1
|
Kawahara K, Oki H, Iimori M, Muramoto R, Imai T, Gerle C, Shigematsu H, Matsuda S, Iida T, Nakamura S. High-resolution cryo-EM analysis visualizes hydrated type I and IV pilus structures from enterotoxigenic Escherichia coli. Structure 2025:S0969-2126(25)00107-8. [PMID: 40220752 DOI: 10.1016/j.str.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Pathogenic bacteria utilize a variety of pilus filaments to colonize intestinal epithelia, including those synthesized by the chaperone-usher or type IV pilus assembly pathway. Despite the importance of these filaments as potential drug and vaccine targets, their large size and dynamic nature make high-resolution structure determination challenging. Here, we used cryo-electron microscopy (cryo-EM) and whole-genome sequencing to determine the structures of type I and IV pili expressed in enterotoxigenic Escherichia coli. Well-defined cryo-EM maps at resolutions of 2.2 and 1.8 Å for type I and IV pilus, respectively, facilitated the de novo structural modeling for these filaments, revealing side-chain structures in detail. We resolved thousands of hydrated water molecules around and within the inner core of the filaments, which stabilize the otherwise metastable quaternary subunit assembly. The high-resolution structures offer novel insights into subunit-subunit interactions, and provide important clues to understand pilus assembly, stability, and flexibility.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuki Muramoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Shigeaki Matsuda
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Christman ND, Dalia AB. The molecular basis for DNA-binding by competence T4P is distinct in a representative Gram-positive and Gram-negative species. PLoS Pathog 2025; 21:e1013128. [PMID: 40258067 PMCID: PMC12040237 DOI: 10.1371/journal.ppat.1013128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/29/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025] Open
Abstract
Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during horizontal gene transfer by natural transformation. These dynamic structures actively extend from the cell surface, bind to DNA in the environment, and then retract to import bound DNA into the cell. Competence T4P are found in diverse Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA-binding by diderm competence T4P has been the recent focus of intensive study, relatively little is known about DNA-binding by monoderm competence T4P. Here, we use Streptococcus pneumoniae as a model system to address this question. Competence T4P likely bind to DNA via a tip-associated complex of proteins called minor pilins, and recent work highlights a high degree of structural conservation between the minor pilin tip complexes of monoderm and diderm competence T4P. In diderms, positively charged residues in one minor pilin, FimT, are critical for DNA-binding. We show that while these residues are conserved in ComGD, the FimT homolog of monoderms, they only play a minor role in DNA uptake for natural transformation. Instead, we find that two-positively charged residues in the neighboring minor pilin, ComGF (the PilW homolog of monoderms), play the dominant role in DNA uptake for natural transformation. Furthermore, we find that these residues are conserved in other monoderms, but not diderms. Together, these results suggest that the molecular basis for DNA-binding has either diverged or evolved independently in monoderm and diderm competence T4P.
Collapse
Affiliation(s)
- Nicholas D. Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
3
|
Christman ND, Dalia AB. The molecular basis for DNA-binding by competence T4P is distinct in Gram-positive and Gram-negative species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638644. [PMID: 40027803 PMCID: PMC11870608 DOI: 10.1101/2025.02.17.638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during horizontal gene transfer by natural transformation. These dynamic structures actively extend from the cell surface, bind to DNA in the environment, and then retract to import bound DNA into the cell. Competence T4P are found in diverse Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA-binding by diderm competence T4P has been the recent focus of intensive study, relatively little is known about DNA-binding by monoderm competence T4P. Here, we use Streptococcus pneumoniae as a model system to address this question. Competence T4P likely bind to DNA via a tip-associated complex of proteins called minor pilins, and recent work highlights a high degree of structural conservation between the minor pilin tip complexes of monoderm and diderm competence T4P. In diderms, positively charged residues in one minor pilin, FimT, are critical for DNA-binding. We show that while these residues are conserved in ComGD, the FimT homolog of monoderms, they only play a minor role in DNA uptake for natural transformation. Instead, we find that two-positively charged residues in the neighboring minor pilin, ComGF (the PilW homolog of monoderms), play the dominant role in DNA uptake for natural transformation. Furthermore, we find that these residues are conserved in other monoderms, but not diderms. Together, these results suggest that the molecular basis for DNA-binding has either diverged or evolved independently in monoderm and diderm competence T4P. AUTHOR SUMMARY Diverse bacteria use extracellular structures called competence type IV pili (T4P) to take up DNA from their environment. The uptake of DNA by T4P is the first step of natural transformation, a mode of horizontal gene transfer that contributes to the spread of antibiotic resistance and virulence traits in diverse clinically relevant Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA binding by competence T4P in diderms has been an area of recent study, relatively little is known about how monoderm competence T4P bind DNA. Here, we explore how monoderm competence T4P bind DNA using Streptococcus pneumoniae as a model system. Our results indicate that while monoderm T4P and diderm T4P likely have conserved structural features, the DNA-binding mechanism of each system is distinct.
Collapse
|
4
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
5
|
Ochner H, Böhning J, Wang Z, Tarafder AK, Caspy I, Bharat TAM. Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus. PLoS Pathog 2024; 20:e1012773. [PMID: 39666767 DOI: 10.1371/journal.ppat.1012773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.2 Å-resolution structure of the P. aeruginosa PAO1 T4P determined by electron cryomicroscopy (cryo-EM). PilA subunits constituting the T4P exhibit a classical pilin fold featuring an extended N-terminal α-helix linked to a C-terminal globular β-sheet-containing domain, which are packed tightly along the pilus, in line with models derived from previous cryo-EM data of the P. aeruginosa PAK strain. The N-terminal helices constitute the pilus core where they stabilise the tubular assembly via hydrophobic interactions. The α-helical core of the pilus is surrounded by the C-terminal globular domain of PilA that coats the outer surface of the pilus, mediating interactions with the surrounding environment. Comparison of the P. aeruginosa PAO1 T4P with T4P structures from other organisms, both at the level of the pilin subunits and the fully assembled pili, confirms previously described common architectural principles whilst highlighting key differences between members of this abundant class of prokaryotic filaments. This study provides a structural framework for understanding the molecular and cell biology of these important cellular appendages mediating interaction of prokaryotes to surfaces.
Collapse
Affiliation(s)
- Hannah Ochner
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Abul K Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
6
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Ronish LA, Biswas B, Bauer RM, Jacob ME, Piepenbrink KH. The role of extracellular structures in Clostridioides difficile biofilm formation. Anaerobe 2024; 88:102873. [PMID: 38844261 DOI: 10.1016/j.anaerobe.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert M Bauer
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mallory E Jacob
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
8
|
Singh B, Jaiswal S, Kodgire P. Outer membrane proteins and vesicles as promising vaccine candidates against Vibrio spp. infections. Crit Rev Microbiol 2024; 50:417-433. [PMID: 37272649 DOI: 10.1080/1040841x.2023.2212072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
Indiscriminate use of antibiotics to treat bacterial infections has brought unmanageable antibiotic-resistant strains into existence. Vibrio spp. represents one such gram-negative enteric pathogenic group with more than 100 species, infecting humans and fish. The Vibrio spp. is demarcated into two groups, one that causes cholera and the other producing non-cholera or vibriosis infections. People who encounter contaminated water are at risk, but young children and pregnant women are the most vulnerable. Though controllable, Vibrio infection still necessitates the development of preventative measures, such as vaccinations, that can lessen the severity of the infection and reduce reliance on antibiotic use. With emerging multi-drug resistant strains, efforts are needed to develop newer vaccines, such as subunit-based or outer membrane vesicle-based. Thus, this review strives to bring together available information about Vibrio spp. outer membrane proteins and vesicles, encompassing their structure, function, and immunoprotective role.
