosphorylations, and its divergence within the family, the unique domain likely functions as a central signaling hub overseeing much of the activities and unique functions of Src family kinases. Spassov et al. report that Src exists in cells and functions as a dimer and that dimerization and autophosphorylation are codependent events. Through a comprehensive structure-function analysis, they show that the dimer is an asymmetric dimer held through the interaction of the myristoylated N-terminal unique domain of one partner with a hydrophobic pocket in the kinase domain of another.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Piple
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Dorman HR, Close D, Wingert BM, Camacho CJ, Johnston PA, Smithgall TE. Discovery of Non-peptide Small Molecule Allosteric Modulators of the Src-family Kinase, Hck. Front Chem 2019; 7:822. [PMID: 31850311 PMCID: PMC6893557 DOI: 10.3389/fchem.2019.00822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Abstract
The eight mammalian Src-family tyrosine kinases are dynamic, multi-domain structures, which adopt distinct “open” and “closed” conformations. In the closed conformation, the regulatory SH3 and SH2 domains pack against the back of the kinase domain, providing allosteric control of kinase activity. Small molecule ligands that engage the regulatory SH3-SH2 region have the potential to modulate Src-family kinase activity for therapeutic advantage. Here we describe an HTS-compatible fluorescence polarization assay to identify small molecules that interact with the unique-SH3-SH2-linker (U32L) region of Hck, a Src-family member expressed exclusively in cells of myeloid lineage. Hck has significant potential as a drug target in acute myeloid leukemia, an aggressive form of cancer with substantial unmet clinical need. The assay combines recombinant Hck U32L protein with a fluorescent probe peptide that binds to the SH3 domain in U32L, resulting in an increased FP signal. Library compounds that interact with the U32L protein and interfere with probe binding reduce the FP signal, scoring as hits. Automated 384-well high-throughput screening of 60,000 compounds yielded Z'-factor coefficients > 0.7 across nearly 200 assay plates, and identified a series of hit compounds with a shared pyrimidine diamine substructure. Surface plasmon resonance assays confirmed direct binding of hit compounds to the Hck U32L target protein as well as near-full-length Hck. Binding was not observed with the individual SH3 and SH2 domains, demonstrating that these compounds recognize a specific three-dimensional conformation of the regulatory regions. This conclusion is supported by computational docking studies, which predict ligand contacts with a pocket formed by the juxtaposition of the SH3 domain, the SH3-SH2 domain connector, and the SH2-kinase linker. Each of the four validated hits stimulated recombinant, near-full-length Hck activity in vitro, providing evidence for allosteric effects on the kinase domain. These results provide a path to discovery and development of chemical scaffolds to target the regulatory regions of Hck and other Src family kinases as a new approach to pharmacological kinase control.
Collapse
Affiliation(s)
- Heather R Dorman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David Close
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Bentley M Wingert
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Encounter complexes and hidden poses of kinase-inhibitor binding on the free-energy landscape. Proc Natl Acad Sci U S A 2019; 116:18404-18409. [PMID: 31451651 PMCID: PMC6744929 DOI: 10.1073/pnas.1904707116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern drug discovery increasingly focuses on the drug-target binding kinetics which depend on drug (un)binding pathways. The conventional molecular dynamics simulation can observe only a few binding events even using the fastest supercomputer. Here, we develop 2D gREST/REUS simulation with enhanced flexibility of the ligand and the protein binding site. Simulation (43 μs in total) applied to an inhibitor binding to c-Src kinase covers 100 binding and unbinding events. On the statistically converged free-energy landscapes, we succeed in predicting the X-ray binding structure, including water positions. Furthermore, we characterize hidden semibound poses and transient encounter complexes on the free-energy landscapes. Regulatory residues distant from the catalytic core are responsible for the initial inhibitor uptake and regulation of subsequent bindings, which was unresolved by experiments. Stabilizing/blocking of either the semibound poses or the encounter complexes can be an effective strategy to optimize drug-target residence time.
