1
|
Nasb M, Li F, Dayoub L, Wu T, Wei M, Chen N. Bridging the gap: Integrating exercise mimicry into chronic disease management through suppressing chronic inflammation. J Adv Res 2025; 70:307-322. [PMID: 38704088 PMCID: PMC11976426 DOI: 10.1016/j.jare.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chronic inflammation is a common hallmark of many chronic diseases. Although exercise holds paramount importance in preventing and managing chronic diseases, adherence to exercise programs can be challenging for some patients. Consequently, there is a pressing need to explore alternative strategies to emulate the anti-inflammatory effects of exercise for chronic diseases. AIM OF REVIEW This review explores the emerging role of green tea bioactive components as potential mitigators of chronic inflammation, offering insights into their capacity to mimic the beneficial effects of exercise. We propose that bioactive components in green tea are promising agents for suppressing chronic inflammation, suggesting their unique capability to replicate the health benefits of exercise. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on several key concepts, including chronic inflammation and its role in chronic diseases, the anti-inflammatory effects of regular exercise, and bioactive components in green tea responsible for its health benefits. It elaborates on scientific evidence supporting the anti-inflammatory properties of green tea bioactive components, such as epigallocatechin gallate (EGCG), and theorizes how these bioactive components might replicate the effects of exercise at a molecular level. Through a comprehensive analysis of current research, this review proposes a novel perspective on the application of green tea as a potential intervention strategy to suppress chronic inflammation, thereby extending the benefits akin to those achieved through exercise.
Collapse
Affiliation(s)
- Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Lamis Dayoub
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
2
|
Li Z, Stachon T, Häcker S, Fries FN, Chai N, Seitz B, Shi L, Hsu SL, Li S, Liu S, Amini M, Suiwal S, Szentmáry N. Increased glucose concentration modifies TGF-β1 and NFκB signaling pathways in aniridia limbal fibroblasts, in vitro. Exp Eye Res 2025; 250:110163. [PMID: 39577605 DOI: 10.1016/j.exer.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
To determine the impact of increased glucose concentration on gene expression of primary healthy human limbal fibroblasts (LFCs) and congenital aniridia human limbal fibroblasts (AN-LFCs), in vitro. LFCs (n = 8) and AN-LFCs (n = 8) were isolated and cultured in serum containing DMEM, including either normal glucose (17.5 mM) or increased glucose (70 mM) concentration for 48h or 72h, respectively. mRNA and protein expression of transforming growth factor beta 1 (TGF-β1), alpha-smooth muscle actin (ACTA)2A1, SMAD 2/3, hypoxia markers such as nuclear factor kappa B (NFκB), inducible nitric oxide synthase (iNOS), hypoxia-inducible factor 1-alpha (HIF-1ɑ), oxidative stress markers such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Catalase (CAT) were analyzed using qPCR and Western blot. In 70 mM glucose concentration medium for 48 h, TGF-β1 mRNA expression was significantly lower (p = 0.001, p < 0.001), Nrf2 (p = 0.001, p = 0.001) and CAT (p = 0.001, p = 0.001) mRNA expression was significantly higher in LFCs and AN-LFCs, than using 17.5 mM glucose concentration medium. In addition, in 70 mM glucose concentration medium for 48 h, SMAD 2, SMAD 3, NFκB, HIF-1ɑ mRNA expression was significantly lower in AN-LFCs, than in 17.5 mM glucose concentration medium (p = 0.003, p = 0.002, p = 0.008, p = 0.020). At this time-point in 70 mM glucose concentration medium, at protein level, TGF-β1, SMAD2/3 and NFκB were significantly lower in AN-LFCs, than in 17.5 mM glucose concentration medium (p = 0.041, p = 0.002, p = 0.012). In 70 mM glucose concentration medium for 72h, TGF-β1 was significantly higher (p < 0.001, p < 0.001) and Nrf2 (p = 0.001, p = 0.001) and CAT (p < 0.001, p < 0.001) mRNA were significantly lower in LFCs and AN-LFCs, than in 17.5 mM glucose concentration medium. At this time-point, in 70 mM glucose concentration medium, NFκB mRNA was significantly higher (p < 0.001) in LFCs, than in 17.5 mM glucose concentration DMEM medium. In 70 mM glucose concentration medium for 72 h, TGF-β1 and NFκB protein were significantly lower in AN-LFCs, than in 17.5 mM glucose concentration medium (p < 0.001, p < 0.001). Our study confirmed that high glucose concentration has an impact on TGF-β1 and NFκB signaling both in AN-LFCs and LFCs. These findings highlight that prolonged exposure to high glucose levels may contribute to cellular stress and dysfunction in LFCs and AN-LFCs.
Collapse
Affiliation(s)
- Zhen Li
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.
| | - Tanja Stachon
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Sabrina Häcker
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Fabian N Fries
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Ning Chai
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Lei Shi
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, China
| | - Shao-Lun Hsu
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shuailin Li
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shanhe Liu
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Maryam Amini
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shweta Suiwal
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
3
|
Stamou P, Gianniou DD, Trougakos IP, Mitakou S, Halabalaki M, Kostakis IK, Skaltsounis AL. Anti-Inflammatory Activity of the Major Triterpenic Acids of Chios Mastic Gum and Their Semi-Synthetic Analogues. Biomolecules 2024; 14:1618. [PMID: 39766325 PMCID: PMC11727566 DOI: 10.3390/biom14121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
24Z-Masticadienonic acid (MNA) and 24Z-isomasticadienonic acid (IMNA) are the major triterpenic acids in Chios Mastic Gum (CMG), a resin derived from Pistacia lentiscus var. Chia. Despite their promising pharmacological potential, limited information is available due to the complexity of isolating them in pure form. This study developed a chemo-selective method for isolating MNA and IMNA and investigated their chemical transformation through isomerization of the external double bond and A-ring contraction of the triterpene scaffold. A rapid method for isolating MNA from CMG was first established, followed by a high-yield acid-catalyzed procedure to obtain both 24Z and 24E isomers of IMNA. Additionally, a basic catalyzed isomerization of IMNA led to the formation of two new compounds with A-ring contraction, which could serve as novel scaffolds for the design of new triterpene analogs. The mixture of MNA/IMNA, along with the individual compounds and their semi-synthetic analogs, exhibited significant anti-inflammatory activity. Notably, 24E-isomasticadienonic acid and 24Z-2-hydroxy-3-oxotirucalla-1,8,24-trien-26-oic acid, a previously unreported compound, significantly reduced the mRNA expression levels of Tnf, Il6, and Nfkb1 in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Panagiota Stamou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Sofia Mitakou
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.M.); (M.H.)
| | - Maria Halabalaki
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.M.); (M.H.)
| | - Ioannis K. Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.M.); (M.H.)
| |
Collapse
|
4
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
5
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S. Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Duan D, Wang L, Feng Y, Hu D, Cui D. Picroside Ⅱ attenuates neuropathic pain by regulating inflammation and spinal excitatory synaptic transmission. Can J Physiol Pharmacol 2024; 102:281-292. [PMID: 37976472 DOI: 10.1139/cjpp-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nerve injury induced microglia activation, which released inflammatory mediators and developed neuropathic pain. Picroside Ⅱ (PⅡ) attenuated neuropathic pain by inhibiting the neuroinflammation of the spinal dorsal horn; however, how it engaged in the cross talk between microglia and neurons remained ambiguous. This study aimed to investigate PⅡ in the modulation of spinal synaptic transmission mechanisms on pain hypersensitivity in neuropathic rats. We investigated the analgesia of PⅡ in mechanical and thermal hyperalgesia using the spinal nerve ligation (SNL)-induced neuropathic pain model and formalin-induced tonic pain model, respectively. RNA sequencing and network pharmacology were employed to screen core targets and signaling pathways. Immunofluorescence staining and qPCR were performed to explore the expression level of microglia and inflammatory mediator mRNA. The whole-cell patch-clamp recordings were utilized to record miniature excitatory postsynaptic currents in excitatory synaptic transmission. Our results demonstrated that the analgesic of PⅡ was significant in both pain models, and the underlying mechanism may involve inflammatory signaling pathways. PⅡ reversed the SNL-induced overexpression of microglia and inflammatory factors. Moreover, PⅡ dose dependently inhibited excessive glutamate transmission. Thus, this study suggested that PⅡ attenuated neuropathic pain by inhibiting excitatory glutamate transmission of spinal synapses, induced by an inflammatory response on microglia.
Collapse
Affiliation(s)
- Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yueyang Feng
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiyu Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| |
Collapse
|
7
|
Das MJ, Banerjee D, Banerjee A, Muchahary S, Sinha A, Gogoi D, Chattopadhyay P, Dasgupta S, Deka SC. Safety and antidiabetic activity of Lagenaria siceraria (Molina) Standl. juice in streptozotocin -induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117111. [PMID: 37673199 DOI: 10.1016/j.jep.2023.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes and its complications have overwhelmed India's healthcare system. Current therapies are expensive and have adverse side effects, thus dietary changes and alternative treatments are needed. Lagenaria siceraria (Molina) Standl. Juice is used mainly for its nutritional and medicinal values, however toxicity of the juice and antidiabetic effects have been poorly characterized. AIM OF THE STUDY To investigate the toxicity, anti-diabetic and anti-inflammatory efficacy of Lagenaria siceraria (Molina) Standl. (LS) juice. MATERIALS AND METHODS In vitro antidiabetic (α-glucosidase, α-amylase and DPP-4 inhibitory) activities were screened using standard procedures. The glucose uptake test was carried out by using L6 rat skeletal muscle cell line. In vivo sub-acute toxicity of LS juice was assessed on Wistar rats. Wistar rats were induced with diabetes by a single intraperitoneal (I.P) injection of freshly prepared streptozotocin (55 mg/kg body weight). The animals were randomly divided into 6 groups: normal control, untreated diabetic control, diabetic rats. Different dose of 200 mg/kg, 400 mg/kg and 600 mg/kg body weight of LS juice were administered, one group of diabetic rats were administered with 2 IU/mL insulin. The rats were sacrificed on the 31st day of the experiment and various in vivo biochemical parameters were evaluated in the serum and tissue homogenates of diabetic rats. RESULTS Significant dose-dependent inhibition of α-amylase (22.6%), α-glucosidase (50.13%), and DPP-4 (61.50%) activity was observed by LS juice. LS juice (10 μg/mL) increased insulin-mediated 2NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose) absorption in L6 cells. Animals treated with LS juice showed no toxicity or unfavorable pharmacological effects. Lagenaria siceraria (Molina) Standl. Juice improved glucose tolerance in diabetic rats with reduced fasting blood glucose. Lipopolysaccharide induced NF-κB, TNF-α and IL-1β production was also decreased in rats fed with LS juice. CONCLUSION Lagenaria siceraria (Molina) Standl. Juice has demonstrated promising anti-inflammatory properties as well as the capacity to inhibit the digestion enzymes glucosidase and amylase. Our findings thus open new avenues for further research into the antidiabetic potential of LS juice.