Collapse
Affiliation(s)
- Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
9
|
Wang Y, Theodore M, Xing Z, Narsaria U, Yu Z, Zeng L, Zhang J. Structural mechanisms of Tad pilus assembly and its interaction with an RNA virus. SCIENCE ADVANCES 2024; 10:eadl4450. [PMID: 38701202 PMCID: PMC11067988 DOI: 10.1126/sciadv.adl4450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Caulobacter crescentus Tad (tight adherence) pili, part of the type IV pili family, are crucial for mechanosensing, surface adherence, bacteriophage (phage) adsorption, and cell-cycle regulation. Unlike other type IV pilins, Tad pilins lack the typical globular β sheet domain responsible for pilus assembly and phage binding. The mechanisms of Tad pilus assembly and its interaction with phage ΦCb5 have been elusive. Using cryo-electron microscopy, we unveiled the Tad pilus assembly mechanism, featuring a unique network of hydrogen bonds at its core. We then identified the Tad pilus binding to the ΦCb5 maturation protein (Mat) through its β region. Notably, the amino terminus of ΦCb5 Mat is exposed outside the capsid and phage/pilus interface, enabling the attachment of fluorescent and affinity tags. These engineered ΦCb5 virions can be efficiently assembled and purified in Escherichia coli, maintaining infectivity against C. crescentus, which presents promising applications, including RNA delivery and phage display.
Collapse
Affiliation(s)
- Yuhang Wang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Matthew Theodore
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zhongliang Xing
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Utkarsh Narsaria
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zihao Yu
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
10
|
Izadi-Pruneyre N, Karami Y, Nilges M. Structure and Dynamics of Type 4a Pili and Type 2 Secretion System Endopili. Subcell Biochem 2024; 104:549-563. [PMID: 38963500 DOI: 10.1007/978-3-031-58843-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.
Collapse
Affiliation(s)
- Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France
| | - Yasaman Karami
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France.
| |
Collapse
|
11
|
Kinch LN, Schaeffer RD, Zhang J, Cong Q, Orth K, Grishin N. Insights into virulence: structure classification of the Vibrio parahaemolyticus RIMD mobilome. mSystems 2023; 8:e0079623. [PMID: 38014954 PMCID: PMC10734457 DOI: 10.1128/msystems.00796-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The pandemic Vpar strain RIMD causes seafood-borne illness worldwide. Previous comparative genomic studies have revealed pathogenicity islands in RIMD that contribute to the success of the strain in infection. However, not all virulence determinants have been identified, and many of the proteins encoded in known pathogenicity islands are of unknown function. Based on the EOCD database, we used evolution-based classification of structure models for the RIMD proteome to improve our functional understanding of virulence determinants acquired by the pandemic strain. We further identify and classify previously unknown mobile protein domains as well as fast evolving residue positions in structure models that contribute to virulence and adaptation with respect to a pre-pandemic strain. Our work highlights key contributions of phage in mediating seafood born illness, suggesting this strain balances its avoidance of phage predators with its successful colonization of human hosts.
Collapse
Affiliation(s)
- Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nick Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Sonani RR, Sanchez JC, Baumgardt JK, Kundra S, Wright ER, Craig L, Egelman EH. Tad and toxin-coregulated pilus structures reveal unexpected diversity in bacterial type IV pili. Proc Natl Acad Sci U S A 2023; 120:e2316668120. [PMID: 38011558 PMCID: PMC10710030 DOI: 10.1073/pnas.2316668120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous in both bacteria and archaea. They are polymers of the major pilin protein, which has an extended and protruding N-terminal helix, α1, and a globular C-terminal domain. Cryo-EM structures have revealed key differences between the bacterial and archaeal T4P in their C-terminal domain structure and in the packing and continuity of α1. This segment forms a continuous α-helix in archaeal T4P but is partially melted in all published bacterial T4P structures due to a conserved helix breaking proline at position 22. The tad (tight adhesion) T4P are found in both bacteria and archaea and are thought to have been acquired by bacteria through horizontal transfer from archaea. Tad pilins are unique among the T4 pilins, being only 40 to 60 residues in length and entirely lacking a C-terminal domain. They also lack the Pro22 found in all high-resolution bacterial T4P structures. We show using cryo-EM that the bacterial tad pilus from Caulobacter crescentus is composed of continuous helical subunits that, like the archaeal pilins, lack the melted portion seen in other bacterial T4P and share the packing arrangement of the archaeal T4P. We further show that a bacterial T4P, the Vibrio cholerae toxin coregulated pilus, which lacks Pro22 but is not in the tad family, has a continuous N-terminal α-helix, yet its α1 s are arranged similar to those in other bacterial T4P. Our results highlight the role of Pro22 in helix melting and support an evolutionary relationship between tad and archaeal T4P.
Collapse
Affiliation(s)
- Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Juan Carlos Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Joseph K. Baumgardt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Shivani Kundra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
13
|
Heidarpanah S, Thibodeau A, Parreira VR, Quessy S, Segura M, Gottschalk M, Gaudreau A, Juette T, Gaucher ML. Evaluation of the Immunoprotective Capacity of Five Vaccine Candidate Proteins against Avian Necrotic Enteritis and Impact on the Caecal Microbiota of Vaccinated Birds. Animals (Basel) 2023; 13:3323. [PMID: 37958078 PMCID: PMC10650611 DOI: 10.3390/ani13213323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Avian necrotic enteritis is an enteric disease of broiler chickens caused by certain pathogenic strains of Clostridium perfringens in combination with predisposing factors. A vaccine offering complete protection against the disease has not yet been commercialized. In a previous study, we produced five recombinant proteins predicted to be surface-exposed and unique to necrotic enteritis-causing C. perfringens and the immunogenicity of these potential vaccine candidates was assessed in broiler chickens. In the current work, the relative contribution of the antibodies raised by these putative antigens to protect broiler chickens was evaluated using an experimental necrotic enteritis induction model. Additionally, the link between the immune response elicited and the gut microbiota profiles in immunized birds subjected to infection with virulent C. perfringens was studied. The ELISA results showed that the IgY antibody titers in vaccinated birds on days 21 and 33 were significantly higher than those on days 7 and 14 and those in birds receiving the adjuvant alone, while the relative contribution of the specific immunity attributed to these antibodies could not be precisely determined using this experimental necrotic enteritis induction model. In addition, 16S rRNA gene amplicon sequencing showed that immunization of birds with recombinant proteins had a low impact on the chicken caecal microbiota.
