1
|
Lee U, Kim YH, Yoon KS, Kim Y. Selective Butyrate Esterase Probe for the Rapid Colorimetric and Fluorogenic Identification of Moraxella catarrhalis. Anal Chem 2020; 92:16051-16057. [PMID: 33211958 DOI: 10.1021/acs.analchem.0c03671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical identification of the pathogenic bacterium Moraxella catarrhalis in cultures relies on the detection of bacterial butyrate esterase (C4-esterase) using a coumarin-based fluorogenic substrate, 4-methylumbelliferyl butyrate. However, this classical probe may give false-positive responses because of its poor stability and lack of specificity. Here, we report a new colorimetric and fluorogenic probe design employing a meso-ester-substituted boron dipyrromethene (BODIPY) dye for the specific detection of C4-esterase activity expressed by M. catarrhalis. This new probe has resistance to nonspecific hydrolysis that is far superior to the classical probe and also selectively responds to esterase with rapid colorimetric and fluorescence signal changes and large "turn-on" ratios. The probe was successfully applied to the specific detection of M. catarrhalis with high sensitivity.
Collapse
Affiliation(s)
- Uisung Lee
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Yeon Ho Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
2
|
Ren D, Xie H, Zhang W, Hassan F, Petralia RS, Yu S, Lim DJ, Gu XX. Intranasal immunization of the combined lipooligosaccharide conjugates protects mice from the challenges with three serotypes of Moraxella catarrhalis. PLoS One 2011; 6:e29553. [PMID: 22216312 PMCID: PMC3245267 DOI: 10.1371/journal.pone.0029553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/30/2011] [Indexed: 11/25/2022] Open
Abstract
Background There are no licensed vaccines available against Moraxella catarrhalis, a significant human respiratory pathogen. Lipooligosaccharide (LOS) based conjugate vaccines derived from individual serotype M. catarrhalis only showed partial protection coverage. A vaccine combining LOS conjugates of two or three serotypes might provide a broader protection. Methods Mice were immunized intranasally with the combined conjugates consisting of LOS from serotype A and B or serotype A, B, and C followed by challenge with different M. catarrhalis strains of three serotypes. Mouse lungs, nasal washes, and sera were collected after each challenge for bacterial counts, histological evaluation, cytokine profiles, antibody level and binding activity determinations. Results Intranasal administration of the combined LOS conjugates not only enhanced pulmonary bacterial clearance of all three serotypes of M. catarrhalis strains in vaccinated mice, but also elevated serotype-specific anti-LOS immunoglobulin (Ig)A and IgG titers in nasal wash and serum respectively. Mice vaccinated with the combined LOS conjugates also showed increased interferon (IFN)-γ, interleukin (IL)-12, and IL-4 in the lungs after challenges. Compared to the control group, mice immunized with the combined LOS conjugates also showed reduced lung inflammation after M. catarrhalis infections. The hyperimmune sera induced by the combined conjugates exhibited a broad cross-reactivity toward all three serotypes of M. catarrhalis under transmission electron microscopy. Conclusions The combined vaccine of serotype A and B LOS conjugates provides protection against most M. catarrhalis strains by eliciting humoral and cellular immune responses.
Collapse
Affiliation(s)
- Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Office of Vaccines Research and Review, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Wenhong Zhang
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - Ferdaus Hassan
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - Ronald S. Petralia
- Section on Neurotransmitter Receptor Biology, NIDCD, NIH, Bethesda, Maryland, United States of America
| | - Shengqing Yu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - David J. Lim
- Section on Pathogenesis of Ear Diseases, House Ear Institute, Los Angeles, California, United States of America
| | - Xin-Xing Gu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Tan TT, Riesbeck K. Current progress of adhesins as vaccine candidates for Moraxella catarrhalis. Expert Rev Vaccines 2008; 6:949-56. [PMID: 18377357 DOI: 10.1586/14760584.6.6.949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Moraxella catarrhalis is an emerging pathogen and all isolates are now considered beta-lactamase producing. Potential further use of vaccines against Streptococcus pneumoniae and nontypeable Haemophilus influenzae means that M. catarrhalis might be thrust further into the limelight. However, a vaccine has not yet been designed. In this review, the progress of M. catarrhalis adhesins as vaccine candidates is discussed with a focus on various candidate antigens that spanned those discovered more than 10 years ago, for example, the ubiquitous surface proteins to newer antigens, such as the Moraxella IgD-binding hemagglutinin.
