1
|
Nishida H, Suzuki R, Nakajima K, Hayashi M, Morimoto C, Yamada T. HDAC Inhibition Induces CD26 Expression on Multiple Myeloma Cells via the c-Myc/Sp1-mediated Promoter Activation. CANCER RESEARCH COMMUNICATIONS 2024; 4:349-364. [PMID: 38284882 PMCID: PMC10854391 DOI: 10.1158/2767-9764.crc-23-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/13/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
CD26 is ubiquitously and intensely expressed in osteoclasts in patients with multiple myeloma, whereas its expression in plasma cells of patients with multiple myeloma is heterogeneous because of its cellular diversity, immune escape, and disease progression. Decreased expression levels of CD26 in myeloma cells constitute one of the mechanisms underlying resistance to humanized anti-CD26 mAb therapy in multiple myeloma. In the current study, we show that histone deacetylase inhibition (HDACi) with broad or class-specific inhibitors involves the induction of CD26 expression on CD26neg myeloma cells both transcriptionally and translationally. Furthermore, dipeptidyl peptidase Ⅳ (DPPⅣ) enzymatic activity was concomitantly enhanced in myeloma cells. Combined treatment with HDACi plus CD26mAb synergistically facilitated lysis of CD26neg myeloma cells not only by antibody-dependent cellular cytotoxicity but also by the direct effects of mAb. Of note, its combination readily augmented lysis of CD26neg cell populations, refractory to CD26mAb or HDACi alone. Chromatin immunoprecipitation assay revealed that HDACi increased acetylation of histone 3 lysine 27 at the CD26 promoter of myeloma cells. Moreover, in the absence of HDACi, c-Myc was attached to the CD26 promoter via Sp1 on the proximal G-C box of myeloma cells, whereas, in the presence of HDACi, c-Myc was detached from Sp1 with increased acetylation of c-Myc on the promoter, leading to activation of the CD26 promoter and initiation of transcription in myeloma cells. Collectively, these results confirm that HDACi plays crucial roles not only through its anti-myeloma activity but by sensitizing CD26neg myeloma cells to CD26mAb via c-Myc/Sp1-mediated CD26 induction, thereby augmenting its cytotoxicity. SIGNIFICANCE There is a desire to induce and sustain CD26 expression on multiple myeloma cells to elicit superior anti-myeloma response by humanized anti-CD26 mAb therapy. HDACi upregulates the expression levels of CD26 on myeloma cells via the increased acetylation of c-MycK323 on the CD26 promoter, leading to initiation of CD26 transcription, thereby synergistically augments the efficacy of CD26mAb against CD26neg myeloma cells.
Collapse
Grants
- 20K07682,16K07180 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and technology of Japan (C)
- 19H03519 Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports and technology of Japan (B)
- 19K22542 Grant-in-Aid for Exploratory Research form the Ministry of Education, Culture Sports, Science and Technology of Japan
- 19H03519 Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports and technology of Japan (B)
- 19K22542 Grant-in-Aid for Exploratory Research form the Ministry of Education, Culture Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Hiroko Nishida
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Division of Hematology, Department of Internal of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Reiko Suzuki
- Department of Collaborative Research Resources, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kiyora Nakajima
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mutsumi Hayashi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Chikao Morimoto
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Pan J, Li Y, Gao W, Jiang Q, Geng L, Ding J, Li S, Li J. Transcription factor Sp1 transcriptionally enhances GSDME expression for pyroptosis. Cell Death Dis 2024; 15:66. [PMID: 38238307 PMCID: PMC10796635 DOI: 10.1038/s41419-024-06455-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Gasdermin-E (GSDME), the executioner of pyroptosis when cleaved by caspase 3, plays a crucial role in tumor defense and the response to chemotherapy drugs in cells. So far, there are poorly known mechanisms for the expression regulation of GSDME during cell death. Here, we identify the transcription factor Sp1 (Specificity protein 1) as a positive regulator of GSDME-mediated pyroptosis. Sp1 directly interacts with the GSDME promoter at -36 ~ -28 site and promotes GSDME gene transcription. Further, Sp1 knockdown or inhibition suppresses GSDME expression, thus reducing chemotherapy drugs (topotecan, etoposide, doxorubicin, sorafinib and cisplatin) induced cell pyroptosis. The regulation process synergizes with STAT3 (Signal transducer and activator of transcription 3) activity and antagonizes with DNA methylation but barely affects GSDMD-mediated pyroptosis or TNF-induced necroptosis. Our current finding reveals a new regulating mechanism of GSDME expression, which may be a viable target for the intervention of GSDME-dependent inflammatory diseases and cancer therapy.
Collapse
Affiliation(s)
- Jiasong Pan
- Department of Neurology, Huashan Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Wenqing Gao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Qizhou Jiang
- Division of Natural Science, Duke Kunshan University, Jiangsu, China
| | - Lu Geng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Suhua Li
- Division of Natural Science, Duke Kunshan University, Jiangsu, China.
| | - Jixi Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China.
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Kandeeban S, Ishwarya S, Nareshkumar RN, Gunalan V, Porkodi P, Shyam Sundar J, Asokan R, Sharada R, Sripriya K, George R, Sripriya S. A Study on the Candidate Gene Association and Interaction with Measures of UV Exposure in Pseudoexfoliation Patients from India. Curr Eye Res 2023; 48:1144-1152. [PMID: 37556844 DOI: 10.1080/02713683.2023.2246689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Environmental and genetic factors are associated with development of Pseudoexfoliation syndrome (XFS). Here we intended to elucidate the association of candidate genes in relevance to UV exposure in these patients. METHODS This is a case-control study of 309 subjects (N = 219 controls and 90 XFS cases) from India. PCR based direct sequencing was performed for candidate genes (LOXL1, POMP and TMEM136) followed by genotype and haplotype analysis. The promoter methylation status was assessed by Methylation specific PCR based direct sequencing of genomic DNA for all samples. The methylation status was compared with that of primary fibroblasts cultures established from patient's Tenon's tissue samples in subset of these patients. RESULTS SNPs rs3825942, rs41435250, rs8818 (LOXL1) and rs3737528 (POMP) showed significant association with XFS. LOXL1 gene haplotype GAGC (rs1048661- rs3825942- rs41435250-rs8818) was associated with lower risk for XFS with a p value 4.1961 × 10-6 (OR =0; 95%CI, 0.000-0.003). POMP gene haplotypes for intronic SNPs (rs1340815- rs3737528- rs913797) TCC and TTC were associated with increased risk for the disease (OR > 1.0). Significant correlation for SNPs rs3825942 of LOXL1 (ρ= -0.132) and rs3737528 of POMP (ρ = 0.12) was observed with measure of lifetime UV exposure (CUVAF value). Reduced LOXL1 gene expression was observed in cultured tenon fibroblasts from the patients that correlated with differential methylation of the Sp-1 binding sites at -253, -243bp upstream to the transcription start site of LOXL1 promoter region. CONCLUSION Our results suggest a possible interaction for LOXL1 gene haplotype (GAGC) with the measure of ocular UV exposure in pseudoexfoliation syndrome.
Collapse
Affiliation(s)
- Suganya Kandeeban
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
- School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Sureshkumar Ishwarya
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - R N Nareshkumar
- Department of Biochemistry and Cell Biology, Vision Research Foundation, R S Mehta Jain, Chennai, India
| | - Vaishaali Gunalan
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - P Porkodi
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
| | - J Shyam Sundar
- Department of Biochemistry and Cell Biology, Vision Research Foundation, R S Mehta Jain, Chennai, India
| | - Rashima Asokan
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - R Sharada
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Krishnamoorthy Sripriya
- Smt. Jadhavbai Nathamal Singhvee Glaucoma Services, Medical Research Foundation, Chennai, India
| | - Ronnie George
- Smt. Jadhavbai Nathamal Singhvee Glaucoma Services, Medical Research Foundation, Chennai, India
| | - Sarangapani Sripriya
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
| |
Collapse
|
4
|
Feltrin C, Oliveira Simões CM, Marques Sincero TC. Development of a cell-based reporter assay for detection of Human alphaherpesviruses. Mol Cell Probes 2022; 62:101806. [DOI: 10.1016/j.mcp.2022.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
|
5
|
Liu S, Bu X, Kan A, Luo L, Xu Y, Chen H, Lin X, Lai Z, Wen D, Huang L, Shi M. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett 2022; 528:16-30. [PMID: 34958891 DOI: 10.1016/j.canlet.2021.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Oxaliplatin-based chemotherapy is widely used to treat advanced hepatocellular carcinoma (HCC), but many patients develop drug resistance that leads to tumor recurrence. Cancer stem cells (CSCs) are known to contribute to chemoresistance, the underlying mechanism, however, remains largely unknown. In this study, we discovered a specificity protein 1 (SP1)-induced long noncoding RNA--DPPA2 upstream binding RNA (DUBR) and its high expression in HCC tissues and liver CSCs. DUBR was associated with HCC progression and poor chemotherapy response. Moreover, DUBR facilitated the stemness and oxaliplatin resistance of HCC in vitro and in vivo. Mechanistically, DUBR upregulated cancerous inhibitor of protein phosphatase 2A (CIP2A) expression through E2F1-mediated transcription regulation. DUBR also exerted function by binding microRNA (miR)-520d-5p as a competing endogenous RNA to upregulate CIP2A at mRNA level. CIP2A, in turn, stabilized E2F1 protein and activated the Notch1 signaling pathway, thereby increasing the stemness feature of HCC and leading to chemoresistance. In conclusion, we identified SP1/DUBR/E2F1-CIP2A as a critical axis to activate the Notch1 signaling pathway and promote stemness and chemoresistance of HCC. Therefore, DUBR could be a potential target in HCC treatment.