Collapse
Affiliation(s)
- Sara Heidarpanah
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Valeria R. Parreira
- Canadian Research Institute for Food Safety (CRIFS), Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Sylvain Quessy
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Annie Gaudreau
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Tristan Juette
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
14
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
15
|
Vahvelainen N, Bozkurt E, Maula T, Johansson A, Pöllänen MT, Ihalin R. Pilus PilA of the naturally competent HACEK group pathogen Aggregatibacter actinomycetemcomitans stimulates human leukocytes and interacts with both DNA and proinflammatory cytokines. Microb Pathog 2022; 173:105843. [DOI: 10.1016/j.micpath.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
16
|
Surface-Induced cAMP Signaling Requires Multiple Features of the Pseudomonas aeruginosa Type IV Pili. J Bacteriol 2022; 204:e0018622. [PMID: 36073942 PMCID: PMC9578403 DOI: 10.1128/jb.00186-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa type IV pili (TFP) are important for twitching motility and biofilm formation. TFP have been implicated in surface sensing, a process whereby surface-engaged cells upregulate the synthesis of the second messenger cAMP to propagate a signaling cascade leading to biofilm initiation and repression of motility. Here, we showed that mutations in PilA impairing proteolytic processing of the prepilin into mature pilin as well as the disruption of essential TFP components, including the PilC platform protein and PilB assembly motor protein, fail to induce surface-dependent cAMP signaling. We showed that TFP retraction by surface-engaged cells was required to induce signaling and that the retractile motor PilT was both necessary and sufficient to power surface-specific induction of cAMP. Furthermore, full TFP function required to support twitching motility is not required for robust cAMP signalling. The PilU retraction motor, in contrast, was unable to support full signaling in the absence of PilT. Finally, while we confirmed that PilA and PilJ interacted by bacterial two-hybrid analysis, our data do not support the current model that PilJ-PilA interaction drives cAMP signaling. IMPORTANCE Surface sensing by P. aeruginosa requires TFP. TFP plays a critical role in the induction of the second messenger cAMP upon surface contact; this second messenger is part of a larger cascade involved in the transition from a planktonic to a biofilm lifestyle. Here, we showed that TFP must be deployed and actively retracted by the PilT motor for the full induction of cAMP signaling. Furthermore, the mechanism whereby TFP retraction triggers cAMP induction is not well understood, and our data argue against one of the current models in the field proposed to address this knowledge gap.
Collapse
|
17
|
Oki H, Kawahara K, Iimori M, Imoto Y, Nishiumi H, Maruno T, Uchiyama S, Muroga Y, Yoshida A, Yoshida T, Ohkubo T, Matsuda S, Iida T, Nakamura S. Structural basis for the toxin-coregulated pilus-dependent secretion of Vibrio cholerae colonization factor. SCIENCE ADVANCES 2022; 8:eabo3013. [PMID: 36240278 PMCID: PMC9565799 DOI: 10.1126/sciadv.abo3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Colonization of the host intestine is the most important step in Vibrio cholerae infection. The toxin-coregulated pilus (TCP), an operon-encoded type IVb pilus (T4bP), plays a crucial role in this process, which requires an additional secreted protein, TcpF, encoded on the same TCP operon; however, its mechanisms of secretion and function remain elusive. Here, we demonstrated that TcpF interacts with the minor pilin, TcpB, of TCP and elucidated the crystal structures of TcpB alone and in complex with TcpF. The structural analyses reveal how TCP recognizes TcpF and its secretory mechanism via TcpB-dependent pilus elongation and retraction. Upon binding to TCP, TcpF forms a flower-shaped homotrimer with its flexible N terminus hooked onto the trimeric interface of TcpB. Thus, the interaction between the minor pilin and the N terminus of the secreted protein, namely, the T4bP secretion signal, is key for V. cholerae colonization and is a new potential therapeutic target.
Collapse
Affiliation(s)
- Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yuka Imoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Haruka Nishiumi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- U-Medico Inc., Suita, Osaka, Japan
| | - Yuki Muroga
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akihiro Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Ronish LA, Sidner B, Yu Y, Piepenbrink KH. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem 2022; 298:102449. [PMID: 36064001 PMCID: PMC9556784 DOI: 10.1016/j.jbc.2022.102449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Clostridioides difficile is a Gram-positive bacillus, which is a frequent cause of gastrointestinal infections triggered by the depletion of the gut microbiome. Because of the frequent recurrence of these infections after antibiotic treatment, mechanisms of C. difficile persistence and recurrence, including biofilm formation, are of increasing interest. Previously, our group and others found that type IV pili, filamentous helical appendages polymerized from protein subunits, promoted microcolony and biofilm formation in C. difficile. In Gram-negative bacteria, the ability of type IV pili to mediate bacterial self-association has been explained through interactions between the pili of adjacent cells, but type IV pili from several Gram-negative species are also required for natural competence through DNA uptake. Here, we report the ability of two C. difficile pilin subunits, PilJ and PilW, to bind to DNA in vitro, as well as the defects in biofilm formation in the pilJ and pilW gene-interruption mutants. Additionally, we have resolved the X-ray crystal structure of PilW, which we use to model possible structural mechanisms for the formation of C. difficile biofilm through interactions between type IV pili and the DNA of the extracellular matrix. Taken together, our results provide further insight into the relationship between type IV pilus function and biofilm formation in C. difficile and, more broadly, suggest that DNA recognition by type IV pili and related structures may have functional importance beyond DNA uptake for natural competence.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
19
|
Yang Y, Huang J, Dornbusch D, Grundmeier G, Fahmy K, Keller A, Cheung DL. Effect of Surface Hydrophobicity on the Adsorption of a Pilus-Derived Adhesin-like Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9257-9265. [PMID: 35876027 PMCID: PMC9352356 DOI: 10.1021/acs.langmuir.2c01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Bacterial colonization of abiotic surfaces such as those of medical implants, membrane filters, and everyday household items is a process of tremendous importance for public health. Bacteria use adhesive cell surface structures called adhesins to establish contact with abiotic surfaces. Among them, protein filaments called type IV pili are particularly important and found in many Gram-negative pathogens such as Pseudomonas aeruginosa. Understanding the interaction of such adhesin proteins with different abiotic surfaces at the molecular level thus represents a fundamental prerequisite for impeding bacterial colonization and preventing the spread of infectious diseases. In this work, we investigate the interaction of a synthetic adhesin-like peptide, PAK128-144ox, derived from the type IV pilus of P. aeruginosa with hydrophilic and hydrophobic self-assembled monolayers (SAMs). Using a combination of molecular dynamics (MD) simulations, quartz crystal microbalance with dissipation monitoring (QCM-D), and spectroscopic investigations, we find that PAK128-144ox has a higher affinity for hydrophobic than for hydrophilic surfaces. Additionally, PAK128-144ox adsorption on the hydrophobic SAM is furthermore accompanied by a strong increase in α-helix content. Our results show a clear influence of surface hydrophobicity and further indicate that PAK128-144ox adsorption on the hydrophobic surface is enthalpically favored, while on the hydrophilic surface, entropic contributions are more significant. However, our spectroscopic investigations also suggest aggregation of the peptide under the employed experimental conditions, which is not considered in the MD simulations and should be addressed in more detail in future studies.