Collapse
Affiliation(s)
- Manas Jyoti Das
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, 784028, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Amartya Banerjee
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Sangita Muchahary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, 784028, India
| | - Archana Sinha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | | | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
8
|
Jimoh OA, Oyeyemi BF, Oyeyemi WA, Ayodele SO, Okin-Aminu HO, Ayodele AD, Faniyi TO, Nwachukwu CU. Herbal inclusions ameliorate effect of heat stress on haematology, proinflammatory cytokines, adipokines and oxidative stress of weaned rabbit does in humid tropics. J Anim Physiol Anim Nutr (Berl) 2024; 108:55-63. [PMID: 37526207 DOI: 10.1111/jpn.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
A study was designed to evaluate the effect of Moringa oleifera, Phyllanthus amarus and Viscum album leaf meal as herbal inclusions to alleviate the detrimental outcomes of heat stress in weaned female rabbits. Forty (40) weaned rabbit does (527.99 ± 10.35 g; 28 days old) were randomly allotted to four dietary groups consisting of Diet 1(control diet; without leaf meal), Diets 2 (supplemented with 10% V. album); 3 (supplemented with 10% M. oleifera) and 4 (supplemented with 10% P. amarus) in an 84 days trial at the peak of heat stress in Southwest Nigeria. At the end of the trial, blood samples were collected to assess physiological responses and oxidative status of the rabbit does. The results obtained revealed that rabbit does were exposed to heat stress; rabbit does fed control diet had higher leucocyte and neutrophil/lymphocyte ratio compared to rabbit does fed on herbal inclusions. The herbal inclusions enhanced oxidative stability of rabbit does by lowering lipid peroxidation and enhancing antioxidant activities during heat stress conditions. Rabbit does fed control-based diet had significantly higher heat shock protein 70, leptin and adiponectin compared to rabbit does on M. oleifera, P. amarus and V. album supplemented diets. The herbal inclusions tend to suppress proinflammatory cytokines in rabbit does during heat stress condition. In conclusion, the herbal inclusions suppress inflammation, adipokines and promotes oxidative stability of rabbit does exposed to heat stress conditions.
Collapse
Affiliation(s)
- Olatunji A Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Bolaji F Oyeyemi
- Department of Science Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Wahab A Oyeyemi
- Department of Physiology, Osun State University Oshogbo, Osogbo, Osun State, Nigeria
| | - Simeon O Ayodele
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Hafsat O Okin-Aminu
- Animal Science Department, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ayoola D Ayodele
- Department of Agricultural and Industrial Technology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Tolulope O Faniyi
- Department of Crop and Animal Science, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Chinwe Uchechi Nwachukwu
- Department of Agricultural Science Education, School of Vocational and Technical Education, Alvan Ikoku Federal College of Education, Owerri, Imo State, Nigeria
| |
Collapse
|
9
|
P V, Mohanan M, U K S, E Pa S, U C A J. Graph Attention Network based mapping of knowledge relations between chemical spaces of Nuclear factor kappa B and Centella asiatica. Comput Biol Chem 2023; 107:107955. [PMID: 37734134 DOI: 10.1016/j.compbiolchem.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The confounding nature of the innate immunity target Nuclear Factor kappa B (NF-κB) and its interaction with Centella asiatica (CA) molecules necessitate the intervention of advanced technologies, such as deep learning methods. The integration of chemical space concepts with deep learning technologies is a new way of knowledge mapping used to explore drug-target interactions, especially in molecular libraries derived from traditional medicine based molecular sources. The current constraint of virtual screening for mechanistic target hunting is the use of a binary classification model that includes active and inactive molecules from in vitro experiments to explore drug-target interaction. This study aims to explore the regulatory nature of the molecules from the inhibition and activation of the NF-κB bioassay data set and map this information for a knowledge-based analysis against the molecules of CA, a low-growing tropical plant. This finding has led to a new direction in the field, transitioning from the conventional active-inactive framework to a more comprehensive active-inactive-regulatory model. This approach can be thoroughly explored by leveraging a graph-based deep learning system. The study presents an innovative approach using a Graph Attention Network (GAT) to rank CA molecules in chemical space based on their similarity with NF-κB bioassay molecules, enabling the efficient analysis of complex relationships between molecules and their regulatory function. Graph Attention Network (GAT) overcomes the limitations of traditional deep learning models such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in handling non-Euclidean graph data and allows for a more precise understanding of similarity ranking by utilizing molecular graphs and attention behavior. By measuring similarity and arranging a matrix of similarity ranking based on GAT, deep neural ranking-based algorithms confirmed the regulatory behaviour of an innate immunity target NF-κB with the support of underlying inverse mapping in the surjective chemical spaces of NF-κB bioassays and CA molecular spaces. Overall, the study introduces new techniques for exploring the regulatory behaviour of complex targets like NF-κB. We then used t-SNE for clustering in chemical space and scaffold hunting for scaffold property analysis and identified nine CA molecules that exhibit regulatory behavior of NF-κB target and are recommended for further investigation.
Collapse
Affiliation(s)
- Vivek P
- UL Research Center, UL Cyber Park Calicut, India
| | | | | | - Sandesh E Pa
- UL Research Center, UL Cyber Park Calicut, India
| | - Jaleel U C A
- OSPF-NIAS Drug DIscovery Lab, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, India
| |
Collapse
|
10
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Park SY, Kim MW, Kang JH, Jung HJ, Hwang JH, Yang SJ, Woo JK, Jeon Y, Lee H, Yoon YS, Seong JK, Oh SH. Novel NF-κB reporter mouse for the non-invasive monitoring of inflammatory diseases. Sci Rep 2023; 13:3556. [PMID: 36864088 PMCID: PMC9981691 DOI: 10.1038/s41598-023-29689-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
Bioluminescence imaging is useful for non-invasively monitoring inflammatory reactions associated with disease progression, and since NF-κB is a pivotal transcription factor that alters expressions of inflammatory genes, we generated novel NF-κB luciferase reporter (NF-κB-Luc) mice to understand the dynamics of inflammatory responses in whole body, and also in various type of cells by crossing NF-κB-Luc mice with cell-type specific Cre expressing mice (NF-κB-Luc:[Cre]). Bioluminescence intensity was significantly increased in NF-κB-Luc (NKL) mice exposed to inflammatory stimuli (PMA or LPS). Crossing NF-κB-Luc mice with Alb-cre mice or Lyz-cre mice generated NF-κB-Luc:Alb (NKLA) and NF-κB-Luc:Lyz2 (NKLL) mice, respectively. NKLA and NKLL mice showed enhanced bioluminescence in liver and macrophages, respectively. To confirm that our reporter mice could be utilized for the non-invasive monitoring of inflammation in preclinical models, we conducted a DSS-induced colitis model and a CDAHFD-induced NASH model in our reporter mice. In both models, our reporter mice reflected the development of these diseases over time. In conclusion, we believe that our novel reporter mouse can be utilized as a non-invasive monitoring platform for inflammatory diseases.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Soo Jung Yang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jong Kyu Woo
- Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yeo Sung Yoon
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
12
|
Zhang J, Wang Z, Shi Y, Xia L, Hu Y, Zhong L. Protective effects of chlorogenic acid on growth, intestinal inflammation, hepatic antioxidant capacity, muscle development and skin color in channel catfish Ictalurus punctatus fed an oxidized fish oil diet. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108511. [PMID: 36599381 DOI: 10.1016/j.fsi.2022.108511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Under oxidative stress condition, the protective effects of dietary chlorogenic acid (CGA) supplementation on liver antioxidant capacity, intestinal inflammation and barrier function, muscle development and skin coloration in channel catfish Ictalurus punctatus were explored in the current study. With that purpose, I. punctatus were fed five experimental diets containing 2% fresh fish oil (FFO, 9.2 meqO2/kg) or 2% oxidized fish oil (OFO, 897.4 meqO2/kg) without or with CGA supplementation (0.02%, 0.04% and 0.08%) for 8 weeks. Upon comparative analysis, the oxidized fish oil consumption significantly lowered weight gain rate, decreased intestinal villi length and muscular thickness values and the tight junction proteins mRNA abundance, augmented the intestinal proinflammatory factors, attenuated hepatic antioxidant enzymes activities and related genes mRNA expression levels, influenced the myogenic regulatory factors expression profile and impacted the myocyte density, myocyte area values as well as the skin pigments contents compared to the FFO treatment. Collectively, long-term feeding of the oxidized fish oil diet suppressed the growth performance, destroyed intestinal structural integrity, caused intestinal inflammation and hepatic oxidative stress, impacted the skeletal development and skin color of I. punctatus. Whereas CGA supplementation in oxidized fish oil diets partially counteracted the negative effects of the oxidized fish oil on I. punctatus in terms of increasing the growth performance, improving the intestinal mucosal structure, alleviating hepatic oxidative stress and intestinal inflammation, recompiling the myogenic regulatory factors expression and improving skin color. In conclusion, CGA has great potential to be an aquatic feed additive.