Collapse
Affiliation(s)
- S Liu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xy Bu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - L Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yj Xu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hl Chen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xj Lin
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zc Lai
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ds Wen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lc Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
6
|
DeLaForest A, Kohlnhofer BM, Franklin OD, Stavniichuk R, Thompson CA, Pulakanti K, Rao S, Battle MA. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol 2021; 12:1391-1413. [PMID: 34111600 PMCID: PMC8479485 DOI: 10.1016/j.jcmgh.2021.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS The transcription factor GATA4 is broadly expressed in nascent foregut endoderm. As development progresses, GATA4 is lost in the domain giving rise to the stratified squamous epithelium of the esophagus and forestomach (FS), while it is maintained in the domain giving rise to the simple columnar epithelium of the hindstomach (HS). Differential GATA4 expression within these domains coincides with the onset of distinct tissue morphogenetic events, suggesting a role for GATA4 in diversifying foregut endoderm into discrete esophageal/FS and HS epithelial tissues. The goal of this study was to determine how GATA4 regulates differential morphogenesis of the mouse gastric epithelium. METHODS We used a Gata4 conditional knockout mouse line to eliminate GATA4 in the developing HS and a Gata4 conditional knock-in mouse line to express GATA4 in the developing FS. RESULTS We found that GATA4-deficient HS epithelium adopted a FS-like fate, and conversely, that GATA4-expressing FS epithelium adopted a HS-like fate. Underlying structural changes in these epithelia were broad changes in gene expression networks attributable to GATA4 directly activating or repressing expression of HS or FS defining transcripts. Our study implicates GATA4 as having a primary role in suppressing an esophageal/FS transcription factor network during HS development to promote columnar epithelium. Moreover, GATA4-dependent phenotypes in developmental mutants reflected changes in gene expression associated with Barrett's esophagus. CONCLUSIONS This study demonstrates that GATA4 is necessary and sufficient to activate the development of simple columnar epithelium, rather than stratified squamous epithelium, in the embryonic stomach. Moreover, similarities between mutants and Barrett's esophagus suggest that developmental biology can provide insight into human disease mechanisms.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bridget M Kohlnhofer
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
7
|
Sun R, Liu J, Nie S, Li S, Yang J, Jiang Y, Cheng W. Construction of miRNA-mRNA Regulatory Network and Prognostic Signature in Endometrial Cancer. Onco Targets Ther 2021; 14:2363-2378. [PMID: 33854334 PMCID: PMC8039850 DOI: 10.2147/ott.s272222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/10/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction This bioinformatic study confirmed a new miRNA-mRNA regulatory network and a prognostic signature in endometrial cancer (EC). Materials and Methods We downloaded RNA-seq and miRNA-seq data of EC from the TCGA database, then used EdegR package to screen differentially expressed miRNAs and mRNAs (DE-miRNAs and DE-mRNAs). Then, we constructed a regulatory network of EC-associated miRNAs and hub genes by Cytoscape, and determined the expression of unexplored miRNAs in EC tissues and normal adjacent tissues by quantitative Real-Time PCR (qRT-PCR). A prognostic signature model and a predictive nomogram were constructed. Finally, we explored the association between the prognostic model and the immune cell infiltration. Results A total of 11,531 DE-mRNAs and 236 DE-miRNAs, as well as 275 and 118 candidate DEGs for upregulated and downregulated DE-miRNAs were screened out. The miRNA-mRNA network included 5 downregulated and 13 upregulated DE-miRNAs. qRT-PCR proved that the expression levels of miRNA-18a-5p, miRNA-18b-5p, miRNA-449c-5p and miRNA-1224-5p and their target genes (NR3C1, CTGF, MYC, and TNS1) were consistent with our predictions. Univariate and multivariate Cox proportional hazards regression analyses of the hub genes revealed a significant prognostic value of NR3C1, EZH2, AND GATA4, and these genes were closely related to eight types of immune infiltration cells. Conclusion We identified three genes as candidate biomarkers for EC, which may provide a theoretical basis for targeted therapy.
Collapse
Affiliation(s)
- Rui Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Methylation Density Pattern of KEAP1 Gene in Lung Cancer Cell Lines Detected by Quantitative Methylation Specific PCR and Pyrosequencing. Int J Mol Sci 2019; 20:ijms20112697. [PMID: 31159323 PMCID: PMC6600322 DOI: 10.3390/ijms20112697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/02/2023] Open
Abstract
Background. The KEAP1/NRF2 pathway is the key regulator of antioxidants and cellular stress responses, and is implicated in neoplastic progression and resistance of tumors to treatment. KEAP1 silencing by promoter methylation is widely reported in solid tumors as part of the complex regulation of the KEAP1/NRF2 axis, but its prognostic role remains to be addressed in lung cancer. Methods. We performed a detailed methylation density map of 13 CpGs located into the KEAP1 promoter region by analyzing a set of 25 cell lines from different histologies of lung cancer. The methylation status was assessed using quantitative methylation specific PCR (QMSP) and pyrosequencing, and the performance of the two assays was compared. Results. Hypermethylation at the promoter region of the KEAP1 was detected in one third of cell lines and its effect on the modulation KEAP1 mRNA levels was also confirmed by in vitro 5-Azacytidine treatment on lung carcinoid, small lung cancer and adenocarcinoma cell lines. QMSP and pyrosequencing showed a high rate of concordant results, even if pyrosequencing revealed two different promoter CpGs sub-islands (P1a and P1b) with a different methylation density pattern. Conclusions. Our results confirm the effect of methylation on KEAP1 transcription control across multiple histologies of lung cancer and suggest pyrosequencing as the best approach to investigate the pattern of CpGs methylation in the promoter region of KEAP1. The validation of this approach on lung cancer patient cohorts is mandatory to clarify the prognostic value of the epigenetic deregulation of KEAP1 in lung tumors.
Collapse
|
9
|
Yeh HY, Sun D, Peng YC, Wu YL. Regulation of the regulator of G protein signaling 2 expression and cellular localization by PKA and PKC pathways in mouse granulosa cells. Biochem Biophys Res Commun 2018; 503:950-955. [PMID: 29932914 DOI: 10.1016/j.bbrc.2018.06.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptor (GPCR) activation-mediated PKA and PKC pathways have been recognized to be important in ovarian physiology. Expression of regulator of G-protein signaling 2 (RGS2) has been reported in ovarian granulosa cells. The detailed mechanisms in PKA- and PKC-regulated RGS2 expression and cellular translocation in granulosa cells remain mostly unclear. PKA activator 8-bromo-cAMP and PKC activator phorbol-12, 13-didecanoate appeared to rapidly elevate both protein and mRNA levels and promoter activation of RGS2 gene. Two consensus Sp1 elements within the shortest 78 bp fragment of RGS2 promoter sequence were essential for the full responsiveness to PKA and PKC. PKC activation appeared to increase the RGS2 translocation from nucleus to cytosol. PKA- and PKC-mediated RGS2 transcription in a Sp-1-dependent manner and a PKC-mediated RGS2 intracellular translocation were noted in granulosa cells.
Collapse
Affiliation(s)
- Hsiao-Yu Yeh
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - David Sun
- Department of Obstetrics and Gynecology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yen-Chun Peng
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
10
|
Song Y, Liu T, Wang Y, Deng J, Chen M, Yuan L, Lu Y, Xu Y, Yao H, Li Z, Lai L. Mutation of the Sp1 binding site in the 5' flanking region of SRY causes sex reversal in rabbits. Oncotarget 2018; 8:38176-38183. [PMID: 28445127 PMCID: PMC5503524 DOI: 10.18632/oncotarget.16979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
Sex-determining region Y is a crucial gene that initiates male sex determination in mammals. Mutations of the Sp1-binding site in the 5' flanking region of SRY are associated with clinical male-to-female sex reversal syndrome, although such occurrences are rare and, until now, have not been reported in animal models. In this study, we mutated Sp1-binding sites in the 5' flanking region of the rabbit SRY gene using the CRISPR/Cas9 system. As expected, the SRY-Sp1 knockout rabbits had female external and internal genitalia and exhibited normal female copulatory behaviors, but they were infertile, and the adults displayed reduced follicles. Interestingly, we successfully obtained offspring from sex-reversed SRY-Sp1 knockout rabbits using embryo transfer. In summary, our study demonstrates that Sp1 is a major regulator in SRY gene transcription, and mutations of the Sp1 binding sites (Sp1-B and Sp1-C) in the 5' flanking region of SRY induce sex reversal in rabbits, which can be used as targets for clinical research of male-to-female sex reversal syndrome. Additionally, we provide the first evidence that sex reversal syndrome patients have the potential to become pregnant with the use of embryo transfer.
