1
|
Camolese BA, Rainato GS, Garcia ISB, Ribeiro de Almeida NK, Galante SC, Batista VN, Albuquerque ALB, Vaz de Castro PAS, Simões E Silva AC. Porous perspectives: a comprehensive review of medullary sponge kidney. Int Urol Nephrol 2025:10.1007/s11255-025-04531-0. [PMID: 40287601 DOI: 10.1007/s11255-025-04531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND AIM Medullary sponge kidney (MSK), a congenital abnormality characterized by dilated collecting ducts in the kidneys, presents with a variable clinical spectrum. This narrative review summarizes the current knowledge on MSK, encompassing its clinical presentation, pathogenesis, recent developments in imaging and laboratory techniques for diagnosis, and the growing understanding of its genetic basis. RESULTS Some individuals with MSK may be asymptomatic, others may experience hematuria, renal colic due to kidney stones, recurrent urinary tract infections, and metabolic imbalances. The precise cause of MSK remains unclear, but genetic factors are believed to play a role, with genetic variants identified in genes like GDNF (Glial cell line-derived neurotrophic factor), RET (Rearranged during transfection), and PKHD1 (Polycystic kidney and hepatic disease 1). The diagnosis is based on imaging findings and MSK has no specific treatment. CONCLUSION Further research is warranted to improve our understanding of MSK and develop targeted therapies.
Collapse
Affiliation(s)
- Bárbara Almeida Camolese
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Santos Rainato
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isadora Soares Bicalho Garcia
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Naira Kelly Ribeiro de Almeida
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stella Cardoso Galante
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vitor Neves Batista
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Anna Luiza Braga Albuquerque
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Department of Pediatrics, Faculty of Medicine, UFMG, Researcher Level 1A of CNPq, Alfredo Balena Avenue, 190, 2Nd Floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
2
|
Waheed YA, Buberwa W, Sun D. Glial cell line-derived neurotrophic factor and its role in attenuating renal fibrosis: a review. Korean J Intern Med 2025; 40:219-229. [PMID: 38086618 PMCID: PMC11938710 DOI: 10.3904/kjim.2023.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/08/2023] [Accepted: 09/01/2023] [Indexed: 03/20/2025] Open
Abstract
Chronic kidney disease is estimated to affect approximately 10 to 15% of the Chinese population. Renal fibrosis is characterized by progressive extracellular matrix deposition in the kidney parenchyma with eventual tissue scarring and inevitable deterioration of renal function. Vascular rarefaction, glomerulosclerosis, interstitial inflammation, and fibrogenesis are associated with or contribute to renal fibrosis. Recent studies have revealed that glial cell-derived neurotrophic factor (GDNF) is involved in kidney morphogenesis and amelioration of renal injury. Ideal therapies targeting the pathogenesis of renal fibrosis should have the potential to inhibit glomerular and tubulointerstitial fibrosis by targeting multiple pathological events. GDNF plays a unique role in both renal development and improvement of renal fibrosis, and GDNF kidney receptors and signaling pathways can ameliorate renal apoptosis and inflammation. Our work contributes to the establishment of GDNF as an emerging therapy that can increase the effectiveness of currently used interventions to improve renal fibrosis. This literature review focuses on the important role of GDNF in renal development and its relationship with renal fibrosis.
Collapse
Affiliation(s)
| | - Wokuheleza Buberwa
- Department of Pediatrics, Arusha Lutheran Medical Center, Arusha,
Tanzania
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou,
China
| |
Collapse
|
3
|
Jones MR, Jones J, Pandu P, Liu C, Carey CD, Falo LD, Albers KM. Neurturin GF Enhances the Acute Cytokine Response of Inflamed Skin. J Invest Dermatol 2025; 145:583-592. [PMID: 39122143 DOI: 10.1016/j.jid.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Epidermal keratinocytes, immune cells, and sensory nerves all contribute to immune balance and skin homeostasis. Keratinocyte's release of GFs, neuromodulators, and immune activators is particularly important because each can evoke local (skin) and systemic (ie, immune and neural) responses that can initiate and exacerbate skin pathophysiology. From studies of skin and neural GFs, we hypothesized that neurturin (Nrtn), a member of the GDNF family that is expressed in the skin, has particular importance in this process. In this study, we examine how elevation of Nrtn in skin keratinocytes impacts early cytokine expression in response to complete Freund's adjuvant-mediated inflammation. Nrtn-overexpressing mice and wild-type mice injected with Nrtn exhibit an enhanced level of TNFα and IL-1β cytokines in the skin, a response previously shown to support healing. In vitro assays suggest that one source of the Nrtn-induced TNFα increase is keratinocytes, which are shown to express Nrtn and mRNAs encoding the Nrtn receptors GFRα2, Ret, ITGB1, and NCAM. These findings support the contribution of keratinocyte-derived Nrtn as an autocrine/paracrine factor that acts as a first-line defense molecule that regulates the initial cytokine response to inflammatory challenge.
Collapse
Affiliation(s)
- Marsha Ritter Jones
- Department of Anesthesia & Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James Jones
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prathyusha Pandu
- Rutgers University School of Medicine, East Brunswick, New Jersey, USA
| | - Chunyan Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kathryn M Albers
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Zhang L, Yang C, Liu X, He D, Lin T, Zhang Y, Wei G, Zhang D. Renal dysplasia development and chronic kidney disease. Pediatr Res 2025:10.1038/s41390-025-03950-0. [PMID: 40000855 DOI: 10.1038/s41390-025-03950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Renal dysplasia is a common congenital birth defect in childhood, caused by fetal genetic defects, epigenetic modification disorders, or environmental factors. Maternal malnutrition, placental insufficiency, and exposure to harmful substances such as alcohol, angiotensin-converting enzyme inhibitors, and cocaine during pregnancy increase the risk of fetal renal dysplasia. The pathogenesis of this disease involves abnormal formation of renal units, leading to structural and functional abnormalities of the kidney. If left untreated, renal dysplasia can progress to chronic kidney disease (CKD) in children. This review explores the etiology and pathogenesis of renal dysplasia, emphasizing the intrinsic link between renal dysplasia and CKD through various pathological pathways. Additionally, we propose potential therapeutic agents targeting these mechanisms. We also highlight future research directions to further understand and address this issue. We hope this review will deepen clinicians' understanding of renal dysplasia and promote further laboratory research in this area. IMPACT: 1. This review comprehensively summarizes and elucidates the complex relationship between renal dysplasia and chronic kidney disease (CKD) based on previous research, offering new directions for related studies. 2. It expands upon conservative treatment approaches for renal dysplasia, providing more clinical options for therapeutic intervention.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatric Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chunjiang Yang
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Xing Liu
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Lin
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Guanghui Wei
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Deying Zhang
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Davarinejad O, Komasi S, Moradi MT, Golmohammadi F, Bahrami M, Lashgarian HE, Jalalvand M, Hookari S, Kazemisafa F. Circulating Levels of Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Schizophrenia: a systematic review and meta-analysis. BMC Psychiatry 2025; 25:83. [PMID: 39881227 PMCID: PMC11780850 DOI: 10.1186/s12888-025-06498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) has emerged as a potential biomarker for schizophrenia (SCZ). However, GDNF levels remain unclear in affected individuals compared to healthy controls. Therefore, we aimed to calculate a pooled estimate of GDNF levels in patients with SCZ in comparison with healthy controls. METHODS A systematic search was performed in PubMed, Scopus, Web of Science, and Science Direct for published studies from the first date available up to 17 June 2024. Twelve studies (n = 817 patients and 691 healthy controls) were included in the meta-analysis. Subgroup analyses and meta-regression were performed, addressing heterogeneity and publication bias. RESULTS Random-effects estimates (d = -0.80, p < 0.001) of the present meta-analysis revealed a significant mean difference in GDNF levels between SCZ patients and healthy controls. Subgroup analyses indicated that the standardized mean difference of GDNF was larger in European samples (d = -1.01, p ≤ 0.001) than in the Asian population (d = -0.61, p = 0.011). Non-medicated SCZ patients (d = -1.08, p ≤ 0.001) exhibited lower GDNF levels than those on medication (d = - 0.70, p = 0.004). Additionally, patients with a disease duration of ≥ 10 years showed lower levels of GDNF (d = -0.93, p = 0.058 versus d = -0.82, p = 0.002). CONCLUSIONS The findings suggested that GDNF may be a promising biomarker and therapeutic target for schizophrenia. Future research should focus on elucidating the mechanisms underlying altered GDNF levels and exploring its implications for treatment strategies.