Collapse
Affiliation(s)
- Junzhi Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ziqing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yong Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Liqiu Xia
- College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Yi Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Lei Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
13
|
Kim KS, Choi YJ, Jang DS, Lee S. 2- O- β-d-Glucopyranosyl-4,6-dihydroxybenzaldehyde Isolated from Morus alba (Mulberry) Fruits Suppresses Damage by Regulating Oxidative and Inflammatory Responses in TNF-α-Induced Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms232314802. [PMID: 36499128 PMCID: PMC9735759 DOI: 10.3390/ijms232314802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Human skin is composed of three layers, of which the dermis is composed of an extracellular matrix (ECM) comprising collagen, elastin, and other proteins. These proteins are reduced due to skin aging caused by intrinsic and extrinsic factors. Among various internal and external factors related to aging, ultraviolet (UV) radiation is the main cause of photoaging of the skin. UV radiation stimulates DNA damage, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine production such as tumor necrosis factor-alpha (TNF-α), and promotes ECM degradation. Stimulation with ROS and TNF-α upregulates mitogen-activated protein kinases (MAPKs), nuclear factor kappa B (NF-κB), and activator protein 1 (AP-1) transcription factors that induce the expression of the collagenase matrix metalloproteinase-1 (MMP-1). Moreover, TNF-α induces intracellular ROS production and several molecular pathways. Skin aging progresses through various processes and can be prevented through ROS generation and TNF-α inhibition. In our previous study, 2-O-β-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (GDHBA) was isolated from the Morus alba (mulberry) fruits and its inhibitory effect on MMP-1 secretion was revealed. In this study, we focused on the effect of GDHBA on TNF-α-induced human dermal fibroblasts (HDFs). GDHBA (50 μM) inhibited ROS generation (18.8%) and decreased NO (58.4%) and PGE2 levels (53.8%), significantly. Moreover, it decreased MMP-1 secretion (55.3%) and increased pro-collagen type I secretion (207.7%). GDHBA (50 μM) decreased the expression of different MAPKs as per western blotting; p-38: 35.9%; ERK: 47.9%; JNK: 49.5%; c-Jun: 32.1%; NF-κB: 55.9%; and cyclooxygenase-2 (COX-2): 31%. This study elucidated a novel role of GDHBA in protecting against skin inflammation and damage through external stimuli, such as UV radiation.
Collapse
Affiliation(s)
- Kang Sub Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (S.L.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (D.S.J.); (S.L.)
| |
Collapse
|
14
|
Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacology 2022; 30:2373-2383. [PMID: 36219321 DOI: 10.1007/s10787-022-01075-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Nuciferine, isolated from Nelumbo nucifera (commonly known as lotus) leaves, has been shown to have beneficial effects, including antioxidant, anti-obesity, anti-diabetic, and anti-inflammatory properties. However, little is known about the mechanism of nuciferine action on the inflammatory response. This study aimed to investigate the anti-inflammatory effects of nuciferine and its underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated murine macrophages. In this study, nuciferine reduced LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and mRNA expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Nuciferine also decreased the production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Furthermore, nuciferine inhibited the LPS-mediated transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1, and the nuclear translocation of NF-κB p65 and activating transcription factor 2 (ATF2), an AP-1 subunit. Nuciferine also decreased the phosphorylation of IκB kinase (IKK), inhibitor of NF-κB (IκB), NF-κB, mitogen-activated protein kinase 3 (MKK3), MKK6, p38 mitogen-activated protein kinase (MAPK), and ATF2. Overall, our findings suggest that nuciferine may exert anti-inflammatory effects in LPS-induced macrophages by inhibiting the NF-κB and p38 MAPK/ATF2 signaling pathways.
Collapse
|
15
|
Kim KS, Kim R, Son SR, Kang KS, Jang DS, Lee S. Oddioside A, a New Phenolic Glycoside Isolated from the Fruits of Morus alba (Mulberry), Protects TNF-α-Induced Human Dermal Fibroblast Damage. Antioxidants (Basel) 2022; 11:1894. [PMID: 36290617 PMCID: PMC9655652 DOI: 10.3390/antiox11101894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 03/26/2025] Open
Abstract
In our preliminary study, a hot water extract from the fruits of Morus alba (mulberry) inhibited the secretion of metalloproteinase-1 (MMP-1) against tumor necrosis factor-α (TNF-α)-stimulated human dermal fibroblasts (HDFs), and therefore we researched its active compounds. In the present study, a new phenolic glycoside (oddioside A, 1) and 21 known compounds (2-22) were isolated from the hot water extract from the fruits of M. alba by repeated chromatography. The chemical structure of the new compound 1 was elucidated by its spectroscopic data (1D- and 2D-NMR and HRMS) measurement and by acidic hydrolysis. The presence of sargentodoside E (2), eugenyl glucoside (6), 2-O-β-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (7), 7S,8R-erythro-7,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-4-O-β-d-glucopyranoside (11), pinoresinol-4-O-β-d-glucopyranoside (12), taxifolin-7-O-β-d-glucopyranoside (20), and pinellic acid (21) were reported from M. alba for the first time in this study. The new compound oddioside A (1) suppressed the secretion of MMP-1 and increased collagen in TNF-α-stimulated HDFs. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs) was inhibited by oddioside A. In conclusion, the extract from fruits of M. alba and its constituent oddioside A may be a potential agent to prevent inflammation-related skin aging and other skin disorders.
Collapse
Affiliation(s)
- Kang Sub Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (K.S.K.); (K.S.K.)
| | - Ranhee Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (K.S.K.); (K.S.K.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
16
|
Romero-Estrada A, Boto A, González-Christen J, Romero-Estudillo I, Garduño-Ramírez ML, Razo-Hernández RS, Marquina S, Maldonado-Magaña A, Columba-Palomares MC, Sánchez-Carranza JN, Alvarez L. Synthesis, Biological Evaluation, and Molecular Docking Study of 3-Amino and 3-Hydroxy- seco A Derivatives of α-Amyrin and 3-Epilupeol as Inhibitors of COX-2 Activity and NF-kB Activation. JOURNAL OF NATURAL PRODUCTS 2022; 85:787-803. [PMID: 35175765 DOI: 10.1021/acs.jnatprod.1c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a series of novel 3-seco-A derivatives of the natural triterpenes α-amyrin (1) and 3-epilupeol (2) were synthesized by a one-pot radical scission-oxidation procedure and evaluated in vitro and in vivo for their capacity to inhibit the inflammatory process. For the in vitro studies, the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f) were consistently effective in inhibiting NO, IL-6, and TNF-α secretion, as well as inhibition of NF-κB activation, in RAW cells stimulated by LPS. The further in vivo anti-inflammatory study revealed that the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f), together with 1g, were the most effective in inhibiting TPA-induced edema. Interestingly, the α-amyrin derivatives were the most potent inhibitors of COX-2, but inhibited COX-1 only to some extent. The hydroxyl derivative (1c) was selective for COX-2 inhibition (66.3 ± 1.1% at 17.5 μM) without affecting the COX-1 isoform and did not present toxicity. Molecular docking studies revealed that these compounds bind with their polar region in the cavity over Arg-120, and their lipophilic part is orientated to the HEM cofactor similarly to the natural substrate arachidonic acid in the catalytic site of COX-2. These results indicated that seco-A ursane derivatives could be considered promising candidates for the future development of selective NF-κB and COX-2 inhibitors.
Collapse
Affiliation(s)
- Antonio Romero-Estrada
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenuda Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Judith González-Christen
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Ivan Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Silvia Marquina
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Amalia Maldonado-Magaña
- Instituto Tecnológico de Milpa Alta. Independencia Sur No. 36, Col. San Salvador Cuauhténco, Alcaldía Milpa Alta CDMX 12300, México
| | - María C Columba-Palomares
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| |
Collapse
|
17
|
Babaei P, Hoseini R. Exercise training modulates adipokine dysregulations in metabolic syndrome. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:18-28. [PMID: 35782776 PMCID: PMC9219261 DOI: 10.1016/j.smhs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hoseini
- Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
18
|
Park BM, Lee J, Jung BG, Lee BJ. Validation of the Anti-Inflammatory Effect of Tenebrio Molitor Larva Oil in a Colitis Mouse Model. Folia Biol (Praha) 2022; 68:50-58. [PMID: 36384262 DOI: 10.14712/fb2022068020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Ulcerative colitis is caused by various external factors and is an inflammatory disease that causes decreased intestinal function. Tenebrio molitor larvae contain more than 30 % fat, and the fat component consists of 45 % oleic acid, 20 % linoleic acid and 20 % polyunsaturated fatty acids. In this study, after administering Tenebrio molitor larva oil (TMLO) in a dextran sodium sulphate (DSS)-induced ulcerative colitis mouse model, the pathological findings and inflammatory markers of colitis were analysed to assess whether a colitis mitigation effect was achieved. In the TMLO-administered group, the colon length increased, the spleen weight decreased, and the body weight increased compared with that in the DSS group. In addition, the disease activity index level decreased, the mRNA expression level of inflammatory cytokines in the colon decreased, and the myeloperoxidase activity level significantly decreased. Also, the activity of the NF-κB pathway involved in the regulation of the inflammatory response was lower in the TMLO group than in the DSS group. Taken together, these results suggest that TMLO suppresses occurrence of acute ulcerative colitis in the DSS mouse model. Therefore, TMLO has the potential to be developed as a health food for the prevention and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- B M Park
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - J Lee
- Biology Department at Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - B G Jung
- Department of Pulmonary Immunology, Center for Pulmonary and Infectious Diseases Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - B J Lee
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
19
|
Yang X, He Z, Hu R, Yan J, Zhang Q, Li B, Yuan X, Zhang H, He J, Wu S. Dietary β-Carotene on Postpartum Uterine Recovery in Mice: Crosstalk Between Gut Microbiota and Inflammation. Front Immunol 2021; 12:744425. [PMID: 34899699 PMCID: PMC8652147 DOI: 10.3389/fimmu.2021.744425] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
As the precursor of vitamin A, β-carotene has a positive effect on reproductive performance. Our previous study has shown that β-carotene can increase antioxidant enzyme activity potentially through regulating gut microbiota in pregnant sows. This study aimed to clarify the effect of β-carotene on reproductive performance and postpartum uterine recovery from the aspect of inflammation and gut microbiota by using a mouse model. Twenty-seven 6 weeks old female Kunming mice were randomly assigned into 3 groups (n=9), and fed with a diet containing 0, 30 or 90 mg/kg β-carotene, respectively. The results showed that dietary supplementation of β-carotene reduced postpartum uterine hyperemia and uterine mass index (P<0.05), improved intestinal villus height and villus height to crypt depth ratio, decreased serum TNF-α and IL-4 concentration (P<0.05), while no differences were observed in litter size and litter weight among three treatments. Characterization of gut microbiota revealed that β-carotene up-regulated the relative abundance of genera Akkermansia, Candidatus Stoquefichus and Faecalibaculum, but down-regulated the relative abundance of Alloprevotella and Helicobacter. Correlation analysis revealed that Akkermansia was negatively correlated with the IL-4 concentration, while Candidatus Stoquefichus and Faecalibaculum had a negative linear correlation with both TNF-α and IL-4 concentration. On the other hand, Alloprevotella was positively correlated with the TNF-α, and Helicobacter had a positive correlation with both TNF-α and IL-4 concentration. These data demonstrated that dietary supplementation of β-carotene contributes to postpartum uterine recovery by decreasing postpartum uterine hemorrhage and inhibiting the production of inflammatory cytokines potentially through modulating gut microbiota.
