1
|
Saini S, Kumar Y. Structural and functional analysis of engineered antibodies for cancer immunotherapy: insights into protein compactness and solvent accessibility. J Biomol Struct Dyn 2025; 43:3859-3872. [PMID: 38173178 DOI: 10.1080/07391102.2023.2300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Antibodies are crucial tools in various biomedical applications, including immunotherapy. In this study, we focused on designing and engineering antibodies to enhance their structural dynamics and functional properties. By employing advanced computational techniques and experimental validation, we gained crucial insights into the impact of specific mutations on the engineered antibodies. This study investigates the design and engineering of antibodies to improve their structural dynamics and functional properties. Structural attributes, such as protein compactness and solvent accessibility, were assessed, revealing interesting trends in anti-CD3 and anti-HER2 antibodies. Mutations in CD3 antibodies resulted in a more stable conformation, while mutant HER2 antibodies exhibited altered interaction with the target. Analysis of secondary structure assignments demonstrated significant changes in the folding and stability of the mutant antibodies compared to the wild-type counterparts. The conformational landscape of the engineered antibodies was explored, providing insights into folding pathways and binding mechanisms. Overall, the current study highlights the significance of antibody design and engineering in modulating structural dynamics and functional properties. The findings contribute to developing improved immunotherapeutic strategies by optimising antibody-based therapeutics for targeted diseases with enhanced efficacy and precision.
Collapse
Affiliation(s)
- Samvedna Saini
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), New Delhi, India
| |
Collapse
|
2
|
Khan SR, Breadner D. Unveiling the Synergistic Potential: Bispecific Antibodies in Conjunction with Chemotherapy for Advanced Non-Small-Cell Lung Cancer Treatment. Curr Oncol 2025; 32:206. [PMID: 40277763 PMCID: PMC12025875 DOI: 10.3390/curroncol32040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small-cell lung cancer (NSCLC) accounting for the majority of the cases. Despite advancements in targeted therapies and immunotherapies, many patients still rely on chemotherapy, highlighting the need for innovative treatment strategies. Bispecific antibodies (bsAbs), which feature two distinct binding sites capable of targeting different antigens, have emerged as a promising therapeutic approach, particularly in combination with chemotherapy. This review explores the scientific evolution and clinical application of bsAbs in NSCLC, focusing on their synergistic potential with chemotherapy. BsAbs, such as amivantamab, which targets EGFR and MET, have demonstrated significant efficacy in clinical trials, particularly in patients with EGFR mutations. The combination of bsAbs with chemotherapy enhances immune-mediated tumor destruction by modulating the tumor microenvironment and overcoming resistance mechanisms. Recent clinical trials have shown improved progression-free survival and overall survival when bsAbs such as amivantamab are combined with chemotherapy, underscoring their potential to transform NSCLC treatment. Many other clinical trials are underway that are evaluating newer bsAbs, such as ivonescimab, which targets PD1 and VEGF. This review also discusses ongoing clinical trials investigating various bsAbs targeting EGFR, PD-1, PD-L1, HER2, and other pathways, highlighting the future directions of bsAb-based therapies. As the field evolves, bsAbs are poised to become a cornerstone of multimodal NSCLC treatment, offering more effective and personalized therapeutic options for patients with advanced disease.
Collapse
Affiliation(s)
- Saqib Raza Khan
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Daniel Breadner
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| |
Collapse
|
3
|
Dewaele L, Fernandes RA. Bispecific T-cell engagers for the recruitment of T cells in solid tumors: a literature review. IMMUNOTHERAPY ADVANCES 2025; 5:ltae005. [PMID: 40083373 PMCID: PMC11904783 DOI: 10.1093/immadv/ltae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
In the past decade, T-cell-based immunotherapies have grown to become some of the most promising treatments for cancer. Following the success of immune checkpoint inhibitors, other T-cell-based therapies emerged including CAR-T cells and bispecific T-cell engagers (BiTEs). BiTEs have the unique ability to crosslink T cells and tumor cells independently of major histocompatibility complex (MHC) restriction. They do not rely on TCR specificity or the CD4+/CD8+ costimulatory molecules, overcoming tumor MHC downregulation and low-affinity TCR binding. However, like many other immunotherapies, BiTEs have shown limited success beyond the treatment of hematological malignancies. BiTEs for the treatment of solid tumors still face challenges. Studies in gastrointestinal tumors have revealed Fc toxicity, short half-lives, and immunotoxicity, leading to Fc-silenced half-life extended BiTEs with humanized single-chain variable fragments. Studies in prostate tumors, lung tumors, and malignant gliomas have identified promising targets in PSMA, DLL3, and EGFRvIII, respectively, but also highlighted the problems of on-target off-tumor and BiTE-specific toxicities and inaccessible or immunosuppressive tumor microenvironments. Ongoing research to overcome these limitations remains an interesting field to follow, as BiTEs have the potential to be a powerful tool, especially when used in combination with other immunotherapies.