Collapse
Affiliation(s)
- Yu Yang
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Jingyuan Huang
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Daniel Dornbusch
- Institute
of Resource Ecology, Biophysics Department, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Center
for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Guido Grundmeier
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Karim Fahmy
- Institute
of Resource Ecology, Biophysics Department, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Center
for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Adrian Keller
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - David L. Cheung
- School
of Chemistry, National University of Ireland
Galway, Galway H91 TK33, Ireland
| |
Collapse
|
20
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
21
|
Ragab W, Kawato S, Nozaki R, Kondo H, Hirono I. Comparative genome analyses of five Vibrio penaeicida strains provide insights into their virulence-related factors. Microb Genom 2022; 8. [PMID: 35171089 PMCID: PMC8942037 DOI: 10.1099/mgen.0.000766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio penaeicida (family Vibrionaceae) is an important bacterial pathogen that affects Japanese shrimp aquaculture. Only two whole-genome sequences of V. penaeicida are publicly available, which has hampered our understanding of the pathogenesis of shrimp vibriosis caused by this bacterium. To gain insight into the genetic features, evolution and pathogenicity of V. penaeicida, we sequenced five V. penaeicida strains (IFO 15640T, IFO 15641, IFO 15642, TUMSAT-OK1 and TUMSAT-OK2) and performed comparative genomic analyses. Virulence factors and mobile genetic elements were detected. Furthermore, average nucleotide identities (ANIs), clusters of orthologous groups and phylogenetic relationships were evaluated. The V. penaeicida genome consists of two circular chromosomes. Chromosome I sizes ranged from 4.1 to 4.3 Mb, the GC content ranged from 43.9 to 44.1 %, and the number of predicted protein-coding sequences (CDSs) ranged from 3620 to 3782. Chromosome II sizes ranged from 2.2 to 2.4 Mb, the GC content ranged from 43.5 to 43.8 %, and the number of predicted CDSs ranged from 1992 to 2273. All strains except IFO 15641 harboured one plasmid, having sizes that ranged from 150 to 285 kb. All five genomes had typical virulence factors, including adherence, anti-phagocytosis, flagella-related proteins and toxins (repeats-in-toxin and thermolabile haemolysin). The genomes also contained factors responsible for iron uptake and the type II, IV and VI secretion systems. The genome of strain TUMSAT-OK2 tended to encode more prophage regions than the other strains, whereas the genome of strain IFO 15640T had the highest number of regions encoding genomic islands. For comparative genome analysis, we used V. penaeicida (strain CAIM 285T) as a reference strain. ANIs between strain CAIM 285T and the five V. penaeicida strains were >95 %, which indicated that these strains belong to the same species. Orthology cluster analysis showed that strains TUMSAT-OK1 and TUMSAT-OK2 had the greatest number of shared gene clusters, followed by strains CAIM 285T and IFO 15640T. These strains were also the most closely related to each other in a phylogenetic analysis. This study presents the first comparative genome analysis of V. penaeicida and these results will be useful for understanding the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Wafaa Ragab
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Ikuo Hirono,
| |
Collapse
|
22
|
Karami Y, López-Castilla A, Ori A, Thomassin JL, Bardiaux B, Malliavin T, Izadi-Pruneyre N, Francetic O, Nilges M. Computational and biochemical analysis of type IV pilus dynamics and stability. Structure 2021; 29:1397-1409.e6. [PMID: 34520738 DOI: 10.1016/j.str.2021.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Type IV pili (T4P) are distinctive dynamic filaments at the surface of many bacteria that can rapidly extend and retract and withstand strong forces. T4P are important virulence factors in many human pathogens, including Enterohemorrhagic Escherichia coli (EHEC). The structure of the EHEC T4P has been determined by integrating nuclear magnetic resonance (NMR) and cryo-electron microscopy data. To better understand pilus assembly, stability, and function, we performed a total of 108 ms all-atom molecular dynamics simulations of wild-type and mutant T4P. Extensive characterization of the conformational landscape of T4P in different conditions of temperature, pH, and ionic strength is complemented with targeted mutagenesis and biochemical analyses. Our simulations and NMR experiments reveal a conserved set of residues defining a calcium-binding site at the interface between three pilin subunits. Calcium binding enhances T4P stability ex vivo and in vitro, supporting the role of this binding site as a potential pocket for drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Aracelys López-Castilla
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Andrea Ori
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Jenny-Lee Thomassin
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Therese Malliavin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| |
Collapse
|
23
|
Motor-independent retraction of type IV pili is governed by an inherent property of the pilus filament. Proc Natl Acad Sci U S A 2021; 118:2102780118. [PMID: 34789573 DOI: 10.1073/pnas.2102780118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin-pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor-dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor-independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor-independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor-dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.
Collapse
|
24
|
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: Dynamic Bacterial Nanomachines. FEMS Microbiol Rev 2021; 46:6425739. [PMID: 34788436 DOI: 10.1093/femsre/fuab053] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria and archaea rely on appendages called type IV pili (T4P) to participate in diverse behaviors including surface sensing, biofilm formation, virulence, protein secretion, and motility across surfaces. T4P are broadly distributed fibers that dynamically extend and retract, and this dynamic activity is essential for their function in broad processes. Despite the essentiality of dynamics in T4P function, little is known about the role of these dynamics and molecular mechanisms controlling them. Recent advances in microscopy have yielded insight into the role of T4P dynamics in their diverse functions and recent structural work has expanded what is known about the inner workings of the T4P motor. This review discusses recent progress in understanding the function, regulation, and mechanisms of T4P dynamics.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Pseudomonas Phage MD8: Genetic Mosaicism and Challenges of Taxonomic Classification of Lambdoid Bacteriophages. Int J Mol Sci 2021; 22:ijms221910350. [PMID: 34638693 PMCID: PMC8508860 DOI: 10.3390/ijms221910350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas phage MD8 is a temperate phage isolated from the freshwater lake Baikal. The organisation of the MD8 genome resembles the genomes of lambdoid bacteriophages. However, MD8 gene and protein sequences have little in common with classified representatives of lambda-like phages. Analysis of phage genomes revealed a group of other Pseudomonas phages related to phage MD8 and the genomic layout of MD8-like phages indicated extensive gene exchange involving even the most conservative proteins and leading to a high degree of genomic mosaicism. Multiple horizontal transfers and mosaicism of the genome of MD8, related phages and other λ-like phages raise questions about the principles of taxonomic classification of the representatives of this voluminous phage group. Comparison and analysis of various bioinformatic approaches applied to λ-like phage genomes demonstrated different efficiency and contradictory results in the estimation of genomic similarity and relatedness. However, we were able to make suggestions for the possible origin of the MD8 genome and the basic principles for the taxonomic classification of lambdoid phages. The group comprising 26 MD8-related phages was proposed to classify as two close genera belonging to a big family of λ-like phages.
Collapse
|
26
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
27
|
Mezzina Freitas LP, Feliciano GT. Atomic and Electronic Structure of Pilus from Geobacter sulfurreducens through QM/MM Calculations: Evidence for Hole Transfer in Aromatic Residues. J Phys Chem B 2021; 125:8305-8312. [PMID: 34292748 DOI: 10.1021/acs.jpcb.1c01185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-range electron transport has been widely and experimentally reported in Geobacter sulfurreducens pilus protein. However, a better understanding of the still undefined molecular arrangement can bring to light the role of key residues in this phenomenon. We propose a theoretical investigation of the electronic structure of aromatic residue groups in the protein through a classical molecular dynamics (MD) simulation, followed by a quantum mechanics/molecular mechanics (QM/MM) electronic study of different frames sampled from MD trajectories, an electrostatic potential and electron density analysis, an analysis of the density of states, and an investigation of hole formation through Dyson orbital calculations. We observe a highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap in the ranges of 1.4-2.3 eV and 2.9-3.3 eV and a less intense dipole moment along the aromatic residues in the presence of water in comparison to the system in vacuum. HOMO and LUMO electron densities highlight the occupation of one tyrosine residue in every representation for HOMO and a delocalization along two to three rings for LUMO. The results show how the electronic structure of the aromatic residues is sensitive to the ring arrangement and the surrounding environment. In our study, we observe that slight rearrangements in the fiber geometry can create temporary conditions for hole transfer.
