1
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Romano A, Brown N, Ashwin H, Doehl JSP, Hamp J, Osman M, Dey N, Rani GF, Ferreira TR, Kaye PM. Interferon-γ-Producing CD4 + T Cells Drive Monocyte Activation in the Bone Marrow During Experimental Leishmania donovani Infection. Front Immunol 2021; 12:700501. [PMID: 34557190 PMCID: PMC8453021 DOI: 10.3389/fimmu.2021.700501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Ly6Chi inflammatory monocytes develop in the bone marrow and migrate to the site of infection during inflammation. Upon recruitment, Ly6Chi monocytes can differentiate into dendritic cells or macrophages. According to the tissue environment they can also acquire different functions. Several studies have described pre-activation of Ly6Chi monocytes in the bone marrow during parasitic infection, but whether this process occurs during experimental visceral leishmaniasis and, if so, the mechanisms contributing to their activation are yet to be established. In wild type C57BL/6 (B6) mice infected with Leishmania donovani, the number of bone marrow Ly6Chi monocytes increased over time. Ly6Chi monocytes displayed a highly activated phenotype from 28 days to 5 months post infection (p.i), with >90% expressing MHCII and >20% expressing iNOS. In comparison, in B6.Rag2-/- mice <10% of bone marrow monocytes were MHCII+ at day 28 p.i., an activation deficiency that was reversed by adoptive transfer of CD4+ T cells. Depletion of CD4+ T cells in B6 mice and the use of mixed bone marrow chimeras further indicated that monocyte activation was driven by IFNγ produced by CD4+ T cells. In B6.Il10-/- mice, L. donovani infection induced a faster but transient activation of bone marrow monocytes, which correlated with the magnitude of CD4+ T cell production of IFNγ and resolution of the infection. Under all of the above conditions, monocyte activation was associated with greater control of parasite load in the bone marrow. Through reinfection studies in B6.Il10-/- mice and drug (AmBisome®) treatment of B6 mice, we also show the dependence of monocyte activation on parasite load. In summary, these data demonstrate that during L. donovani infection, Ly6Chi monocytes are primed in the bone marrow in a process driven by CD4+ T cells and whereby IFNγ promotes and IL-10 limits monocyte activation and that the presence of parasites/parasite antigen plays a crucial role in maintaining bone marrow monocyte activation.
Collapse
Affiliation(s)
- Audrey Romano
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Najmeeyah Brown
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Johannes S P Doehl
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jonathan Hamp
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Gulab Fatima Rani
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Tiago Rodrigues Ferreira
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
4
|
Wu X, Fan Z, Chen M, Chen Y, Rong D, Cui Z, Yuan Y, Zhuo L, Xu Y. Forkhead transcription factor FOXO3a mediates interferon-γ-induced MHC II transcription in macrophages. Immunology 2019; 158:304-313. [PMID: 31509237 DOI: 10.1111/imm.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophages are professional antigen-presenting cells relying on the expression of class II major histocompatibility complex (MHC II) genes. Interferon-γ (IFN-γ) activates MHC II transcription via the assembly of an enhanceosome centred on class II trans-activator (CIITA). In the present study, we investigated the role of the forkhead transcription factor FOXO3a in IFN- γ-induced MHC II transcription in macrophages. Knockdown of FOXO3a, but not FOXO1 or FOXO4, diminished IFN-γ-induced MHC II expression in RAW cells. On the contrary, over-expression of FOXO3a, but neither FOXO1 nor FOXO4, enhanced CIITA-mediated trans-activation of the MHC II promoter. IFN-γ treatment promoted the recruitment of FOXO3a to the MHC II promoter. Co-immunoprecipitation and RE-ChIP assays showed that FOXO3a was a component of the MHC II enhanceosome forming interactions with CIITA, RFX5, RFXB and RFXAP. FOXO3a contributed to MHC II transcription by altering histone modifications surrounding the MHC II promoter. Of interest, FOXO3a was recruited to the type IV CIITA promoter and directly activated CIITA transcription by interacting with signal transducer of activation and transcription 1 in response to IFN-γ stimulation. In conclusion, our data unveil a novel role for FOXO3a in the regulation of MHC II transcription in macrophages.