Collapse
Affiliation(s)
- Laura Dewaele
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ricardo A Fernandes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
6
|
Freitag PC, Kolibius J, Wieboldt R, Weber R, Hartmann KP, van Gogh M, Brücher D, Läubli H, Plückthun A. DARPin-fused T cell engager for adenovirus-mediated cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200821. [PMID: 39021370 PMCID: PMC11253662 DOI: 10.1016/j.omton.2024.200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Bispecific T cell engagers are a promising class of therapeutic proteins for cancer therapy. Their potency and small size often come with systemic toxicity and short half-life, making intravenous administration cumbersome. These limitations can be overcome by tumor-specific in situ expression, allowing high local accumulation while reducing systemic concentrations. However, encoding T cell engagers in viral or non-viral vectors and expressing them in situ ablates all forms of quality control performed during recombinant protein production. It is therefore vital to design constructs that feature minimal domain mispairing, and increased homogeneity of the therapeutic product. Here, we report a T cell engager architecture specifically designed for vector-mediated immunotherapy. It is based on a fusion of a designed ankyrin repeat protein (DARPin) to a CD3-targeting single-chain antibody fragment, termed DATE (DARPin-fused T cell Engager). The DATE induces potent T cell-mediated killing of HER2+ cancer cells, both as recombinantly produced therapeutic protein and as in situ expressed payload from a HER2+-retargeted high-capacity adenoviral vector (HC-AdV). We report remarkable tumor remission, DATE accumulation, and T cell infiltration through in situ expression mediated by a HER2+-retargeted HC-AdV in vivo. Our results support further investigations and developments of DATEs as payloads for vector-mediated immunotherapy.
Collapse
Affiliation(s)
- Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ronja Wieboldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Remi Weber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Patricia Hartmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Merel van Gogh
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Xie Z, Protzer U. Activating adaptive immunity by bispecific, T-cell engager antibodies bridging infected and immune-effector cells is a promising novel therapy for chronic hepatitis B. Antiviral Res 2024; 229:105972. [PMID: 39084340 DOI: 10.1016/j.antiviral.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhe Xie
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Sites, Germany.
| |
Collapse
|
8
|
Reed DR, Lum LG. Looking ahead to CD3, T-cell engager bispecific antibodies for hematological malignancies. Expert Opin Biol Ther 2024; 24:761-772. [PMID: 39069893 DOI: 10.1080/14712598.2024.2384086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Since the approval of the bispecific antibody blinatumomab in 2017 for the treatment of acute lymphoblastic leukemia in relapse, the development of numerous bispecific antibody constructs has dramatically expanded in hematologic malignancies. Many have recently received Food Drug Administration and European Medicines Agency approvals in various stages of treatment for lymphomas, leukemias, and multiple myeloma. AREAS COVERED The purpose of this review is to provide an overview of bispecific antibody treatment including the mechanisms leading to effector T cells targeting tumor-associated antigens, the treatment indications, efficacies, toxicities, and challenges of the different constructs. A literature search was performed through access to PubMed and clinicaltrials.gov. EXPERT OPINION While there has been substantial success in the treatment of NHL, MM, and ALL, there are still hematologic malignancies such as AML where there has been limited progress. It is important to continue to investigate new designs, tumor antigen targets, and further refine where current approved bispecific antibodies fit in terms of sequencing of therapy. Hopefully, with the knowledge gained in recent years and the explosion of these therapies, patients with blood cancers will continue to benefit from these treatments for years to come.