Collapse
Affiliation(s)
- Thuan Tong Tan
- Malmö University Hospital, Medical Microbiology, Department of Laboratory Medicine, Lund University, SE-205 02 Malmö, Sweden.
| | | |
Collapse
|
4
|
Plamondon P, Luke NR, Campagnari AA. Identification of a novel two-partner secretion locus in Moraxella catarrhalis. Infect Immun 2007; 75:2929-36. [PMID: 17420235 PMCID: PMC1932880 DOI: 10.1128/iai.00396-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although Moraxella catarrhalis continues to be a significant cause of disease in both children and adults, the steps involved in pathogenesis remain poorly understood. We have identified three open reading frames in the M. catarrhalis genome that encode homologues of the two-partner secretion system (TPS). The sequenced M. catarrhalis hemagglutinin-like locus of strain 7169 has a unique gene organization composed in the order of mchA1, mchB, and mchA2, where mchA1 is divergent. MchA1 and MchA2 are 74% identical at the amino acid level and diverge only in the C-terminal regions. The TPS motif identified in the common N-terminal regions of MchA1 and MchA2 was found to be homologous to the filamentous hemagglutinin of Bordetella pertussis, and MchB has homology to other TpsB transporters. The presence of MchA1 and MchA2 in outer membrane protein preparations and concentrated culture supernatants (CCSs) of strain 7169 was confirmed by immunoblotting using specific antisera. Nanoscale liquid chromatography-tandem mass spectrometry peptide sequencing of the antibody-reactive bands from the CCSs was performed and demonstrated that 13 different peptides mapped to identical regions of MchA1 and MchA2. Quantitative adherence assays revealed a decrease of binding to primary normal human bronchial epithelial cells by the mch mutants 7169mchB and 7169mchA1A2B compared to that by the wild-type strain. These studies show that MchA1, MchA2, and MchB are components of a novel TPS identified in M. catarrhalis and suggest that these proteins may be involved in colonization.
Collapse
Affiliation(s)
- Pascale Plamondon
- Department of Microbiology and Immunology, University at Buffalo, 140 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
5
|
Community-acquired pneumonia: paving the way towards new vaccination concepts. COMMUNITY-ACQUIRED PNEUMONIA 2007. [PMCID: PMC7123104 DOI: 10.1007/978-3-7643-7563-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the availability of antimicrobial agents and vaccines, community-acquired pneumonia remains a serious problem. Severe forms tend to occur in very young children and among the elderly, since their immune competence is eroded by immaturity and immune senescence, respectively. The main etiologic agents differ according to patient age and geographic area. Streptococcus pneumoniae, Haemophilus influenzae, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV-3) are the most important pathogens in children, whereas influenza viruses are the leading cause of fatal pneumonia in the elderly. Effective vaccines are available against some of these organisms. However, there are still many agents against which vaccines are not available or the existent ones are suboptimal. To tackle this problem, empiric approaches are now being systematically replaced by rational vaccine design. This is facilitated by the growing knowledge in the fields of immunology, microbial pathogenesis and host response to infection, as well as by the availability of sophisticated strategies for antigen selection, potent immune modulators and efficient antigen delivery systems. Thus, a new generation of vaccines with improved safety and efficacy profiles compared to old and new agents is emerging. In this chapter, an overview is provided about currently available and new vaccination concepts.
Collapse
|
6
|
Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 2005; 73:7569-77. [PMID: 16239560 PMCID: PMC1273912 DOI: 10.1128/iai.73.11.7569-7577.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipooligosaccharide (LOS) is a major surface component of Moraxella catarrhalis and a possible virulence factor in the pathogenesis of human infections caused by this organism. The presence of LOS on the bacterium is an obstacle to the development of vaccines derived from whole cells or outer membrane components of the bacterium. An lpxA gene encoding UDP-N-acetylglucosamine acyltransferase responsible for the first step of lipid A biosynthesis was identified by the construction and characterization of an isogenic M. catarrhalis lpxA mutant in strain O35E. The resulting mutant was viable despite the complete loss of LOS. The mutant strain showed significantly decreased toxicity by the Limulus amebocyte lysate assay, reduced resistance to normal human serum, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. Importantly, the mutant elicited high levels of antibodies with bactericidal activity and provided protection against a challenge with the wild-type strain. These data suggest that the null LOS mutant is attenuated and may be a potential vaccine candidate against M. catarrhalis.