Collapse
Affiliation(s)
- Xiaoyan Wu
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Ming Chen
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Chen
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Danyan Rong
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwei Cui
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA. Sci Rep 2017; 7:40531. [PMID: 28094290 PMCID: PMC5240148 DOI: 10.1038/srep40531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transactivator (CIITA) mediates MHC II induction by interferon gamma (IFN-γ). CIITA activity can be fine-tuned at the post-translational level, but the mechanisms are not fully appreciated. We investigated the role of protein arginine methyltransferase 1 (PRMT1) in this process. We report here that CIITA interacted with PRMT1. IFN-γ treatment down-regulated PRMT1 expression and attenuated PRMT1 binding on the MHC II promoter. Over-expression of PRMT1 repressed MHC II promoter activity while PRMT1 depletion enhanced MHC II transactivation. Mechanistically, PRMT1 methylated CIITA and promoted CIITA degradation. Therefore, our data reveal a previously unrecognized role for PRMT1 in suppressing CIITA-mediated MHC II transactivation.
Collapse
|
6
|
Liu JH, Bian YM, Xie Y, Lu DP. Epigenetic modification and preliminary investigation of the mechanism of the immune evasion of HL-60 cells. Mol Med Rep 2015; 12:1059-65. [PMID: 25815463 PMCID: PMC4438930 DOI: 10.3892/mmr.2015.3526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/24/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the effect of epigenetic modification of class II transactivator (CIITA) methylation on histocompatibility complex (MHC) class II expression and the immune evasion of leukemia HL-60 cells. HL-60 cells were treated with various concentrations of 5-aza-2′deoxycytidine (5-Aza-CdR) and 0.5 μmol/l suberoyl-anilide hydroxamic acid (SAHA) for 24 h and then stimulated by interferon γ (IFN-γ) for 48 h. The mRNA levels of MHC class I, II and co-stimulatory molecules were quantified by reverse transcription polymerase chain reaction (RT-PCR). The levels of CIITA protein were determined by western blot analysis, and the CpG island methylation ratios in the CIITA promoter IV (CIITApIV) were analyzed by bisulfite-sequencing PCR (BSP). MHC I as well as the co-stimulatory molecules CD40 and CD80 were significantly increased following treatment with 5-Aza-CdR + SAHA + IFN-γ (epigenetic groups) compared with those in the control group and IFN-γ group (P<0.05). The expression of MHC class II and CIITA was restored and increased in an 5-Aza-CdR concentration-dependent manner in the three epigenetic groups. The results of the BSP assay showed that the methylation rate of CIITApIV CpG sites decreased with the treatment of epigenetic modification and negatively correlated to the 5-Aza-CdR concentration. This demonstrated that the negative expression of CIITA protein was the key reason for the loss of MHC II expression in HL-60 cells. The results of the present study may help to illustrate the mechanism of immune evasion in HL-60 cells.
Collapse
Affiliation(s)
- Jin Hong Liu
- Department of Hematology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Yong Mei Bian
- Department of Pediatrics, Minhang District Maternal and Child Health Care Hospital of Shanghai, Shanghai 201102, P.R. China
| | - Yi Xie
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Dao Pei Lu
- Department of Hematology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
7
|
Tao Y, Lin F, Li T, Xie J, Shen C, Zhu Z. Epigenetically Modified Pancreatic Carcinoma PANC-1 Cells Can Act as Cancer Vaccine to Enhance Antitumor Immune Response in Mice. Oncol Res 2014; 21:307-16. [DOI: 10.3727/096504014x13983417587320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Yu S, Ao J, Chen X. Molecular characterization and expression analysis of MHC class II alpha and beta genes in large yellow croaker (Pseudosciaena crocea). Mol Biol Rep 2009; 37:1295-307. [PMID: 19301143 DOI: 10.1007/s11033-009-9504-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/04/2009] [Indexed: 11/25/2022]
Abstract
MHC class II molecules play an important role in the activation of CD4(+) T cells, which are the central orchestrating cells of an immune response. Here, we report the cloning of MHC class II alpha and beta cDNAs from large yellow croaker (Pscr-DAAs and Pscr-DAB) by expressed sequence tags analysis and RACE-PCR techniques. Three different class II alpha and two class II beta sequences were obtained from spleens of two individual fish. Each of the three class II alpha sequences encodes a polypeptide of 239 amino acids while the two class II beta cDNA sequences encode for a protein of 249 aa. All the characteristic features of MHC class II chain structure could be identified in the deduced proteins of three class II alpha and two class II beta sequences, including the leader peptide, alpha1/beta1 and alpha2/beta2 domains, connecting peptide and transmembrane and cytoplasmic regions, as well as conserved cysteines and N-glycosylation site. RT-PCR analysis showed that MHC class II alpha and beta mRNAs were broadly expressed in various tissues examined, although at different levels. Upon stimulation with inactivated trivalent bacterial vaccine or polyinosinic polycytidylic acid (poly(I:C)), the expression levels of both alpha and beta genes were obviously up-regulated in intestine, kidney and spleen. Real-time PCR analysis demonstrated that the expression levels of class II alpha and beta were quickly up-regulated in spleen, kidney, and intestine at 12 h after induction with poly(I:C), while their expression levels significantly increased at 48 h upon immunization with bacterial vaccine, indicating that the up-regulation of both class II alpha and beta expression was induced by bacterial vaccine or poly(I:C) at the early phase of induction, and that class II alpha and beta transcripts were quicker up-regulated by poly I:C than by bacterial vaccine.