Collapse
Affiliation(s)
- Daniel R Reed
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Lawrence G Lum
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
9
|
Brandenburg A, Heine A, Brossart P. Next-generation cancer vaccines and emerging immunotherapy combinations. Trends Cancer 2024; 10:749-769. [PMID: 39048489 DOI: 10.1016/j.trecan.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Therapeutic cancer vaccines have been a subject of research for several decades as potential new weapons to tackle malignancies. Their goal is to induce a long-lasting and efficient antitumour-directed immune response, capable of mediating tumour regression, preventing tumour progression, and eradicating minimal residual disease, while avoiding major adverse effects. Development of new vaccine technologies and antigen prediction methods has led to significant improvements in cancer vaccine efficacy. However, for their successful clinical application, certain obstacles still need to be overcome, especially tumour-mediated immunosuppression and escape mechanisms. In this review, we introduce therapeutic cancer vaccines and subsequently discuss combination approaches of next-generation cancer vaccines and existing immunotherapies, particularly immune checkpoint inhibitors (ICIs) and adoptive cell transfer/cell-based immunotherapies.
Collapse
Affiliation(s)
- Anne Brandenburg
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Peter Brossart
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
10
|
[Chinese consensus for the bispecific T cell engager in the treatment of acute lymphoblastic leukemia (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:629-636. [PMID: 39231766 PMCID: PMC11388125 DOI: 10.3760/cma.j.cn121090-20240528-00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 09/06/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common acute leukemias, with rapid onset and progression. The standardized application of chemotherapy and transplantation have improved the prognosis of patients, while the unmet therapeutic needs still exist. Recently novel immunotherapies including Bispecific T cell Engager develop rapidly, offering more options for ALL treatment and also demanding higher requirements for clinical diagnosis and treatment management. Based on the evidence of domestic and international medical evidence and clinical experience, the expert panel updated Chinese consensus for the Bispeific T cell Engager in the treatment of B-cell acute lymphoblastic leukemia (2022) and formulated this edition of the Chinese expert consensus.
Collapse
|
11
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Lampe H, Tam L, Hansen AR. Bi-specific T-cell engagers (BiTEs) in prostate cancer and strategies to enhance development: hope for a BiTE-r future. Front Pharmacol 2024; 15:1399802. [PMID: 38873417 PMCID: PMC11169794 DOI: 10.3389/fphar.2024.1399802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Metastatic castrate resistant prostate cancer (mCRPC) continues to have poor survival rates due to limited treatment options. Bi-specific T cell engagers (BiTEs) are a promising class of novel immunotherapies with demonstrated success in haematological malignancies and melanoma. BiTEs developed for tumour associated antigens in prostate cancer have entered clinical testing. These trials have been hampered by high rates of treatment related adverse events, minimal or transient anti-tumour efficacy and generation of high titres of anti-drug antibodies. This paper aims to analyse the challenges faced by the different BiTE therapy constructs and the mCRPC tumour microenvironment that result in therapeutic resistance and identify possible strategies to overcome these issues.
Collapse
Affiliation(s)
| | | | - Aaron R. Hansen
- Department of Medical Oncology, Division of Cancer Care Services, Princess Alexandra Hospital, Metro South Health Service, Queensland Health, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Cech P, Skórka K, Dziki L, Giannopoulos K. T-Cell Engagers-The Structure and Functional Principle and Application in Hematological Malignancies. Cancers (Basel) 2024; 16:1580. [PMID: 38672662 PMCID: PMC11048836 DOI: 10.3390/cancers16081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Recent advancements in cancer immunotherapy have made directing the cellular immune response onto cancer cells a promising strategy for the treatment of hematological malignancies. The introduction of monoclonal antibody-based (mAbs) targeted therapy has significantly improved the prognosis for hematological patients. Facing the issues of mAb-based therapies, a novel bispecific antibody (BsAb) format was developed. T-cell engagers (TCEs) are BsAbs, which simultaneously target tumor-associated antigens on tumor cells and CD3 molecules present on T-cells. This mechanism allows for the direct activation of T-cells and their anti-tumor features, ultimately resulting in the lysis of tumor cells. In 2014, the FDA approved blinatumomab, a TCE directed to CD3 and CD19 for treatment of acute lymphoblastic leukemia. Since then, numerous TCEs have been developed, allowing for treating different hematological malignancies such as acute myeloid leukemia, multiple myeloma, and non-Hodgkin lymphoma and Hodgkin lymphoma. As of November 2023, seven clinically approved TCE therapies are on the market. TCE-based therapies still have their limitations; however, improving the properties of TCEs, as well as combining TCE-based therapies with other forms of treatment, give hope to find the cures for currently terminal diseases. In this paper, we summarized the technical basis of the TCE technology, its application in hematology, and its current issues and prospects.