Collapse
Affiliation(s)
- Luis Paulo Mezzina Freitas
- Institute of Chemistry, Department of Engineering, Physics and Mathematics, São Paulo State University, Prof. Francisco Degni 55, 14800-060 Araraquara, Brazil
| | - Gustavo Troiano Feliciano
- Institute of Chemistry, Department of Engineering, Physics and Mathematics, São Paulo State University, Prof. Francisco Degni 55, 14800-060 Araraquara, Brazil
| |
Collapse
|
28
|
PilB from Streptococcus sanguinis is a bimodular type IV pilin with a direct role in adhesion. Proc Natl Acad Sci U S A 2021; 118:2102092118. [PMID: 34031252 PMCID: PMC8179133 DOI: 10.1073/pnas.2102092118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type IV pili (T4P) are functionally versatile filaments widespread in prokaryotes, composed of type IV pilins and assembled by conserved multiprotein machineries. It remains unclear how such rather simple filaments can be so versatile. Our structure/function analysis of PilB, a minor pilin of Streptococcus sanguinis T4P, offers an elegant explanation for this paradox. We show that PilB is a modular pilin with a bulky module “grafted” onto a small pilin module, which directly mediates adhesion of S. sanguinis to host cells/proteins. This evolutionary tinkering strategy appears to be prevalent in bacteria since a global analysis reveals that modular pilins are widespread and exhibit an astonishing variety of architectures. Type IV pili (T4P) are functionally versatile filamentous nanomachines, nearly ubiquitous in prokaryotes. They are predominantly polymers of one major pilin but also contain minor pilins whose functions are often poorly defined and likely to be diverse. Here, we show that the minor pilin PilB from the T4P of Streptococcus sanguinis displays an unusual bimodular three-dimensional structure with a bulky von Willebrand factor A–like (vWA) module “grafted” onto a small pilin module via a short loop. Structural modeling suggests that PilB is only compatible with a localization at the tip of T4P. By performing a detailed functional analysis, we found that 1) the vWA module contains a canonical metal ion–dependent adhesion site, preferentially binding Mg2+ and Mn2+, 2) abolishing metal binding has no impact on the structure of PilB or piliation, 3) metal binding is important for S. sanguinis T4P–mediated twitching motility and adhesion to eukaryotic cells, and 4) the vWA module shows an intrinsic binding ability to several host proteins. These findings reveal an elegant yet simple evolutionary tinkering strategy to increase T4P functional versatility by grafting a functional module onto a pilin for presentation by the filaments. This strategy appears to have been extensively used by bacteria, in which modular pilins are widespread and exhibit an astonishing variety of architectures.
Collapse
|
29
|
Burns FN, Alila MA, Zheng H, Patil PD, Ibanez ACS, Luk YY. Exploration of Ligand-receptor Binding and Mechanisms for Alginate Reduction and Phenotype Reversion by Mucoid Pseudomonas aeruginosa. ChemMedChem 2021; 16:1975-1985. [PMID: 33666373 DOI: 10.1002/cmdc.202100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Bacteria in general can develop a wide range of phenotypes under different conditions and external stresses. The phenotypes that reside in biofilms, overproduce exopolymers, and show increased motility often exhibit drug tolerance and drug persistence. In this work, we describe a class of small molecules that delay and inhibit the overproduction of alginate by a non-swarming mucoid Pseudomonas aeruginosa. Among these molecules, selected benzophenone-derived alkyl disaccharides cause the mucoid bacteria to swarm on hydrated soft agar gel and revert the mucoid to a nonmucoid phenotype. The sessile (biofilm) and motile (swarming) phenotypes are controlled by opposing signaling pathways with high and low intracellular levels of bis-(3',5')-cyclic diguanosine monophosphate (cdG), respectively. As our molecules control several of these phenotypes, we explored a protein receptor, pilin of the pili appendages, that is consistent with controlling these bioactivities and signaling pathways. To test this binding hypothesis, we developed a bacterial motility-enabled binding assay that uses the interfacial properties of hydrated gels and bacterial motility to conduct label-free ligand-receptor binding studies. The structure-activity correlation and receptor identification reveal a plausible mechanism for reverting mucoid to nonmucoid phenotypes by binding pili appendages with ligands capable of sequestering and neutralizing reactive oxygen species.
Collapse
Affiliation(s)
- Felicia N Burns
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Mercy A Alila
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Hewen Zheng
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Pankaj D Patil
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Arizza Chiara S Ibanez
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
30
|
Koch MD, Fei C, Wingreen NS, Shaevitz JW, Gitai Z. Competitive binding of independent extension and retraction motors explains the quantitative dynamics of type IV pili. Proc Natl Acad Sci U S A 2021; 118:e2014926118. [PMID: 33593905 PMCID: PMC7923367 DOI: 10.1073/pnas.2014926118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IV pili (TFP) function through cycles of extension and retraction. The coordination of these cycles remains mysterious due to a lack of quantitative measurements of multiple features of TFP dynamics. Here, we fluorescently label TFP in the pathogen Pseudomonas aeruginosa and track full extension and retraction cycles of individual filaments. Polymerization and depolymerization dynamics are stochastic; TFP are made at random times and extend, pause, and retract for random lengths of time. TFP can also pause for extended periods between two extension or two retraction events in both wild-type cells and a slowly retracting PilT mutant. We developed a biophysical model based on the stochastic binding of two dedicated extension and retraction motors to the same pilus machine that predicts the observed features of the data with no free parameters. We show that only a model in which both motors stochastically bind and unbind to the pilus machine independent of the piliation state of the machine quantitatively explains the experimentally observed pilus production rate. In experimental support of this model, we show that the abundance of the retraction motor dictates the pilus production rate and that PilT is bound to pilus machines even in their unpiliated state. Together, the strong quantitative agreement of our model with a variety of experiments suggests that the entire repetitive cycle of pilus extension and retraction is coordinated by the competition of stochastic motor binding to the pilus machine, and that the retraction motor is the major throttle for pilus production.
Collapse
Affiliation(s)
- Matthias D Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540;
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08540
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
31
|
Mordue J, O'Boyle N, Gadegaard N, Roe AJ. The force awakens: The dark side of mechanosensing in bacterial pathogens. Cell Signal 2020; 78:109867. [PMID: 33279672 DOI: 10.1016/j.cellsig.2020.109867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/01/2023]
Abstract
For many bacteria, the ability to sense physical stimuli such as contact with a surface or a potential host cell is vital for survival and proliferation. This ability, and subsequent attachment, confers a wide range of benefits to bacteria and many species have evolved to take advantage of this. Despite the impressive diversity of bacterial pathogens and their virulence factors, mechanosensory mechanisms are often conserved. These include sensing impedance of flagellar rotation and resistance to type IV pili retraction. There are additional mechanisms that rely on the use of specific membrane-bound adhesins to sense either surface proximity or shear forces. This review aims to examine these mechanosensors, and how they are used by pathogenic bacteria to sense physical features in their environment. We will explore how these sensors generate and transmit signals which can trigger modulation of virulence-associated gene expression in some of the most common bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli and Vibrio species.