Collapse
Affiliation(s)
- Suhong Yu
- Department of Biology, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | | | | |
Collapse
|
9
|
Prod'homme T, Drénou B, De Ruyffelaere C, Barbieri G, Wiszniewski W, Bastard C, Charron D, Alcaide-Loridan C. Defective class II transactivator expression in a B lymphoma cell line. Leukemia 2004; 18:832-40. [PMID: 14973505 DOI: 10.1038/sj.leu.2403315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of MHC class II expression in B-cell lymphoma has been associated with a higher tumorigenicity resulting from lower titers of tumor-infiltrating lymphocytes. This report aims towards the identification of the molecular mechanism leading to defective MHC class II expression in a B-cell lymphoma cell line, Rec-1. We evidenced a coordinated alteration of HLA-D gene transcription, reminiscent of B lymphoblastoid cell lines from patients with MHC class II deficiency. Genetic complementation performed between these cell lines and the lymphoma cells indicated that Rec-1 is altered in the MHC2TA gene. MHC2TA encodes the class II transactivator (CIITA), the master regulator of HLA-D gene expression. However, the coding sequence of the Rec-1 CIITA transcript did not reveal any mutation that could hamper the activity of the encoded protein. In agreement with the genetic complementation analysis, we evidenced a highly residual CIITA protein expression in the Rec-1 cell line resulting from a transcriptional defect affecting MHC2TA expression. Anti-HLA-DR monoclonal antibody treatment has proved efficient in the destruction of B lymphoma cells. Our data indicate that the appearance of variants losing CIITA, and thereby HLA-DR, expression will require a thorough monitoring during such immunotherapy protocols.
Collapse
Affiliation(s)
- T Prod'homme
- INSERM U396, Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Das S, Ward SV, Markle D, Samuel CE. DNA damage-binding proteins and heterogeneous nuclear ribonucleoprotein A1 function as constitutive KCS element components of the interferon-inducible RNA-dependent protein kinase promoter. J Biol Chem 2003; 279:7313-21. [PMID: 14645369 DOI: 10.1074/jbc.m312585200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein kinase regulated by RNA (PKR) plays important roles in many cellular processes including virus multiplication and cell growth, differentiation, and apoptosis. The promoter of the PKR gene possesses a novel 15-bp element designated KCS, positioned upstream of a consensus interferon (IFN)-stimulated response element, that is required for both basal and interferon-inducible transcription. Protein binding to the KCS element is not dependent upon IFN treatment and correlates with transcriptional activity of the PKR promoter. The identity of KCS-binding proteins (KBP) that selectively bind at the KCS element is largely unknown, except for the transcription factor Sp1. We now have purified KBP from HeLa cell nuclear extracts by ion-exchange and DNA-affinity chromatography steps and then identified four constituent proteins of the KBP complex by mass spectrometry and immunochemistry: KBP120 and KBP45 are the damaged DNA-binding protein subunits, p127 DDB1 and p48 DDB2, respectively; KBP100 is the transcription factor Sp1; and KBP35 is the heterogeneous nuclear ribonucleoprotein A1. The steady-state levels of these four KCS-binding proteins in human cells are not altered by IFN treatment. Components of the KBP complex bind selectively and constitutively to the KCS element in the absence of IFN treatment, both in vitro as measured by competition electrophoretic mobility shift assay (EMSA) and DNA pull-down assays and in vivo as measured by chromatin immunoprecipitation assays. Depletion of DDB2 by antisense strategy reduces KBP complex formation by EMSA. These results provide new insight into the biochemical identity and activity of proteins involved in PKR promoter function.