Collapse
Affiliation(s)
| | - Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.C.); (L.D.); (K.G.)
| | | | | |
Collapse
|
14
|
Azzam T, Du JJ, Flowers MW, Ali AV, Hunn JC, Vijayvargiya N, Knagaram R, Bogacz M, Maravillas KE, Sastre DE, Fields JK, Mirzaei A, Pierce BG, Sundberg EJ. Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers. SCIENCE ADVANCES 2024; 10:eadk8157. [PMID: 38598628 PMCID: PMC11006224 DOI: 10.1126/sciadv.adk8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.
Collapse
Affiliation(s)
- Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria W. Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adeela V. Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy C. Hunn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nina Vijayvargiya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rushil Knagaram
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kino E. Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diego E. Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James K. Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ardalan Mirzaei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20850, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Perico L, Casiraghi F, Sônego F, Todeschini M, Corna D, Cerullo D, Pezzotta A, Isnard-Petit P, Faravelli S, Forneris F, Thiam K, Benigni A, Remuzzi G. Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front Immunol 2024; 15:1335998. [PMID: 38469301 PMCID: PMC10926275 DOI: 10.3389/fimmu.2024.1335998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction In autoimmune diseases, autoreactive B cells comprise only the 0.1-0.5% of total circulating B cells. However, current first-line treatments rely on non-specific and general suppression of the immune system, exposing patients to severe side effects. For this reason, identification of targeted therapies for autoimmune diseases is an unmet clinical need. Methods Here, we designed a novel class of immunotherapeutic molecules, Bi-specific AutoAntigen-T cell Engagers (BiAATEs), as a potential approach for targeting the small subset of autoreactive B cells. To test this approach, we focused on a prototype autoimmune disease of the kidney, membranous nephropathy (MN), in which phospholipase A2 receptor (PLA2R) serves as primary nephritogenic antigen. Specifically, we developed a BiAATE consisting of the immunodominant Cysteine-Rich (CysR) domain of PLA2R and the single-chain variable fragment (scFv) of an antibody against the T cell antigen CD3, connected by a small flexible linker. Results BiAATE creates an immunological synapse between autoreactive B cells bearing an CysR-specific surface Ig+ and T cells. Ex vivo, the BiAATE successfully induced T cell-dependent depletion of PLA2R-specific B cells isolated form MN patients, sparing normal B cells. Systemic administration of BiAATE to mice transgenic for human CD3 reduced anti-PLA2R antibody levels following active immunization with PLA2R. Discussion Should this approach be confirmed for other autoimmune diseases, BiAATEs could represent a promising off-the-shelf therapy for precision medicine in virtually all antibody-mediated autoimmune diseases for which the pathogenic autoantigen is known, leading to a paradigm shift in the treatment of these diseases.
Collapse
Affiliation(s)
- Luca Perico
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Daniela Corna
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Domenico Cerullo
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Kader Thiam
- Preclinical Models & Services, genOway, Lyon, France
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
16
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
17
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
18
|
Ding Z, Sun S, Wang X, Yang X, Shi W, Huang X, Xie S, Mo F, Hou X, Liu A, Jiang X, Tang Z, Lu X. Nanobody-based trispecific T cell engager (Nb-TriTE) enhances therapeutic efficacy by overcoming tumor-mediated immunosuppression. J Hematol Oncol 2023; 16:115. [PMID: 38031188 PMCID: PMC10688028 DOI: 10.1186/s13045-023-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND T cell engagers (TCEs) have been established as an emerging modality for hematologic malignancies, but solid tumors remain refractory. However, the upregulation of programmed cell death 1 (PD-1) is correlated with T cell dysfunction that confer tumor-mediated immunosuppression. Developing a novel nanobody-based trispecific T cell engager (Nb-TriTE) would be a potential strategy to improve therapeutic efficacy. METHODS Given the therapeutic potential of nanobodies (Nbs), we first screened Nb targeting fibroblast activation protein (FAP) and successfully generated a Nb-based bispecific T cell engager (Nb-BiTE) targeting FAP. Then, we developed a Nb-TriTE by fusing an anti-PD-1 Nb to the Nb-BiTE. The biological activity and antitumor efficacy of the Nb-TriTE were evaluated in vitro and in both cell line-derived and patient-derived xenograft mouse models. RESULTS We had for the first time successfully selected a FAP Nb for the generation of novel Nb-BiTE and Nb-TriTE, which showed good binding ability to their targets. Nb-TriTE not only induced robust tumor antigen-specific killing, potent T cell activation and enhanced T cell function in vitro, but also suppressed tumor growth, improved survival and mediated more T cell infiltration than Nb-BiTE in mouse models of different solid tumors without toxicity. CONCLUSIONS This novel Nb-TriTE provides a promising and universal platform to overcome tumor-mediated immunosuppression and improve patient outcomes in the future.