Collapse
Affiliation(s)
- Omran Davarinejad
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeid Komasi
- Department of Neuroscience and Psychopathology Research, Mind GPS Institute, Kermanshah, Iran
| | - Mohammad-Taher Moradi
- Sleep Disorders Research Center, Health Policy and Promotion Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farzaneh Golmohammadi
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bahrami
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masumeh Jalalvand
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sara Hookari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Kazemisafa
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Tomizawa SI, Kuroha K, Ono M, Nakajima K, Ohbo K. A behind-the-scenes role of BDNF in the survival and differentiation of spermatogonia. Asian J Androl 2025; 27:37-43. [PMID: 39177410 PMCID: PMC11784946 DOI: 10.4103/aja202457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/17/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Mouse spermatogenesis entails the maintenance and self-renewal of spermatogonial stem cells (SSCs), which require a complex web-like signaling network transduced by various cytokines. Although brain-derived neurotrophic factor (BDNF) is expressed in Sertoli cells in the testis, and its receptor tropomyosin receptor kinase B (TrkB) is expressed in the spermatogonial population containing SSCs, potential functions of BDNF for spermatogenesis have not been uncovered. Here, we generate BDNF conditional knockout mice and find that BDNF is dispensable for in vivo spermatogenesis and fertility. However, in vitro , we reveal that BDNF -deficient germline stem cells (GSCs) exhibit growth potential not only in the absence of glial cell line-derived neurotrophic factor (GDNF), a master regulator for GSC proliferation, but also in the absence of other factors, including epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin. GSCs grown without these factors are prone to differentiation, yet they maintain expression of promyelocytic leukemia zinc finger ( Plzf ), an undifferentiated spermatogonial marker. Inhibition of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and Src pathways all interfere with the growth of BDNF-deficient GSCs. Thus, our findings suggest a role for BDNF in maintaining the undifferentiated state of spermatogonia, particularly in situations where there is a shortage of growth factors.
Collapse
Affiliation(s)
- Shin-ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
7
|
Chen T, Shen XY, Liang HM, Shi H, Yuan L. Renal protective effects of helix B surface polypeptide in rats with puromycin aminonucleoside nephropathy. Ren Fail 2024; 46:2394637. [PMID: 39189638 DOI: 10.1080/0886022x.2024.2394637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-β (TGF-β) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes in vitro. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF. METHODS Rats nephropathy model was induced by injection of 60 mg/kg of PAN via the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF. RESULTS Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (p < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (p < 0.05). CONCLUSIONS The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.
Collapse
Affiliation(s)
- Ting Chen
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Ye Shen
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui-Min Liang
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Yuan
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
8
|
Drake LY, Roos BB, Teske JJ, Borkar NA, Ayyalasomayajula S, Klapperich C, Koloko Ngassie ML, Pabelick CM, Prakash YS. Effects of glial-derived neurotrophic factor on remodeling and mitochondrial function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2024; 327:L684-L693. [PMID: 39316680 PMCID: PMC11563586 DOI: 10.1152/ajplung.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Airway smooth muscle (ASM) cells play important roles in airway remodeling of asthma. Our previous studies show that in vivo administration of glial-derived neurotrophic factor (GDNF) in mice induces thickening and collagen deposition in bronchial airways, whereas chelation of GDNF by GFRα1-Fc attenuates airway remodeling in the context of allergen exposure. To determine whether GDNF has direct effects on ASM, in this study, we examined GDNF in ASM cells from normal versus asthmatic humans. We found that GDNF treatment of human ASM cells had only minor effects on cell proliferation and migration, intracellular expression or extracellular deposition of collagen I (COL1), collagen III (COL3), and fibronectin. Endoplasmic reticulum (ER) stress response and mitochondrial function have been implicated in asthma. We investigated whether GDNF regulates these aspects in human ASM. We found that GDNF treatment did not affect ER stress protein expression in normal or asthmatic cells. However, GDNF treatment impaired mitochondrial morphology in ASM but without significant effects on mitochondrial respiration. Thus, it is likely that in vivo effects of GDNF on airway remodeling per se involve cell types other than those on ASM, and thus ASM may serve more as a source of GDNF rather than a target.NEW & NOTEWORTHY Our previous study suggests that glial-derived neurotrophic factor (GDNF) is involved in allergen-induced airway hyperreactivity and remodeling in vivo. Here, we show that GDNF has no direct effects in remodeling of human airway smooth muscle (ASM) but GDNF dysregulates mitochondrial morphology in human ASM in the context of asthma.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A. Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Savita Ayyalasomayajula
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Courtney Klapperich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Chen Y, Zheng YX, Li YZ, Jia Z, Yuan Y. GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats. Brain Res Bull 2024; 217:111078. [PMID: 39270804 DOI: 10.1016/j.brainresbull.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Jia
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Qiu T, Kong Y, Wei G, Sun K, Wang R, Wang Y, Chen Y, Wang W, Zhang Y, Jiang C, Yang P, Xie T, Chen X. CCDC6-RET fusion protein regulates Ras/MAPK signaling through the fusion- GRB2-SHC1 signal niche. Proc Natl Acad Sci U S A 2024; 121:e2322359121. [PMID: 38805286 PMCID: PMC11161787 DOI: 10.1073/pnas.2322359121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.
Collapse
Affiliation(s)
- Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yang Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yiji Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| |
Collapse
|
11
|
Xu B, Zhang JE, Ye L, Yuan CW. The Role of the ADAMTS18 Gene-Induced Immune Microenvironment in Mouse Kidney Development. Biomedicines 2024; 12:396. [PMID: 38397998 PMCID: PMC10887409 DOI: 10.3390/biomedicines12020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study is to investigate the role of the ADAMTS18 gene in regulating the renal development of mice. PAS staining was used to observe the kidney development of E12.5-E17.5 mice, while immunofluorescence staining and RT-PCR were used to observe the expression of ADAMTS18. Ureteric bud (UB) branches were observed using immunofluorescence staining using the UB marker E-cadherin, and the apoptosis and proliferation of posterior renal mesenchymal cells were analyzed using TUNEL and PH3 fluorescence staining. Flow cytometry was used to analyze the immune cell infiltration, and western blotting (WB) was used to analyze the expression of PD-1/PD-L1 and CTLA-4. As a result, the ADAMTS18 gene expression gradually increased as the kidney continued to mature during embryonic development. Compared with that in the control and vector groups, UB branching was significantly reduced in the ADAMTS18 deletion group (p < 0.05), but that deletion of ADAMTS18 did not affect posterior renal mesenchymal cell proliferation or apoptosis (p > 0.05). Compared with those in the control and vector groups, the proportion of embryonic kidney B cells and the proportion of CD8+ cells were significantly greater after ADAMTS18 was knocked down (p < 0.05), but the difference in neutrophil counts was not significant (p > 0.05). The WB analysis revealed that the PD-1/PD-L1 and CTLA-4 expression was significantly increased after ADAMTS18 was knocked down (p < 0.05). In conclusion, the ADAMTS18 gene may be involved in mice kidney development by regulating the immune microenvironment and activating immune checkpoints. Deletion of the ADAMTS18 gene may be unfavorable for kidney development.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | | | | | | |
Collapse
|
12
|
Mizumura K, Taguchi T. Neurochemical mechanism of muscular pain: Insight from the study on delayed onset muscle soreness. J Physiol Sci 2024; 74:4. [PMID: 38267849 PMCID: PMC10809664 DOI: 10.1186/s12576-023-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening contractions (LC), suitable for studying myofascial pain syndromes. The muscular mechanical withdrawal threshold (MMWT) decreased 1-3 days after LC in rats. Changing the speed and range of stretching showed that muscle injury seldom occurred, except in extreme conditions, and that DOMS occurred in parameters without muscle damage. The B2 bradykinin receptor-nerve growth factor (NGF) route and COX-2-glial cell line-derived neurotrophic factor (GDNF) route were involved in the development of DOMS. The interactions between these routes occurred at two levels. A repeated-bout effect was observed in MMWT and NGF upregulation, and this study showed that adaptation possibly occurred before B2 bradykinin receptor activation. We have also briefly discussed the prevention and treatment of DOMS.