Collapse
|
31
|
SUMOylation of Csk Negatively Modulates its Tumor Suppressor Function. Neoplasia 2019; 21:676-688. [PMID: 31125786 PMCID: PMC6531875 DOI: 10.1016/j.neo.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022] Open
Abstract
Csk, a non-receptor tyrosine kinase, serves as an indispensable negative regulator of the Src family kinases (SFKs). However, little is known about regulation of Csk expression so far. SUMOylation, a reversible post-translational modification, has been shown to regulate many biological processes especially in tumor progression. Here we report that Csk is covalently modified by SUMO1 at lysine 53 (K53) both in vitro and in vivo. Treatment with hydrogen peroxide inhibited this modification to a certain extent, but PIAS3, identified as the main specific SUMO E3 ligase for Csk, could significantly enhance SUMO1-Csk level. In addition, phosphorylation at Ser364, the active site in Csk, had no effect on this modification. Ectopic expression of SUMO-defective mutant, Csk K53R, inhibited tumor cell growth more potentially than Csk wild-type. Consistent with the biological phenotype, the SUMO modification of Csk impaired its activity to interact with Cbp (Csk binding protein) leading to decreased c-Src phosphorylation at Y527. Our results suggest that SUMOylation of Csk mainly at lysine 53 negatively modulates its tumor suppressor function by reducing its binding with Cbp and consequently, inducing c-Src activation.
Collapse
|
32
|
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent Inhibition in Drug Discovery. ChemMedChem 2019; 14:889-906. [PMID: 30816012 DOI: 10.1002/cmdc.201900107] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Although covalent inhibitors have been used as therapeutics for more than a century, there has been general resistance in the pharmaceutical industry against their further development due to safety concerns. This inclination has recently been reverted after the development of a wide variety of covalent inhibitors to address human health conditions along with the US Food and Drug Administration (FDA) approval of several covalent therapeutics for use in humans. Along with this exciting resurrection of an old drug discovery concept, this review surveys enzymes that can be targeted by covalent inhibitors for the treatment of human diseases. We focus on protein kinases, RAS proteins, and a few other enzymes that have been studied extensively as targets for covalent inhibition, with the aim to address challenges in designing effective covalent drugs and to provide suggestions in the area that have yet to be explored.
Collapse
Affiliation(s)
- Avick Kumar Ghosh
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Indranil Samanta
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| |
Collapse
|
33
|
Shen K, Moroco JA, Patel RK, Shi H, Engen JR, Dorman HR, Smithgall TE. The Src family kinase Fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Sci Signal 2018; 11:11/553/eaat5916. [DOI: 10.1126/scisignal.aat5916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fgr is a member of the Src family of nonreceptor tyrosine kinases, which are overexpressed and constitutively active in many human cancers. Fgr expression is restricted to myeloid hematopoietic cells and is markedly increased in a subset of bone marrow samples from patients with acute myeloid leukemia (AML). Here, we investigated the oncogenic potential of Fgr using Rat-2 fibroblasts that do not express the kinase. Expression of either wild-type or regulatory tail-mutant constructs of Fgr promoted cellular transformation (inferred from colony formation in soft agar), which was accompanied by phosphorylation of the Fgr activation loop, suggesting that the kinase domain of Fgr functions independently of regulation by its noncatalytic SH3-SH2 region. Unlike other family members, recombinant Fgr was not activated by SH3-SH2 domain ligands. However, hydrogen-deuterium exchange mass spectrometry data suggested that the regulatory SH3 and SH2 domains packed against the back of the kinase domain in a Src-like manner. Sequence alignment showed that the activation loop of Fgr was distinct from that of all other Src family members, with proline rather than alanine at the +2 position relative to the activation loop tyrosine. Substitution of the activation loop of Fgr with the sequence from Src partially inhibited kinase activity and suppressed colony formation. Last, Fgr expression enhanced the sensitivity of human myeloid progenitor cells to the cytokine GM-CSF. Because its kinase domain is not sensitive to SH3-SH2–mediated control, simple overexpression of Fgr without mutation may contribute to oncogenic transformation in AML and other blood cancers.