Collapse
Affiliation(s)
- Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ziyu He
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiahao Yan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qianjin Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Baizhen Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xupeng Yuan
- Pig Breeding Research Insititute, Hunan Xinguang'an Agricultural Husbandry Co., Ltd., Changsha, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Sharma N, Khajuria V, Gupta S, Kumar C, Sharma A, Lone NA, Paul S, Meena SR, Ahmed Z, Satti NK, Verma MK. Dereplication Based Strategy for Rapid Identification and Isolation of a Novel Anti-inflammatory Flavonoid by LCMS/MS from Colebrookea oppositifolia. ACS OMEGA 2021; 6:30241-30259. [PMID: 34805658 PMCID: PMC8600527 DOI: 10.1021/acsomega.1c01837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Colebrookea oppositifolia is a folkloric medicinal plant, well known for its tremendous medicinal properties such as curing epilepsy, ulcers, and urinary problems. The aim of the present study was to apply the dereplication strategy on the ethanol extract of C. oppositifolia with potent anti-inflammatory activity for the rapid identification and isolation of novel bioactive molecules to aid the drug discovery process. An integrated approach using liquid chromatography-mass spectrometry (LCMS) followed by preparative high-performance liquid chromatography (HPLC) was used for the isolation of potent molecules from the anti-inflammatory extract of C. oppositifolia . Purity of the compounds (>98.5%) was established by HPLC, and identification was carried out by NMR and ESI-MS. 5,6,7-Trihydroxyflavone-3-O-glucuronide methyl ester (compound III) isolated from C. oppositifolia was extensively studied for anti-inflammatory potential in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mice model. Compound III significantly repressed various proinflammatory mediators and upregulated the release of anti-inflammatory cytokine IL-10. Compound III reduced inflammation when studied for parameters such as the phagocytic index, carrageenan-induced paw edema in mice, and effect on organ weight. It reduced inflammation in a dose-dependent manner both in vitro and in vivo. Further molecular insights into the study revealed that compound III blocks the phosphorylation of I kappa b kinase α/β (IKKα/β), IκBα, and nuclear factor kB p65 (NF-κBp65) which is a key controller of inflammation, thereby showing anti-inflammatory potential. Hence, this study permits further investigation to develop compound III as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Neha Sharma
- Natural
Product Chemistry Division, Analytical Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Vidushi Khajuria
- Inflammation
Pharmacology Division, CSIR-Indian Institute
of Integrative, Jammu 180001, India
- AcSIR:
Academy of Scientific and Innovative Research, Jammu 180006, India
| | - Shilpa Gupta
- Inflammation
Pharmacology Division, CSIR-Indian Institute
of Integrative, Jammu 180001, India
- AcSIR:
Academy of Scientific and Innovative Research, Jammu 180006, India
| | - Chetan Kumar
- Natural
Product Chemistry Division, Analytical Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anjana Sharma
- AcSIR:
Academy of Scientific and Innovative Research, Jammu 180006, India
- PK-PD
and Toxicology Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180006, India
| | - Nazir Ahmad Lone
- AcSIR:
Academy of Scientific and Innovative Research, Jammu 180006, India
- PK-PD
and Toxicology Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180006, India
| | - Satya Paul
- Department
of Chemistry, University of Jammu, Jammu 180006, India
| | - Siya Ram Meena
- Genetic Resource
& Agrotech. Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Zabeer Ahmed
- Inflammation
Pharmacology Division, CSIR-Indian Institute
of Integrative, Jammu 180001, India
- AcSIR:
Academy of Scientific and Innovative Research, Jammu 180006, India
| | - Naresh Kumar Satti
- Natural
Product Chemistry Division, Analytical Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mahendra Kumar Verma
- Natural
Product Chemistry Division, Analytical Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
21
|
Park TJ, Hong H, Kim MS, Park JS, Chi WJ, Kim SY. Prunetin 4'- O-Phosphate, a Novel Compound, in RAW 264.7 Macrophages Exerts Anti-Inflammatory Activity via Suppression of MAP Kinases and the NFκB Pathway. Molecules 2021; 26:molecules26226841. [PMID: 34833933 PMCID: PMC8622051 DOI: 10.3390/molecules26226841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Biorenovation, a microbial enzyme-assisted degradation process of precursor compounds, is an effective approach to unraveling the potential bioactive properties of the derived compounds. In this study, we obtained a new compound, prunetin 4′-O-phosphate (P4P), through the biorenovation of prunetin (PRN), and investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory effect of P4P was evaluated by measuring the production of prostaglandin-E2 (PGE2), nitric oxide (NO), which is an inflammation-inducing factor, and related cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL1β), and interleukin-6 (IL6). The findings demonstrated that P4P was non-toxic to cells, and its inhibition of the secretion of NO—as well as pro-inflammatory cytokines—was concentration-dependent. A simultaneous reduction in the protein expression level of pro-inflammatory proteins such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and nuclear factor kappa B (NFκB) was downregulated. To conclude, we report that biorenovation-based phosphorylation of PRN improved its anti-inflammatory activity. Cell-based in vitro assays further confirmed that P4P could be applied in the development of anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Tae-Jin Park
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Korea; (T.-J.P.); (H.H.)
| | - Hyehyun Hong
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Korea; (T.-J.P.); (H.H.)
| | - Min-Seon Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (M.-S.K.); (J.-S.P.)
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (M.-S.K.); (J.-S.P.)
| | - Won-Jae Chi
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea;
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Korea; (T.-J.P.); (H.H.)
- Correspondence: ; Tel.: +82-41-530-2390
| |
Collapse
|
22
|
Emeka PM, Rasool ST, Morsy MA, Islam MIH, Chohan MS. Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:321-331. [PMID: 34187949 PMCID: PMC8255119 DOI: 10.4196/kjpp.2021.25.4.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.
Collapse
Affiliation(s)
- Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sahibzada T Rasool
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Mohamed I Hairul Islam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad S Chohan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
23
|
Anti-Inflammatory Effects of Abeliophyllum distichum Nakai (Cultivar Okhwang 1) Callus through Inhibition of PI3K/Akt, NF-κB, and MAPK Signaling Pathways in Lipopolysaccharide-Induced Macrophages. Processes (Basel) 2021. [DOI: 10.3390/pr9061071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the Korean endemic plants, Abeliophyllum distichum Nakai (Oleaceae), contains acteoside, which is a glycoside exhibiting neuroprotective, anti-inflammation effects and antibacterial capacities. We conducted an investigation on the effects of the callus of A. distichum (cultivar Okhwang 1, CAO) on pro-inflammatory mediators released following nuclear factor-кB (NF-кB), phosphatidylinositol 3-kinase/Akt (PI3K-Akt) and mitogen-activated protein kinase (MAPK) signal activation in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Immunoblotting was employed to find out the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), and activation of MAPK molecules, NF-κB and Akt. Cytokines, COX-2, and iNOS gene expression were assessed using polymerase chain reaction techniques. Cytokines, COX-2, and iNOS gene expression were assessed using polymerase chain reaction techniques. High-performance liquid chromatography revealed that CAO was rich in acteoside and isoacteoside. As a result, CAO inhibited the generation of NO, cytokines, COX-2, and iNOS expression. Further, translocation to the nuclear of NF-κB p65 and degradation of the inhibitor of NF-кB (IкB) were alleviated by suppressing phosphorylation. Additionally, CAO significantly impacted MAPK pathway activation by potentially reducing phosphorylation of MAPKs. These results indicate that the anti-inflammatory effect of CAO is mediated via the inhibition of MAPK, PI3K/Akt, and NF-κB signaling pathways, probably via glycosides, phenolics, and flavonoids bioactivity derived from plants. CAO can serve as a potential anti-inflammatory agent, which alleviates inflammation factors and act through specific cell signaling pathways.
Collapse
|
24
|
Ren X, Wang L, Chen Z, Hou D, Xue Y, Diao X, Shen Q. Foxtail Millet Improves Blood Glucose Metabolism in Diabetic Rats through PI3K/AKT and NF-κB Signaling Pathways Mediated by Gut Microbiota. Nutrients 2021; 13:nu13061837. [PMID: 34072141 PMCID: PMC8228963 DOI: 10.3390/nu13061837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Foxtail millet (FM) is receiving ongoing increased attention due to its beneficial health effects, including the hypoglycemic effect. However, the underlying mechanisms of the hypoglycemic effect have been underexplored. In the present study, the hypoglycemic effect of FM supplementation was confirmed again in high-fat diet and streptozotocin-induced diabetic rats with significantly decreased fasting glucose (FG), glycated serum protein, and areas under the glucose tolerance test (p < 0.05). We employed 16S rRNA and liver RNA sequencing technologies to identify the target gut microbes and signaling pathways involved in the hypoglycemic effect of FM supplementation. The results showed that FM supplementation significantly increased the relative abundance of Lactobacillus and Ruminococcus_2, which were significantly negatively correlated with FG and 2-h glucose. FM supplementation significantly reversed the trends of gene expression in diabetic rats. Specifically, FM supplementation inhibited gluconeogenesis, stimulated glycolysis, and restored fatty acid synthesis through activation of the PI3K/AKT signaling pathway. FM also reduced inflammation through inhibition of the NF-κB signaling pathway. Spearman’s correlation analysis indicated a complicated set of interdependencies among the gut microbiota, signaling pathways, and metabolic parameters. Collectively, the above results suggest that the hypoglycemic effect of FM was at least partially mediated by the increased relative abundance of Lactobacillus, activation of the PI3K/AKT signaling pathway, and inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (X.R.); (L.W.)