Collapse
Affiliation(s)
- Kazue Mizumura
- Nagoya University, Nagoya, 464-8601, Japan.
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
- Institute for Human Movement and Medical Sciences (IHMMS), Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| |
Collapse
|
13
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
14
|
Pandey S, Kalaria A, Jhaveri KD, Herrmann SM, Kim AS. Management of hypertension in patients with cancer: challenges and considerations. Clin Kidney J 2023; 16:2336-2348. [PMID: 38046043 PMCID: PMC10689173 DOI: 10.1093/ckj/sfad195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 12/05/2023] Open
Abstract
The survival rates of many cancers have significantly improved due to recent advancements in cancer screening and therapeutics. Although better cancer outcomes are encouraging, additional health challenges have surfaced, the utmost of which is the burden imposed by various cardiovascular and renal toxicities of anticancer therapies. To improve the overall outcome of patients with cancer, it is essential to understand and manage these treatment-related adverse effects. The cardiovascular side effects of antineoplastic therapies are well-known and include left ventricular dysfunction, heart failure, myocardial ischaemia, QT prolongation, arrhythmia and hypertension. Among these, hypertension is the most common complication, prevalent in about 40% of all cancer patients, yet frequently overlooked and undertreated. This review explores the intricate connection between cancer and hypertension and provides distinct approaches to diagnosing, monitoring and managing hypertension in patients with cancer. We also outline the challenges and considerations that are relevant to the care of patients receiving anticancer drugs with prohypertensive potential.
Collapse
Affiliation(s)
- Shubhi Pandey
- Department of Internal Medicine, Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Amar Kalaria
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Kenar D Jhaveri
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Agnes S Kim
- Department of Internal Medicine, Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
15
|
Zagirova D, Pushkov S, Leung GHD, Liu BHM, Urban A, Sidorenko D, Kalashnikov A, Kozlova E, Naumov V, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A. Biomedical generative pre-trained based transformer language model for age-related disease target discovery. Aging (Albany NY) 2023; 15:9293-9309. [PMID: 37742294 PMCID: PMC10564439 DOI: 10.18632/aging.205055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Abstract
Target discovery is crucial for the development of innovative therapeutics and diagnostics. However, current approaches often face limitations in efficiency, specificity, and scalability, necessitating the exploration of novel strategies for identifying and validating disease-relevant targets. Advances in natural language processing have provided new avenues for predicting potential therapeutic targets for various diseases. Here, we present a novel approach for predicting therapeutic targets using a large language model (LLM). We trained a domain-specific BioGPT model on a large corpus of biomedical literature consisting of grant text and developed a pipeline for generating target prediction. Our study demonstrates that pre-training of the LLM model with task-specific texts improves its performance. Applying the developed pipeline, we retrieved prospective aging and age-related disease targets and showed that these proteins are in correspondence with the database data. Moreover, we propose CCR5 and PTH as potential novel dual-purpose anti-aging and disease targets which were not previously identified as age-related but were highly ranked in our approach. Overall, our work highlights the high potential of transformer models in novel target prediction and provides a roadmap for future integration of AI approaches for addressing the intricate challenges presented in the biomedical field.
Collapse
Affiliation(s)
- Diana Zagirova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Stefan Pushkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Anatoly Urban
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Denis Sidorenko
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Aleksandr Kalashnikov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Ekaterina Kozlova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Vladimir Naumov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alex Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
16
|
Mol P, Balaya RDA, Dagamajalu S, Babu S, Chandrasekaran P, Raghavan R, Suresh S, Ravishankara N, Raju AH, Nair B, Modi PK, Mahadevan A, Prasad TSK, Raju R. A network map of GDNF/RET signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2023; 17:1089-1095. [PMID: 36715855 PMCID: PMC10409931 DOI: 10.1007/s12079-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Pavithra Chandrasekaran
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Reshma Raghavan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Sneha Suresh
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Namitha Ravishankara
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Anu Hemalatha Raju
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
17
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
18
|
Wu K, He R, Li Z, Qiu K, Xiao G, Peng L, Meng X, Zheng C, Zhang Z, Cai Q. Discovery of 3,5-diaryl-1H-pyrazol-based ureas as potent RET inhibitors. Eur J Med Chem 2023; 251:115237. [PMID: 36905915 DOI: 10.1016/j.ejmech.2023.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Rearranged during transfection (RET) is a promising target for antitumor drug development. Multikinase inhibitors (MKI) have been developed for RET-driven cancers but displayed limited efficacy in disease control. Two selective RET inhibitors were approved by FDA in 2020 and proved potent clinical efficacy. However, the discovery of novel RET inhibitors with high target selectivity and improved safety is still highly desirable. Herein, we reported a class of 3,5-diaryl-1H-pyrazol-based ureas as new RET inhibitors. The representative compounds 17a/b displayed high selectivity to other kinases, and potently inhibited isogenic BaF3-CCDC6-RET cells harboring wild-type, or gatekeeper mutation (V804M). They also displayed moderate potency against BaF3-CCDC6-RET-G810C with solvent-front mutation. Compound 17b showed better pharmacokinetics properties and demonstrated promising oral in vivo antitumor efficacy in a BaF3-CCDC6-RET-V804M xenograft model. It may be utilized as a new lead compound for further development.
Collapse
Affiliation(s)
- Kaifu Wu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Kongxi Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guorong Xiao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xiangbao Meng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Canhui Zheng
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China; Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Du X, Yu M, Ju H, Xue S, Li Y, Wu X, Xu H, Shen Q. Inhibition of MAPK/ERK pathway activation rescues congenital anomalies of the kidney and urinary tract (CAKUT) in Robo2 PB/+ Gen1 PB/+ mice. Biochem Biophys Res Commun 2023; 653:153-160. [PMID: 36870240 DOI: 10.1016/j.bbrc.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) have been attributed to genetic and environmental factors. However, monogenic and copy number variations cannot sufficiently explain the cause of the majority of CAKUT cases. Multiple genes through various modes of inheritance may lead to CAKUT pathogenesis. We previously showed that Robo2 and Gen1 coregulated the germination of ureteral buds (UB), significantly increasing CAKUT incidence. Furthermore, MAPK/ERK pathway activation is the central mechanism of these two genes. Thus, we explored the effect of the MAPK/ERK inhibitor U0126 in the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Intraperitoneal injection of U0126 during pregnancy prevented the development of the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Additionally, a single dose of 30 mg/kg U0126 on day 10.5 embryos (E10.5) was most effective for reducing CAKUT incidence and ectopic UB outgrowth in Robo2PB/+Gen1PB/+ mice. Furthermore, embryonic kidney mesenchymal levels of p-ERK were significantly decreased on day E11.5 after U0126 treatment, along with decreased cell proliferation index PHH3 and ETV5 expression. Collectively, Gen1 and Robo2 exacerbated the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice through the MAPK/ERK pathway, increasing proliferation and ectopic UB outgrowth.