Collapse
Affiliation(s)
- James Mordue
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
32
|
Graham KJ, Burrows LL. More than a feeling: microscopy approaches to understanding surface-sensing mechanisms. J Bacteriol 2020; 203:JB.00492-20. [PMID: 33077631 PMCID: PMC8095462 DOI: 10.1128/jb.00492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which bacteria sense and respond to surface attachment have long been a mystery. Our understanding of the structure and dynamics of bacterial appendages, notably type IV pili (T4P), provided new insights into the potential ways that bacteria sense surfaces. T4P are ubiquitous, retractable hair-like adhesins that until recently were difficult to image in the absence of fixation due to their nanoscale size. This review focuses on recent microscopy innovations used to visualize T4P in live cells to reveal the dynamics of their retraction and extension. We discuss recently proposed mechanisms by which T4P facilitate bacterial surface sensing, including the role of surface-exposed PilY1, two-component signal transduction pathways, force-induced structural modifications of the major pilin, and altered dynamics of the T4P motor complex.
Collapse
Affiliation(s)
- Katherine J Graham
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| |
Collapse
|
33
|
Ptushenko VV. Electric Cables of Living Cells. II. Bacterial Electron Conductors. BIOCHEMISTRY (MOSCOW) 2020; 85:955-965. [PMID: 33045956 DOI: 10.1134/s0006297920080118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concept of "electric cables" involved in bioenergetic processes of a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg., Elsevier, pp. 127-190]. For many decades, only cell membrane structures have been considered as probable pathways for the electric current, namely, for the transfer of transmembrane electrochemical potential. However, the last ten to fifteen years have brought the discovery of bacterial "electric cables" of a new type. In 2005, "nanowires" conducting electric current over distances of tens of micrometers were discovered in metal- and sulphate-reducing bacteria [Reguera, G. et al. (2005) Nature, 435, pp. 1098-1101]. The next five years have witnessed the discovery of microbial electric currents over centimeter distances [Nielsen, L. P. et al. (2010) Nature, 463, 1071-1074]. This new group of bacteria allowing electric currents to flow over macroscopic distances was later called cable bacteria. Nanowires and conductive structures of cable bacteria serve to solve a special problem of membrane bioenergetics: they connect two redox half-reactions. In other words, unlike membrane "cables", their function is electron transfer in the course of oxidative phosphorylation for the generation of membrane energy rather than of the end-product. The most surprising is the protein nature of these cables (at least of some of them) indicated by recent data, since no protein wires for the long-distance electron transport had been previously known in living systems.
Collapse
Affiliation(s)
- V V Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
34
|
Hosseini N, Khanahmad H, Esfahani BN, Bandehpour M, Shariati L, Zahedi N, Kazemi B. Targeting of cholera toxin A ( ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes. Res Pharm Sci 2020; 15:182-190. [PMID: 32582358 PMCID: PMC7306252 DOI: 10.4103/1735-5362.283818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background and purpose: The study was launched to use zinc finger nuclease (ZFN) technology to disrupt the cholera toxin gene (ctxA) for inhibiting CT toxin production in Vibrio cholera (V. cholera). Experimental approach: An engineered ZFN was designed to target the catalytic site of the ctxA gene. The coding sequence of ZFN was cloned to pKD46, pTZ57R T/A vector, and E2-crimson plasmid and transformed to Escherichia coli (E. coli) Top10 and V. cholera. The efficiency of ZFN was evaluated by colony counting. Findings/Results: No expression was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting in transformed E. coli. The ctxA gene sequencing did not show any mutation. Polymerase chain reaction on pKD46-ZFN plasmid had negative results. Transformation of E. coli Top10 with T/A vectors containing whole ZFN sequence led to 7 colonies all of which contained bacteria with self-ligated vector. Transformation with left array ZFN led to 24 colonies of which 6 contained bacteria with self-ligated vector and 18 of them contained bacteria with vector/left array. Transformation of V. cholera with E2-crimson vectors containing whole ZFN did not produce any colonies. Transformation with left array vectors led to 17 colonies containing bacteria with vector/left array. Left array protein band was captured using western blot assay. Conclusions and implications: ZFN might have off target on bacterial genome causing lethal double-strand DNA break due to lack of non-homologous end joining (NHEJ) mechanism. It is recommended to develop ZFNs against bacterial genes, engineered packaging host with NHEJ repair system is essential.
Collapse
Affiliation(s)
- Nafiseh Hosseini
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Laleh Shariati
- Biosensor Research Center, Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
35
|
Sheppard D, Berry JL, Denise R, Rocha EPC, Matthews S, Pelicic V. The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold. J Biol Chem 2020; 295:6594-6604. [PMID: 32273343 PMCID: PMC7212644 DOI: 10.1074/jbc.ra120.013316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.
Collapse
Affiliation(s)
- Devon Sheppard
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jamie-Lee Berry
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Paris 75015, France
- Sorbonne Université, Collège doctoral, Paris 75005, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Paris 75015, France
| | - Steve Matthews
- Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vladimir Pelicic
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Neuhaus A, Selvaraj M, Salzer R, Langer JD, Kruse K, Kirchner L, Sanders K, Daum B, Averhoff B, Gold VAM. Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium. Nat Commun 2020; 11:2231. [PMID: 32376942 PMCID: PMC7203116 DOI: 10.1038/s41467-020-15650-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.
Collapse
Affiliation(s)
- Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Muniyandi Selvaraj
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Laboratory of Structural Biology, Helsinki Institute of Life Science, 00014 University of Helsinki, Helsinki, Finland
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Structural Studies Division, Medical Research Council-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
37
|
Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 2020; 17:429-440. [PMID: 30988511 DOI: 10.1038/s41579-019-0195-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surfaces of many bacteria are decorated with long, exquisitely thin appendages called type IV pili (T4P), dynamic filaments that are rapidly polymerized and depolymerized from a pool of pilin subunits. Cycles of pilus extension, binding and retraction enable T4P to perform a phenomenally diverse array of functions, including twitching motility, DNA uptake and microcolony formation. On the basis of recent developments, a comprehensive understanding is emerging of the molecular architecture of the T4P machinery and the filament it builds, providing mechanistic insights into the assembly and retraction processes. Combined microbiological and biophysical approaches have revealed how T4P dynamics influence self-organization of bacteria, how bacteria respond to external stimuli to regulate T4P activity for directed movement, and the role of T4P retraction in surface sensing. In this Review, we discuss the T4P machine architecture and filament structure and present current molecular models for T4P dynamics, with a particular focus on recent insights into T4P retraction. We also discuss the functional consequences of T4P dynamics, which have important implications for bacterial lifestyle and pathogenesis.