Collapse
Affiliation(s)
- Ziqiang Ding
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shuyang Sun
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaomei Yang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xianing Huang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shenxia Xie
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Fengzhen Mo
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiong Hou
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Aiqun Liu
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuoran Tang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China.
| | - Xiaoling Lu
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
19
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
20
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
21
|
Tomisch J, Busse V, Rosato F, Makshakova ON, Salavei P, Kittel AS, Gillon E, Lataster L, Imberty A, Meléndez AV, Römer W. A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells. Cells 2023; 12:1896. [PMID: 37508560 PMCID: PMC10378424 DOI: 10.3390/cells12141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Collapse
Affiliation(s)
- Jana Tomisch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Busse
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104 Freiburg, Germany
| | - Anna-Sophia Kittel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Emilie Gillon
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Levin Lataster
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
22
|
Skeltved N, Nordmaj MA, Berendtsen NT, Dagil R, Stormer EMR, Al-Nakouzi N, Jiang K, Aicher A, Heeschen C, Gustavsson T, Choudhary S, Gögenur I, Christensen JP, Theander TG, Daugaard M, Salanti A, Nielsen MA. Bispecific T cell-engager targeting oncofetal chondroitin sulfate induces complete tumor regression and protective immune memory in mice. J Exp Clin Cancer Res 2023; 42:106. [PMID: 37118819 PMCID: PMC10142489 DOI: 10.1186/s13046-023-02655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Nanna Skeltved
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mie A Nordmaj
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai T Berendtsen
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emilie M R Stormer
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nader Al-Nakouzi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ke Jiang
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (Torino), Italy
| | - Tobias Gustavsson
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, University of Copenhagen and Center for Surgical Science, Zealand University Hospital, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
23
|
Segaliny AI, Jayaraman J, Chen X, Chong J, Luxon R, Fung A, Fu Q, Jiang X, Rivera R, Ma X, Ren C, Zimak J, Hedde PN, Shang Y, Wu G, Zhao W. A high throughput bispecific antibody discovery pipeline. Commun Biol 2023; 6:380. [PMID: 37029216 PMCID: PMC10082157 DOI: 10.1038/s42003-023-04746-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Bispecific antibodies (BsAbs) represent an emerging class of immunotherapy, but inefficiency in the current discovery has limited their broad clinical availability. Here we report a high throughput, agnostic, single-cell-based functional screening pipeline, comprising molecular and cell engineering for efficient generation of BsAb library cells, followed by functional interrogation at the single-cell level to identify and sort positive clones and downstream sequence identification and functionality characterization. Using a CD19xCD3 bispecific T cell engager (BiTE) as a model, we demonstrate that our single-cell platform possesses a high throughput screening efficiency of up to one and a half million variant library cells per run and can isolate rare functional clones at a low abundance of 0.008%. Using a complex CD19xCD3 BiTE-expressing cell library with approximately 22,300 unique variants comprising combinatorially varied scFvs, connecting linkers and VL/VH orientations, we have identified 98 unique clones, including extremely rare ones (~ 0.001% abundance). We also discovered BiTEs that exhibit novel properties and insights to design variable preferences for functionality. We expect our single-cell platform to not only increase the discovery efficiency of new immunotherapeutics, but also enable identifying generalizable design principles based on an in-depth understanding of the inter-relationships between sequence, structure, and function.
Collapse
Affiliation(s)
| | - Jayapriya Jayaraman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Xiaoming Chen
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | | | - Ryan Luxon
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Audrey Fung
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Qiwei Fu
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Xianzhi Jiang
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | | | - Xiaoya Ma
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Ci Ren
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Jan Zimak
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Per Niklas Hedde
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Yonglei Shang
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - George Wu
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA.