Collapse
Affiliation(s)
- Xuanjin Du
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Haixin Ju
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Shanshan Xue
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Yaxin Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Xiaohui Wu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China.
| |
Collapse
|
20
|
D'Acquisto F, D'Addario C, Cooper D, Pallanti S, Blacksell I. Peripheral control of psychiatric disorders: Focus on OCD. Are we there yet? Compr Psychiatry 2023; 123:152388. [PMID: 37060625 DOI: 10.1016/j.comppsych.2023.152388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
"We are all in this together" - we often hear this phrase when we want to flag up a problem that is not for a single individual but concerns us all. A similar reflection has been recently made in the field of mental disorders where brain-centric scientists have started to zoom out their brain-focused graphical representations of the mechanisms regulating psychiatric diseases to include other organs or mediators that did not belong historically to the world of neuroscience. The brain itself - that has long been seen as a master in command secluded in its fortress (the blood brain barrier), has now become a collection of Airbnb(s) where all sorts of cells come in and out and sometimes even rearrange the furniture! Under this new framework of reference, mental disorders have become multisystem pathologies where different biological systems - not just the CNS -contribute 'all together' to the development and severity of the disease. In this narrative review article, we will focus on one of the most popular biological systems that has been shown to influence the functioning of the CNS: the immune system. We will specifically highlight the two main features of the immune system and the CNS that we think are important in the context of mental disorders: plasticity and memory.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- School of Life and Health Science, University of Roehampton, London, UK.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefano Pallanti
- Albert Einstein College of Medicine,New York, USA; Istituto di Neuroscienze, Florence, Italy
| | - Isobel Blacksell
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Almannai M, AlAbdi L, Maddirevula S, Alotaibi M, Alsaleem BM, Aljadhai YI, Alsaif HS, Abukhalid M, Alkuraya FS. KIF26A is mutated in the syndrome of congenital hydrocephalus with megacolon. Hum Genet 2023; 142:399-405. [PMID: 36564622 DOI: 10.1007/s00439-022-02513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Human disorders of the enteric nervous system (ENS), e.g., Hirschsprung's disease, are rarely associated with major central nervous system involvement. We describe two families each segregating a different homozygous truncating variant in KIF26A with a unique constellation of severe megacolon that resembles Hirschsprung's disease but lacks aganglionosis as well as brain malformations that range from severe to mild. The intestinal phenotype bears a striking resemblance to that observed in Kif26a-/- mice where KIF26A deficiency was found to cause abnormal GDNF-Ret signaling resulting in failure to establish normal neuronal networks despite myenteric neuronal hyperplasia. Very recently, a range of brain developmental phenotypes were described in patients and mice with KIF26A deficiency and were found to result from abnormal radial migration and increased apoptosis. Our report, therefore, reveals a recognizable autosomal-recessive human KIF26A deficiency phenotype characterized by severe ENS dysfunction and a range of brain malformations.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia. .,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia. .,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Alotaibi
- Department of Genetics, King Saud Medical City, Riyadh, Saudi Arabia
| | - Badr M Alsaleem
- Gastroenterology Division, Intestinal Failure Rehabilitation Program, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yaser I Aljadhai
- Department of Neuroimaging and Intervention, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Musaad Abukhalid
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Baker PA, Ibarra-García-Padilla R, Venkatesh A, Singleton EW, Uribe RA. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 2022; 149:278609. [PMID: 36300492 PMCID: PMC9686996 DOI: 10.1242/dev.200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.
Collapse
Affiliation(s)
- Phillip A. Baker
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | - Rodrigo Ibarra-García-Padilla
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | | | | | - Rosa. A. Uribe
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA,Author for correspondence ()
| |
Collapse
|
23
|
Kong Y, Allison DB, Zhang Q, He D, Li Y, Mao F, Li C, Li Z, Zhang Y, Wang J, Wang C, Brainson CF, Liu X. The kinase PLK1 promotes the development of <i>Kras</i>/<i>Tp53</i>-mutant lung adenocarcinoma through transcriptional activation of the receptor RET. Sci Signal 2022; 15:eabj4009. [PMID: 36194647 PMCID: PMC9737055 DOI: 10.1126/scisignal.abj4009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRAS<sup>G12D</sup>-driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
Collapse
Affiliation(s)
- Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yuntong Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Corresponding author.
| |
Collapse
|
24
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
25
|
Xiang C, Guo L, Zhao R, Teng H, Wang Y, Xiong L, Han Y. Identification and Validation of Noncanonical RET Fusions in Non-Small-Cell Lung Cancer through DNA and RNA Sequencing. J Mol Diagn 2022; 24:374-385. [PMID: 35063667 DOI: 10.1016/j.jmoldx.2021.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
RET fusion has emerged as a targetable driver in non-small-cell lung cancer. A comparative analysis on RET fusions at DNA [DNA sequencing (DNA-seq)] and RNA [RNA sequencing (RNA-seq)] levels was performed in this study. Archived tumor samples from 54 non-small-cell lung cancer patients with DNA-level noncanonical RET fusions were selected for RNA-seq. RNA-seq identified RET fusion transcripts in 41 of 44 samples passing quality control. In the subset of cases harboring RET 3'-end fusions and predicted to produce in-frame proteins (group A; n = 33), RNA-seq identified the same 3'-end fusions in 32 (96.9%). A total of 26 of 32 also had a reciprocal RET 5'-end fusion detected by DNA-seq that was not transcribed. In the subset with DNA-level out-of-frame RET fusions (group B; n = 9), RNA-seq identified in-frame RET fusion transcripts in 8 cases (88.9%). In the subset only identified with a RET 5'-end fusion by DNA-seq (group C; n = 2), RNA-seq detected the corresponding 3'-end fusion in one case. The discordant DNA- and RNA-level fusions observed in group B may be mediated by complex genomic rearrangement events and transcriptional or post-transcriptional processes. In conclusion, DNA-seq demonstrates a high concordance of 96.9% on detecting in-frame RET fusion, but shows a low concordance on detecting out-of-frame RET fusion and RET 5'-end fusion compared with RNA-seq.
Collapse
Affiliation(s)
- Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lianying Guo
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haohua Teng
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yulu Wang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liwen Xiong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Fei X, Dou YN, Wang L, Wu X, Huan Y, Wu S, He X, Lv W, Wei J, Fei Z. Homer1 promotes the conversion of A1 astrocytes to A2 astrocytes and improves the recovery of transgenic mice after intracerebral hemorrhage. J Neuroinflammation 2022; 19:67. [PMID: 35287697 PMCID: PMC8922810 DOI: 10.1186/s12974-022-02428-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Inflammation induced by intracerebral hemorrhage (ICH) is one of the main causes of the high mortality and poor prognosis of patients with ICH. A1 astrocytes are closely associated with neuroinflammation and neurotoxicity, whereas A2 astrocytes are neuroprotective. Homer scaffolding protein 1 (Homer1) plays a protective role in ischemic encephalopathy and neurodegenerative diseases. However, the role of Homer1 in ICH-induced inflammation and the effect of Homer1 on the phenotypic conversion of astrocytes remain unknown. Methods Femoral artery autologous blood from C57BL/6 mice was used to create an ICH model. We use the A1 phenotype marker C3 and A2 phenotype marker S100A10 to detect astrocyte conversion after ICH. Homer1 overexpression/knock-down mice were constructed by adeno-associated virus (AAV) infection to explore the role of Homer1 and its mechanism of action after ICH. Finally, Homer1 protein and selumetinib were injected into in situ hemorrhage sites in the brains of Homer1flox/flox/Nestin-Cre+/− mice to study the efficacy of Homer1 in the treatment of ICH by using a mouse cytokine array to explore the potential mechanism. Results The expression of Homer1 peaked on the third day after ICH and colocalized with astrocytes. Homer1 promotes A1 phenotypic conversion in astrocytes in vivo and in vitro. Overexpression of Homer1 inhibits the activation of MAPK signaling, whereas Homer1 knock-down increases the expression of pathway-related proteins. The Homer1 protein and selumetinib, a non-ATP competitive MEK1/2 inhibitor, improved the outcome in ICH in Homer1flox/flox/Nestin-Cre+/− mice. The efficacy of Homer1 in the treatment of ICH is associated with reduced expression of the inflammatory factor TNFSF10 and increased expression of the anti-inflammatory factors activin A, persephin, and TWEAK. Conclusions Homer1 plays an important role in inhibiting inflammation after ICH by suppressing the A1 phenotype conversion in astrocytes. In situ injection of Homer1 protein may be a novel and effective method for the treatment of inflammation after ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
27
|
Fayaz MA, Ibtisham F, Cham TC, Honaramooz A. Culture supplementation of bFGF, GDNF, and LIF alters in vitro proliferation, colony formation, and pluripotency of neonatal porcine germ cells. Cell Tissue Res 2022; 388:195-210. [PMID: 35102441 DOI: 10.1007/s00441-022-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Gonocytes in the neonatal testis have male germline stem cell properties and as such have important potential applications in fertility preservation and regenerative medicine. Such applications require further studies aimed at increasing gonocyte numbers and evaluating their pluripotency in vitro. The objective of the present study was to test the effects of basic fibroblast growth factor (bFGF), glial cell line-derived neurotrophic factor (GDNF), and leukemia inhibitory factor (LIF) on in vitro propagation, colony formation, and expression of pluripotency markers of neonatal porcine gonocytes. Testis cells from 1-week-old piglets were cultured in basic media (DMEM + 15% FBS), supplemented with various concentrations of bFGF, GDNF, and LIF, either individually or in combinations, in a stepwise experimental design. Gonocytes and/or their colonies were evaluated every 7 days and the gonocyte- (DBA) and pluripotency-specific markers (POU5F1, SSEA-1, E-cadherin, and NANOG) assessed on day 28. Greatest gonocyte numbers and largest colonies were found in media supplemented with 10 ng/mL bFGF and 10 ng/mL bFGF + 100 ng/mL GDNF + 1500 U/mL LIF, respectively. The resultant gonocytes and colonies expressed both germ cell- and pluripotency-specific markers. These results shed light on the growth hormone requirements of porcine gonocytes for in vitro proliferation and colony formation.