Collapse
Affiliation(s)
- Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Tingjun Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Yong Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Jichao Deng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Mao Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Yi Lu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Yuxin Xu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Haobin Yao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China.,Key Laboratory of Regenerative Biology, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Borello U, Berarducci B, Delahaye E, Price DJ, Dehay C. SP8 Transcriptional Regulation of Cyclin D1 During Mouse Early Corticogenesis. Front Neurosci 2018; 12:119. [PMID: 29599703 PMCID: PMC5863514 DOI: 10.3389/fnins.2018.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple signals control the balance between proliferation and differentiation of neural progenitor cells during corticogenesis. A key point of this regulation is the control of G1 phase length, which is regulated by the Cyclin/Cdks complexes. Using genome-wide chromatin immunoprecipitation assay and mouse genetics, we have explored the transcriptional regulation of Cyclin D1 (Ccnd1) during the early developmental stages of the mouse cerebral cortex. We found evidence that SP8 binds to the Ccnd1 locus on exon regions. In vitro experiments show SP8 binding activity on Ccnd1 gene 3'-end, and point to a putative role for SP8 in modulating PAX6-mediated repression of Ccnd1 along the dorso-ventral axis of the developing pallium, creating a medialLow-lateralHigh gradient of neuronal differentiation. Activation of Ccnd1 through the promoter/5'-end of the gene does not depend on SP8, but on βcatenin (CTNNB1). Importantly, alteration of the Sp8 level of expression in vivo affects Ccnd1 expression during early corticogenesis. Our results indicate that Ccnd1 regulation is the result of multiple signals and that SP8 is a player in this regulation, revealing an unexpected and potentially novel mechanism of transcriptional activation.
Collapse
Affiliation(s)
- Ugo Borello
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Inovarion, Paris, France
| | - Barbara Berarducci
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Edwige Delahaye
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David J. Price
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Colette Dehay
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
12
|
Jun DY, Lee JY, Park HS, Lee YH, Kim YH. Tumor suppressor protein p53-mediated repression of human mitotic centromere-associated kinesin gene expression is exerted via down-regulation of Sp1 level. PLoS One 2017; 12:e0189698. [PMID: 29244835 PMCID: PMC5731752 DOI: 10.1371/journal.pone.0189698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
The repressive role of p53 on the human mitotic centromere-associated kinesin (MCAK) core promoter from ‒266 to +54, relative to the transcription start site, has been determined. The MCAK mRNA and protein levels were 2.1- and 3.0-fold higher, respectively, in HCT116 (p53‒/‒) than in HCT116 (p53+/+) cells. Enforced down-regulation of p53 levels either in HCT116 (p53+/+) cells by p53 RNAi treatment or in MCF-7 cells using shRNA for p53 (shp53) resulted in a remarkable increase in the MCAK protein level. Site-directed mutagenesis and ChIP analyses showed that p53-mediated repression of the MCAK core promoter activity was not directly exerted by p53-binding to putative p53-response elements (p53-RE1 at −173/−166 and p53-RE2 at −245/−238), but indirectly by attenuating Sp1 binding to GC-motifs (GC1 at −93/−84 and GC2 at −119/−110). Treatment of HEK-293 cells bearing the MCAK core promoter-reporter (pGL2-320-Luc) with mithramycin A, which down-regulates Sp1 gene expression, reduced the promoter activity as well as endogenous MCAK levels. Exposure of HCT116 (p53+/+) cells to nutlin-3a, a validated activator of p53, caused a simultaneous reduction in Sp1 and MCAK protein levels, but not in HCT116 (p53−/−) cells. In contrast to wild-type (wt)-p53, tumor-derived p53 mutants (p53V143A, p53R248W, and p53R273H) failed to repress the Sp1-dependent activation of the MCAK promoter and to down-regulate endogenous levels of Sp1 and MCAK proteins. Collectively, these findings demonstrate that p53 can repress MCAK promoter activity indirectly via down-regulation of Sp1 expression level, and suggest that MCAK elevation in human tumor cells might be due to p53 mutation.
Collapse
Affiliation(s)
- Do Youn Jun
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Ji Young Lee
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Hae Sun Park
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Yun Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
13
|
Moens U, Song X, Van Ghelue M, Lednicky JA, Ehlers B. A Role of Sp1 Binding Motifs in Basal and Large T-Antigen-Induced Promoter Activities of Human Polyomavirus HPyV9 and Its Variant UF-1. Int J Mol Sci 2017; 18:ijms18112414. [PMID: 29135936 PMCID: PMC5713382 DOI: 10.3390/ijms18112414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Human polyomavirus 9 (HPyV9) was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20-50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg). Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | - Xiaobo Song
- Host Microbe Interaction Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital Northern-Norway, 9038 Tromsø, Norway.
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville , FL 32603, USA.
| | - Bernhard Ehlers
- Division 12, Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|
14
|
Yang C, Li J, Yu L, Zhang Z, Xu F, Jiang L, Zhou X, He S. Regulation of RIP3 by the transcription factor Sp1 and the epigenetic regulator UHRF1 modulates cancer cell necroptosis. Cell Death Dis 2017; 8:e3084. [PMID: 28981102 PMCID: PMC5682651 DOI: 10.1038/cddis.2017.483] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
Abstract
Receptor-interacting kinase-3 (RIP3) is a key regulator of necroptosis. It has been shown that the expression of RIP3 is silenced in most cancer cells and tissues due to genomic methylation. However, the regulatory mechanisms controlling RIP3 expression in cancer cells have not been fully elucidated. Here, we report that Sp1, a well-characterized zinc-finger transcription factor, directly regulates RIP3 expression in cancer cells. Knockdown of endogenous Sp1 significantly decreases the transcription of Rip3, thereby further inhibiting necroptosis. The re-expression of Sp1 restores the necroptotic response. In addition, knockdown of epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) in RIP3-null cancer cells reduces the methylation level of the Rip3 promoter. This effect is sufficient to trigger the expression of RIP3 in RIP3-null cancer cells. The induced expression of RIP3 by UHRF1 RNAi depends on the presence of Sp1. Remarkably, the ectopic expression of RIP3 in RIP3-null cancer cells results in a decrease in tumor growth in mice. Therefore, our findings offer insights into RIP3 expression control in cancer cells and suggest an inhibitory effect of RIP3 on tumorigenesis.
Collapse
Affiliation(s)
- Chengkui Yang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jun Li
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Lu Yu
- Department of Emergency Medicine, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zili Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Feng Xu
- Department of Emergency Medicine, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Lang Jiang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Sudan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Krikun G, Lockwood CJ. Steroid Hormones, Endometrial Gene Regulation and the Sp1 Family of Proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Graciela Krikun
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York; Department of Obstetrics & Gynecology, Yale University Medical Center, 333 Cedar Street, Room 335 FMB, New Haven, CT
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Adam C, Cyr DG. Role of Specificity Protein-1 and Activating Protein-2 Transcription Factors in the Regulation of the Gap Junction Protein Beta-2 Gene in the Epididymis of the Rat. Biol Reprod 2016; 94:120. [PMID: 27053364 PMCID: PMC6702783 DOI: 10.1095/biolreprod.115.133702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/04/2016] [Indexed: 12/02/2022] Open
Abstract
In prepubertal rats, connexin 26 (GJB2) is expressed between adjacent columnar cells of the epididymis. At 28 days of age, when columnar cells differentiate into adult epithelial cell types, Gjb2 mRNA levels decrease to barely detectable levels. There is no information on the regulation of GJB2 in the epididymis. The present study characterized regulation of the Gjb2 gene promoter in the epididymis. A single transcription start site at position −3829 bp relative to the ATG was identified. Computational analysis revealed several TFAP2A, SP1, and KLF4 putative binding sites. A 1.5-kb fragment of the Gjb2 promoter was cloned into a vector containing a luciferase reporter gene. Transfection of the construct into immortalized rat caput epididymal (RCE-1) cells indicated that the promoter contained sufficient information to drive expression of the reporter gene. Deletion constructs showed that the basal activity of the promoter resides in the first −230 bp of the transcriptional start site. Two response elements necessary for GJB2 expression were identified: an overlapping TFAP2A/SP1 site (−136 to −126 bp) and an SP1 site (−50 bp). Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays confirmed that SP1 and TFAP2A were bound to the promoter. ChIP analysis of chromatin from young and pubertal rats indicated that TFAP2A and SP1 binding decreased with age. SP1 and TFAP2A knockdown indicated that SP1 is necessary for Gjb2 expression. DNA methylation did not appear to be involved in the regulation of Gjb2 expression. Results indicate that SP1 and TFAP2A regulate Gjb2 promoter activity during epididymal differentiation in rat.
Collapse
Affiliation(s)
- Cécile Adam
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
17
|
Chechenova MB, Maes S, Cripps RM. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs. PLoS One 2015; 10:e0144615. [PMID: 26641463 PMCID: PMC4671713 DOI: 10.1371/journal.pone.0144615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/20/2015] [Indexed: 12/05/2022] Open
Abstract
Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation.