Collapse
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany.
| |
Collapse
|
38
|
Crawshaw AD, Baslé A, Salgado PS. A practical overview of molecular replacement: Clostridioides difficile PilA1, a difficult case study. Acta Crystallogr D Struct Biol 2020; 76:261-271. [PMID: 32133990 PMCID: PMC7057214 DOI: 10.1107/s2059798320000467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Many biologists are now routinely seeking to determine the three-dimensional structures of their proteins of choice, illustrating the importance of this knowledge, but also of the simplification and streamlining of structure-determination processes. Despite the fact that most software packages offer simple pipelines, for the non-expert navigating the outputs and understanding the key aspects can be daunting. Here, the structure determination of the type IV pili (TFP) protein PilA1 from Clostridioides difficile is used to illustrate the different steps involved, the key decision criteria and important considerations when using the most common pipelines and software. Molecular-replacement pipelines within CCP4i2 are presented to illustrate the more commonly used processes. Previous knowledge of the biology and structure of TFP pilins, particularly the presence of a long, N-terminal α-helix required for pilus formation, allowed informed decisions to be made during the structure-determination strategy. The PilA1 structure was finally successfully determined using ARCIMBOLDO and the ab initio MR strategy used is described.
Collapse
Affiliation(s)
- Adam D. Crawshaw
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England
| | - Arnaud Baslé
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England
| | - Paula S. Salgado
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
39
|
Silva YRDO, Contreras-Martel C, Macheboeuf P, Dessen A. Bacterial secretins: Mechanisms of assembly and membrane targeting. Protein Sci 2020; 29:893-904. [PMID: 32020694 DOI: 10.1002/pro.3835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Secretion systems are employed by bacteria to transport macromolecules across membranes without compromising their integrities. Processes including virulence, colonization, and motility are highly dependent on the secretion of effector molecules toward the immediate cellular environment, and in some cases, into the host cytoplasm. In Type II and Type III secretion systems, as well as in Type IV pili, homomultimeric complexes known as secretins form large pores in the outer bacterial membrane, and the localization and assembly of such 1 MDa molecules often relies on pilotins or accessory proteins. Significant progress has been made toward understanding details of interactions between secretins and their partner proteins using approaches ranging from bacterial genetics to cryo electron microscopy. This review provides an overview of the mode of action of pilotins and accessory proteins for T2SS, T3SS, and T4PS secretins, highlighting recent near-atomic resolution cryo-EM secretin complex structures and underlining the importance of these interactions for secretin functionality.
Collapse
Affiliation(s)
- Yuri Rafael de Oliveira Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Pauline Macheboeuf
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
40
|
A simple and rapid pipeline for identification of receptor-binding sites on the surface proteins of pathogens. Sci Rep 2020; 10:1163. [PMID: 31980725 PMCID: PMC6981161 DOI: 10.1038/s41598-020-58305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Ligand-receptor interactions play a crucial role in the plethora of biological processes. Several methods have been established to reveal ligand-receptor interface, however, the majority of methods are time-consuming, laborious and expensive. Here we present a straightforward and simple pipeline to identify putative receptor-binding sites on the pathogen ligands. Two model ligands (bait proteins), domain III of protein E of West Nile virus and NadA of Neisseria meningitidis, were incubated with the proteins of human brain microvascular endothelial cells immobilized on nitrocellulose or PVDF membrane, the complex was trypsinized on-membrane, bound peptides of the bait proteins were recovered and detected on MALDI-TOF. Two peptides of DIII (~916 Da and ~2003 Da) and four peptides of NadA (~1453 Da, ~1810 Da, ~2051 Da and ~2433 Da) were identified as plausible receptor-binders. Further, binding of the identified peptides to the proteins of endothelial cells was corroborated using biotinylated synthetic analogues in ELISA and immunocytochemistry. Experimental pipeline presented here can be upscaled easily to map receptor-binding sites on several ligands simultaneously. The approach is rapid, cost-effective and less laborious. The proposed experimental pipeline could be a simpler alternative or complementary method to the existing techniques used to reveal amino-acids involved in the ligand-receptor interface.
Collapse
|
41
|
Gutierrez-Rodarte M, Kolappan S, Burrell BA, Craig L. The Vibrio cholerae minor pilin TcpB mediates uptake of the cholera toxin phage CTXφ. J Biol Chem 2019; 294:15698-15710. [PMID: 31471320 DOI: 10.1074/jbc.ra119.009980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Virulent strains of the bacterial pathogen Vibrio cholerae cause the diarrheal disease cholera by releasing cholera toxin into the small intestine. V. cholerae acquired its cholera toxin genes by lysogenic infection with the filamentous bacteriophage CTXφ. CTXφ uses its minor coat protein pIII, located in multiple copies at the phage tip, to bind to the V. cholerae toxin-coregulated pilus (TCP). However, the molecular details of this interaction and the mechanism of phage internalization are not well-understood. The TCP filament is a polymer of major pilins, TcpA, and one or more minor pilin, TcpB. TCP are retractile, with both retraction and assembly initiated by TcpB. Consistent with these roles in pilus dynamics, we hypothesized that TcpB controls both binding and internalization of CTXφ. To test this hypothesis, we determined the crystal structure of the C-terminal half of TcpB and characterized its interactions with CTXφ pIII. We show that TcpB is a homotrimer in its crystallographic form as well as in solution and is present in multiple copies at the pilus tip, which likely facilitates polyvalent binding to pIII proteins at the phage tip. We further show that recombinant forms of TcpB and pIII interact in vitro, and both TcpB and anti-TcpB antibodies block CTXφ infection of V. cholerae Finally, we show that CTXφ uptake requires TcpB-mediated retraction. Our data support a model whereby CTXφ and TCP bind in a tip-to-tip orientation, allowing the phage to be drawn into the V. cholerae periplasm as an extension of the pilus filament.
Collapse
Affiliation(s)
- Miguel Gutierrez-Rodarte
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Subramania Kolappan
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Bailey A Burrell
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lisa Craig
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
42
|
Bardiaux B, Cordier F, Brier S, López-Castilla A, Izadi-Pruneyre N, Nilges M. Dynamics of a type 2 secretion system pseudopilus unraveled by complementary approaches. JOURNAL OF BIOMOLECULAR NMR 2019; 73:293-303. [PMID: 31124002 PMCID: PMC6692295 DOI: 10.1007/s10858-019-00246-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Secretion pili, bacterial fibers responsible for transporting proteins to the extracellular milieu in some secretion systems, are very strong structures but at the same time highly flexible. Their flexibility and helical symmetry make structure determination at atomic resolution a challenging task. We have previously used an integrative structural biology approach including liquid-state NMR, cryo-electron microscopy (cryo-EM), and modeling to determine the pseudo-atomic resolution structure of the type 2 secretion system pseudopilus in a mutant form, where we employed NMR to determine the high resolution structure of the pilin (the monomer building block of the pilus). In this work, we determine the pseudo-atomic structure of the wild type pilus, and compare the dynamics of wild type and mutant pili by normal mode analysis. We present a detailed NMR analysis of the dynamics of the pilin in isolation, and compare dynamics and solvent accessibility of isolated and assembled pilins by Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS). These complementary approaches provide a comprehensive view of internal and overall dynamics of pili, crucial for their function.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Florence Cordier
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur; CNRS UMR3528, Paris, France
| | - Sébastien Brier
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur; CNRS UMR3528, Paris, France
| | - Aracelys López-Castilla
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France.