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
7
|
Hays JP, Eadie K, Verduin CM, Verbrugh H, van Belkum A. A novel plasmid (pEMCJH03) isolated from moraxella catarrhalis possibly useful as a cloning and expression vector within this species. Plasmid 2005; 53:263-8. [PMID: 15848230 DOI: 10.1016/j.plasmid.2004.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/03/2004] [Accepted: 11/08/2004] [Indexed: 11/24/2022]
Abstract
A preliminary screening study of six Moraxella catarrhalis isolates from primary school children in the Netherlands identified a small 3.5 kb plasmid (pEMCJH03), containing four open reading frames, which encoded three mobilizing and one replicase protein. Insertion of a kanamycin containing transposon (yielding pEMCJH04) allowed selection and isolation of the plasmid in Escherichia coli. Natural transformation of pEMCJH04 into M. catarrhalis was successful for 25% (3/12) of non-isogenic isolates, with no link between (lack of) transformability and genetic lineage or (lack of) transformability and complement phenotype, though the transformation efficiency was found to be rather low at approximately 615CFU/microg (range=60-1040CFU/microg ). This is only the second publication detailing a plasmid isolated from this important respiratory pathogen, and the ability to clone and express foreign proteins in M. catarrhalis using pEMCJH04 could help in the development of a vaccine expression vector, as well as providing a useful tool for studying promoter activity and in complementation studies of gene knockout mutants.
Collapse
Affiliation(s)
- John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC (Erasmus University Medical Center), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Hu WG, Berry J, Chen J, Gu XX. Exploration ofMoraxella catarrhalisouter membrane proteins, CD and UspA, as new carriers for lipooligosaccharide-based conjugates. ACTA ACUST UNITED AC 2004; 41:109-15. [PMID: 15145454 DOI: 10.1016/j.femsim.2004.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/10/2003] [Accepted: 02/04/2004] [Indexed: 11/26/2022]
Abstract
Moraxella catarrhalis outer membrane proteins, CD and ubiquitous surface protein A (UspA), were used as carriers for M. catarrhalis detoxified lipooligosaccharide (dLOS)-based conjugates. Our study was designed to investigate the feasibility of CD and UspA as protein carriers for dLOS-based conjugates and their possible synergic effects on protection from both anti-LOS and anti-CD or anti-UspA antibody responses. Female Balb/c mice were immunized subcutaneously three times with dLOS-CD or dLOS-UspA conjugate in Ribi adjuvant. Antisera elicited by the conjugates showed high titers of specific anti-LOS antibodies with complement-dependent bactericidal activity towards M. catarrhalis strain 25238. In a mouse aerosol challenge model, mice immunized with both conjugates showed a significant enhancement of the clearance of strain 25238 from lungs as compared with the control mice. Although both conjugates elicited reduced (relative to unconjugated CD or UspA) but significant levels of anti-CD or UspA antibodies, they did not show synergetic effects with anti-LOS antibodies on the bactericidal activity or the pulmonary bacterial clearance. Nevertheless, CD and UspA are safe and effective new carriers for dLOS-based or other potential carbohydrate-based conjugate vaccines to help thymus-independent carbohydrate antigens for production of anti-carbohydrate antibodies against target pathogens.