Collapse
Affiliation(s)
- Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Sara Maes
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, United States of America
| |
Collapse
|
18
|
He X, Tillo D, Vierstra J, Syed KS, Deng C, Ray GJ, Stamatoyannopoulos J, FitzGerald PC, Vinson C. Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution. Genome Biol Evol 2015; 7:3155-69. [PMID: 26507798 PMCID: PMC4994754 DOI: 10.1093/gbe/evv205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In mammals, the cytosine in CG dinucleotides is typically methylated producing
5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously
deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes
that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG
deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion
of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides
generate genetic diversity that may be critical for evolutionary change. We tested this
conjecture by examining the DNA sequence properties of regulatory sequences identified by
DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the
new TG dinucleotides generate transcription factor binding sites (TFBS) that become
tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are
enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide
are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a
CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in
tissue-specific regulatory regions in both genomes is the AP-1 motif
(TGAC/GTCAN), and we find evidence that
TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched
TFBS containing the TG/CA dinucleotide are the E-Box motif
(GCAGCTGC), the NF-1 motif (GGCA—TGCC), and the
GR (glucocorticoid receptor) motif (G-ACA—TGT-C). Our results support the
suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides
that create TFBS that drive evolution.
Collapse
Affiliation(s)
- Ximiao He
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Desiree Tillo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeff Vierstra
- Department of Genome Sciences, University of Washington
| | - Khund-Sayeed Syed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Callie Deng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - G Jordan Ray
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Peter C FitzGerald
- Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Ay M, Jin H, Harischandra DS, Asaithambi A, Kanthasamy A, Anantharam V, Kanthasamy AG. Molecular cloning, epigenetic regulation, and functional characterization of Prkd1 gene promoter in dopaminergic cell culture models of Parkinson's disease. J Neurochem 2015; 135:402-15. [PMID: 26230914 DOI: 10.1111/jnc.13261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 12/25/2022]
Abstract
We recently identified a compensatory survival role for protein kinase D1 (PKD1) in protecting dopaminergic neurons from oxidative insult. To investigate the molecular mechanism of Prkd1 gene expression, we cloned the 5'-flanking region (1620-bp) of the mouse Prkd1 gene. Deletion analyses revealed that the -250/+113 promoter region contains full promoter activity in MN9D dopaminergic neuronal cells. In silico analysis of the Prkd1 promoter uncovered binding sites for key redox transcription factors including Sp1 and NF-κB. Over-expression of Sp1, Sp3, and NF-κB-p65 proteins stimulated Prkd1 promoter activity. Binding of Sp3 and NF-κB-p65 to the Prkd1 promoter was confirmed using chromatin immunoprecipitation. Treatment with the Sp inhibitor mithramycin A significantly attenuated Prkd1 promoter activity and PKD1 mRNA and protein expression. Further mechanistic studies revealed that inhibition of histone deacetylation and DNA methylation up-regulated PKD1 mRNA expression. Importantly, negative modulation of PKD1 signaling by pharmacological inhibition or shRNA knockdown increased dopaminergic neuronal sensitivity to oxidative damage in a human mesencephalic neuronal cell model. Collectively, our findings demonstrate that Sp1, Sp3, and NF-κB-p65 can transactivate the mouse Prkd1 promoter and that epigenetic mechanisms, such as DNA methylation and histone modification, are key regulatory events controlling the expression of pro-survival kinase PKD1 in dopaminergic neuronal cells. Previously, we demonstrated that protein kinase D1 (PKD1) plays a survival role during the early stage of oxidative stress in dopaminergic neuronal cells.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Dilshan S Harischandra
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Arunkumar Asaithambi
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
20
|
Xiao K, Yu Z, Shi DT, Lei Z, Chen H, Cao J, Tian W, Chen W, Zhang HT. Inactivation of BLU is associated with methylation of Sp1-binding site of BLU promoter in gastric cancer. Int J Oncol 2015; 47:621-31. [PMID: 26043875 DOI: 10.3892/ijo.2015.3032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/23/2015] [Indexed: 11/06/2022] Open
Abstract
BLU is a candidate tumor suppressor gene, which is epigenetically inactivated in many human malignancies. However, the expression and biological functions of BLU in gastric cancer has not yet been reported. In the present study, we identified a functional BLU promoter which was regulated by the transcription activator Sp1. Bisulfite sequencing and qRT-PCR assays indicated that the silence of BLU expression in gastric cancer was significantly associated with DNA hypermethylation of BLU promoter including -39 CpG site located in the Sp1 transcription element. The expression of BLU was notably restored in AGS and SGC7901 cells following the demethylation-treatment with 5'-Aza-2'-deoxycytidine. Moreover, the results from ChIP, EMSA and luciferase reporter gene showed that -39 CpG methylation could prevent Sp1 from binding to the promoter of BLU and decreased transcription activity of the BLU gene by ~70%. In addition, knockdown of BLU significantly promoted cellular proliferation and colony formation in gastric cancer cells. In conclusion, we identified a novel functional BLU promoter and proved that BLU promoter activity was regulated by Sp1. Furthermore, we found that hypermethylated -39 CpG in BLU proximal promoter directly reduced its binding with Sp1, which may be one of the mechanisms accounting for the inactivation of BLU in gastric cancer.
Collapse
Affiliation(s)
- Kunting Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Zhuwen Yu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Dong-Tao Shi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Hongbing Chen
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Municipal Hospital (Main Campus), Suzhou 215004, P.R. China
| | - Wenyan Tian
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
21
|
Li Q, Li J, Wen T, Zeng W, Peng C, Yan S, Tan J, Yang K, Liu S, Guo A, Zhang C, Su J, Jiang M, Liu Z, Zhou H, Chen X. Overexpression of HMGB1 in melanoma predicts patient survival and suppression of HMGB1 induces cell cycle arrest and senescence in association with p21 (Waf1/Cip1) up-regulation via a p53-independent, Sp1-dependent pathway. Oncotarget 2014; 5:6387-403. [PMID: 25051367 PMCID: PMC4171638 DOI: 10.18632/oncotarget.2201] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/09/2014] [Indexed: 11/25/2022] Open
Abstract
Although laboratory studies have implicated the high mobility group box 1 (HMGB1) in melanoma, its clinical relevance remains unclear. We analyzed nearly 100 cases of human melanoma and found that HMGB1 was highly overexpressed in melanoma samples relative to normal skin and nevi tissues. Significantly, higher levels of HMGB1 correlated with more advanced disease stages and with poorer survival in melanoma patients. Unlike the well-documented pro-inflammatory role of the extracellular HMGB1, we found that its intracellular activity is necessary for melanoma cell proliferation. An absolute dependency of melanoma cell proliferation on HMGB1 was underscored by the marked response of cell cycle arrest and senescence to HMGB1 knockdown. We demonstrated that HMGB1 deficiency-induced inhibition of cell proliferation was mediated by p21, which was induced via a Sp1-dependent mechanism. Taken together, our data demonstrate a novel oncogenic role of HMGB1 in promoting human melanoma cell proliferation and have important implications in melanoma patient care.
Collapse
Affiliation(s)
- Qingling Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ting Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Siyu Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, 410008, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Aiyuan Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minghao Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Honghao Zhou
- Institute of Clinical Pharmacology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
22
|
Wang L, Wang C, Peng J, Liu Q, Meng Q, Sun H, Huo X, Sun P, Yang X, Zhen Y, Liu K. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo. Toxicol Appl Pharmacol 2014; 277:146-154. [PMID: 24680847 DOI: 10.1016/j.taap.2014.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/drug effects
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Caco-2 Cells
- Cell Survival/drug effects
- Diosgenin/analogs & derivatives
- Diosgenin/pharmacology
- Diosgenin/toxicity
- Dose-Response Relationship, Drug
- Down-Regulation
- Drug Interactions
- Drug Resistance, Neoplasm
- Enterocytes/drug effects
- Enterocytes/metabolism
- Enterocytes/pathology
- Genes, Reporter
- Humans
- I-kappa B Proteins/metabolism
- Intestinal Absorption/drug effects
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Male
- Methotrexate/metabolism
- Methotrexate/pharmacology
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Xiaobo Yang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Yuhong Zhen
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
23
|
Lo YL, Liu Y. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides. PLoS One 2014; 9:e90180. [PMID: 24637737 PMCID: PMC3956467 DOI: 10.1371/journal.pone.0090180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/27/2014] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm) composed of N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG) shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity for a multifunctional approach using an effective delivery system, such as PEGylated liposomes, to carry epirubicin and ASOs as a potent nanomedicine for improving the clinical efficacy of chemotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Apoptosis/drug effects
- Apoptosis/genetics
- Caco-2 Cells
- Caspases/metabolism
- Cell Cycle/drug effects
- DNA Fragmentation/drug effects
- Drug Resistance, Neoplasm/genetics
- Epirubicin/administration & dosage
- Gene Expression
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Genes, Reporter
- Humans
- Liposomes
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/toxicity
- Polyethylene Glycols
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/genetics
- RNA, Messenger/genetics
- bcl-X Protein/genetics
Collapse
Affiliation(s)
- Yu-Li Lo
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
- * E-mail:
| | - Yu Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
24
|
Zavala K, Lee J, Chong J, Sharma M, Eilers H, Schumacher MA. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons. Neurosci Lett 2014; 578:211-6. [PMID: 24468003 DOI: 10.1016/j.neulet.2014.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
Abstract
Activation of peripheral nociceptors by products of inflammation has been shown to be dependent on specific sensory transducing elements such as the capsaicin receptor, TRPV1. The development of high-affinity antagonists to TRPV1 as well as to other receptors capable of detecting noxious stimuli has now become a major focus in analgesic development. Another critical feature of nociception is the relative abundance of a particular pain transducing receptor under normal or pathophysiologic conditions. Increases in expression and/or changes in distribution of nociceptive receptors such as TRPV1 have been correlated with progression of tissue injury and persistence of pain behaviors. Although some details are emerging as to what regulates nociceptor-specific gene expression, compounds that could potentially be used to block or reverse over-expression of nociceptive gene expression are essentially absent. In our efforts to better understand the transcriptional regulation of TRPV1 in sensory neurons, we identified an anticancer agent, mithramycin-A, that decreased TRPV1 expression in primary rat dorsal root ganglion (DRG) neurons. Mithramycin-A dose-dependently (10-50 nM) decreased endogenous TRPV1 mRNA content and appeared to decrease TRPV1-like protein expression in DRG neurons. We also observed that mithramycin-A directed a decrease in the number of capsaicin-responsive DRG neurons without a significant change in the capsaicin-response magnitudes. Interestingly, mithramycin-A also reduced the mRNA encoding Sp1 and Sp4 in DRG neurons, transcription factors previously found to positively regulate TRPV1 expression in sensory neurons. Taken together, we propose that mithramycin-A directs an inhibitory effect on a subpopulation of capsaicin-responsive DRG neurons that utilize Sp1-like factors for TRPV1 expression. Given the therapeutic correlate of mithramycin-A effectiveness in the treatment of certain cancers, small molecule transcriptional inhibitors such as mithramycin-A may serve as useful tools of discovery in pain transduction and possibly future analgesic development.