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
24
|
Simão DC, Zarrabi KK, Mendes JL, Luz R, Garcia JA, Kelly WK, Barata PC. Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer. Cancers (Basel) 2023; 15:1412. [PMID: 36900202 PMCID: PMC10001031 DOI: 10.3390/cancers15051412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Over the past decade, immunotherapy has demonstrated an impressive improvement in treatment outcomes for multiple cancers. Following the landmark approvals for use of immune checkpoint inhibitors, new challenges emerged in various clinical settings. Not all tumor types harbor immunogenic characteristics capable of triggering responses. Similarly, many tumors' immune microenvironment allows them to become evasive, leading to resistance and, thus, limiting the durability of responses. To overcome this limitation, new T-cell redirecting strategies such as bispecific T-cell engager (BiTE) have become attractive and promising immunotherapies. Our review provides a comprehensive perspective of the current evidence of BiTE therapies in solid tumors. Considering that immunotherapy has shown modest results in advanced prostate cancer to date, we review the biologic rationale and promising results of BiTE therapy in this clinical setting and discuss potential tumor-associated antigens that may be integrated into BiTE construct designs. Our review also aims to evaluate the advances of BiTE therapies in prostate cancer, illustrate the major obstacles and underlying limitations, and discuss directions for future research.
Collapse
Affiliation(s)
- Diana C. Simão
- Department of Medical Oncology, Centro Hospitalar Universitário de Lisboa Central, 1169-050 Lisbon, Portugal
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - José L. Mendes
- Department of Medical Oncology, Centro Hospitalar Universitário de Lisboa Central, 1169-050 Lisbon, Portugal
| | - Ricardo Luz
- Department of Medical Oncology, Centro Hospitalar Universitário de Lisboa Central, 1169-050 Lisbon, Portugal
| | - Jorge A. Garcia
- Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William K. Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pedro C. Barata
- Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Arndt C, Tunger A, Wehner R, Rothe R, Kourtellari E, Luttosch S, Hannemann K, Koristka S, Loureiro LR, Feldmann A, Tonn T, Link T, Kuhlmann JD, Wimberger P, Bachmann MP, Schmitz M. Palbociclib impairs the proliferative capacity of activated T cells while retaining their cytotoxic efficacy. Front Pharmacol 2023; 14:970457. [PMID: 36817127 PMCID: PMC9935825 DOI: 10.3389/fphar.2023.970457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib is an emerging cancer therapeutic that just recently gained Food and Drug Administration approval for treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor (Her)2-negative breast cancer in combination with the ER degrader fulvestrant. However, CDK4/6 inhibitors are not cancer-specific and may affect also other proliferating cells. Given the importance of T cells in antitumor defense, we studied the influence of palbociclib/fulvestrant on human CD3+ T cells and novel emerging T cell-based cancer immunotherapies. Palbociclib considerably inhibited the proliferation of activated T cells by mediating G0/G1 cell cycle arrest. However, after stopping the drug supply this suppression was fully reversible. In light of combination approaches, we further investigated the effect of palbociclib/fulvestrant on T cell-based immunotherapies by using a CD3-PSCA bispecific antibody or universal chimeric antigen receptor (UniCAR) T cells. Thereby, we observed that palbociclib clearly impaired T cell expansion. This effect resulted in a lower total concentration of interferon-γ and tumor necrosis factor, while palbociclib did not inhibit the average cytokine release per cell. In addition, the cytotoxic potential of the redirected T cells was unaffected by palbociclib and fulvestrant. Overall, these novel findings may have implications for the design of treatment modalities combining CDK4/6 inhibition and T cell-based cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany,Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,*Correspondence: Claudia Arndt, ; Marc Schmitz,
| | - Antje Tunger
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca Rothe
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Eleni Kourtellari
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stephanie Luttosch
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina Hannemann
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Tonn
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany,Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Theresa Link
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan Dominik Kuhlmann
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Pauline Wimberger
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Philipp Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,*Correspondence: Claudia Arndt, ; Marc Schmitz,
| |
Collapse
|
26
|
ImmunoPET Directed to the Brain: A New Tool for Preclinical and Clinical Neuroscience. Biomolecules 2023; 13:biom13010164. [PMID: 36671549 PMCID: PMC9855881 DOI: 10.3390/biom13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a non-invasive in vivo imaging method based on tracking and quantifying radiolabeled monoclonal antibodies (mAbs) and other related molecules, such as antibody fragments, nanobodies, or affibodies. However, the success of immunoPET in neuroimaging is limited because intact antibodies cannot penetrate the blood-brain barrier (BBB). In neuro-oncology, immunoPET has been successfully applied to brain tumors because of the compromised BBB. Different strategies, such as changes in antibody properties, use of physiological mechanisms in the BBB, or induced changes to BBB permeability, have been developed to deliver antibodies to the brain. These approaches have recently started to be applied in preclinical central nervous system PET studies. Therefore, immunoPET could be a new approach for developing more specific PET probes directed to different brain targets.