Collapse
|
34
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
35
|
Naderi M, Govindaraj RG, Brylinski M. eModel-BDB: a database of comparative structure models of drug-target interactions from the Binding Database. Gigascience 2018; 7:5057873. [PMID: 30052959 PMCID: PMC6131211 DOI: 10.1093/gigascience/giy091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/16/2018] [Indexed: 01/14/2023] Open
Abstract
Background The structural information on proteins in their ligand-bound conformational state is invaluable for protein function studies and rational drug design. Compared to the number of available sequences, not only is the repertoire of the experimentally determined structures of holo-proteins limited, these structures do not always include pharmacologically relevant compounds at their binding sites. In addition, binding affinity databases provide vast quantities of information on interactions between drug-like molecules and their targets, however, often lacking structural data. On that account, there is a need for computational methods to complement existing repositories by constructing the atomic-level models of drug-protein assemblies that will not be determined experimentally in the near future. Results We created eModel-BDB, a database of 200,005 comparative models of drug-bound proteins based on 1,391,403 interaction data obtained from the Binding Database and the PDB library of 31 January 2017. Complex models in eModel-BDB were generated with a collection of the state-of-the-art techniques, including protein meta-threading, template-based structure modeling, refinement and binding site detection, and ligand similarity-based docking. In addition to a rigorous quality control maintained during dataset generation, a subset of weakly homologous models was selected for the retrospective validation against experimental structural data recently deposited to the Protein Data Bank. Validation results indicate that eModel-BDB contains models that are accurate not only at the global protein structure level but also with respect to the atomic details of bound ligands. Conclusions Freely available eModel-BDB can be used to support structure-based drug discovery and repositioning, drug target identification, and protein structure determination.
Collapse
Affiliation(s)
- Misagh Naderi
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA.,Center for Computation & Technology, Louisiana State University, 2054 Digital Media Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
36
|
Katsura K, Tomabechi Y, Matsuda T, Yonemochi M, Mikuni J, Ohsawa N, Terada T, Yokoyama S, Kukimoto-Niino M, Takemoto C, Shirouzu M. Phosphorylated and non-phosphorylated HCK kinase domains produced by cell-free protein expression. Protein Expr Purif 2018; 150:92-99. [PMID: 29793032 DOI: 10.1016/j.pep.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Since phosphorylation is involved in various physiological events, kinases and interacting factors can be potential targets for drug discovery. For the development and improvement of inhibitors from the point of view of mechanistic enzymology, a cell-free protein synthesis system would be advantageous, since it could prepare mutant proteins easily. However, especially in the case of protein kinase, product solubility remains one of the major challenges. To overcome this problem, we prepared a chaperone-supplemented extract from Escherichia coli BL21 cells harboring a plasmid encoding a set of chaperone genes, dnaK, dnaJ, and grpE. We explored cell-disruption procedures and constructed an efficient protein synthesis system. Employing this system, we produced the kinase domain of human hematopoietic cell kinase (HCK) to obtain further structural information about its molecular interaction with one of its inhibitors, previously developed by our group (RK-20449). Lower reaction temperature improved the solubility, and addition of a protein phosphatase (YpoH) facilitated the homogeneous production of the non-phosphorylated kinase domain. Crystals of the purified product were obtained and the kinase-inhibitor complex structure was solved at 1.7 Å resolution. In addition, results of kinase activity measurement, using a synthetic substrate, showed that the kinase activity was facilitated by autophosphorylation at Tyr416, as confirmed by the peptide mass mapping.