Collapse
Affiliation(s)
- Sonali Das
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
11
|
Prod'homme T, Dekel B, Barbieri G, Lisowska-Grospierre B, Katz R, Charron D, Alcaide-Loridan C, Pollack S. Splicing defect in RFXANK results in a moderate combined immunodeficiency and long-duration clinical course. Immunogenetics 2003; 55:530-9. [PMID: 14574520 DOI: 10.1007/s00251-003-0609-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 08/25/2003] [Indexed: 10/26/2022]
Abstract
MHC class II deficiency provokes a severe immunodeficiency characterized by a lack of antigen-specific immune response. In the absence of bone marrow transplantation (the only curative treatment), patients affected by this genetic recessive disease die in early childhood. However, others and we have recently described cases of mild or asymptomatic immunodeficiencies with defects in either CIITA (class II transactivator) or RFX5, both proteins required for the transcription of HLA-D genes. We describe in this report the first case of moderate immunodeficiency resulting from a defect in RFXANK, another transcription factor essential for HLA-D expression. The patient did not display any detectable expression of MHC class II molecules on B lymphocytes, monocytes or activated T lymphocytes. Accordingly HLA-D transcription was altered in the corresponding B-lymphoblastoid cell line. The defect in RFXANK was observed both at the transcript and protein level. Indeed a homozygous IVS4+5G>A mutation was evidenced in RFXANK, and shown to hamper the splicing of intron 4. However, we had shown previously that a defect in intron 4 can lead to the skipping of exon 4, and that the resulting truncated protein retains the capacity to activate HLA-DR expression. Therefore, like the two cases of moderate immunodeficiencies described previously, we demonstrate that the RFXANK defect presented here is coherent with a residual activity of the mutant protein. We thus propose that the common feature displayed by mildly immunodeficient patients is the leakiness of the mutations, which might allow a local or temporal expression of MHC class II molecules.
Collapse
Affiliation(s)
- Thomas Prod'homme
- INSERM U396, Centre de Recherches Biomedicales des Cordeliers, 15 rue de l'Ecole de Medecine, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ilangumaran S, Finan D, La Rose J, Raine J, Silverstein A, De Sepulveda P, Rottapel R. A positive regulatory role for suppressor of cytokine signaling 1 in IFN-gamma-induced MHC class II expression in fibroblasts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5010-20. [PMID: 12391216 DOI: 10.4049/jimmunol.169.9.5010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is rapidly induced following stimulation by several cytokines. SOCS1 negatively regulates cytokine receptor signal transduction by inhibiting Janus family tyrosine kinases. Lack of such feedback regulation underlies the premature death of SOCS1(-/-) mice due to unbridled IFN-gamma signaling. We used mouse embryo fibroblasts derived from SOCS1(-/-) mice to investigate the role of SOCS1 in IFN-gamma signaling pathways. SOCS1(-/-) fibroblasts were exquisitely sensitive to the IFN-gamma-mediated growth arrest and showed sustained STAT1 phosphorylation. However, SOCS1(-/-) fibroblasts were inefficient in MHC class II surface expression following IFN-gamma stimulation, despite a marked induction of the MHC class II transactivator and MHC class II gene expression. Retroviral transduction of wild-type SOCS1 relieved the growth-inhibitory effects of IFN-gamma in SOCS1(-/-) fibroblasts by inhibiting STAT1 activation. SOCS1R105K, carrying a mutation within the phosphotyrosine-binding pocket of the Src homology 2 domain, did not inhibit STAT1 phosphorylation, yet considerably inhibited IFN-gamma-mediated growth arrest. Strikingly, expression of SOCS1R105K restored the IFN-gamma-induced MHC class II expression in SOCS1(-/-) cells, indicating that expression of SOCS1 facilitates MHC class II expression in fibroblasts. Our results show that SOCS1, in addition to its negative regulatory role of inhibiting Janus kinases, has an unanticipated positive regulatory function in retarding the degradation of IFN-gamma-induced MHC class II proteins in fibroblasts.