Collapse
Affiliation(s)
- Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada.
| |
Collapse
|
28
|
TAKAHASHI M. RET receptor signaling: Function in development, metabolic disease, and cancer. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:112-125. [PMID: 35283407 PMCID: PMC8948417 DOI: 10.2183/pjab.98.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The RET proto-oncogene encodes a receptor tyrosine kinase whose alterations are responsible for various human cancers and developmental disorders, including thyroid cancer, non-small cell lung cancer, multiple endocrine neoplasia type 2, and Hirschsprung's disease. RET receptors are physiologically activated by glial cell line-derived neurotrophic factor (GDNF) family ligands that bind to the coreceptor GDNF family receptor α (GFRα). Signaling via the GDNF/GFRα1/RET ternary complex plays crucial roles in the development of the enteric nervous system, kidneys, and urinary tract, as well as in the self-renewal of spermatogonial stem cells. In addition, another ligand, growth differentiation factor-15 (GDF15), has been shown to bind to GFRα-like and activate RET, regulating body weight. GDF15 is a stress response cytokine, and its elevated serum levels affect metabolism and anorexia-cachexia syndrome. Moreover, recent development of RET-specific kinase inhibitors contributed significantly to progress in the treatment of patients with RET-altered cancer. This review focuses on the broad roles of RET in development, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Masahide TAKAHASHI
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi, Japan
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
29
|
Liu D, Yang L, Liu P, Ji X, Qi X, Wang Z, Chi T, Zou L. Sigma-1 receptor activation alleviates blood-brain barrier disruption post cerebral ischemia stroke by stimulating the GDNF-GFRα1-RET pathway. Exp Neurol 2022; 347:113867. [PMID: 34582837 DOI: 10.1016/j.expneurol.2021.113867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022]
Abstract
Blood-brain barrier (BBB) disruption is one of the most important pathological manifestations of ischemic stroke. Reducing BBB collapse is effective in alleviating brain parenchymal injury and cognitive dysfunction. Our previous study reported that Sigma-1 receptor (Sig-1R) activation in cerebral microvascular endothelial cells (CMECs) ameliorated BBB impairment, but the detailed mechanism remains unclear. In this study, we investigated Sig-1R activation as a BBB integrity promoter via many post ischemic stroke pathways. Sig-1R activation in BBB-associated astrocytes can increase glia-derived neurotrophic factor (GDNF) secretion in bilateral common carotid artery occlusion (BCCAO) mice. Upregulated GDNF activates its receptors in CMECs to promote BBB integrity, and activated Sig-1R in CMECs facilitates this process. In vitro experiments have found that Sig-1R activation in CMECs promotes the interaction between the GDNF α1 receptor and transduction rearrangement gene, increasing PI3K-AKT-junction protein signaling pathway expression. Sig-1R activation could be an effective therapeutic method for preventing BBB damage in ischemic stroke and other neurological conditions.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Luxi Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Liu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuefei Ji
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Qi
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianyan Chi
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China..
| | - Libo Zou
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China..
| |
Collapse
|
30
|
Chen H, Han T, Gao L, Zhang D. The Involvement of Glial Cell-Derived Neurotrophic Factor in Inflammatory Bowel Disease. J Interferon Cytokine Res 2021; 42:1-7. [PMID: 34846920 DOI: 10.1089/jir.2021.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases characterized by dysregulation of the intestinal epithelial barrier (IEB) and intermittent relapses. Recent data show that the glial cell line-derived neurotrophic factor (GDNF) promotes IEB function and wound healing. Apart from protective effects of GDNF on enteric nervous system and IEB, an immunomodulatory role has been assumed. However, it is inconsistent whether GDNF levels are increased or decreased in the inflamed colon of patients with IBD. Furthermore, GDNF is 1 of 3 protein markers associated with relapse in a prospective cohort study in IBD patients with clinically and endoscopically quiescent disease. Additionally, not only enteric glial cells (EGCs), but also intestinal smooth muscle cells and enterocytes synthesize GDNF in significant amounts; in addition, its receptors are expressed in intestinal neurons, EGCs, immune cells and epithelial cells, which points to a potential auto- or paracrine signaling loop between some of these cells. Whether GDNF is involved in IBD-associated fibrosis and colitis-associated colorectal cancer remains to be confirmed. In this review we aim to summarize and discuss the current knowledge on the effects of GDNF and its potential role in the contribution to the pathogenesis of IBD.
Collapse
Affiliation(s)
- HuiLing Chen
- Department of Hematology and Lanzhou University Second Hospital, Gansu, P.R. China
| | - TiYun Han
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - LiPing Gao
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - DeKui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| |
Collapse
|
31
|
Peng WH, Liao ML, Huang WC, Liu PK, Levi SR, Tseng YJ, Lee CY, Yeh LK, Chen KJ, Chien CL, Wang NK. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci 2021; 15:728905. [PMID: 34803580 PMCID: PMC8602685 DOI: 10.3389/fnins.2021.728905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The rearranged during transfection (RET) receptor tyrosine kinase plays a key role in transducing signals related to cell growth and differentiation. Ret mutant mice show abnormal retinal activity and abnormal levels and morphology of bipolar cells, yet die on the 21st day after birth as a result of renal underdevelopment. To extend the observation period, we generated the Ret conditional knockout Chx10-Cre;C-Ret lx/lx mouse model and analyzed the retinal function and morphological changes in mature and aging Chx10-Cre;C-Ret lx/lx mice. Methods: Retina-specific depletion of Ret was achieved using mice with floxed alleles of the Ret gene with CHX10-driven Cre recombinase; floxed mice without Cre expression were used as controls. Retinal function was examined using electroretinography (ERG), and 2-, 4-, 12-, and 24-month-old mice were analyzed by hematoxylin staining and immunohistochemistry to evaluate retinal morphological alterations. The ultrastructure of photoreceptor synapses was evaluated using electron microscopy. Results: The results of the ERG testing showed that b-wave amplitudes were reduced in Chx10-Cre;C-Ret lx/lx mice, whereas a-waves were not affected. A histopathological analysis revealed a thinner and disorganized outer plexiform layer at the ages of 12 and 24 months in Chx10-Cre;C-Ret lx/lx mice. Moreover, the data provided by immunohistochemistry showed defects in the synapses of photoreceptor cells. This result was confirmed at the ultrastructural level, thus supporting the participation of Ret in the morphological changes of the synaptic ribbon. Conclusion: Our results provide evidence of the role of Ret in maintaining the function of the retina, which was essential for preserving the structure of the synaptic ribbon and supporting the integrity of the outer plexiform layer.