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Linxuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (X.R.); (L.W.)
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Xianmin Diao
- Center for Crop Germplasm Resources, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
- Correspondence: ; Tel.: +86-10-62737524
| |
Collapse
|
25
|
Yang T, Zhou Y, Zhang W, Zhang L, Chen S, Chen C, Gao F, Yang H, Manyande A, Wang J, Tian Y, Tian X. The Spinal α7-Nicotinic Acetylcholine Receptor Contributes to the Maintenance of Cancer-Induced Bone Pain. J Pain Res 2021; 14:441-452. [PMID: 33623426 PMCID: PMC7894822 DOI: 10.2147/jpr.s286321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Introduction Cancer-induced bone pain (CIBP) is acknowledged as a multifactorial chronic pain that tortures advanced cancer patients, but existing treatment strategies for CIBP have not been satisfactory yet. Investigators have demonstrated that the activation of α7-nAChRs exerts analgesic effects in some chronic pain models. However, the role of spinal α7-nAChRs in CIBP remains unknown. This study was designed to investigate the role of α7-nAChRs in a well-established CIBP model induced by Walker 256 rat mammary gland carcinoma cells. Methods The paw withdrawal threshold (PWT) of the ipsilateral hind paw was measured using von Frey filament. The expressions of spinal α7-nAChRs and NF-κB were measured with Western blotting analysis. Immunofluorescence was employed to detect the expression of α7-nAChRs and co-expressed of α7-nAChRs with NeuN or GFAP or Iba1. Results Experiment results showed that the expression of spinal α7-nAChRs was significantly downregulated over time in CIBP rats, and in both CIBP rats and sham rats, most of the α7-nAChRs located in neurons. Behavioral data suggested PNU-282,987, a selective α7-nAChRs agonist, dose-dependently produced analgesic effect and positive allosteric modulator could intensify its effects. Further, repeated administration of PNU-282,987 reversed the expression of α7-nAChRs, inhibited the nuclear factor kappa B (NF-κB) signaling pathway, and attenuates CIBP-induced mechanical allodynia state as well. Conclusion These results suggest that the reduced expression of spinal α7-nAChRs contributes to the maintenance of CIBP by upregulating NF-κB expression, which implying a novel pharmacological therapeutic target for the treatment of CIBP.
Collapse
Affiliation(s)
- Ting Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yaqun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuping Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chao Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Mol Neurobiol 2021; 58:2407-2422. [PMID: 33421016 DOI: 10.1007/s12035-020-02227-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pushpa Gandi Sangaran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abolhassan Ahmadiani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, PO Box 19839-63113, Tehran, Iran.
| |
Collapse
|
27
|
Richard SA. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm 2021; 2021:6699560. [PMID: 33505216 PMCID: PMC7808814 DOI: 10.1155/2021/6699560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022] Open
Abstract
Licorice extract is a Chinese herbal medication most often used as a demulcent or elixir. The extract usually consists of many components but the key ingredients are glycyrrhizic (GL) and glycyrrhetinic acid (GA). GL and GA function as potent antioxidants, anti-inflammatory, antiviral, antitumor agents, and immuneregulators. GL and GA have potent activities against hepatitis A, B, and C viruses, human immunodeficiency virus type 1, vesicular stomatitis virus, herpes simplex virus, influenza A, severe acute respiratory syndrome-related coronavirus, respiratory syncytial virus, vaccinia virus, and arboviruses. Also, GA was observed to be of therapeutic valve in human enterovirus 71, which was recognized as the utmost regular virus responsible for hand, foot, and mouth disease. The anti-inflammatory mechanism of GL and GA is realized via cytokines like interferon-γ, tumor necrotizing factor-α, interleukin- (IL-) 1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, and IL-17. They also modulate anti-inflammatory mechanisms like intercellular cell adhesion molecule 1 and P-selectin, enzymes like inducible nitric oxide synthase (iNOS), and transcription factors such as nuclear factor-kappa B, signal transducer and activator of transcription- (STAT-) 3, and STAT-6. Furthermore, DCs treated with GL were capable of influencing T-cell differentiation toward Th1 subset. Moreover, GA is capable of blocking prostaglandin-E2 synthesis via blockade of cyclooxygenase- (COX-) 2 resulting in concurrent augmentation nitric oxide production through the enhancement of iNOS2 mRNA secretion in Leishmania-infected macrophages. GA is capable of inhibiting toll-like receptors as well as high-mobility group box 1.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho, Ghana
| |
Collapse
|
28
|
Tang L, Cao X, Li X, Ding H. Topical application with conjugated linoleic acid ameliorates 2, 4-dinitrofluorobenzene-induced atopic dermatitis-like lesions in BALB/c mice. Exp Dermatol 2021; 30:237-248. [PMID: 33206422 DOI: 10.1111/exd.14242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a multifactorial chronic inflammatory skin disease characterized by skin barrier dysfunction, eczematous lesions, pruritus, and abnormal immune responses. In this study, we assessed the therapeutic effect of topical applied conjugated linoleic acid (CLA) on a murine AD model that was developed by repetitive applications of 2, 4-dinitrofluorobenzene (DNFB). 2% or 5% CLA could markedly ameliorate AD-like skin lesions, scratching behaviour and skin inflammation as evidenced by the reduced inflammatory blood cells, IgE and Th2-related cytokine levels, and the infiltration of mast cells and inflammatory cells to the dermal tissues. Moreover, topical application with CLA modulated skin barrier repair including maintaining a balanced skin pH and increasing skin hydration, partially mediated by upregulating skin barrier-related protein, filaggrin (FLG). In addition, topical CLA significantly dose-dependently inhibited pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α and pro-inflammatory enzyme expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in inflamed mice skin. Its anti-inflammatory effect was associated with the inhibition of DNFB-stimulated IκBα and NF-κB p65 phosphorylation in mouse skin. Taken together, our results suggest that locally applied CLA exerts potentially protective effects against AD lesional skin at least in part, due to regulation of skin barrier function and inflammatory response.
Collapse
Affiliation(s)
- Liu Tang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoqin Cao
- College of Medicine, Jianghan University, Wuhan, China
| | - Xiaolei Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Hong Ding
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Almayouf MA, El-khadragy M, Awad MA, Alolayan EM. The Effects of Silver Nanoparticles Biosynthesized Using Fig and Olive Extracts on Cutaneous leishmaniasis Induced Inflammation in Female Balb/c Mice. Biosci Rep 2020; 40:BSR20202672. [PMID: 33252120 PMCID: PMC7745064 DOI: 10.1042/bsr20202672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmaniasis is a group of infectious and non-contagious severe parasitic diseases, caused by protozoans of the Leishmania genus. Natural products characterize a rich source of prospective chemical entities for the development of new effective drugs for neglected diseases. Scientific evaluation of medicinal plants has made it possible to use some metabolites from flavonoids and polyphenols compounds for the treatment of parasitic diseases. Therefore, we aimed in this study to evaluate the protective effect of Silver nanoparticles (Ag-NPs) biosynthesized using Fig and Olive extracts (NFO) against Cutaneous leishmaniasis in female Balb/c mice. A total of 70 mice were used and divided into seven groups. Treatment was initiated when local lesions were apparent, we found Fig and Olive extracts were found to be a good source for the synthesis of (Ag-NPs), their formation was confirmed by color change and stability in solution. Nanoparticles biosynthesized using Fig and Olive extracts induced a reduction in the average size of cutaneous leishmaniasis lesions compared with the untreated mice. Moreover, nanoparticles treatment decreased oxidative stress (LPO, NO), down regulation gene expression levels (TNF-α, IL-1β and BAX) and this antileishmanial activity of nanoparticles was associated with enhanced antioxidant enzyme activities. In addition, histopathological evaluation proved the antileishmanial activity of nanoparticles compared to the positive control. Therefore, we aimed in this study to evaluate the protective effect of silver nanoparticles biosynthesized using Fig and Olive extracts against cutaneous lesions induced by Leishmania major infection through their anti-inflammatory, antioxidant activities and faster clinical efficacy than standard pentavalent antimonial treatment.