Collapse
Affiliation(s)
- Wei-Gang Hu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
9
|
Troncoso G, Sánchez S, Criado MT, Ferreirós C. Analysis of Moraxella catarrhalis outer membrane antigens cross-reactive with Neisseria meningitidis and Neisseria lactamica. ACTA ACUST UNITED AC 2004; 40:89-94. [PMID: 14734192 DOI: 10.1016/s0928-8244(03)00298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mouse sera against outer membrane proteins from Moraxella catarrhalis, Neisseria meningitidis and Neisseria lactamica, and human sera from both healthy individuals and patients convalescing from meningococcal meningitis were used to identify cross-reactive antigens. Mouse anti-N. meningitidis and anti-N. lactamica sera recognized 77, 62 and 32 kDa outer membrane antigens in M. catarrhalis strains; on the contrary, the meningococcal porin PorB (38-42 kDa) was recognized by one of the two anti-M. catarrhalis sera. Human sera from both healthy individuals and patients convalescing from meningococcal meningitis also showed cross-reactive antibodies against these proteins. The existence of cross-reactive antigens in M. catarrhalis and N. meningitidis (as well as in N. lactamica) could favor the development of natural immunization against both pathogens.
Collapse
Affiliation(s)
- Gemma Troncoso
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
10
|
Luke NR, Allen S, Gibson BW, Campagnari AA. Identification of a 3-deoxy-D-manno-octulosonic acid biosynthetic operon in Moraxella catarrhalis and analysis of a KdsA-deficient isogenic mutant. Infect Immun 2003; 71:6426-34. [PMID: 14573664 PMCID: PMC219605 DOI: 10.1128/iai.71.11.6426-6434.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipooligosaccharide (LOS), a predominant surface-exposed component of the outer membrane, has been implicated as a virulence factor in the pathogenesis of Moraxella catarrhalis infections. However, the critical steps involved in the biosynthesis and assembly of M. catarrhalis LOS currently remain undefined. In this study, we used random transposon mutagenesis to identify a 3-deoxy-D-manno-octulosonic acid (KDO) biosynthetic operon in M. catarrhalis with the gene order pyrG-kdsA-eno. The lipid A-KDO molecule serves as the acceptor onto which a variety of glycosyl transferases sequentially add the core and branch oligosaccharide extensions for the LOS molecule. KdsA, the KDO-8-phosphate synthase, catalyzes the first step of KDO biosynthesis and is an essential enzyme in gram-negative enteric bacteria for maintenance of bacterial viability. We report the construction of an isogenic M. catarrhalis kdsA mutant in strain 7169 by allelic exchange. Our data indicate that an LOS molecule consisting only of lipid A and lacking KDO glycosylation is sufficient to sustain M. catarrhalis survival in vitro. In addition, comparative growth and susceptibility assays were performed to assess the sensitivity of 7169kdsA11 compared to that of the parental strain. The results of these studies demonstrate that the native LOS molecule is an important factor in maintaining the integrity of the outer membrane and suggest that LOS is a critical component involved in the ability of M. catarrhalis to resist the bactericidal activity of human sera.
Collapse
Affiliation(s)
- Nicole R Luke
- Department of MicrobiologyImmunology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
11
|
Timpe JM, Holm MM, Vanlerberg SL, Basrur V, Lafontaine ER. Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities. Infect Immun 2003; 71:4341-50. [PMID: 12874311 PMCID: PMC166007 DOI: 10.1128/iai.71.8.4341-4350.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UspA1 and Hag proteins have previously been shown to be involved in the ability of the Moraxella catarrhalis wild-type strain O35E to bind to human Chang and A549 cells, respectively. In an effort to identify novel adhesins, we generated a plasmid library of M. catarrhalis DNA fragments, which was introduced into a nonadherent Escherichia coli strain. Recombinant E. coli bacteria were subsequently enriched for clones that gained the ability to bind to Chang and A549 cells, yielding the plasmid pELFOS190. Transposon mutagenesis of this plasmid identified the potential adhesin gene mcaP (M. catarrhalis adherence protein). Sequence analysis revealed that McaP is related to autotransporter proteins and has substantial similarity with the GDSL family of lipolytic enzymes, particularly the Moraxella bovis phospholipase B. Expression of the mcaP gene product by E. coli increased adherence to Chang, A549, and 16HBE14o(-) polarized human bronchial cells 50- to 100-fold. Spectrophotometric assays with p-nitrophenol derivatives also demonstrated that McaP is an esterase. Furthermore, thin-layer chromatography revealed that McaP cleaves both phosphatidylcholine and lysophosphatidylcholine. McaP releases fatty acids and glycerophosphorylcholine upon cleavage of phosphatidylcholine, thus exhibiting phospholipase B activity. The construction and characterization of isogenic M. catarrhalis O35E mutants demonstrated that the lack of McaP expression abolishes esterase activity and considerably decreases adherence to several human cell lines.