Collapse
|
13
|
Naves R, Lennon AM, Barbieri G, Reyes L, Puga G, Salas L, Deffrennes V, Rosemblatt M, Fellous M, Charron D, Alcaïde-Loridan C, Bono MR. MHC class II-deficient tumor cell lines with a defective expression of the class II transactivator. Int Immunol 2002; 14:481-91. [PMID: 11978778 DOI: 10.1093/intimm/14.5.481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MHC class II expression defects have been evidenced in several human tumor cell lines originating from lung cancers or retinoblastoma. Accordingly, the mouse adenocarcinoma and fibrosarcoma cell lines, RAG and L(tk-), do not express I-A and I-E molecules even when treated with IFN-gamma. Here we show that fusion of both cell lines restores the inducible expression of MHC class II, thereby demonstrating that they present different and recessive alterations outside the MHC class II locus. CIITA, the MHC class II transactivator, controls the tissue-specific expression of MHC class II genes and creates the architecture of the transcriptional complex that binds to the MHC class II gene promoters. In L(tk-) cells, C2ta transcripts, expressed from the gene encoding CIITA, were indeed detected in severely limited amounts, with a defect in C2ta transcription initiation. In agreement we show here that the L(tk-) cell line does not express the CIITA protein. In contrast, in the RAG cell line, C2ta transcripts were expressed at normal levels, from the proper initiation site. The nucleotide sequencing of the CIITA cDNA from RAG did not reveal any mutation. However, the CIITA protein was not detected. These data evidence a new type of defect in a MHC class II-defective tumor cell line, as we show here that the alteration in the RAG cells occurs downstream of C2ta transcription. The RAG mutation might therefore reside in the C2ta transcript nuclear export or translation, or in the stability of the CIITA protein.
Collapse
Affiliation(s)
- Rodrigo Naves
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, and Millennium Institute for Fundamental and Applied Biology, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sarol LC, Imai K, Asamitsu K, Tetsuka T, Barzaga NG, Okamoto T. Inhibitory effects of IFN-gamma on HIV-1 replication in latently infected cells. Biochem Biophys Res Commun 2002; 291:890-6. [PMID: 11866448 DOI: 10.1006/bbrc.2002.6532] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The progress in the use of HAART for the treatment of HIV-infected individuals has been limited by the development of viral resistance and the maintenance of viral latency. New therapeutic strategies geared toward improvement in the host's immune response are now being considered. We found that IFN-gamma induces CIITA through the JAK-STAT pathway and inhibits HIV-1 replication in latently infected cells. Its effect appears to be mediated through the reciprocal action of Tat and CIITA. With this beneficial effect, IFN-gamma and its inducers can be considered as an adjunct to the currently available therapy. We also addressed the safety of using simvastatin, an HMG-CoA reductase inhibitor, to treat dyslipidemia often associated with the use of protease inhibitors. Simvastatin did not show any unfavorable effects on HIV replication, thus could be used safely unless there are any drug interactions when administered.
Collapse
Affiliation(s)
- Lilen C Sarol
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Landmann S, Mühlethaler-Mottet A, Bernasconi L, Suter T, Waldburger JM, Masternak K, Arrighi JF, Hauser C, Fontana A, Reith W. Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class II transactivator (CIITA) expression. J Exp Med 2001; 194:379-91. [PMID: 11514596 PMCID: PMC2193505 DOI: 10.1084/jem.194.4.379] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell surface expression of major histocompatibility complex class II (MHCII) molecules is increased during the maturation of dendritic cells (DCs). This enhances their ability to present antigen and activate naive CD4(+) T cells. In contrast to increased cell surface MHCII expression, de novo biosynthesis of MHCII mRNA is turned off during DC maturation. We show here that this is due to a remarkably rapid reduction in the synthesis of class II transactivator (CIITA) mRNA and protein. This reduction in CIITA expression occurs in human monocyte-derived DCs and mouse bone marrow-derived DCs, and is triggered by a variety of different maturation stimuli, including lipopolysaccharide, tumor necrosis factor alpha, CD40 ligand, interferon alpha, and infection with Salmonella typhimurium or Sendai virus. It is also observed in vivo in splenic DCs in acute myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalitis. The arrest in CIITA expression is the result of a transcriptional inactivation of the MHC2TA gene. This is mediated by a global repression mechanism implicating histone deacetylation over a large domain spanning the entire MHC2TA regulatory region.