Collapse
Affiliation(s)
- Mina A. Almayouf
- Faculty of Science, Zoology Department, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal El-khadragy
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal A. Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ebtesam M. Alolayan
- Faculty of Science, Zoology Department, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Zhou L, Lapping S, Liao X, Lu Y, Zhou G, Matoba K, Vasudevan N, Wang L, Nayak L. The thromboprotective effect of traditional Chinese medicine Tongji 2 granules is dependent on anti-inflammatory activity by suppression of NF-κB pathways. PLoS One 2020; 15:e0241607. [PMID: 33180821 PMCID: PMC7660536 DOI: 10.1371/journal.pone.0241607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a vital physiological response of the immune system meant to protect against the invasion of pathogens. However, accumulating evidence describes an intimate link between inflammation and thrombosis and cellular elements of the immune system of the immune system such as neutrophils and monocytes/macrophages are emerging as key players in the generation of a prothrombotic milieu suggesting that anti-inflammatory therapy may have a role in the management of thrombosis that is driven by inflammation. Tongji 2 (TJ2) is a traditional Chinese medication manufactured as granules by Tongji hospital of Tongji University (Shanghai, China) with known anti-inflammatory properties. In this study, we examine the effects of TJ2 on inflammation and thrombosis. Our study shows that TJ2 modulates NF-κB activation and thus generates a prominent anti-inflammatory effect. Further, we use mouse models of thrombosis to demonstrate that TJ2 has a beneficial effect in both arterial and venous thrombosis that occurs in the absence of alterations in platelet activation or coagulation.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai, China
| | - Stephanie Lapping
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Yuan Lu
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Guangjin Zhou
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Keiichiro Matoba
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Neelakantan Vasudevan
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Lemin Wang
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai, China
| | - Lalitha Nayak
- Division of Hematology and Oncology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wang Z, Yang J, Yang Y, Pu X, Zhao J, Zhang N. Targeted and Combined TPCA-1-Gold Nanocage Therapy for In Vivo Treatment of Inflammatory Arthritis. AAPS PharmSciTech 2020; 21:298. [PMID: 33140225 DOI: 10.1208/s12249-020-01856-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is currently incurable. Inhibition of inflammation can prevent the deterioration of RA. 2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) suppresses inflammation via the inhibition of nuclear factor-κ (NF-κB) signaling pathway. Gold-based therapies have been used to treat inflammatory arthritis since the 1940s. Hyaluronic acid (HA) is a targeting ligand for CD44 receptors overexpressed on activated macrophages. Therefore, a combined therapy based on TPCA-1, gold, and HA was explored for the treatment of RA in this study. We used gold nanocages (AuNCs) to load TPCA-1 and modified the TPCA-1 (T) loaded AuNCs with HA and peptides (P) to construct an anti-inflammatory nanoparticle (HA-AuNCs/T/P). An adjuvant-induced arthritis (AIA) mice model was used to investigate the in vivo anti-inflammatory efficacy of HA-AuNCs/T/P. In vivo distribution results showed that HA-AuNCs/T/P had increased and prolonged accumulation at the inflamed paws of AIA mice. Treatment by the HA-AuNCs/T/P suppressed joint swelling and alleviated cartilage and bone damage. By loading to HA-AuNCs/T/P, the effective concentration of TPCA-1 was greatly reduced from 20 to 0.016 mg/kg mice. This study demonstrated that HA-AuNCs/T/P could effectively suppress inflammation and alleviate the symptoms of AIA mice, suggesting a great potential of HA-AuNCs/T/P for the treatment of RA.
Collapse
|
32
|
Yu P, Ke C, Guo J, Zhang X, Li B. Lactobacillus plantarum L15 Alleviates Colitis by Inhibiting LPS-Mediated NF-κB Activation and Ameliorates DSS-Induced Gut Microbiota Dysbiosis. Front Immunol 2020; 11:575173. [PMID: 33123156 PMCID: PMC7566170 DOI: 10.3389/fimmu.2020.575173] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have suggested that the Lactobacillus plantarum bacteria strain could be effective in ulcerative colitis (UC) management. However, its effects are strain-specific and the related mechanisms for its attenuating effects on UC remain unclear. This study aimed to elucidate the underlying mechanisms for the protective effect of L. plantarum on UC. Firstly, 15 L. plantarum strains were screened for potential probiotic characteristics with good tolerance to simulated human gastrointestinal transit and adhesion. Secondly, the inflammatory response of selected strains to the Caco-2 cells induced by lipopolysaccharide (LPS) was measured. Finally, an in vivo mouse model induced by dextran sulfate sodium (DSS) was used to assess the beneficial effects and likely action mechanisms the successfully screened in vitro strain, L. plantarum L15. In vitro results showed that L. plantarum L15 possessed the highest gastrointestinal transit tolerance, adhesion and reduction of pro-inflammatory abilities compared to the other screened strains. In vivo, high dose of L. plantarum L15 supplementation increased the body weight, colon length and anti-inflammatory cytokine production. Pro-inflammatory cytokine production, disease activity index (DAI) levels and myeloperoxidase (MPO) parameters decreased using this strain. In addition, L. plantarum L15 alleviated the histopathological changes in colon, modulated the gut microbiota, and decreased LPS secretion. The activities of this strain down-regulated the expression of TLR4 and MyD88 genes as well as genes associated with NF-κB signaling pathway. Our findings present L. plantarum L15 as a new probiotic, with promising application for UC management.
Collapse
Affiliation(s)
- Peng Yu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jiaxin Guo
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Zhang W, Zou G, Li B, Du X, Sun Z, Sun Y, Jiang X. Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation. J Microbiol Biotechnol 2020; 30:1132-1141. [PMID: 32423189 PMCID: PMC9728197 DOI: 10.4014/jmb.2002.02044] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is an increasing global burden and a predisposing factor to colorectal cancer. Although a number of treatment options are available, the side effects could be considerable. Studies on fecal microbiota transplantation (FMT) as an IBD intervention protocol require further validation as the underlying mechanisms for its attenuating effects remain unclear. This study aims to demonstrate the ameliorative role of FMT in an ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) and elucidate its relative mechanisms in a mouse model. It was shown that FMT intervention decreased disease activity index (DAI) levels and increased the body weight, colon weight and colon length of experimental animals. It also alleviated histopathological changes, reduced key cytokine expression and oxidative status in the colon. A down-regulated expression level of genes associated with NF-κB signaling pathway was also observed. The results of 16S rRNA gene sequencing showed that FMT intervention restored the gut microbiota to the pattern of the control group by increasing the relative abundance of Firmicutes and decreasing the abundances of Bacteroidetes and Proteobacteria. The relative abundances of the genera Lactobacillus, Butyricicoccus, Lachnoclostridium, Olsenella and Odoribacter were upregulated but Helicobacter, Bacteroides and Clostridium were reduced after FMT administration. Furthermore, FMT administration elevated the concentrations of SCFAs in the colon. In conclusion, FMT intervention could be suitable for UC control, but further validations via clinical trials are recommended.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China
| | - Guiling Zou
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China
| | - Bin Li
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China
| | - Xuefei Du
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China
| | - Zhe Sun
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China
| | - Yu Sun
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, P.R. China,Heilongjiang Longwei Precision Medical Laboratory Center, Longchuan Road, Songbei District, Harbin 150028, P.R. China,Corresponding author Phone: +86-0451-85716079 Fax: +86-0451-85716079 E-mail:
| |
Collapse
|
34
|
NF-κB interaction long non-coding RNA inhibits migration, invasion and epithelial-mesenchymal transition of cervical cancer cells through inhibiting NF-κB signaling pathways. Exp Ther Med 2020; 20:1039-1047. [PMID: 32765657 PMCID: PMC7388573 DOI: 10.3892/etm.2020.8752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
The long non-coding RNA (lncRNA) NF-κB interaction lncRNA (NKILA) has been found to exert tumor suppressive effects in numerous types of carcinoma; however, the relationship between NKILA and cervical cancer (CC) remains largely unclear. The present study aimed to investigate the effects of NKILA on the proliferation and metastasis of CC cell lines, in addition to the related molecular mechanisms. Reverse transcription-quantitative PCR was used to detect the expression levels of NKILA in cancer tissues and cell lines. The constructed overexpression vector, pcDNA3.1NKILA, and its corresponding negative control sequence were transfected into CaSki cells and short hairpin RNA targeting NKILA and the corresponding negative control sequence were transfected into C-33A cells. Subsequently, the proliferative, migratory and invasive ability, as well as the process of epithelial-mesenchymal transition (EMT) of C-33 A and CaSki cells were analyzed by performing Cell Counting Kit-8, wound healing, Matrigel invasion and western blot assays, respectively. The expression levels of proteins were detected using western blot analysis. The expression levels of NKILA were decreased in CC tissues and CC cell lines (SiHa, C-33A, CaSki and HeLa) and the downregulation of NKILA expression using shRNA was observed to significantly increase the proliferation of CC cells. Conversely, the upregulation of NKILA inhibited the proliferation of CC cells, in addition to significantly inhibiting the migration and invasion of CaSki cells, whereas the knockdown of NKILA promoted the invasion of C-33A cells. Thus, it was hypothesized that NKILA may inhibit the migration and invasion of CC cells via regulation of EMT processes, which was reflected by the expression of ZO-1, E-cadherin, N-cadherin and Vimentin. Furthermore, the overexpression of NKILA significantly inhibited the activation of NF-κB in CaSki cells, whereas the knockdown of NKILA expression promoted the degradation of inhibitory protein-κB and promoted the transfer of p65 into the nucleus in C-33A cells. In conclusion, the results from the present study suggested that NKILA may be involved in the inhibition of migration and invasion in CC cells through regulating EMT processes, which may be related to its inhibition of NF-κB activation.
Collapse
|
35
|
Tian P, Lu X, Jin N, Shi J. Knockdown of ghrelin-O-acyltransferase attenuates colitis through the modulation of inflammatory factors and tight junction proteins in the intestinal epithelium. Cell Biol Int 2020; 44:1681-1690. [PMID: 32281710 DOI: 10.1002/cbin.11362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin-O-acyltransferase (GOAT) is a membrane-bound enzyme that attaches eight-carbon octanoate to a serine residue in ghrelin and thereby acylates inactive ghrelin to produce active ghrelin. In this study, we investigated the function of GOAT in the intestinal mucosal barrier. The intestinal mucosal barrier prevents harmful substances such as bacteria and endotoxin from entering the other tissues, organs, and blood circulation through the intestinal mucosa. Here, we established 5% dextran sodium sulfate (DSS)-induced colitis in mice and found that the body weight and colon weight were significantly decreased in these mice. Furthermore, increased inflammation and apoptosis were observed in the tissues of DSS-induced colitis mice, with increased expression of tumor necrosis factor-α, interleukin-6, phosphorylation of nuclear factor kappa B-p65 (p-NF-κB-p65), and cleaved caspase-3, and decreased expression of tight junction (TJ) proteins such as zonula occluden-1 and occludin. The knockdown of GOAT significantly attenuated colitis-induced inflammation responses and apoptosis, while GOAT overexpression significantly enhanced the induction of colitis. These results suggest that knockdown of GOAT may attenuate colitis-induced inflammation, ulcers, and fecal occult blood by decreasing the intestinal mucosal permeability via the modulation of inflammatory factors and TJ proteins.