Collapse
Affiliation(s)
- K Zavala
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - J Lee
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - J Chong
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - M Sharma
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - H Eilers
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - M A Schumacher
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States.
| |
Collapse
|
25
|
Lian S, Potula HHSK, Pillai MR, Van Stry M, Koyanagi M, Chung L, Watanabe M, Bix M. Transcriptional activation of Mina by Sp1/3 factors. PLoS One 2013; 8:e80638. [PMID: 24324617 PMCID: PMC3851307 DOI: 10.1371/journal.pone.0080638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/15/2013] [Indexed: 12/23/2022] Open
Abstract
Mina is an epigenetic gene regulatory protein known to function in multiple physiological and pathological contexts, including pulmonary inflammation, cell proliferation, cancer and immunity. We showed previously that the level of Mina gene expression is subject to natural genetic variation linked to 21 SNPs occurring in the Mina 5′ region [1]. In order to explore the mechanisms regulating Mina gene expression, we set out to molecularly characterize the Mina promoter in the region encompassing these SNPs. We used three kinds of assays – reporter, gel shift and chromatin immunoprecipitation – to analyze a 2 kb genomic fragment spanning the upstream and intron 1 regions flanking exon 1. Here we discovered a pair of Mina promoters (P1 and P2) and a P1-specific enhancer element (E1). Pharmacologic inhibition and siRNA knockdown experiments suggested that Sp1/3 transcription factors trigger Mina expression through additive activity targeted to a cluster of four Sp1/3 binding sites forming the P1 promoter. These results set the stage for comprehensive analysis of Mina gene regulation from the context of tissue specificity, the impact of inherited genetic variation and the nature of upstream signaling pathways.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Genes, Reporter
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sp1 Transcription Factor/antagonists & inhibitors
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor/antagonists & inhibitors
- Sp3 Transcription Factor/genetics
- Sp3 Transcription Factor/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Shangli Lian
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hari Hara S. K. Potula
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Melanie Van Stry
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Madoka Koyanagi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Linda Chung
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Makiko Watanabe
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mark Bix
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
DeMaster LK, Rose TM. A critical Sp1 element in the rhesus rhadinovirus (RRV) Rta promoter confers high-level activity that correlates with cellular permissivity for viral replication. Virology 2013; 448:196-209. [PMID: 24314650 DOI: 10.1016/j.virol.2013.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/25/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
KSHV establishes characteristic latent infections in vitro, while RRV, a related macaque rhadinovirus, establishes characteristic permissive infections with virus replication. We identified cells that are not permissive for RRV replication and recapitulate the latent KSHV infection and reactivation processes. The RRV replication and transactivator (Rta) promoter was characterized in permissive and non-permissive cells and compared to the KSHV Rta promoter. Both promoters contained a critical Sp1 element, had equivalent activities in different cell types, and were inhibited by LANA. RRV and KSHV infections were non-permissive in cells with low Rta promoter activity. While RRV infections were permissive in cells with high basal promoter activity, KSHV infections remained non-permissive. Our studies suggest that RRV lacks the Rta-inducible LANA promoter that is responsible for LANA inhibition of the KSHV Rta promoter and induction of latency during KSHV infection. Instead, the outcome of RRV infection is determined by host factors, such as Sp1.
Collapse
Affiliation(s)
- Laura K DeMaster
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | |
Collapse
|
27
|
Chiang YC, Lo YN, Chen JC. Crosstalk between Dopamine D2
receptors and cannabinoid CB1
receptors regulates CNR
1
promoter activity via ERK1/2 signaling. J Neurochem 2013; 127:163-76. [DOI: 10.1111/jnc.12399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Yao-Chang Chiang
- Center for Drug Abuse and Addiction; China Medical University Hospital; Taichung Taiwan
- China Medical University; Taichung Taiwan
| | - Yan-Ni Lo
- Laboratory of Neuropharmacology; Department of Physiology and Pharmacology; Chang-Gung University; Tao-Yuan Taiwan
| | - Jin-Chung Chen
- Laboratory of Neuropharmacology; Department of Physiology and Pharmacology; Chang-Gung University; Tao-Yuan Taiwan
| |
Collapse
|
28
|
Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells. Exp Cell Res 2013; 319:2254-65. [PMID: 23806282 DOI: 10.1016/j.yexcr.2013.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023]
Abstract
Specificity protein 1 (Sp1), a ubiquitously expressed transcription factor, plays a potential pathogenic role for fibrotic disease in many organs by regulating the expression of several fibrosis-related genes, however, its role in kidney fibrosis and the mechanisms regulating its expression remain incompletely clarified. Here, we found that Sp1 was markedly induced and closely correlated with interstitial type I collagen accumulation in kidney tubular epithelia from obstructive nephropathy. In vitro, both Sp1 and type I collagen expression were up-regulated in TGF-β1-treated kidney tubular epithelial cells (NRK-52E), whereas knockdown of Sp1 largely abolished TGF-β1-induced type I collagen production, suggesting that Sp1 induction is partially responsible for type I collagen expression. In addition, we found that miR-29c expression was remarkably reduced in either the tubular epithelial cells from kidney with UUO nephropathy or TGF-β1-treated NRK-52E cells. Knockdown of miR-29c could sufficiently induce Sp1 and type I collagen expression, whereas ectopic expression of miR-29c largely abolished their expression stimulated by TGF-β1 in NRK-52E cells. Furthermore, knockdown of Sp1 effectively hindered type I collagen induction stimulated by miR-29c down-regulation. Collectively, this study demonstrates that Sp1 acts as an essential mediator for miR-29c in regulating type I collagen production in tubular epithelial cells, which may provide a novel mechanistic insight about miR-29c in renal fibrosis.
Collapse
|
29
|
Müller B, Prante C, Knabbe C, Kleesiek K, Götting C. First identification and functional analysis of the human xylosyltransferase II promoter. Glycoconj J 2013; 30:237-45. [PMID: 22886070 DOI: 10.1007/s10719-012-9439-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/26/2022]
Abstract
Recently, we demonstrated that the human xylosyltransferase II (XT-II) has enzymatic activity and is able to catalyze the initial and rate-limiting step in the biosynthesis of glycosaminoglycans (GAGs) like chondroitin and dermatan sulfate, as well as heparan sulfate and heparin. Therefore, this enzyme also very likely assumes a crucial regulatory role in the biosynthesis of proteoglycans (PGs). In this study, we identified and characterized for the first time the XYLT2 gene promoter region and transcription factors involved in its regulation. Several binding sites for members of the Sp1 family of transcription factors were identified as being necessary for transcriptional regulation of the XYLT2 gene. This was determined by mithramycin A treatment, electrophoretic mobility shift and supershift assays, as well as numerous site-directed mutagenesis experiments. Different 5' and 3' deletion constructs of the predicted GC rich promoter region, which lacks a canonical TATA and CAAT box, revealed that a 177 nts proximal promoter element is sufficient and indispensable to drive the constitutive transcription in full strength in HepG2 hepatoma cells. In addition, we also detected the transcriptional start site using 5'-RACE (rapid amplification of cDNA ends). Our results provide an insight into transcriptional regulation of the XYLT2 gene and may contribute to understanding the manifold GAG-involving processes in health and disease.