Collapse
Affiliation(s)
- Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Meng-Lin Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chun Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Sarah R. Levi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Yun-Ju Tseng
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Chia-Ying Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| |
Collapse
|
32
|
Locantore P, Novizio R, Corsello A, Paragliola RM, Pontecorvi A, Corsello SM. Discovery, preclinical development, and clinical application of pralsetinib in the treatment of thyroid cancer. Expert Opin Drug Discov 2021; 17:101-107. [PMID: 34702125 DOI: 10.1080/17460441.2022.1995351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The use of targeted drug therapies has substantially increased in the treatment of RET-mutated thyroid and other solid cancers over the last decade. Multi-Kinase Inhibitors (MKI) have been approved by FDA, but limited efficacies and side effects make them uneasy to tolerate. Pralsetinib is an oral highly selective RET inhibitor drug that has been generated and clinically validated to have higher potency and less toxicity. AREAS COVERED The present paper offers a brief summary of RET-related thyroid cancer genetics, an overview of the preclinical development of pralsetinib and reviews its clinical validation in the treatment of thyroid cancer. EXPERT OPINION Pralsetinib is a new generation oral treatment that has been approved by the FDA for patients with RET-mutated thyroid cancer. Pralsetinib showed a safer toxicity profile compared to previously approved MKI, probably due to lower inhibition of other tyrosine kinases, especially VEGFR. The approval study ARROW trial showed that patients with RET-mutant medullary thyroid cancer had a better overall response rate to pralsetinib compared to standard-of-care treatments. Additional clinical trials or data enrichment of existing databases are desirable in order to verify and further describe the clinical benefit of pralsetinib in such patients to fully understand its pharmacological profile.
Collapse
Affiliation(s)
- Pietro Locantore
- Department of Translational Medicine and Surgery, Unit of Endocrinology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli", Irccs, Rome, Italy
| | - Roberto Novizio
- Department of Translational Medicine and Surgery, Unit of Endocrinology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli", Irccs, Rome, Italy
| | - Andrea Corsello
- Department of Translational Medicine and Surgery, Unit of Endocrinology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli", Irccs, Rome, Italy
| | - Rosa Maria Paragliola
- Department of Translational Medicine and Surgery, Unit of Endocrinology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli", Irccs, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Unit of Endocrinology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli", Irccs, Rome, Italy
| | - Salvatore Maria Corsello
- Department of Translational Medicine and Surgery, Unit of Endocrinology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli", Irccs, Rome, Italy
| |
Collapse
|
33
|
Zhang Z, Sun GY, Ding S. Glial Cell Line-Derived Neurotrophic Factor and Focal Ischemic Stroke. Neurochem Res 2021; 46:2638-2650. [PMID: 33591443 PMCID: PMC8364922 DOI: 10.1007/s11064-021-03266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
Focal ischemic stroke (FIS) is a leading cause of human debilitation and death. Following the onset of a FIS, the brain experiences a series of spatiotemporal changes which are exemplified in different pathological processes. One prominent feature of FIS is the development of reactive astrogliosis and glial scar formation in the peri-infarct region (PIR). During the subacute phase, astrocytes in PIR are activated, referred to as reactive astrocytes (RAs), exhibit changes in morphology (hypotrophy), show an increased proliferation capacity, and altered gene expression profile, a phenomenon known as reactive astrogliosis. Subsequently, the morphology of RAs remains stable, and proliferation starts to decline together with the formation of glial scars. Reactive astrogliosis and glial scar formation eventually cause substantial tissue remodeling and changes in permanent structure around the PIR. Glial cell line-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line and regarded as a potent survival neurotrophic factor. Under normal conditions, GDNF is expressed in neurons but is upregulated in RAs after FIS. This review briefly describes properties of GDNF, its receptor-mediated signaling pathways, as well as recent studies regarding the role of RAs-derived GDNF in neuronal protection and brain recovery. These results provide evidence suggesting an important role of RA-derived GDNF in intrinsic brain repair and recovery after FIS, and thus targeting GDNF in RAs may be effective for stroke therapy.
Collapse
Affiliation(s)
- Zhe Zhang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
34
|
Marchetti A, Rosellini M, Rizzo A, Mollica V, Battelli N, Massari F, Santoni M. An up-to-date evaluation of cabozantinib for the treatment of renal cell carcinoma. Expert Opin Pharmacother 2021; 22:2323-2336. [PMID: 34405738 DOI: 10.1080/14656566.2021.1959548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: In the evolving treatment scenario of metastatic renal cell carcinoma, cabozantinib is gaining increasing attention, presenting as a cornerstone therapy, both as a monotherapy and in combination with immune-checkpoint inhibitors.Areas covered: In this review, the authors explore the role of cabozantinib in the treatment of metastatic clear cell and non-clear cell renal cell carcinoma, presenting data from the most recent clinical trials and investigating ongoing studies. They, furthermore, evaluate the pharmacokinetic, pharmacodynamic, and immunomodulatory effect of cabozantinib, as well as underlining the tolerability profile and patients' quality of life.Expert opinion: Cabozantinib's administration as a single agent is restricted to intermediate- and poor-risk patients (according to IMDC criteria). The further advent of anti-VEGF-receptor tyrosine kinase inhibitors combined with immune checkpoint inhibitor regimens (such as pembrolizumab + axitinib) has allowed to expand the use of cabozantinib, leading to its combination with nivolumab. In the next few years, more information is required to look for the application of cabozantinib-based combinations as a later-line approach in metastatic RCC patients, beside their use in the first-line setting.
Collapse
Affiliation(s)
- Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | |
Collapse
|
35
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Sun F, McCoach CE. Therapeutic Advances in the Management of Patients with Advanced RET Fusion-Positive Non-Small Cell Lung Cancer. Curr Treat Options Oncol 2021; 22:72. [PMID: 34165651 DOI: 10.1007/s11864-021-00867-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Screening for activating driver gene alterations at the time of diagnosis is the standard of care for advanced non-small cell lung cancer (NSCLC). Activating RET fusions are identified in approximately 1-2% of NSCLCs and have emerged as a targetable driver alteration. Selpercatinib and pralsetinib are RET-selective tyrosine kinase inhibitors (TKIs) with encouraging efficacy, intracranial activity, and tolerability that we recommend as first-line therapy. As with use of TKIs in other oncogene-addicted NSCLCs, development of acquired resistance is pervasive and should be specifically delineated through use of repeat tissue biopsy with genetic profiling at the time of disease progression. If an actionable resistance mechanism emerges for which there is a candidate targeted therapy, combination inhibition should be considered. Alternatively, or in the absence of such findings, platinum doublet chemotherapy or particularly platinum-pemetrexed therapy with or without bevacizumab demonstrates a moderate effect.We would not recommend the routine use of nonselective multi-targeted TKIs such as cabozantinib and vandetanib, which have modest activity but limited tolerability due to predictable off-target effects. Single-agent immunotherapy has minimal activity in RET fusion-positive NSCLC. The role of combination chemotherapy and immunotherapy requires further study but may be considered, particularly in the presence of an activating KRAS alteration. While further development of novel RET-selective TKIs may address common RET-specific resistance mutations, they will not have activity against off-target, RET-independent resistance mechanisms. This again highlights the importance of serial biopsy and next-generation sequencing for the rational choice of sequential therapy in RET fusion-positive NSCLC.