Collapse
Affiliation(s)
- Peiying Tian
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Xiaolan Lu
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Nuyun Jin
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Jianping Shi
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
36
|
Anti-Inflammatory Functions of Alverine via Targeting Src in the NF-κB Pathway. Biomolecules 2020; 10:biom10040611. [PMID: 32326535 PMCID: PMC7225962 DOI: 10.3390/biom10040611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
Alverine, a smooth muscle relaxant, is used to relieve cramps or spasms of the stomach and intestine. Although the effects of alverine on spontaneous and induced contractile activity are well known, its anti-inflammatory activity has not been fully evaluated. In this study, we investigated the anti-inflammatory effects of alverine in vitro and in vivo. The production of nitric oxide (NO) in RAW264.7 cells activated by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly (I:C)) was reduced by alverine. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) was also dose-dependently inhibited by treatment with alverine. In reporter gene assays, alverine clearly decreased luciferase activity, mediated by the transcription factor nuclear factor κB (NF-κB) in TIR-domain-containing adapter-inducing interferon-β (TRIF)- or MyD88-overexpressing HEK293 cells. Additionally, phosphorylation of NF-κB subunits and upstream signaling molecules, including p65, p50, AKT, IκBα, and Src was downregulated by 200 μM of alverine in LPS-treated RAW264.7 cells. Using immunoblotting and cellular thermal shift assays (CETSAs), Src was identified as the target of alverine in its anti-inflammatory response. In addition, HCl/EtOH-stimulated gastric ulcers in mice were ameliorated by alverine at doses of 100 and 200 mg/kg. In conclusion, alverine reduced inflammatory responses by targeting Src in the NF-κB pathway, and these findings provide new insights into the development of anti-inflammatory drugs.
Collapse
|
37
|
Golabi S, Zaringhalam J, Manaheji H. Synovial interlukin-6 affects apoptosis induction via nuclear factor kappa-B and fractalkine pathway during adjuvant arthritis. Med J Islam Repub Iran 2020; 34:25. [PMID: 32551314 PMCID: PMC7293817 DOI: 10.34171/mjiri.34.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Apoptosis disruptions play substantial roles in pathogenesis of arthritis and its symptoms. Cytokines and their intracellular signaling have pivotal roles in arthritis pathophysiology. This study aimed to investigate the relationship between synovial Interleukin-6 (IL-6), nuclear factor kappa-B (NF-ĸB), and fractalkine (FKN) in the changes of edema and apoptosis during adjuvantinduced knee arthritis. Methods: A total of 240 male Wistar rats were divided into different groups. Arthritis was evoked and the knee edema changes were evaluated by Vernier caliper. Synovial IL-6 was assayed by rat standard ELISA kit. Levels of NF-ĸB, fractalkine, and apoptotic indicators in the synovium were evaluated by Western blot method. Results were expressed as Mean± SEM. To analyze within-group variations, repeated measures ANOVA, followed by post hoc Tukey's test was used (SPSS, 16). Independent samples t test was used to designate significant differences in knee diameter, synovial level of IL-6, apoptotic markers, NF-ĸB, and FKN between groups. Significance level was set at P≤ 0.05. Results: The injection of Complete Freund's Adjuvant (CFA) caused intense knee edema (P< 0.001), which was reduced by implementing anti-IL-6 (P< 0.001), anti-FKN (P< 0.001), Inh-NF-ĸB (P< 0.001), and anti-FKN+ Inh NF-kB (P< 0.001). The results indicated elevated levels of apoptotic markers during the acute phase (P = 0.010), along with an increase in IL-6 (P< 0.001), NF-ĸB (P< 0.001), and FKN (P= 0.030). Although IL-6 (P< 0.001), NF-ĸB (P= 0.001), and FKN (P= 0.007) levels elevation continued during the chronic phase, the apoptosis markers decreased in this phase (P= 0.050). The findings revealed that Anti-IL-6 treatment during different phases of the study could change the synovial NF-ĸB and FKN. Conclusion: It seems that time-dependent variations in apoptotic markers level may be involved in pathogenesis of adjuvant-induced knee arthritis. In conclusion, synovial IL-6 through NF-ĸB- FKN pathway can play an important role in this process.
Collapse
Affiliation(s)
- Sahar Golabi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Jalal Zaringhalam
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res Rev 2020; 58:101024. [PMID: 32006687 DOI: 10.1016/j.arr.2020.101024] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Human ageing is determined by degenerative alterations and processes with different manifestations such as gradual organ dysfunction, tissue function loss, increased population of aged (senescent) cells, incapability of maintaining homeostasis and reduced repair capacity, which collectively lead to an increased risk of diseases and death. The inhibitors of HMG-CoA reductase (statins) are the most widely used lipid-lowering agents, which can reduce cardiovascular morbidity and mortality. Accumulating evidence has documented several pleiotropic effects of statins in addition to their lipid-lowering properties. Recently, several studies have highlighted that statins may have the potential to delay the ageing process and inhibit the onset of senescence. In this review, we focused on the anti-ageing mechanisms of statin drugs and their effects on cardiovascular and non-cardiovascular diseases.
Collapse
|
39
|
Kam A, Loo S, Fan JS, Sze SK, Yang D, Tam JP. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. J Biol Chem 2019; 294:19604-19615. [PMID: 31727740 DOI: 10.1074/jbc.ra119.010796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
40
|
Sinha P, Srivastava N, Rai VK, Mishra R, Ajayakumar P, Yadav NP. A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: Combination of hydrophilic-lipophilic balance and response surface methodology. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Tao J, Zhang D, Man Y, Wang W, Bi Y. RETRACTED ARTICLE: Sodium ferulate inhibits high-fat diet-induced inflammatory factors expression in human umbilical vein endothelial cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452717030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Kamel KM, Gad AM, Mansour SM, Safar MM, Fawzy HM. Venlafaxine alleviates complete Freund's adjuvant-induced arthritis in rats: Modulation of STAT-3/IL-17/RANKL axis. Life Sci 2019; 226:68-76. [PMID: 30928406 DOI: 10.1016/j.lfs.2019.03.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023]
Abstract
AIMS Rheumatoid arthritis is usually accompanied by various comorbidities especially on the psychological side such as depression. This study aimed at revealing the potential curative effects of venlafaxine (VFX), a serotonin/norepinephrine reuptake inhibitor (SNRI), on experimentally-induced arthritis in rats. METHODS Arthritis was induced by injecting complete Freund's adjuvant (CFA, 0.1 ml, s.c.). One day thereafter, VFX (50 mg/kg, p.o.) was given for 21 days. Methotrexate was used as a standard disease modifying anti-rheumatic drug. KEY FINDINGS CFA injection caused prominent arthritis evident by the increase in the hind paw and ankle diameter accompanied by elevating tumor necrosis factor-alpha, interleukin-6, interleukin-17 and matrix metalloproteinase-3 levels, effects that were diminished by VFX. Moreover, VFX down regulated gene expressions of receptor activator of nuclear factor kappa-B (NF-кB) ligand and signal transducer and activator of transcription-3 beside hampering immunohistochemical expression of vascular endothelial growth factor and NF-кB. This SNRI also improved the oxidant status of the hind limb as compared to the arthritic group. Nonetheless, MTX was better in amendment of arthritis authenticated by its effect on some inflammatory and oxidative stress biomarkers. SIGNIFICANCE This study provides a novel therapeutic use of VFX as a considerable anti-arthritic drug and offers an incentive to expand its use in RA.
Collapse
Affiliation(s)
- Kamel M Kamel
- Pharmacology Department, National Organization for Drug Control and Research, Egypt.
| | - Amany M Gad
- Pharmacology Department, National Organization for Drug Control and Research, Egypt
| | - Suzan M Mansour
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmacology, Toxicology & Biochemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Egypt
| | - Marwa M Safar
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Hala M Fawzy
- Pharmacology Department, National Organization for Drug Control and Research, Egypt
| |
Collapse
|
43
|
|
44
|
Park JH, Yeo IJ, Han JH, Suh JW, Lee HP, Hong JT. Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp Dermatol 2019; 27:378-385. [PMID: 28887839 DOI: 10.1111/exd.13437] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/25/2022]
Abstract
In this study, we investigated anti-dermatitic effects of astaxanthin (AST) in phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. AD-like lesion was induced by the topical application of 5% PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 1 mg/mL and 2 mg/mL of AST (10 μg or 20 μg/cm2 ) was spread on the dorsum of ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) activity. We also measured tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and immunoglobulin E (IgE) concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). AST treatment attenuated the development of PA-induced AD. Histological analysis showed that AST inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. AST treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as release of TNF-α, IL-1β, IL-6 and IgE. In addition, AST (5, 10 and 20 μM) potently inhibited lipopolysaccharide (LPS) (1 μg/mL)-induced nitric oxide (NO) production, expression of iNOS and COX-2 and NF-κB DNA binding activities in RAW 264.7 macrophage cells. Our data demonstrated that AST could be a promising agent for AD by inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Ju Ho Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,INIST ST CO., LTD., Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji Hye Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong Won Suh
- GDE Ltd., Siheung-si, Gyeonggi-do, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
45
|
Truong VL, Bak MJ, Jeong WS. Chemopreventive Activity of Red Ginseng Oil in a Mouse Model of Azoxymethane/Dextran Sulfate Sodium-Induced Inflammation-Associated Colon Carcinogenesis. J Med Food 2019; 22:578-586. [PMID: 30864851 DOI: 10.1089/jmf.2018.4328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have demonstrated antioxidant and cytoprotective properties of red ginseng oil (RGO). However, the role of RGO in models of intestinal inflammation has not been elucidated. In this study, we evaluated the chemopreventive effect of RGO in a mouse model of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis and explored its underlying mechanisms. Male C57BL/6 mice were intraperitoneally injected with a single dose of AOM (10 mg/kg), followed by 1.5% DSS in drinking water for 7 days to produce colon carcinogenesis. RGO at 10 or 100 mg/kg was orally given for 17 weeks. RGO supplementation reduced the plasma nitric oxide (NO) concentration as well as lipid peroxidation and inhibited the production of proinflammatory factors such as inducible NO synthase, cyclooxygenase-2, interleukin 1β, IL-6, and tumor necrosis factor-α in the mouse colitis tissue. Increased phosphorylation levels of p65 and IκB by AOM/DSS exposure were attenuated by the presence of RGO. In addition, RGO supplementation induced the activity of primary antioxidant enzymes such as superoxide dismutase and catalase as well as the expression of nuclear factor erythroid 2-related factor 2-mediated antioxidant enzyme hemeoxygenase-1 in the colons of AOM/DSS-treated mice. These findings indicate that RGO may be a potent natural chemopreventive agent for ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Min Ji Bak
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea.,2 Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| |
Collapse
|
46
|
Yan J, Xiang B, Wang D, Tang S, Teng M, Yan S, Zhou Z, Zhu W. Different Toxic Effects of Racemate, Enantiomers, and Metabolite of Malathion on HepG2 Cells Using High-Performance Liquid Chromatography-Quadrupole-Time-of-Flight-Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1784-1794. [PMID: 30673264 DOI: 10.1021/acs.jafc.8b04536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Commercial malathion is a racemic mixture that contains two enantiomers, and malathion has adverse effects on mammals. However, whether these two enantiomers have different effects on animals remains unclear. In this study, we tested the effect of racemate, enantiomers, and metabolite of malathion on the metabolomics profile of HepG2 cells. HepG2 cells showed distinct metabolic profiles when treated with rac-malathion, malaoxon, R-(+)-malathion, and S-(-)-malathion, and these differences were attributed to pathways in amino acid metabolism, oxidative stress, and inflammatory response. In addition, malathion treatment caused changes in amino acid levels, antioxidant activity, and expression of inflammatory genes in HepG2 cells. S-(-)-Malathion exhibited stronger metabolic perturbation than its enantiomer and racemate, consistent with the high level of cytotoxicity of S-(-)malathion. R-(+)-Malathion treatment caused significant oxidative stress in HepG2 cells but induced a weaker disturbance in the amino acid metabolism and a pro-inflammatory response compared to S-(-)-malathion and rac-malathion. Malaoxon caused more significant perturbation on antioxidase and a stronger antiapoptosis effect than its parent malathion. Our results provide insight into the risk assessment of malathion enantiomers and metabolites. We also demonstrate that a metabolomics approach can identify the discrepancy of the toxic effects and underlying mechanisms for enantiomers and metabolites of chiral pesticides.