Collapse
Affiliation(s)
- Kazushige Katsura
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takayoshi Matsuda
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Junko Mikuni
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noboru Ohsawa
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takaho Terada
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mutsuko Kukimoto-Niino
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Takemoto
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Mikako Shirouzu
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
37
|
Bureau JF, Cassonnet P, Grange L, Dessapt J, Jones L, Demeret C, Sakuntabhai A, Jacob Y. The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Oncotarget 2018; 9:13102-13115. [PMID: 29568343 PMCID: PMC5862564 DOI: 10.18632/oncotarget.24424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
The SRC Kinase Adaptor Phosphoprotein 2 (SKAP2) is a broadly expressed adaptor associated with the control of actin-polymerization, cell migration, and oncogenesis. After activation of different receptors at the cell surface, this dimeric protein serves as a platform for assembling other adaptors such as FYB and some SRC family kinase members, although these mechanisms are still poorly understood. The goal of this study is to map the SKAP2 interactome and characterize which domains or binding motifs are involved in these interactions. This is a prerequisite to finely analyze how these pathways are integrated in the cell machinery and to study their role in cancer and other human diseases when this network of interactions is perturbed. In this work, the domain and the binding motif of fourteen proteins interacting with SKAP2 were precisely defined and a new interactor, FAM102A was discovered. Herein, a fine-tuning between the binding of SRC kinases and their activation was identified. This last process, which depends on SKAP2 dimerization, indirectly affects the binding of FYB protein. Analysis of conformational changes associated with activation/inhibition of SRC family members, presently limited to their effect on kinase activity, is extended to their interactive network, which paves the way for therapeutic development.
Collapse
Affiliation(s)
- Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Laura Grange
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Julien Dessapt
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Louis Jones
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Département Génome et Génétique, Institut Pasteur, Paris, France.,CNRS URA3012, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France.,UMR3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
38
|
Brylinski M, Naderi M, Govindaraj RG, Lemoine J. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs. J Mol Biol 2017; 430:2266-2273. [PMID: 29237557 DOI: 10.1016/j.jmb.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 01/29/2023]
Abstract
About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Jeffrey Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
39
|
Jukič M, Konc J, Gobec S, Janežič D. Identification of Conserved Water Sites in Protein Structures for Drug Design. J Chem Inf Model 2017; 57:3094-3103. [DOI: 10.1021/acs.jcim.7b00443] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marko Jukič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI−1000, Ljubljana, Slovenia
| | - Janez Konc
- National Institute of Chemistry, Hajdrihova 19, SI−1000, Ljubljana, Slovenia
- Faculty of
Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI−6000 Koper, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI−1000, Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of
Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI−6000 Koper, Slovenia
| |
Collapse
|
40
|
Pettinger J, Jones K, Cheeseman MD. Lysine-Targeting Covalent Inhibitors. Angew Chem Int Ed Engl 2017; 56:15200-15209. [PMID: 28853194 DOI: 10.1002/anie.201707630] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/23/2017] [Indexed: 12/11/2022]
Abstract
Targeted covalent inhibitors have gained widespread attention in drug discovery as a validated method to circumvent acquired resistance in oncology. This strategy exploits small-molecule/protein crystal structures to design tightly binding ligands with appropriately positioned electrophilic warheads. Whilst most focus has been on targeting binding-site cysteine residues, targeting nucleophilic lysine residues can also represent a viable approach to irreversible inhibition. However, owing to the basicity of the ϵ-amino group in lysine, this strategy generates a number of specific challenges. Herein, we review the key principles for inhibitor design, give historical examples, and present recent developments that demonstrate the potential of lysine targeting for future drug discovery.