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France.
| |
Collapse
|
43
|
Audette GF, Yaseen A, Bragagnolo N, Bawa R. Protein Nanotubes: From Bionanotech towards Medical Applications. Biomedicines 2019; 7:biomedicines7020046. [PMID: 31234611 PMCID: PMC6630890 DOI: 10.3390/biomedicines7020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. This review aims to highlight some of the current research employing protein nanotubes (PNTs) for the development of molecular imaging biosensors, conducting wires for microelectronics, fuel cells, and drug delivery systems. The translational potential of PNTs is highlighted.
Collapse
Affiliation(s)
- Gerald F Audette
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Ayat Yaseen
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Nicholas Bragagnolo
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Raj Bawa
- Patent Law Department, Bawa Biotech LLC, Ashburn, VA 20147, USA.
- Guanine Inc., Rensselaer, NY 12144-3463, USA.
- Pharmaceutical Research Institute of Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| |
Collapse
|
44
|
Wang F, Cvirkaite-Krupovic V, Kreutzberger MAB, Su Z, de Oliveira GAP, Osinski T, Sherman N, DiMaio F, Wall JS, Prangishvili D, Krupovic M, Egelman EH. An extensively glycosylated archaeal pilus survives extreme conditions. Nat Microbiol 2019; 4:1401-1410. [PMID: 31110358 PMCID: PMC6656605 DOI: 10.1038/s41564-019-0458-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022]
Abstract
Pili on the surface of Sulfolobus islandicus are used for many functions, and serve as receptors for certain archaeal viruses. The cells grow optimally at pH 3 and ~80 °C, exposing these extracellular appendages to a very harsh environment. The pili, when removed from cells, resist digestion by trypsin or pepsin, and survive boiling in sodium dodecyl sulfate or 5 M guanidine hydrochloride. We used electron cryo-microscopy to determine the structure of these filaments at 4.1 Å resolution. An atomic model was built by combining the electron density map with bioinformatics without previous knowledge of the pilin sequence-an approach that should prove useful for assemblies where all of the components are not known. The atomic structure of the pilus was unusual, with almost one-third of the residues being either threonine or serine, and with many hydrophobic surface residues. While the map showed extra density consistent with glycosylation for only three residues, mass measurements suggested extensive glycosylation. We propose that this extensive glycosylation renders these filaments soluble and provides the remarkable structural stability. We also show that the overall fold of the archaeal pilin is remarkably similar to that of archaeal flagellin, establishing common evolutionary origins.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Nicholas Sherman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - David Prangishvili
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Mart Krupovic
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
45
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
46
|
Ellison CK, Dalia TN, Dalia AB, Brun YV. Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. Nat Protoc 2019; 14:1803-1819. [PMID: 31028374 DOI: 10.1038/s41596-019-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Bacteria use surface-exposed, proteinaceous fibers called pili for diverse behaviors, including horizontal gene transfer, surface sensing, motility, and pathogenicity. Visualization of these filamentous nanomachines and their activity in live cells has proven challenging, largely due to their small size. Here, we describe a broadly applicable method for labeling and imaging pili and other surface-exposed nanomachines in live cells. This technique uses a combination of genetics and maleimide-based click chemistry in which a cysteine substitution is made in the major pilin subunit for subsequent labeling with thiol-reactive maleimide dyes. Large maleimide-conjugated molecules can also be used to physically interfere with the dynamic activity of filamentous nanomachines. We describe parameters for selecting cysteine substitution positions, optimized labeling conditions for epifluorescence imaging of pilus fibers, and methods for impeding pilus activity. After cysteine knock-in strains have been generated, this protocol can be completed within 30 min to a few hours, depending on the species and the experiment of choice. Visualization of extracellular nanomachines such as pili using this approach can provide a more comprehensive understanding of the role played by these structures in distinct bacterial behaviors.
Collapse
Affiliation(s)
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA. .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Berry JL, Gurung I, Anonsen JH, Spielman I, Harper E, Hall AMJ, Goosens VJ, Raynaud C, Koomey M, Biais N, Matthews S, Pelicic V. Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium Streptococcus sanguinis. J Biol Chem 2019; 294:6796-6808. [PMID: 30837269 PMCID: PMC6497953 DOI: 10.1074/jbc.ra118.006917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/27/2019] [Indexed: 11/06/2022] Open
Abstract
Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ishwori Gurung
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jan Haug Anonsen
- the Department of Biological Sciences, Proteomics and Mass Spectrometry Unit, University of Oslo, 0371 Oslo, Norway.,the Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, 0371 Oslo, Norway
| | - Ingrid Spielman
- the Department of Biology, Brooklyn College of the City University of New York, New York, New York 11210.,The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Elliot Harper
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alexander M J Hall
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vivianne J Goosens
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claire Raynaud
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael Koomey
- the Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, 0371 Oslo, Norway
| | - Nicolas Biais
- the Department of Biology, Brooklyn College of the City University of New York, New York, New York 11210.,The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Steve Matthews
- the Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vladimir Pelicic
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
48
|
McCallum M, Burrows LL, Howell PL. The Dynamic Structures of the Type IV Pilus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0006-2018. [PMID: 30825300 PMCID: PMC11588161 DOI: 10.1128/microbiolspec.psib-0006-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
Type IV pilus (T4P)-like systems have been identified in almost every major phylum of prokaryotic life. They include the type IVa pilus (T4aP), type II secretion system (T2SS), type IVb pilus (T4bP), Tad/Flp pilus, Com pilus, and archaeal flagellum (archaellum). These systems are used for adhesion, natural competence, phage adsorption, folded-protein secretion, surface sensing, swimming motility, and twitching motility. The T4aP allows for all of these functions except swimming and is therefore a good model system for understanding T4P-like systems. Recent structural analyses have revolutionized our understanding of how the T4aP machinery assembles and functions. Here we review the structure and function of the T4aP.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
49
|
Abstract
Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake by these versatile molecular machines.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
50
|
Luna Rico A, Zheng W, Petiot N, Egelman EH, Francetic O. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Mol Microbiol 2019; 111:732-749. [PMID: 30561149 DOI: 10.1111/mmi.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Type 4a pili (T4aP) are long, thin and dynamic fibres displayed on the surface of diverse bacteria promoting adherence, motility and transport functions. Genomes of many Enterobacteriaceae contain conserved gene clusters encoding putative T4aP assembly systems. However, their expression has been observed only in few strains including Enterohaemorrhagic Escherichia coli (EHEC) and their inducers remain unknown. Here we used EHEC genomic DNA as a template to amplify and assemble an artificial operon composed of four gene clusters encoding 13 pilus assembly proteins. Controlled expressions of this operon in nonpathogenic E. coli strains led to efficient assembly of T4aP composed of the major pilin PpdD, as shown by shearing assays and immunofluorescence microscopy. When compared with PpdD pili assembled in a heterologous Klebsiella T2SS type 2 secretion system (T2SS) by using cryo-electron microscopy (cryoEM), these pili showed indistinguishable helical parameters, emphasizing that major pilins are the principal determinants of the fibre structure. Bacterial two-hybrid analysis identified several interactions of PpdD with T4aP assembly proteins, and with components of the T2SS that allow for heterologous fibre assembly. These studies lay ground for further characterization of the T4aP structure, function and biogenesis in enterobacteria.
Collapse
Affiliation(s)
- Areli Luna Rico
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France.,Structural Bioinformatics Unit and NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathalie Petiot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| |
Collapse
|