Collapse
|
47
|
Kim SB, Kang MJ, Kang CW, Kim NH, Choi HW, Jung HA, Choi JS, Kim GD. Anti‑inflammatory effects of 6‑formyl umbelliferone via the NF‑κB and ERK/MAPK pathway on LPS‑stimulated RAW 264.7 cells. Int J Mol Med 2019; 43:1859-1865. [PMID: 30720064 DOI: 10.3892/ijmm.2019.4078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/20/2018] [Indexed: 11/06/2022] Open
Abstract
Inhibition of over‑activated inflammation has been demonstrated as one of the most efficient strategies for treating inflammatory diseases. In the present study, 6‑formyl umbelliferone (6FU) was used to evaluate its anti‑inflammatory effects on lipopolysaccharide (LPS)‑stimulated RAW 264.7 macrophages. 6FU inhibited chronic inflammatory processes, including increasing nitric oxide levels, and the expression of pro‑inflammatory genes and producing cytokines was investigated by a nitrite assay and reverse transcription‑polymerase chain reaction, respectively. Nitric oxide and pro‑inflammatory cytokines, including tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6 were decreased by treatment with 6FU, without cell cytotoxicity in LPS‑stimulated RAW 264.7 cells, which was measured by a WST‑1 assay. In the western blot analysis, the expression levels of phosphorylated extracellular signal‑regulated kinase (ERK)1/2 was downregulated in 6FU‑treated cells. Furthermore, in the western blotting and immunofluorescence staining results, translocation activities of ERK1/2 and NF‑κB from the cytoplasm to the nucleus were suppressed, which may inhibit translation of numerous proteins associated with pro‑inflammation, including inducible nitric oxide synthase and cyclooxygenase‑2. Therefore, based on these results, it was suggested that 6FU may be a potential candidate for the development of agents against chronic inflammation.
Collapse
Affiliation(s)
- Sang-Bo Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Jae Kang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Chang-Won Kang
- Australian Cancer Research Foundation, Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nan-Hee Kim
- Australian Cancer Research Foundation, Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hyung Wook Choi
- Australian Cancer Research Foundation, Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
48
|
Korver SK, Gibson RJ, Bowen JM, Coller JK. Toll-like receptor/interleukin-1 domain innate immune signalling pathway genetic variants are candidate predictors for severe gastrointestinal toxicity risk following 5-fluorouracil-based chemotherapy. Cancer Chemother Pharmacol 2018; 83:217-236. [PMID: 30474704 DOI: 10.1007/s00280-018-3729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Severe gastrointestinal (GI) toxicity is a common adverse effect following 5-fluorouracil (5-FU)-based chemotherapy treatment. The presence of severe GI toxicity leads to treatment revisions, sub-optimal therapy outcomes, and decreases to patients' quality of life. There are no adequate predictors for 5-FU-induced severe GI toxicity risk. The Toll-like receptor/interleukin-1 (TIR) domain innate immune signalling pathway is known to be a mediating pathway in the development of GI toxicity. Hence, genetic variability in this signalling pathway may alter the pathophysiology of GI toxicity and, therefore, be predictive of risk. However, little research has investigated the effects of TIR domain innate immune signalling pathway single nucleotide polymorphism (SNPs) on the risk and development of severe GI toxicity. METHODS This critical review surveyed the literature and reported on the in vitro, ex vivo and in vivo effects, as well as the genetic association, of selected TIR domain innate immune signalling pathway SNPs on disease susceptibility and gene functioning. RESULTS Of the TIR domain innate immune signalling pathway SNPs reviewed, evidence suggests interleukin-1 beta (IL1B) and tumour necrosis factor alpha (TNF) SNPs have the greatest potential as predictors for severe GI toxicity risk. These results warrant further research into the effect of IL1B and TNF SNPs on the risk and development of severe GI toxicity. CONCLUSIONS SNPs of the TIR domain innate immune signalling pathway have profound effects on disease susceptibility and gene functioning, making them candidate predictors for severe GI toxicity risk. The identification of a predictor for 5-FU-induced severe GI toxicity will allow the personalization of supportive care measures.
Collapse
Affiliation(s)
- Samantha K Korver
- Cancer Treatment Toxicities Group, Adelaide Medical School, Disciplines of Pharmacology and Physiology, University of Adelaide, Level 2, Helen Mayo South Building, Adelaide, SA, 5005, Australia.
| | - Rachel J Gibson
- Cancer Treatment Toxicities Group, Adelaide Medical School, Disciplines of Pharmacology and Physiology, University of Adelaide, Level 2, Helen Mayo South Building, Adelaide, SA, 5005, Australia.,Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Joanne M Bowen
- Cancer Treatment Toxicities Group, Adelaide Medical School, Disciplines of Pharmacology and Physiology, University of Adelaide, Level 2, Helen Mayo South Building, Adelaide, SA, 5005, Australia
| | - Janet K Coller
- Cancer Treatment Toxicities Group, Adelaide Medical School, Disciplines of Pharmacology and Physiology, University of Adelaide, Level 2, Helen Mayo South Building, Adelaide, SA, 5005, Australia
| |
Collapse
|
49
|
Li R, Hong P, Zheng X. β-carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages. Anim Sci J 2018; 90:140-148. [DOI: 10.1111/asj.13108] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ruonan Li
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| | - Pan Hong
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| | - Xin Zheng
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| |
Collapse
|
50
|
Khalatbari A, Mahdavi M, Jafarnezhad F, Afraei S, Zavareh FT, Aghazadeh Z, Ghaderi A, Mirshafiey A. Efficacy of β-D-Mannuronic Acid [M2000] on the Pro-Apoptotic Process and Inflammatory-Related Molecules NFκB, IL-8 and Cd49d using Healthy Donor PBMC. Curr Drug Discov Technol 2018; 17:225-232. [PMID: 30417790 DOI: 10.2174/1570163815666181109165837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This investigation evaluates the pro-apoptotic and anti-inflammatory effects of β-D-mannuronic acid [M2000] compared to diclofenac, based on gene expression involved in apoptosis and inflammation process [including Bcl2, NFκB, IL-8 and Cd49d] in Peripheral Blood Mononuclear Cells [PBMCs] of healthy donors under exvivo conditions. MATERIALS The venous blood samples of twelve healthy volunteers with aged 25-60 years were collected in heparinized tubes. The healthy volunteers were selected from no smoking group and without using illicit drugs and suffering from diabetes. The PBMCs were separated and divided into untreated and treated groups. METHODS The PBMCs of each sample were cultured in 5 wells of culture plate, so that the first well consisted of 2×106 cells exposed by LPS-EB [1μg/ml] to stimulate PBMCs and absence of M2000 [untreated well]. The second, third, fourth and fifth wells containing 2×106 cells/well and LPS-EB, after 4 hours incubation at 37ºC, received 5, 25 and 50 μg/well of M2000 and 5 μg/well of diclofenac, respectively as treated group. RESULTS The PBMCs were separated and RNAs were then extracted and cDNAs synthesized and gene expression levels were assessed by qRT-PCR. Furthermore, we studied whether M2000 is able to facilitate apoptosis in PBMCs. Our findings represent that the high dose of M2000 could significantly decrease the expression level of NFκB gene compared to untreated group (p < 0.0002). On the other hand, no significant change was observed in treated cells with diclofenac. All doses of M2000 could significantly augment apoptosis compared to untreated group [p < 0.0001]. Additionally, we observed the same apoptotic effects between the medium dose of M2000 and diclofenac. Besides, no significant reduction was shown in expression levels of IL8, Bcl2 and Cd49d genes in all doses of M2000 and diclofenac compared to untreated group. This experiment demonstrates M2000 as a new effective NSAID with immunosuppressive characteristics capable of stimulating apoptosis through lowering expression levels of NFκB gene, which might be probably considered as an appropriate drug for reducing the risk of developing inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Atousa Khalatbari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Jafarnezhad
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tofighi Zavareh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical oncology Ward, Cancer Research Center. Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Internal Medicine, Hematology and Medical oncology Ward, Cancer Research Center. Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|