Collapse
Affiliation(s)
- Jonathan Pettinger
- Cancer Research, UK, Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Keith Jones
- Cancer Research, UK, Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Matthew D Cheeseman
- Cancer Research, UK, Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| |
Collapse
|
41
|
Affiliation(s)
- Jonathan Pettinger
- Cancer Research, UK, Cancer Therapeutics Unit; The Institute of Cancer Research; London SW7 3RP Großbritannien
| | - Keith Jones
- Cancer Research, UK, Cancer Therapeutics Unit; The Institute of Cancer Research; London SW7 3RP Großbritannien
| | - Matthew D. Cheeseman
- Cancer Research, UK, Cancer Therapeutics Unit; The Institute of Cancer Research; London SW7 3RP Großbritannien
| |
Collapse
|
42
|
Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad SVUM. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur J Med Chem 2017; 143:1277-1300. [PMID: 29126724 DOI: 10.1016/j.ejmech.2017.10.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Dual-targeting/Multi-targeting of oncoproteins by a single drug molecule represents an efficient, logical and alternative approach to drug combinations. An increasing interest in this approach is indicated by a steady upsurge in the number of articles on targeting dual/multi proteins published in the last 5 years. Combining different inhibitors that destiny specific single target is the standard treatment for cancer. A new generation of dual or multi-targeting drugs is emerging, where a single chemical entity can act on multiple molecular targets. Dual/Multi-targeting agents are beneficial for solving limited efficiencies, poor safety and resistant profiles of an individual target. Designing dual/multi-target inhibitors with predefined biological profiles present a challenge. The latest advances in bioinformatic tools and the availability of detailed structural information of target proteins have shown a way of discovering multi-targeting molecules. This neoteric artifice that amalgamates the molecular docking of small molecules with protein-based common pharmacophore to design multi-targeting inhibitors is gaining great importance in anticancer drug discovery. Current review focus on the discoveries of dual targeting agents in cancer therapy using rational, computational, proteomic, bioinformatics and polypharmacological approach that enables the discovery and rational design of effective and safe multi-target anticancer agents.
Collapse
Affiliation(s)
- Nulgumnalli Manjunathaiah Raghavendra
- Center for Technological Development in Health, National Institute of Science and Technology on Innovation on Neglected Diseases, Fiocruz, Rio de Janeiro, Brazil.
| | - Divya Pingili
- Sri Venkateshwara College of Pharmacy, Osmania University, Hyderabad, India; Department of Pharmacy, Jawaharlal Nehru Technological University, Kakinada, India
| | - Sundeep Kadasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Osmania University, Hyderabad, India
| | - Akhila Mettu
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Hyderabad, India
| | - S V U M Prasad
- Department of Pharmacy, Jawaharlal Nehru Technological University, Kakinada, India
| |
Collapse
|
43
|
Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. FRONTIERS IN PLANT SCIENCE 2017; 8:852. [PMID: 28603531 PMCID: PMC5445127 DOI: 10.3389/fpls.2017.00852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 05/02/2023]
Abstract
Kinases are primary regulators of plant metabolism and excellent targets for plant breeding. However, most kinases, including the abundant receptor-like kinases (RLK), have no assigned role. SIRK1 is a leucine-rich repeat receptor-like kinase (LRR-RLK), the largest family of RLK. In Arabidopsis thaliana, SIRK1 (AtSIRK1) is phosphorylated after sucrose is resupplied to sucrose-starved seedlings and it modulates the sugar response by phosphorylating several substrates. In maize, the ZmSIRK1 expression is altered in response to drought stress. In neither Arabidopsis nor in maize has the function of SIRK1 been completely elucidated. As a first step toward the biochemical characterization of ZmSIRK1, we obtained its recombinant kinase domain, demonstrated that it binds AMP-PNP, a non-hydrolysable ATP-analog, and solved the structure of ZmSIRK1- AMP-PNP co-crystal. The ZmSIRK1 crystal structure revealed a unique conformation for the activation segment. In an attempt to find inhibitors for ZmSIRK1, we screened a focused small molecule library and identified six compounds that stabilized ZmSIRK1 against thermal melt. ITC analysis confirmed that three of these compounds bound to ZmSIRK1 with low micromolar affinity. Solving the 3D structure of ZmSIRK1-AMP-PNP co-crystal provided information on the molecular mechanism of ZmSIRK1 activity. Furthermore, the identification of small molecules that bind this kinase can serve as initial backbone for development of new potent and selective ZmSIRK1 antagonists.