Collapse
Affiliation(s)
- Jennifer M Timpe
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | | | |
Collapse
|
12
|
Furano K, Campagnari AA. Inactivation of the Moraxella catarrhalis 7169 ferric uptake regulator increases susceptibility to the bactericidal activity of normal human sera. Infect Immun 2003; 71:1843-8. [PMID: 12654799 PMCID: PMC152102 DOI: 10.1128/iai.71.4.1843-1848.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a strict human pathogen and a significant cause of respiratory disease and otitis media. In direct response to these infections, research efforts have focused primarily on the identification of potential vaccine targets. The general biology of M. catarrhalis, however, including the mechanisms utilized to survive in the human host, remains poorly understood. Previous work has demonstrated that M. catarrhalis expresses iron-repressible proteins, suggesting the presence of iron acquisition systems under the control of a ferric uptake regulator (Fur). In this study M. catarrhalis fur has been cloned and sequenced from strain 7169. A deletion-insertion mutation of 7169 fur resulted in upregulation of iron-repressible outer membrane proteins in the absence and presence of iron. This mutant strain, 7169fur1, was significantly more sensitive to the bactericidal activity of normal human serum than the resistant wild-type strain. These data suggest that constitutive expression of iron-regulated proteins may provide multiple targets for human antibodies. In addition, the 7169 fur mutant provides an important tool for further investigation of the iron acquisition mechanisms utilized by M. catarrhalis.
Collapse
Affiliation(s)
- Kristin Furano
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|
13
|
Meier PS, Freiburghaus S, Martin A, Heiniger N, Troller R, Aebi C. Mucosal immune response to specific outer membrane proteins of Moraxella catarrhalis in young children. Pediatr Infect Dis J 2003; 22:256-62. [PMID: 12634588 DOI: 10.1097/01.inf.0000054827.86683.bd] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Moraxella catarrhalis is an important cause of otitis media. A number of candidate antigens for a future infant otitis media vaccine have been identified, but their mucosal immunogenicity induced by nasopharyngeal M. catarrhalis colonization has not been characterized. The aim of this study was to determine the salivary IgA response to M. catarrhalis outer membrane proteins (OMP) in young children. METHODS Children ages 1 to 24 months evaluated for acute respiratory tract infection were prospectively enrolled. M. catarrhalis nasopharyngeal colonization was determined by (1) selective culture and (2) detection by reverse transcription-PCR of messenger RNA specific for the OMP UspA1 and UspA2. Salivary IgA responses were detected by immunoblot analysis of M. catarrhalis OMP. Isogenic knockout mutants for UspA1, UspA2, hemagglutinin (Hag), transferrin-binding protein B (TbpB) and CopB were constructed for identification of specific target OMP. RESULTS Sixty-six patients were studied. The rates of M. catarrhalis colonization by culture, reverse transcription-PCR for messenger RNA and mRNA were 40, 94 and 58%, respectively. Anti-M. catarrhalis salivary IgA was detected in 62 patients (94%). IgA directed against a >250-kDa antigen (assigned to UspA1/UspA2 by mutant analysis) and a 200-kDa antigen (Hag) were detected in 65 and 70% of patients, respectively. Bands at 80 to 85 kDa (82%) consisted of IgA directed against monomeric UspA2, TbpB and CopB. CONCLUSIONS colonization occurring in early infancy is associated with a consistent mucosal immune response directed against the UspA proteins, Hag and other OMP. The data suggest that several M. catarrhalis OMP are immunogens of the nasopharyngeal mucosal immune system of infants.