Collapse
Affiliation(s)
- Fangdi Sun
- Department of Medicine, University of California, San Francisco, CA, 94143, USA.
| | - Caroline E McCoach
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
37
|
Discovery and optimization of selective RET inhibitors via scaffold hopping. Bioorg Med Chem Lett 2021; 47:128149. [PMID: 34058344 DOI: 10.1016/j.bmcl.2021.128149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Aberrant alterations of rearranged during transfection (RET) have been identified as actionable drivers of multiple cancers, including thyroid carcinoma and lung cancer. Currently, several approved multikinase inhibitors such as vandetanib and cabozantinib demonstrate clinical activity in patients with RET-rearranged or RET-mutant cancers. However, the observed response rates are only modest and the 'off-target' toxicities resulted from the inhibition of other kinases is also a concern. Herein, we designed and synthesized a series of RET inhibitors based on the structure of selective RET inhibitor BLU-667 and investigated their biological activities. We identified compound 9 as a novel potent and selective RET inhibitor with improved drug-like properties. Compound 9 exhibits a selective inhibitory profile with an inhibitory concentration 50 (IC50) of 1.29 nM for RET and 1.97 (RET V804M) or 0.99 (RET M918T) for mutant RETs. The proliferation of Ba/F3 cells transformed with NSCLC related KIF5B-RET fusion was effectively suppressed by compound 9 (IC50 = 19 nM). Additionally, compound 9 displayed less 'off-target' effects than BLU-667. In mouse xenograft models, compound 9 repressed tumor growth driven by KIF5B-RET-Ba/F3 cells in a dose-dependent manner. Based on its exceptional kinase selectivity, good potency and high exposure in tumor tissues, compound 9 represents a promising lead for the discovery of RET directed therapeutic agents and the study of RET-driven tumor biology.
Collapse
|
38
|
Lee S, Kim KM, Lee SY, Jung J. Estrogen Aggravates Tumor Growth in a Diffuse Gastric Cancer Xenograft Model. Pathol Oncol Res 2021; 27:622733. [PMID: 34257587 PMCID: PMC8262185 DOI: 10.3389/pore.2021.622733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Gastric cancer has the fifth-highest incidence rate and is the third leading cause of cancer-related deaths worldwide. The incidence of gastric cancer is higher in men than in women, but for the diffuse types of gastric cancer, the trend is opposite. Estrogen is considered the prime culprit behind these differences. Nevertheless, the action of estrogen in gastric cancers remains unclear. In this study, we investigated the effect of estrogen on diffuse-type gastric cancer. Human female diffuse gastric cancer SNU-16 cells were transplanted into male and female mice to analyze the effect of endogenous estrogen on tumor growth. Furthermore, the effect of exogenous estrogen was evaluated in ovariectomized mice. Expressed genes were compared between female and male xenograft models using RNA sequencing analysis. Furthermore, human gene expression omnibus databases were utilized to examine the effect of our target genes on overall survival. SNU-16-derived tumor growth was faster in female mice than in male mice. In total RNA sequencing, interferon gamma receptor 2 (IFNGR2), IQ motif containing E (IQCE), transient receptor potential cation channel subfamily M member 4 (TRPM4), and structure-specific endonuclease subunit SLX4 (SLX4) were found. These genes could be associated with the tumor growth in female diffuse-type gastric cancer which was affected by endogenous estrogen. In an ovariectomized gastric cancer xenograft model, exogenous estrogen promoted tumor growth. Especially, our results indicated that estrogen induced G protein-coupled estrogen receptor expression in these mice. These results suggest that estrogen aggravates tumor progression in female diffuse gastric cancer.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Kyoung Mee Kim
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Seung Yeon Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
- College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
39
|
van Dorst DC, Dobbin SJ, Neves KB, Herrmann J, Herrmann SM, Versmissen J, Mathijssen RH, Danser AJ, Lang NN. Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circ Res 2021; 128:1040-1061. [PMID: 33793337 PMCID: PMC8011349 DOI: 10.1161/circresaha.121.318051] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of a wide range of novel antineoplastic therapies has improved the prognosis for patients with a wide range of malignancies, which has increased the number of cancer survivors substantially. Despite the oncological benefit, cancer survivors are exposed to short- and long-term adverse cardiovascular toxicities associated with anticancer therapies. Systemic hypertension, the most common comorbidity among cancer patients, is a major contributor to the increased risk for developing these adverse cardiovascular events. Cancer and hypertension have common risk factors, have overlapping pathophysiological mechanisms and hypertension may also be a risk factor for some tumor types. Many cancer therapies have prohypertensive effects. Although some of the mechanisms by which these antineoplastic agents lead to hypertension have been characterized, further preclinical and clinical studies are required to investigate the exact pathophysiology and the optimal management of hypertension associated with anticancer therapy. In this way, monitoring and management of hypertension before, during, and after cancer treatment can be improved to minimize cardiovascular risks. This is vital to optimize cardiovascular health in patients with cancer and survivors, and to ensure that advances in terms of cancer survivorship do not come at the expense of increased cardiovascular toxicities.
Collapse
Affiliation(s)
- Daan C.H. van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute (D.C.H.v.D., R.H.J.M.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| | - Karla B. Neves
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| | - Joerg Herrmann
- Department of Cardiovascular Medicine (J.H.), Mayo Clinic, Rochester, MN
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension (S.M.H.), Mayo Clinic, Rochester, MN
| | - Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Hospital Pharmacy (J.V.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ron H.J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute (D.C.H.v.D., R.H.J.M.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| |
Collapse
|
40
|
Berlow NE, Crawford KA, Bult CJ, Noakes C, Sloma I, Rudzinski ER, Keller C. Functional impact of a germline RET mutation in alveolar rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006049. [PMID: 33722797 PMCID: PMC8208040 DOI: 10.1101/mcs.a006049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Specific mutations in the RET proto-oncogene are associated with multiple endocrine neoplasia type 2A, a hereditary syndrome characterized by tumorigenesis in multiple glandular elements. In rare instances, MEN2A-associated germline RET mutations have also occurred with non-MEN2A associated cancers. One such germline mutant RET mutation occurred concomitantly in a young adult diagnosed with alveolar rhabdomyosarcoma, a pediatric and young adult soft-tissue cancer with a generally poor prognosis. Although tumor tissue samples were initially unable to provide a viable cell culture for study, tumor tissues were sequenced for molecular characteristics. Through a hierarchical clustering approach, the index case sample was matched to several genetically similar cell models, which were transformed to express the same mutant RET as the index case and used to explore potential therapeutic options for mutant RET-bearing alveolar rhabdomyosarcoma. We also determined whether the RET mutation associated with the index case caused synthetic lethality to select clinical agents. From our investigation, we did not identify synthetic lethality associated with the expression of that patient's RET variant, and overall we did not find experimental evidence for the role of RET in rhabdomyosarcoma progression.
Collapse
Affiliation(s)
- Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Kenneth A Crawford
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Carol J Bult
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Ido Sloma
- Champions Oncology, Hackensack, New Jersey 07601, USA
| | | | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| |
Collapse
|
41
|
Kambey PA, Kanwore K, Ayanlaja AA, Nadeem I, Du Y, Buberwa W, Liu W, Gao D. Failure of Glial Cell-Line Derived Neurotrophic Factor (GDNF) in Clinical Trials Orchestrated By Reduced NR4A2 (NURR1) Transcription Factor in Parkinson's Disease. A Systematic Review. Front Aging Neurosci 2021; 13:645583. [PMID: 33716718 PMCID: PMC7943926 DOI: 10.3389/fnagi.2021.645583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative maladies with unforeseen complex pathologies. While this neurodegenerative disorder’s neuropathology is reasonably well known, its etiology remains a mystery, making it challenging to aim therapy. Glial cell-line derived neurotrophic factor (GDNF) remains an auspicious therapeutic molecule for treating PD. Neurotrophic factor derived from glial cell lines is effective in rodents and nonhuman primates, but clinical findings have been equivocal. Laborious exertions have been made over the past few decades to improve and assess GDNF in treating PD (clinical studies). Definitive clinical trials have, however, failed to demonstrate a survival advantage. Consequently, there seemed to be a doubt as to whether GDNF has merit in the potential treatment of PD. The purpose of this cutting edge review is to speculate as to why the clinical trials have failed to meet the primary endpoint. We introduce a hypothesis, “Failure of GDNF in clinical trials succumbed by nuclear receptor-related factor 1 (Nurr1) shortfall.” We demonstrate how Nurr1 binds to GDNF to induce dopaminergic neuron synthesis. Due to its undisputable neuro-protection aptitude, we display Nurr1 (also called Nr4a2) as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Abiola Abdulrahman Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Iqra Nadeem
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - YinZhen Du
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | | | - WenYa Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
42
|
Ohgami N, Iizuka A, Hirai H, Yajima I, Iida M, Shimada A, Tsuzuki T, Jijiwa M, Asai N, Takahashi M, Kato M. Loss-of-function mutation of c-Ret causes cerebellar hypoplasia in mice with Hirschsprung disease and Down's syndrome. J Biol Chem 2021; 296:100389. [PMID: 33561442 PMCID: PMC7950328 DOI: 10.1016/j.jbc.2021.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.