Collapse
Affiliation(s)
- Bruno Aquino
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
| | - Rafael M. Couñago
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Natalia Verza
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Lucas M. Ferreira
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
| | - Katlin B. Massirer
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Opher Gileadi
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of OxfordOxford, United Kingdom
| | - Paulo Arruda
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
44
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
45
|
Poh AR, Love CG, Masson F, Preaudet A, Tsui C, Whitehead L, Monard S, Khakham Y, Burstroem L, Lessene G, Sieber O, Lowell C, Putoczki TL, O'Donoghue RJJ, Ernst M. Inhibition of Hematopoietic Cell Kinase Activity Suppresses Myeloid Cell-Mediated Colon Cancer Progression. Cancer Cell 2017; 31:563-575.e5. [PMID: 28399411 PMCID: PMC5479329 DOI: 10.1016/j.ccell.2017.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/08/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
Aberrant activation of the SRC family kinase hematopoietic cell kinase (HCK) triggers hematological malignancies as a tumor cell-intrinsic oncogene. Here we find that high HCK levels correlate with reduced survival of colorectal cancer patients. Likewise, increased Hck activity in mice promotes the growth of endogenous colonic malignancies and of human colorectal cancer cell xenografts. Furthermore, tumor-associated macrophages of the corresponding tumors show a pronounced alternatively activated endotype, which occurs independently of mature lymphocytes or of Stat6-dependent Th2 cytokine signaling. Accordingly, pharmacological inhibition or genetic reduction of Hck activity suppresses alternative activation of tumor-associated macrophages and the growth of colon cancer xenografts. Thus, Hck may serve as a promising therapeutic target for solid malignancies.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Christopher G Love
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Frederick Masson
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cary Tsui
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Simon Monard
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yelena Khakham
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lotta Burstroem
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Oliver Sieber
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Colorectal Surgery, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Clifford Lowell
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Tracy L Putoczki
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Robert J J O'Donoghue
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
46
|
Romano V, de Beer TAP, Schwede T. A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. BMC Res Notes 2017; 10:104. [PMID: 28219448 PMCID: PMC5319021 DOI: 10.1186/s13104-017-2428-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/15/2017] [Indexed: 11/11/2022] Open
Abstract
Background The determination of specific kinase substrates in vivo is challenging due to the large number of protein kinases in cells, their substrate specificity overlap, and the lack of highly specific inhibitors. In the late 90s, Shokat and coworkers developed a protein engineering-based method addressing the question of identification of substrates of protein kinases. The approach was based on the mutagenesis of the gatekeeper residue within the binding site of a protein kinase to change the co-substrate specificity from ATP to ATP analogues. One of the challenges in applying this method to other kinase systems is to identify the optimal combination of mutation in the enzyme and chemical derivative such that the ATP analogue acts as substrate for the engineered, but not the native kinase enzyme. In this study, we developed a computational protocol for estimating the effect of mutations at the gatekeeper position on the accessibility of ATP analogues within the binding site of engineered kinases. Results We tested the protocol on a dataset of tyrosine and serine/threonine protein kinases from the scientific literature where Shokat’s method was applied and experimental data were available. Our protocol correctly identified gatekeeper residues as the positions to mutate within the binding site of the studied kinase enzymes. Furthermore, the approach well reproduced the experimental data available in literature. Conclusions We have presented a computational protocol that scores how different mutations at the gatekeeper position influence the accommodation of various ATP analogues within the binding site of protein kinases. We have assessed our approach on protein kinases from the scientific literature and have verified the ability of the approach to well reproduce the available experimental data and identify suitable combinations of engineered kinases and ATP analogues.