Collapse
|
14
|
Jiao X, Hirano T, Hou Y, Gu XX. Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect Immun 2002; 70:5982-9. [PMID: 12379673 PMCID: PMC130355 DOI: 10.1128/iai.70.11.5982-5989.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 06/05/2002] [Accepted: 08/05/2002] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important human mucosal pathogen. This study investigated the effect of intranasal immunization with a detoxified-lipooligosaccharide-cross-reactive mutant of diphtheria toxin (dLOS-CRM) vaccine candidate on pulmonary clearance following an aerosol challenge of mice with M. catarrhalis. Intranasal immunization with dLOS-CRM plus cholera toxin induced a significantly dose-dependent increase of immunoglobulin A (IgA) and IgG in the nasal wash, lung lavage fluid, saliva, and fecal extract. In addition, serum IgG, IgM, and IgA against LOS of M. catarrhalis were detected. LOS-specific antibody-forming cells were found in the nasal passages, spleens, nasally associated lymphoid tissues, cervical lymph nodes, lungs, and Peyer's patches using an enzyme-linked immunospot assay. The dLOS-CRM vaccine induced a significant bacterial clearance (70 to 90%) of both homologous and heterologous strains in the lungs compared to that observed in the controls (P < 0.01). Intriguingly, intranasal immunization with dLOS-CRM showed a higher level of bacterial clearance compared with subcutaneous injections with dLOS-CRM. These data indicate that dLOS-CRM induces specific mucosal and systemic immunity through intranasal immunization and also provides effective bacterial clearance. On the basis of these results, we believe that dLOS-CRM should undergo continued testing to determine whether it would induce protective immune response in humans.
Collapse
Affiliation(s)
- Xinan Jiao
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
15
|
Luke NR, Karalus RJ, Campagnari AA. Inactivation of the Moraxella catarrhalis superoxide dismutase SodA induces constitutive expression of iron-repressible outer membrane proteins. Infect Immun 2002; 70:1889-95. [PMID: 11895952 PMCID: PMC127887 DOI: 10.1128/iai.70.4.1889-1895.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogens produce one or more superoxide dismutases (SODs), enzymes involved in the detoxification of endogenous and exogenous reactive oxygen species that are encountered during the infection process. One detectable cytoplasmic SOD was identified in the human mucosal pathogen Moraxella catarrhalis, and the gene responsible for the SOD activity, sodA, was isolated from a recent pediatric clinical isolate (strain 7169). Sequence analysis of the cloned M. catarrhalis 7169 DNA fragment revealed an open reading frame of 618 bp encoding a polypeptide of 205 amino acids with 48 to 67% identity to known bacterial manganese-cofactored SODs. An isogenic M. catarrhalis sodA mutant was constructed in strain 7169 by allelic exchange. In contrast to the wild-type 7169, the 7169::sodK20 mutant was severely attenuated for aerobic growth, even in rich medium containing supplemental amino acids, and exhibited extreme sensitivity to the redox-active agent methyl viologen. The ability of recombinant SodA to rescue the aerobic growth defects of E. coli QC774, a sodA sodB-deficient mutant, demonstrated the functional expression of SOD activity by cloned M. catarrhalis sodA. Indirect SOD detection assays were used to visualize both native and recombinant SodA activity in bacterial lysates. This study demonstrates that M. catarrhalis SodA plays a critical role in the detoxification of endogenous, metabolically produced oxygen radicals. In addition, the outer membrane protein (OMP) profile of 7169::sodK20 was consistent with iron starvation in spite of growth under iron-replete conditions. This novel observation indicates that M. catarrhalis strains lacking SodA constitutively express immunogenic OMPs previously described as iron repressible, and this potentially attenuated mutant strain may be an attractive vaccine candidate.