Collapse
Affiliation(s)
- Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Akira Iizuka
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsuyoshi Shimada
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Mayumi Jijiwa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
43
|
Murase S, Kobayashi K, Nasu T, Kihara C, Taguchi T, Mizumura K. Synergistic interaction of nerve growth factor and glial cell‐line derived neurotrophic factor in muscular mechanical hyperalgesia in rats. J Physiol 2021; 599:1783-1798. [DOI: 10.1113/jp280683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shiori Murase
- Department of Physical Therapy College of Life Sciences Chubu University Kasugai 487–8501 Japan
- Department of Neuroscience II Research Institute of Environmental Medicine Nagoya University Nagoya 464–8601 Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience Hyogo College of Medicine Nishinomiya 663–8501 Japan
| | - Teruaki Nasu
- Department of Physical Therapy College of Life Sciences Chubu University Kasugai 487–8501 Japan
- Department of Neuroscience II Research Institute of Environmental Medicine Nagoya University Nagoya 464–8601 Japan
| | - Chiaki Kihara
- Department of Physical Therapy College of Life Sciences Chubu University Kasugai 487–8501 Japan
| | - Toru Taguchi
- Department of Neuroscience II Research Institute of Environmental Medicine Nagoya University Nagoya 464–8601 Japan
- Department of Physical Therapy Faculty of Rehabilitation Niigata University of Health and Welfare Niigata 950–3198 Japan
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata 950–3198 Japan
| | - Kazue Mizumura
- Department of Physical Therapy College of Life Sciences Chubu University Kasugai 487–8501 Japan
- Department of Neuroscience II Research Institute of Environmental Medicine Nagoya University Nagoya 464–8601 Japan
- Department of Physiology Nihon University School of Dentistry Tokyo 101–8310 Japan
| |
Collapse
|
44
|
Kameneva P, Kastriti ME, Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell Mol Life Sci 2021; 78:513-529. [PMID: 32748156 PMCID: PMC7873084 DOI: 10.1007/s00018-020-03609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
For a long time, neurogenic placodes and migratory neural crest cells were considered the immediate sources building neurons of peripheral nervous system. Recently, a number of discoveries revealed the existence of another progenitor type-a nerve-associated multipotent Schwann cell precursors (SCPs) building enteric and parasympathetic neurons as well as neuroendocrine chromaffin cells. SCPs are neural crest-derived and are similar to the crest cells by their markers and differentiation potential. Such similarities, but also considerable differences, raise many questions pertaining to the medical side, fundamental developmental biology and evolution. Here, we discuss the genesis of Schwann cell precursors, their role in building peripheral neural structures and ponder on their role in the origin in congenial diseases associated with peripheral nervous systems.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden.
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
45
|
Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020; 382:147-160. [PMID: 32556722 PMCID: PMC7529621 DOI: 10.1007/s00441-020-03227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.
| |
Collapse
|
46
|
Zheng Y, Liu Y, Wang M, He Q, Xie X, Lu L, Zhong W. Association between miR-492 rs2289030 G>C and susceptibility to Hirschsprung disease in southern Chinese children. J Int Med Res 2020; 48:300060520961680. [PMID: 33103535 PMCID: PMC7604986 DOI: 10.1177/0300060520961680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hirschsprung disease (HSCR) originates from disruption of normal neural crest cell migration, differentiation, and proliferation during the fifth to eighth weeks of gestation. This results in the absence of intestinal ganglion cells in the distal intestinal tract. However, genetic variations affecting embryonic development of intestinal ganglion cells are unclear. Therefore, this study aimed to investigated the potential value of miR-492 rs2289030 G>C as a marker of susceptibility to HSCR. METHODS In this case-control study in southern Chinese children, we collected samples from 1473 controls and 1470 patients with HSCR. TaqMan genotyping of miR-492 rs2289030 G>C was performed by real-time fluorescent quantitative polymerase chain reaction. RESULTS Multivariate logistic regression analysis showed that there was no significant association between the presence of the miR-492 rs2289030 G>C polymorphism and susceptibility to HSCR by evaluating the values of pooled odds ratios and 95% confidence intervals. Similarly, among different HSCR subtypes, rs2289030 G>C was also not associated with HSCR in hierarchical analysis. CONCLUSIONS Our results suggest that the miR-492 rs2289030 G>C polymorphism is not associated with susceptibility to HSCR in southern Chinese children. These results need to be further confirmed by investigating a more diverse ethnic population of patients with HSCR.
Collapse
Affiliation(s)
| | | | | | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Lifeng Lu
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
47
|
Kawai K, Takahashi M. Intracellular RET signaling pathways activated by GDNF. Cell Tissue Res 2020; 382:113-123. [PMID: 32816064 DOI: 10.1007/s00441-020-03262-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
Activation of REarranged during Transfection (RET) proto-oncogene is responsible for various human cancers such as papillary and medullary thyroid carcinomas and non-small cell lung carcinomas. RET activation in these tumors is caused by point mutations or gene rearrangements, resulting in constitutive activation of RET tyrosine kinase. Physiologically, RET is activated by glial cell line-derived neurotrophic factor (GDNF) ligands that bind to coreceptor GDNF family receptor alphas (GFRαs), leading to RET dimerization. GDNF-GFRα1-RET signaling plays crucial roles in the development of the enteric nervous system, kidney and lower urinary tract as well as in spermatogenesis. Intracellular tyrosine phosphorylation in RET and recruitment of adaptor proteins to phosphotyrosines are essential for various biological functions. Significance of intracellular RET signaling pathways activated by GDNF is discussed and summarized in this review.
Collapse
Affiliation(s)
- Kumi Kawai
- Department of Pathology, Fujita Health University, 1-98 Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, 1-98 Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Japan. .,Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
48
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
49
|
Takahashi M, Kawai K, Asai N. Roles of the RET Proto-oncogene in Cancer and Development. JMA J 2020; 3:175-181. [PMID: 33150251 PMCID: PMC7590400 DOI: 10.31662/jmaj.2020-0021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
RET (REarranged during Transfection)is activated by DNA rearrangement of the 3' fragment of the receptor tyrosine kinase gene, namely, RET proto-oncogene, with the 5' fragment of various genes with putative dimerization domains, such as a coiled coil domain, that are necessary for constitutive activation. RET rearrangements have been detected in a variety of human cancers, including thyroid, lung, colorectal, breast, and salivary gland cancers. Moreover, point mutations in RET are responsible for multiple endocrine neoplasia types 2A and 2B, which can develop into medullary thyroid cancer and pheochromocytoma. Substantial effort is currently being exerted in developing RET kinase inhibitors. RET is also responsible for Hirschsprung's disease, a developmental abnormality in the enteric nervous system. Gene knockout studies have demonstrated that RET plays essential roles in the development of the enteric nervous system and kidney as well as in spermatogenesis. Studies regarding RET continue to provide fascinating challenges in the fields of cancer research, neuroscience, and developmental biology.
Collapse
Affiliation(s)
- Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Kumi Kawai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
50
|
Mae SI, Ryosaka M, Sakamoto S, Matsuse K, Nozaki A, Igami M, Kabai R, Watanabe A, Osafune K. Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential. Cell Rep 2020; 32:107963. [DOI: 10.1016/j.celrep.2020.107963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
|