Collapse
Affiliation(s)
- Benjamin Müller
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | | | | | | | | |
Collapse
|
30
|
Guo D, Wu B, Yan J, Li X, Sun H, Zhou D. A possible gene silencing mechanism: hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells. Biochem Biophys Res Commun 2012; 428:80-5. [PMID: 23047008 DOI: 10.1016/j.bbrc.2012.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/02/2012] [Indexed: 12/20/2022]
Abstract
Hypermethylation often leads to gene silencing; however, the mechanism responsible for the low expression resulting from hypermethylation of the tumor suppressor gene Kelch-like ECH-associating protein 1 (Keap1) in human lung cancer cell lines remains unclear. In this study, using promoter deletion and site mutagenesis assays, we determined that one transcription factor stimulating protein-1 (Sp1) regulatory element in the Keap1 promoter region was important for the transcription of Keap1 in A549 cells. We demonstrated that the transcription factor Sp1 can directly bind to this element in the normal bronchial epithelial BEAS-2B cell line but not in A549 cells, as assessed with chromatin immunoprecipitation (ChIP). EMSAs and supershift assays also showed that CpG island methylation could abrogate Sp1 binding to the Keap1 promoter. Moreover, Keap1 mRNA decreased by 50% after the knock-down of Sp1 with siRNA in BEAS-2B cells, whereas the over-expression of Sp1 led to a dramatic increase in Keap1 promoter activity. The treatment of A549 cells with 5-aza-2'-deoxycytidine restored the binding of Sp1 to the promoter and Keap1 expression. Our results indicate that Sp1 is essential for Keap1 expression and that promoter methylation blocks Sp1 binding in A549 cells. These results demonstrate that hypermethylation may act as an epigenetic gene silencing mechanism, i.e., the inhibition of Sp1 binding to the hypermethylated Keap1 promoter in lung cancer cells, which suggests new approaches to lung cancer treatment.
Collapse
Affiliation(s)
- Duo Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
31
|
Oleaga C, Welten S, Belloc A, Solé A, Rodriguez L, Mencia N, Selga E, Tapias A, Noé V, Ciudad CJ. Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics. Biochem Pharmacol 2012; 84:1581-91. [PMID: 23018034 DOI: 10.1016/j.bcp.2012.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 01/07/2023]
Abstract
Sp1 is a transcription factor regulating many genes through its DNA binding domain, containing three zinc fingers. We were interested in identifying target genes regulated by Sp1, particularly those involved in proliferation and cancer. Our approach was to treat HeLa cells with a siRNA directed against Sp1 mRNA to decrease the expression of Sp1 and, in turn, the genes activated by this transcription factor. Sp1-siRNA treatment led to a great number of differentially expressed genes as determined by whole genome cDNA microarray analysis. Underexpressed genes were selected since they represent putative genes activated by Sp1 and classified in six Gene Onthology categories, namely proliferation and cancer, mRNA processing, lipid metabolism, glucidic metabolism, transcription and translation. Putative Sp1 binding sites were found in the promoters of the selected genes using the Match™ software. After literature mining, 11 genes were selected for further validation. Underexpression by qRT-PCR was confirmed for the 11 genes plus Sp1 in HeLa cells after Sp1-siRNA treatment. EMSA and ChIP assays were performed to test for binding of Sp1 to the promoters of these genes. We observed binding of Sp1 to the promoters of RAB20, FGF21, IHPK2, ARHGAP18, NPM3, SRSF7, CALM3, PGD and Sp1 itself. Furthermore, the mRNA levels of RAB20, FGF21 and IHPK2 and luciferase activity for these three genes related to proliferation and cancer, were determined after overexpression of Sp1 in HeLa cells, to confirm their regulation by Sp1. Involvement of these three genes in proliferation was validated by gene silencing using polypurine reverse hoogsteen hairpins.
Collapse
Affiliation(s)
- Carlota Oleaga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Regulation of mGluR1 expression in human melanocytes and melanoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1123-31. [PMID: 22771868 DOI: 10.1016/j.bbagrm.2012.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/21/2012] [Accepted: 06/27/2012] [Indexed: 11/23/2022]
Abstract
We demonstrated that ectopic expression of metabotropic glutamate receptor 1 (mGluR1/Grm1) in mouse melanocytes was sufficient to induce melanoma development in vivo with 100% penetrance. We also showed that about 60% of human melanoma biopsies and cell lines, but not benign nevi or normal human melanocytes expressed mGluR1, suggesting that GRM1 may be involved in melanomagenesis. mGluR1 is expressed primarily in neurons. In various non-neuronal cells, mGluR1 expression is regulated via binding of Neuron-Restrictive-Silencer-Factor (NRSF) to a Neuron-Restrictive-Silencer-Element (NRSE). Here, we report on the possibility that aberrant mGluR1 expression in melanoma is due to alterations in NRSF and/or NRSE. We show that in human melanocytes, binding of NRSF to NRSE in the GRM1 promoter region is necessary for the suppression of mGluR1 expression. We also show that inhibiting the expression of the transcription factor Sp1 or interference with its ability to bind DNA can result in increased mGluR1 expression perhaps via its function as a negative regulator. In addition, we also provide evidence that demethylation within the promoter region of GRM1 may also be a mechanism for the derepression of mGluR1 expression in melanocytes that progress to cell transformation and tumor formation.
Collapse
|
33
|
Zhou J, Zhang S, Xie L, Liu P, Xie F, Wu J, Cao J, Ding WQ. Overexpression of DNA polymerase iota (Polι) in esophageal squamous cell carcinoma. Cancer Sci 2012; 103:1574-9. [PMID: 22509890 DOI: 10.1111/j.1349-7006.2012.02309.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the transcriptional regulation of low-fidelity translesion DNA synthesis (TLS) polymerases in human esophageal carcinoma. Significantly higher mRNA expression of polymerase zeta (Polξ), RAD18, polymerase iota (Polι), and polymerase kappa (Polκ) was found in esophageal carcinomas. The increased expression of Polι in tumor samples was further confirmed by immunohistochemistry. The promoter of POLI that encodes Polι was found to be hypomethylated, although the overexpression of this gene was unlikely to be associated with methylation in tumors. We further identified Sp1 and Oct-1 binding sites present in the POLI promoter. We observed that the binding affinity of Sp1 to the POLI promoter was significantly increased in cancerous tissues and that Sp1 activated POLI gene transcription in cultured cell lines. The present study demonstrates overexpression of the TLS genes in esophageal carcinoma and identifies a key role for Sp1 in upregulating POLI gene expression.
Collapse
Affiliation(s)
- Jundong Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gong Y, Long Q, Xie H, Zhang T, Peng T. Cloning and characterization of human Golgi phosphoprotein 2 gene (GOLPH2/GP73/GOLM1) promoter. Biochem Biophys Res Commun 2012; 421:713-20. [PMID: 22542941 DOI: 10.1016/j.bbrc.2012.04.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 04/13/2012] [Indexed: 12/11/2022]
Abstract
Human Golgi phosphoprotein 2 gene (also known as GOLPH2, GP73 or GOLM1) encodes an epithelial-specific Golgi membrane protein which can be induced by virus infection. It is also overexpressed in a number of tumors and is currently considered as an early diagnosis marker for hepatocellular carcinoma. However, little is known about how GOLPH2 is dysregulated in these disease conditions and the functional implications of its overexpression. The aim of this study is to investigate human GOLPH2 regulation mechanisms. We cloned a 2599 bp promoter fragment of GOLPH2 and found it maintained epithelial specificity. By deletion analysis, a repressive region (-864 to -734 bp), a positive regulatory region (-734 to -421 bp) and a core promoter region (-421 to -79 bp) were identified. Sequence analysis revealed that GOLPH2 core promoter was devoid of canonical TATA element and classified as a TATA-less promoter. Adenoviral early region 1A (E1A) was able to activate GOLPH2 and the CtBP interaction domain of E1A was sufficient but not required for activation. A GC-box motif (-89 to -83 bp) in GOLPH2 core promoter region partly mediated E1A transactivation. These results delineated regulatory regions and functional element in GOLPH2 promoter, elucidated adenoviral E1A stimulation mechanisms and provided insight into GOLPH2 functions.
Collapse
Affiliation(s)
- Yu Gong
- State Key Laboratory of Respiratory Diseases, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, PR China
| | | | | | | | | |
Collapse
|
35
|
Abstract
The ability to chronicle transcription-factor binding events throughout the development of an organism would facilitate mapping of transcriptional networks that control cell-fate decisions. We describe a method for permanently recording protein-DNA interactions in mammalian cells. We endow transcription factors with the ability to deposit a transposon into the genome near to where they bind. The transposon becomes a "calling card" that the transcription factor leaves behind to record its visit to the genome. The locations of the calling cards can be determined by massively parallel DNA sequencing. We show that the transcription factor SP1 fused to the piggyBac transposase directs insertion of the piggyBac transposon near SP1 binding sites. The locations of transposon insertions are highly reproducible and agree with sites of SP1-binding determined by ChIP-seq. Genes bound by SP1 are more likely to be expressed in the HCT116 cell line we used, and SP1-bound CpG islands show a strong preference to be unmethylated. This method has the potential to trace transcription-factor binding throughout cellular and organismal development in a way that has heretofore not been possible.
Collapse
|
36
|
Xu Y, Jiang Z, Yin P, Li Q, Liu J. Role for Class I histone deacetylases in multidrug resistance. Exp Cell Res 2011; 318:177-86. [PMID: 22154511 DOI: 10.1016/j.yexcr.2011.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 01/28/2023]
Abstract
Recent reports have showed that histone deacetylase (HDAC) inhibitor resulted in multidrug resistance (MDR) to other chemotherapeutic agents. However, the molecular mechanisms of Class I HDACs on MDR regulation are poorly understood. In this study, HDAC1 and HDAC2 acted as enhancers to intensify the chemosensitivities of anti-cancer drugs via reducing the expression levels of P-gp, MRP1 and MRP2. Furthermore, the dissociation of HDAC1 and HDAC2 led to transcriptional regulation of P-gp expression via the recruitment of p300, PCAF and NF-Y to the P-gp promoter region, which subsequently increased the level of the active gene marker, hyperacetylated histone H3. In parallel, selective inhibition of HDAC1 and HDAC2 induced the recruitment of p300, PCAF, NF-Y via acetylation of Sp1. Thus, our findings showed HDAC1 and 2 regulated P-gp expression through dynamic changes in chromatin structure and transcription factor association within the promoter region.