Collapse
Affiliation(s)
- Nicole R Luke
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
16
|
Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H. Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 2002; 66:239-47. [PMID: 11999394 DOI: 10.1271/bbb.66.239] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We found six bacteria capable of producing antifreeze protein (AFP) from Ross Island, Antarctica. Among these AFP-producing bacteria, strain No. 82 had the highest antifreeze activity and was identified as Moraxella sp. The optimum temperature and pH for the production of AFP were 5 degrees C and 7.0, respectively. After partially purifying the AFP from the culture supernatant using 60% saturation of ammonium sulfate, only the 52-kDa protein band (100 microg/ml) which eluted from SDS-PAGE indicated antifreeze activity by the formation of hexagonal crystals. Furthermore, we confirmed that this AFP was a lipoprotein by the lipid stain test and treatment with some enzymes and that it had no ice-nucleating activity. Also, the N-terminal amino acid sequence of this AFP had high similarity with that of outer membrane proteins from Moraxella (Branhamella) catarrhalis. This is the first report of AFP-producing bacteria in Antarctica and an antifreeze lipoprotein (AFLP) from Moraxella sp.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Verduin CM, Hol C, Fleer A, van Dijk H, van Belkum A. Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 2002; 15:125-44. [PMID: 11781271 PMCID: PMC118065 DOI: 10.1128/cmr.15.1.125-144.2002] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis (formerly known as Branhamella catarrhalis) has emerged as a significant bacterial pathogen of humans over the past two decades. During this period, microbiological and molecular diagnostic techniques have been developed and improved for M. catarrhalis, allowing the adequate determination and taxonomic positioning of this pathogen. Over the same period, studies have revealed its involvement in respiratory (e.g., sinusitis, otitis media, bronchitis, and pneumonia) and ocular infections in children and in laryngitis, bronchitis, and pneumonia in adults. The development of (molecular) epidemiological tools has enabled the national and international distribution of M. catarrhalis strains to be established, and has allowed the monitoring of nosocomial infections and the dynamics of carriage. Indeed, such monitoring has revealed an increasing number of B-lactamase-positive M. catarrhalis isolates (now well above 90%), underscoring the pathogenic potential of this organism. Although a number of putative M. catarrhalis virulence factors have been identified and described in detail, their relationship to actual bacterial adhesion, invasion, complement resistance, etc. (and ultimately their role in infection and immunity), has been established in a only few cases. In the past 10 years, various animal models for the study of M. catarrhalis pathogenicity have been described, although not all of these models are equally suitable for the study of human infection. Techniques involving the molecular manipulation of M. catarrhalis genes and antigens are also advancing our knowledge of the host response to and pathogenesis of this bacterial species in humans, as well as providing insights into possible vaccine candidates. This review aims to outline our current knowledge of M. catarrhalis, an organism that has evolved from an emerging to a well-established human pathogen.
Collapse
Affiliation(s)
- Cees M Verduin
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam EMCR, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Forsgren A, Brant M, Möllenkvist A, Muyombwe A, Janson H, Woin N, Riesbeck K. Isolation and characterization of a novel IgD-binding protein from Moraxella catarrhalis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2112-20. [PMID: 11489995 DOI: 10.4049/jimmunol.167.4.2112] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel surface protein of the bacterial species Moraxella catarrhalis that displays a high affinity for IgD (MID) was solubilized in Empigen and isolated by ion exchange chromatography and gel filtration. The apparent molecular mass of monomeric MID was estimated to approximately 200 kDa by SDS-PAGE. The mid gene was cloned and expressed in Escherichia coli. The complete mid nucleotide gene sequence was determined, and the deduced amino acid sequence consists of 2123 residues. The sequence of MID has no similarity to other Ig-binding proteins and differs from all previously described outer membrane proteins of M. catarrhalis. MID was found to exhibit unique Ig-binding properties. Thus, in ELISA, dot blots, and Western blots, MID bound two purified IgD myeloma proteins, four IgD myeloma sera, and finally one IgD standard serum. No binding of MID was detected to IgG, IgM, IgA, or IgE myeloma proteins. MID also bound to the surface-expressed B cell receptor IgD, but not to other membrane molecules on human PBLs. This novel Ig-binding reagent promises to be of theoretical and practical interest in immunological research.
Collapse
Affiliation(s)
- A Forsgren
- Department of Medical Microbiology, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Klein JO, Chonmaitree T, Loosmore S, Marchant CD, Ruuskanen O, Shinefield HR. Otitis media: a preventable disease? Proceedings of an international symposium organized by the Marcel Mérieux Foundation, Veyrier-du-Lac, France, February 13 to 16, 2000. Pediatr Infect Dis J 2001; 20:473-81. [PMID: 11368103 DOI: 10.1097/00006454-200105000-00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J O Klein
- Boston University School of Medicine, MA, USA.
| | | | | | | | | | | |
Collapse
|