Collapse
|
27
|
Glud EN, Rasmussen M, Zhang Y, Mandrup OA, Salachan PV, Borre M, Sørensen KD, Howard KA. Identification of a high-risk immunogenic prostate cancer patient subset as candidates for T-cell engager immunotherapy and the introduction of a novel albumin-fused anti-CD3 × anti-PSMA bispecific design. Br J Cancer 2022; 127:2186-2197. [PMID: 36243890 PMCID: PMC9727128 DOI: 10.1038/s41416-022-01994-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cancer immunotherapies such as bispecific T-cell engagers have seen limited adoption in prostate cancer (PC), possibly due to differing levels of cancer receptor expression and effector T-cell infiltration between patients and inherent defects in T-cell engager design. METHODS CD8+ T-cell infiltration and PSMA expression were determined by RNA sequencing of primary PC tissue samples from 126 patients with localised PC and 17 patients with metastatic PC. Prognostic value was assessed through clinical parameters, including CAPRA-S risk score. A panel of albumin-fused anti-CD3 × anti-PSMA T-cell engagers with different neonatal Fc receptor (FcRn) affinity were characterised by flow cytometry, Bio-Layer Interferometry and functional cellular assays. RESULTS A subset of patients with localised (30/126 = 24%) and metastatic (10/17 = 59%) PC showed both high PSMA expression and high CD8+ T-cell enrichment. The High/High phenotype in localised PC associated with a clinically high-risk cancer subtype, confirmed in an external patient cohort (n = 550, PRAD/TCGA). The T-cell engagers exhibited tunable FcRn-driven cellular recycling, CD3 and PSMA cellular engagement, T-cell activation and PSMA level-dependent cellular cytotoxicity. CONCLUSION This work presents an albumin-fused bispecific T-cell engager with programmable FcRn engagement and identifies a high-risk PC patient subset as candidates for treatment with the T-cell engager class of immuno-oncology biologics.
Collapse
Affiliation(s)
- Eske N. Glud
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Rasmussen
- grid.7048.b0000 0001 1956 2722Department of Molecular Medicine, Aarhus University Hospital & Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Yonghui Zhang
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ole A. Mandrup
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Paul Vinu Salachan
- grid.7048.b0000 0001 1956 2722Department of Molecular Medicine, Aarhus University Hospital & Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Michael Borre
- grid.7048.b0000 0001 1956 2722Department of Urology, Aarhus University Hospital & Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Karina Dalsgaard Sørensen
- grid.7048.b0000 0001 1956 2722Department of Molecular Medicine, Aarhus University Hospital & Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Kenneth A. Howard
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
28
|
Liguori L, Polcaro G, Nigro A, Conti V, Sellitto C, Perri F, Ottaiano A, Cascella M, Zeppa P, Caputo A, Pepe S, Sabbatino F. Bispecific Antibodies: A Novel Approach for the Treatment of Solid Tumors. Pharmaceutics 2022; 14:2442. [PMID: 36432631 PMCID: PMC9694302 DOI: 10.3390/pharmaceutics14112442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Advancement in sequencing technologies allows for the identification of molecular pathways involved in tumor progression and treatment resistance. Implementation of novel agents targeting these pathways, defined as targeted therapy, significantly improves the prognosis of cancer patients. Targeted therapy also includes the use of monoclonal antibodies (mAbs). These drugs recognize specific oncogenic proteins expressed in cancer cells. However, as with many other types of targeting agents, mAb-based therapy usually fails in the long-term control of cancer progression due to the development of resistance. In many cases, resistance is caused by the activation of alternative pathways involved in cancer progression and the development of immune evasion mechanisms. To overcome this off-target resistance, bispecific antibodies (bsAbs) were developed to simultaneously target differential oncogenic pathway components, tumor-associated antigens (TAA) and immune regulatory molecules. As a result, in the last few years, several bsAbs have been tested or are being tested in cancer patients. A few of them are currently approved for the treatment of some hematologic malignancies but no bsAbs are approved in solid tumors. In this review, we will provide an overview of the state-of-the-art of bsAbs for the treatment of solid malignancies outlining their classification, design, main technologies utilized for production, mechanisms of action, updated clinical evidence and potential limitations.