Collapse
Affiliation(s)
- Yichun Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
37
|
Jiang Z, Jin T, Gao F, Liu J, Zhong J, Zhao H. Effects of Ganoderic acid Me on inhibiting multidrug resistance and inducing apoptosis in multidrug resistant colon cancer cells. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Yeh SH, Yang WB, Gean PW, Hsu CY, Tseng JT, Su TP, Chang WC, Hung JJ. Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway. Nucleic Acids Res 2011; 39:5412-23. [PMID: 21441538 PMCID: PMC3141265 DOI: 10.1093/nar/gkr161] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The exact mechanism underlying increases in Sp1 and the physiological consequences thereafter remains unknown. In rat primary cortical neurons, oxygen-glucose deprivation (OGD) causes an increase in H2O2 as well as Sp1 in early ischaemia but apparently does not change mRNA level or Sp1 stability. We hereby identified a longer 5′-UTR in Sp1 mRNA that contains an internal ribosome entry site (IRES) that regulates rapid and efficient translation of existing mRNAs. By using polysomal fragmentation and bicistronic luciferase assays, we found that H2O2 activates IRES-dependent translation. Thus, H2O2 or tempol, a superoxide dismutase-mimetic, increases Sp1 levels in OGD-treated neurons. Further, early-expressed Sp1 binds to Sp1 promoter to cause a late rise in Sp1 in a feed-forward manner. Short hairpin RNA against Sp1 exacerbates OGD-induced apoptosis in primary neurons. While Sp1 levels increase in the cortex in a rat model of stroke, inhibition of Sp1 binding leads to enhanced apoptosis and cortical injury. These results demonstrate that neurons can use H2O2 as a signalling molecule to quickly induce Sp1 translation through an IRES-dependent translation pathway that, in cooperation with a late rise in Sp1 via feed-forward transcriptional activation, protects neurons against ischaemic damage.
Collapse
Affiliation(s)
- Shiu Hwa Yeh
- Department of Pharmacology, Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Loss of E2F7 expression is an early event in squamous differentiation and causes derepression of the key differentiation activator Sp1. J Invest Dermatol 2011; 131:1077-84. [PMID: 21248772 DOI: 10.1038/jid.2010.430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Squamous differentiation is controlled by key transcription factors such as Sp1 and E2F. We have previously shown that E2F1 can suppress transcription of the differentiation-specific gene, transglutaminase type 1 (TG1), by an indirect mechanism mediated by Sp1. Transient transfection of E2F1-E2F6 indicated that E2F-mediated reduction of Sp1 transcription was not responsible for E2F-mediated suppression of squamous differentiation. However, we found that E2F4 and E2F7, but not E2Fs 1, 2, 3, 5, or 6, could suppress the activation of the Sp1 promoter in differentiated keratinocytes (KCs). E2F4-mediated suppression could not be antagonized by E2Fs 1, 2, 3, 5, or 6 and was localized to a region of the human Sp1 promoter spanning -139 to + 35 bp. Chromatin immunoprecipitation analysis, as well as transient overexpression and short hairpin RNA knockdown experiments indicate that E2F7 binds to a unique binding site located between -139 and -119 bp of the Sp1 promoter, and knockdown of E2F7 in proliferating KCs leads to a derepression of Sp1 expression and the induction of TG1. In contrast, E2F4 knockdown in proliferating KCs did not alter Sp1 expression. These data indicate that loss of E2F7 during the initiation of differentiation leads to the derepression of Sp1 and subsequent transcription of differentiation-specific genes such as TG1.
Collapse
|
40
|
Folster JM, Jensen NJ, Ruyechan WT, Inoue N, Schmid DS. Regulation of the expression of the varicella-zoster virus open reading frame 66 gene. Virus Res 2010; 155:334-42. [PMID: 21074584 DOI: 10.1016/j.virusres.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022]
Abstract
The varicella-zoster virus (VZV) open reading frame (ORF) 66 encodes a serine/threonine kinase that phosphorylates the major viral transactivator protein, immediate-early (IE) 62, preventing its nuclear importation. Cytoplasmic sequestration of IE62 may alter viral gene transcription and could serve as a mechanism for maintaining VZV latency. We examined the regulation of expression of the ORF66 gene by mapping the promoter region, which was localized to within 150 bases of the start codon. The ORF66 promoter was activated by two viral regulatory proteins, IE62 and IE63. We evaluated the binding of viral regulatory proteins and cellular transcription factors based on recognized cellular transcription factor binding sites identified within the ORF66 promoter. These included Sp1 and TBP binding sites, several of which were essential for optimal promoter activity. Site-directed mutations in Sp1 and TBP binding sites led to varying degrees of impairment of ORF66 gene expression in the context of VZV infection. We also examined the effect of Sp1 and TBP mutations on IE62, Sp1, and TBP binding. These studies reveal that host cell-derived and viral factors contribute to and cooperate in the expression of this important viral kinase gene.
Collapse
Affiliation(s)
- Jennifer M Folster
- Division of Viral Diseases, Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for Immunizations and Respiratory Diseases, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
41
|
Tasseva G, Cole L, Vance JE. N-Myc and SP regulate phosphatidylserine synthase-1 expression in brain and glial cells. J Biol Chem 2010; 286:1061-73. [PMID: 21068393 DOI: 10.1074/jbc.m110.158709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Phosphatidylserine (PS) is an essential constituent of biological membranes and plays critical roles in apoptosis and cell signaling. Because no information was available on transcriptional mechanisms that regulate PS biosynthesis in mammalian cells, we investigated the regulation of expression of the mouse PS synthase-1 (Pss1) gene. The Pss1 core promoter was characterized in vitro and in vivo through gel shift and chromatin immunoprecipitation assays. Transcription factor-binding sites, such as a GC-box cluster that binds Sp1/Sp3/Sp4 and N-Myc, and a degenerate E-box motif that interacts with Tal1 and E47, were identified. Pss1 transactivation was higher in brain of neonatal mice than in other tissues, consistent with brain being a major site of expression of Pss1 mRNA and PSS1 activity. Enzymatic assays revealed that PSS1 activity is enriched in primary cortical astrocytes compared with primary cortical neurons. Site-directed mutagenesis of binding sites within the Pss1 promoter demonstrated that Sp and N-Myc synergistically activate Pss1 expression in astrocytes. Chromatin immunoprecipitation indicated that Sp1, Sp3, and Sp4 interact with a common DNA binding site on the promoter. Reduction in levels of Sp1, Sp3, or N-Myc proteins by RNA interference decreased promoter activity. In addition, disruption of Sp/DNA binding with mithramycin significantly reduced Pss1 expression and PSS1 enzymatic activity, underscoring the essential contribution of Sp factors in regulating PSS1 activity. These studies provide the first analysis of mechanisms that regulate expression of a mammalian Pss gene in brain.
Collapse
Affiliation(s)
- Guergana Tasseva
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
42
|
Debret R, Cenizo V, Aimond G, André V, Devillers M, Rouvet I, Mégarbané A, Damour O, Sommer P. Epigenetic silencing of lysyl oxidase-like-1 through DNA hypermethylation in an autosomal recessive cutis laxa case. J Invest Dermatol 2010; 130:2594-601. [PMID: 20613779 DOI: 10.1038/jid.2010.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently reported a case of cutis laxa caused by a fibulin-5 missense mutation (p.C217R). Skin fibroblasts from this individual showed an abnormal pattern of expression of several genes coding for elastic fiber-related proteins, including lysyl oxidase-like-1 (LOXL1). In this study we intended to elucidate the mechanism responsible for LOXL1 downregulation in these fibulin-5-mutant cells. We identified a proximal region (-442/-342) of the human LOXL1 promoter in which two binding sites for the transcription factor specific protein 1 (Sp-1) are required for gene activity in normal fibroblasts. Binding of Sp-1 to these sequences was dramatically reduced within cutis laxa cells, although Sp-1 expression was normal. Further analysis of the promoter sequence found increased methylation levels in cutis laxa cells compared with cells from unaffected individuals. When DNA methyltransferase activity was transiently inhibited in cutis laxa cells using the 5-aza-2'-deoxycytidine, we found a significant increase in LOXL1 expression. In conclusion, besides changes caused by the fibulin-5 mutation, LOXL1 gene regulation is affected by an epigenetic mechanism that can be reversed by an inhibitor of DNA methyltransferase activity. It is not yet known whether LOXL1 gene expression is affected in all cases of cutis laxa arising from fibulin-5 mutation.