Collapse
Affiliation(s)
- Salomé Landmann
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, 1211 Geneva, Switzerland
| | - Annick Mühlethaler-Mottet
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, 1211 Geneva, Switzerland
| | - Luca Bernasconi
- Section of Clinical Immunology, University Hospital Zürich, 8044 Zürich, Switzerland
| | - Tobias Suter
- Section of Clinical Immunology, University Hospital Zürich, 8044 Zürich, Switzerland
| | - Jean-Marc Waldburger
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, 1211 Geneva, Switzerland
| | - Krzysztof Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, 1211 Geneva, Switzerland
| | - Jean-François Arrighi
- Division of Immunology and Allergy, Department of Dermatology, University Hospital Geneva, 1211 Geneva, Switzerland
| | - Conrad Hauser
- Division of Immunology and Allergy, Department of Dermatology, University Hospital Geneva, 1211 Geneva, Switzerland
| | - Adriano Fontana
- Section of Clinical Immunology, University Hospital Zürich, 8044 Zürich, Switzerland
| | - Walter Reith
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Beresford GW, Boss JM. CIITA coordinates multiple histone acetylation modifications at the HLA-DRA promoter. Nat Immunol 2001; 2:652-7. [PMID: 11429551 DOI: 10.1038/89810] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present here an in vivo view of major histocompatibility complex (MHC) class II promoter assembly, nucleosome modifications and gene expression mediated by the class II transactivator (CIITA). Acetylation and deacetylation of histones H3 and H4 at the HLA-DRA promoter were found to occur during a time-course that depended on CIITA expression and binding. Expression of a CIITA mutant, which lacked the activation domain, induced H4 but not H3 histone acetylation. This suggested that multiple histone acetyltransferase activities are associated with MHC class II expression. H4 acetylation was mapped to Lys8, which implicated several histone acetyltransferases as possible modulators of this activity.
Collapse
Affiliation(s)
- G W Beresford
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
17
|
Abstract
HIV infects CD4(+) macrophages and lymphocytes. Before the development of AIDS, HIV weakens the immune system in part by blocking antigen processing and presentation via major histocompatibility complex (MHC) molecules. In this report, we discuss how HIV escapes the immune surveillance by MHC II molecules.
Collapse
Affiliation(s)
- S Kanazawa
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0703, USA
| | | |
Collapse
|
18
|
Vihinen M, Arredondo-Vega FX, Casanova JL, Etzioni A, Giliani S, Hammarström L, Hershfield MS, Heyworth PG, Hsu AP, Lähdesmäki A, Lappalainen I, Notarangelo LD, Puck JM, Reith W, Roos D, Schumacher RF, Schwarz K, Vezzoni P, Villa A, Väliaho J, Smith CI. Primary immunodeficiency mutation databases. ADVANCES IN GENETICS 2001; 43:103-88. [PMID: 11037300 DOI: 10.1016/s0065-2660(01)43005-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies are intrinsic defects of immune systems. Mutations in a large number of cellular functions can lead to impaired immune responses. More than 80 primary immunodeficiencies are known to date. During the last years genes for several of these disorders have been identified. Here, mutation information for 23 genes affected in 14 immunodefects is presented. The proteins produced are employed in widely diverse functions, such as signal transduction, cell surface receptors, nucleotide metabolism, gene diversification, transcription factors, and phagocytosis. Altogether, the genetic defect of 2,140 families has been determined. Diseases with X-chromosomal origin constitute about 70% of all the cases, presumably due to full penetrance and because the single affected allele causes the phenotype. All types of mutations have been identified; missense mutations are the most common mutation type, and truncation is the most common effect on the protein level. Mutational hotspots in many disorders appear in CPG dinucleotides. The mutation data for the majority of diseases are distributed on the Internet with a special database management system, MUTbase. Despite large numbers of mutations, it has not been possible to make genotype-phenotype correlations for many of the diseases.
Collapse
Affiliation(s)
- M Vihinen
- Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Gene therapy offers an attractive option to the most severe forms of primary immunodeficiency diseases. Identification of disease-associated genes as well as advances in the technology of gene transfer into hematopoietic progenitor cells have set the basis for the first clinical trials. Settings characterized by the potential for a selective advantage provided to transduced cells are the first diseases to target. The recent example of successful treatment of severe combined immunodeficiency-X1 (gammac deficiency) illustrates this potential.
Collapse
Affiliation(s)
- A Fischer
- Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|