Collapse
Affiliation(s)
- Valentina Romano
- Biozentrum, University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Tjaart A P de Beer
- Biozentrum, University of Basel, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
47
|
Src tyrosine kinases contribute to serotonin-mediated contraction by regulating calcium-dependent pathways in rat skeletal muscle arteries. Pflugers Arch 2017; 469:767-777. [DOI: 10.1007/s00424-017-1949-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
48
|
Gil VA, Lecina D, Grebner C, Guallar V. Enhancing backbone sampling in Monte Carlo simulations using internal coordinates normal mode analysis. Bioorg Med Chem 2016; 24:4855-4866. [PMID: 27436808 DOI: 10.1016/j.bmc.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Normal mode methods are becoming a popular alternative to sample the conformational landscape of proteins. In this study, we describe the implementation of an internal coordinate normal mode analysis method and its application in exploring protein flexibility by using the Monte Carlo method PELE. This new method alternates two different stages, a perturbation of the backbone through the application of torsional normal modes, and a resampling of the side chains. We have evaluated the new approach using two test systems, ubiquitin and c-Src kinase, and the differences to the original ANM method are assessed by comparing both results to reference molecular dynamics simulations. The results suggest that the sampled phase space in the internal coordinate approach is closer to the molecular dynamics phase space than the one coming from a Cartesian coordinate anisotropic network model. In addition, the new method shows a great speedup (∼5-7×), making it a good candidate for future normal mode implementations in Monte Carlo methods.
Collapse
Affiliation(s)
- Victor A Gil
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Daniel Lecina
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Christoph Grebner
- Department of Medicinal Chemistry, CVMD iMed, AstraZeneca, S-43183 Mölndal, Sweden
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain.
| |
Collapse
|
49
|
Sawaya MR, Verma M, Balendiran V, Rath NP, Cascio D, Balendiran GK. Characterization of WY 14,643 and its Complex with Aldose Reductase. Sci Rep 2016; 6:34394. [PMID: 27721416 PMCID: PMC5056380 DOI: 10.1038/srep34394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/08/2016] [Indexed: 12/03/2022] Open
Abstract
The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.
Collapse
Affiliation(s)
- Michael R. Sawaya
- UCLA-DOE, 611 Charles E. Young Drive East, 220 Boyer Hall, Los Angeles, CA 90095, USA
| | - Malkhey Verma
- Manchester Interdisciplinary Biocentre, 131 Princess Street, The University of Manchester, Manchester, M1 7DN, UK
| | - Vaishnavi Balendiran
- Department of Chemistry, WBSH 6017, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Duilio Cascio
- UCLA-DOE, 611 Charles E. Young Drive East, 220 Boyer Hall, Los Angeles, CA 90095, USA
| | - Ganesaratnam K. Balendiran
- Department of Chemistry, WBSH 6017, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| |
Collapse
|
50
|
Fraser C, Dawson JC, Dowling R, Houston DR, Weiss JT, Munro AF, Muir M, Harrington L, Webster SP, Frame MC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase. J Med Chem 2016; 59:4697-710. [PMID: 27115835 PMCID: PMC4885109 DOI: 10.1021/acs.jmedchem.6b00065] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Novel
pyrazolopyrimidines displaying high potency and selectivity
toward SRC family kinases have been developed by combining ligand-based
design and phenotypic screening in an iterative manner. Compounds
were derived from the promiscuous kinase inhibitor PP1 to search for
analogs that could potentially target a broad spectrum of kinases
involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma
cells generated target-agnostic structure–activity relationships
that biased subsequent designs toward breast cancer treatment rather
than to a particular target. This strategy led to the discovery of
two potent antiproliferative leads with phenotypically distinct anticancer
mode of actions. Kinase profiling and further optimization resulted
in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration
to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal
DMPK profile and oral bioavailability, halts SRC-associated neuromast
migration in zebrafish embryos without inducing life-threatening heart
defects, and inhibits SRC phosphorylation in tumor xenografts in mice.
Collapse
Affiliation(s)
| | | | | | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | | | | | | - Lea Harrington
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique , Montreal, Quebec H3T 1J4, Canada
| | - Scott P Webster
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|