Collapse
Affiliation(s)
- Romain Debret
- Institut de Biologie et Chimie des Protéines, Université Claude Bernard, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Garrido-Martin EM, Blanco FJ, Fernandez-L A, Langa C, Vary CP, Lee UE, Friedman SL, Botella LM, Bernabeu C. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1. BMC Mol Biol 2010; 11:51. [PMID: 20587022 PMCID: PMC2906440 DOI: 10.1186/1471-2199-11-51] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/29/2010] [Indexed: 11/28/2022] Open
Abstract
Background Activin receptor-like kinase 1 (ALK1) is a Transforming Growth Factor-β (TGF-β) receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1) give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1. Results We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE) of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210) was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into the molecular mechanisms that contribute to the expression of ACVRL1 gene. Moreover, our data show that the methylation status of CpG islands markedly modulates the Sp1 regulation of ACVRL1 gene transcriptional activity.
Collapse
Affiliation(s)
- Eva M Garrido-Martin
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pal R, Gochhait S, Chattopadhyay S, Gupta P, Prakash N, Agarwal G, Chaturvedi A, Husain N, Husain SA, Bamezai RNK. Functional implication of TRAIL -716 C/T promoter polymorphism on its in vitro and in vivo expression and the susceptibility to sporadic breast tumor. Breast Cancer Res Treat 2010; 126:333-43. [PMID: 20443055 DOI: 10.1007/s10549-010-0900-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 04/15/2010] [Indexed: 11/30/2022]
Abstract
Recently, TRAIL function has been elucidated beyond its known classical role of mediating cellular homeostasis and immune surveillance against transformed cells. Here, we show how CC genotype of -716 TRAIL promoter SNP rendered risk for sporadic breast cancer as compared to the CT and TT genotypes (P (recessive model) = 0.018, OR = 1.4, 95% CI = 1.1-1.9; P (allele model) = 0.010, OR = 1.3, 95% CI = 1.1-1.7). The in silico prediction of the introduction of core Sp1/Sp3-binding motif suggested the functional significance of the SNP variation. This functional implication was validated by luciferase assay in HeLa (P = 0.026), MCF-7 (P = 0.022), HepG2 (P = 0.024), and HT1080 (P = 0.030) cells and also by real-time expression studies on tumor tissues (P = 0.01), revealing the transcriptionally repressed status of -716 T when compared to -716 C allele. The SNP-SNP interactions reflected an enhanced protective effect of CT and TT genotypes with the protective genetic backgrounds of TP53-BRCA2 (P = 0.002, OR = 0.2, 95% CI = 0.1-0.6), IFNG (P = 0.0000002, OR = 0.3, 95% CI = 0.2-0.4), and common variant Casp8 (P = 0.0003, OR = 0.5, 95% CI = 0.3-0.7). Interestingly, a comparison with clinical parameters showed overrepresented CT and TT genotypes in progressing (P = 0.041) and ER/PR negative tumors (P = 0.024/0.006). This was explained by increased apoptotic index, calculated as a ratio of selected pro-apoptotic and anti-apoptotic gene expression profiles, in CC genotyped tumors, favoring either intrinsic (P = 0.008,0.018) or extrinsic (P = 0.025,0.217) pathway depending upon the ER/PR status. Our study reveals for the first time that a promoter SNP of TRAIL functionally modulates the gene and consequently its role in breast cancer pathogenesis, cautioning to consider the -716 TRAIL SNP status in patients undergoing TRAIL therapy.
Collapse
Affiliation(s)
- Ranjana Pal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, Aruna Asafali Road, New Delhi, 110067, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
DeFino MC, Wacker JL, Lyssand JS, Wang EH, Hague C. Differential regulation of GPR54 transcription by specificity protein-1 and partial estrogen response element in mouse pituitary cells. Biochem Biophys Res Commun 2010; 393:603-8. [PMID: 20152817 PMCID: PMC2849983 DOI: 10.1016/j.bbrc.2010.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/07/2010] [Indexed: 11/28/2022]
Abstract
Precise spatial and temporal expression of the recently identified G-protein coupled receptor GPR54 is critical for proper reproductive function and metastasis suppression. However, regulatory factors that control GPR54 expression remain unknown. Thus, the identification of these cis-acting DNA elements can provide insight into the role of GPR54 in reproduction and cancer. Using luciferase reporter, electrophoretic mobility shift, and chromatin immunoprecipitation assays, we demonstrate that three SP1 sites and a partial estrogen response element modulate mouse GPR54 (mGPR54) promoter activity. Supporting experiments show transcription factor SP1 binds directly to the mGPR54 promoter region and activates gene expression. In conclusion, these novel findings now identify factors that regulate activity of the mGPR54 promoter, and these factors are highly conserved across multiple mammalian species.
Collapse
Affiliation(s)
- Mia C. DeFino
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA 98195-7280
| | - Jennifer L. Wacker
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA 98195-7280
| | - John S. Lyssand
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA 98195-7280
| | - Edith H. Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA 98195-7280
| | - Chris Hague
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA 98195-7280
| |
Collapse
|
46
|
Kim JH, Han Kwon K, Jung JY, Han HS, Hyun Shim J, Oh S, Choi KH, Choi ES, Shin JA, Leem DH, Soh Y, Cho NP, Cho SD. Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G(2)/M Cell Cycle Arrest. J Clin Biochem Nutr 2009; 46:60-7. [PMID: 20104266 PMCID: PMC2803134 DOI: 10.3164/jcbn.09-65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/21/2009] [Indexed: 01/31/2023] Open
Abstract
Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 microM of SFN for 12 h caused a cell cycle arrest in the G(2)/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Jun-Hee Kim
- Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 project, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang H, Wang S, Shen L, Chen Y, Zhang X, Zhou J, Wang Z, Hu C, Yue W, Wang H. Chk2 down-regulation by promoter hypermethylation in human bulk gliomas. Life Sci 2009; 86:185-91. [PMID: 19969004 DOI: 10.1016/j.lfs.2009.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/29/2009] [Accepted: 11/30/2009] [Indexed: 12/11/2022]
Abstract
AIMS Gliomas account for 80% of malignant brain tumors. DNA damage response and subsequent checkpoint control pathways could maintain the integrity of the genome and thus defend tumorigenesis. Four kinases, ATM, ATR, ChK1 and Chk2 are the damage sensors and the early effectors in DNA damage responses. Given their importance, we investigated the transcriptional regulation of these four genes. MAIN METHODS Tissues from ten normal brains and thirty human gliomas were utilized for mRNA analysis via real-time PCR. Another twelve normal brain tissues and forty gliomas were used for confirmation. Methylation-specific PCR (MSP) was used to determine the methylation status of the Chk2 promoter. Quantitative chromatin immunoprecipitation (ChIP) was used to measure the influence of methylation on Sp1 binding. KEY FINDINGS We found that the expression of ATR, ChK1 and Chk2 in gliomas was significantly down-regulated relative to the normal brain tissues. The most significant reduction of expression was of the Chk2 gene, whose expression was approximately 10-fold decreased in gliomas (P<0.0001). Down-regulation of Chk2 was validated in the second real-time PCR analysis. This reduction in expression was partially due to promoter methylation. The Chk2 proximal promoter recruited Sp1 for transcriptional activation. We found that hypermethylation of the Chk2 promoter undermined the binding of the transcriptional factor Sp1. SIGNIFICANCE Our results indicate that Chk2 methylation could be involved in glioma carcinogenesis and Chk2 expression may potentially be used for the diagnosis of glioma.
Collapse
Affiliation(s)
- Hongwei Wang
- Harbin Medical University, Harbin 150001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Müller B, Prante C, Kleesiek K, Götting C. Identification and characterization of the human xylosyltransferase I gene promoter region. J Biol Chem 2009; 284:30775-82. [PMID: 19762916 PMCID: PMC2781476 DOI: 10.1074/jbc.m109.016592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/31/2009] [Indexed: 01/29/2023] Open
Abstract
Human xylosyltransferase I catalyzes the initial and rate-limiting step in the biosynthesis of glycosaminoglycans and proteoglycans. Furthermore, this enzyme has been shown to play a major role in the physiological development of bone and cartilage as well as in pathophysiological processes such as systemic sclerosis, dilated cardiomyopathy, or fibrosis. Here, we report for the first time the identification and characterization of the XYLT1 gene promoter region and important transcription factors involved in its regulation. Members of the activator protein 1 (AP-1) and specificity protein 1 (Sp1) family of transcription factors are necessary for the transcriptional regulation of the XYLT1 gene, which was proven by curcumin, tanshinone IIA, mithramycin A, and short interference RNA treatment. A stepwise 5' and 3' deletion of the predicted GC-rich promoter region, which lacks a TATA and/or CAAT box, revealed that a 531-bp core promoter element is able to drive the transcription on a basal level. A binding site for transcription factors of the AP-1 family, which is essential for full promoter activity, was identified by site-directed mutagenesis located 730 bp 5' of the translation initiation site. The ability of this site to bind members of the AP-1 family was further verified by electrophoretic mobility shift assays. A promoter element containing this binding site was able to drive the transcription to about 79-fold above control in SW1353 chondrosarcoma cells. Our findings provide a first insight into the regulation of the XYLT1 gene and may contribute to understanding the processes taking place during extracellular matrix formation and remodeling in health and disease.
Collapse
Affiliation(s)
- Benjamin Müller
- From the Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Christian Prante
- From the Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Knut Kleesiek
- From the Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Christian Götting
- From the Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
49
|
Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 2009; 66:2691-706. [PMID: 19448973 PMCID: PMC11115749 DOI: 10.1007/s00018-009-0045-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 02/08/2023]
Abstract
KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFbeta, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Jin-Tang Dong
- Department of Hematology and Medical Oncology, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
50
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|