Collapse
Affiliation(s)
- Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Polcaro
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Annunziata Nigro
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Valeria Conti
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Sellitto
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS, Foundation “G. Pascale”, 80131 Naples, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, INT IRCCS Foundation “G. Pascale”, 80131 Naples, Italy
| | - Marco Cascella
- Unit of Anesthesiology and Pain Therapy, INT IRCCS Foundation “G. Pascale”, 80131 Naples, Italy
| | - Pio Zeppa
- Pathology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Alessandro Caputo
- Pathology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Pepe
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
29
|
Duwa R, Pokhrel RH, Banstola A, Pandit M, Shrestha P, Jeong JH, Chang JH, Yook S. T-cell engaging poly(lactic-co-glycolic acid) nanoparticles as a modular platform to induce a potent cytotoxic immunogenic response against PD-L1 overexpressing cancer. Biomaterials 2022; 291:121911. [DOI: 10.1016/j.biomaterials.2022.121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
|
30
|
Wang L, Li S, Mei J, Ye L. Immunotherapies of retinoblastoma: Effective methods for preserving vision in the future. Front Oncol 2022; 12:949193. [PMID: 36132125 PMCID: PMC9483150 DOI: 10.3389/fonc.2022.949193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Retinoblastoma is the most common intraocular tumor in children. Patients can be cured by enucleation, but it can lead to vision loss. Chemotherapy is the main method of treatment for RB currently. Unfortunately, chemoresistant and tumor metastasis often happen, resulting in a relatively poor prognosis. Therefore, immunotherapy becomes one of the optimal choices. Targeting not only tumor cells but also the active tumor microenvironment is a novel strategy for RB treatment. Here, we conclude several potential targets for RB immunotherapy, including gangliosides GD2, PD-1 and PD-L1, B7H3, EpCAM and SYK. We also review the techniques for CART, bispecific antibodies and genetically modified Dendritic cells according to the characteristics of different targets and discuss the feasibility of immunotherapy with different targets.
Collapse
|
31
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
32
|
Borówka M, Łącki-Zynzeling S, Nicze M, Kozak S, Chudek J. Adverse Renal Effects of Anticancer Immunotherapy: A Review. Cancers (Basel) 2022; 14:4086. [PMID: 36077623 PMCID: PMC9454552 DOI: 10.3390/cancers14174086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Modern oncological therapy utilizes various types of immunotherapy. Immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cells (CAR-T) therapy, cancer vaccines, tumor-targeting monoclonal antibodies (TT-mAbs), bispecific antibodies and cytokine therapy improve patients' outcomes. However, stimulation of the immune system, beneficial in terms of fighting against cancer, generates the risk of harm to other cells in a patient's body. Kidney damage belongs to the relatively rare adverse events (AEs). Best described, but still, superficially, are renal AEs in patients treated with ICIs. International guidelines issued by the European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) cover the management of immune-related adverse events (irAEs) during ICI therapy. There are fewer data concerning real occurrence and possible presentations of renal adverse drug reactions of other immunotherapeutic methods. This implies the need for the collection of safety data during ongoing clinical trials and in the real-life world to characterize the hazard related to the use of new immunotherapies and management of irAEs.
Collapse
Affiliation(s)
| | - Stanisław Łącki-Zynzeling
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Reymonta 8, 40-027 Katowice, Poland
| | | | | | | |
Collapse
|
33
|
Ai L, Peng T, Li Y, Kuai H, Sima Y, Su M, Wang D, Yang Q, Wang X, Tan W. A Dual‐Targeting Circular Aptamer Strategy Enables the Recognition of Different Leukemia Cells with Enhanced Binding Ability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Minhui Su
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Xue‐Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital School of Medicine College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
34
|
[Chinese consensus for the bispeific T cell engager in the treatment of B-cell acute lymphoblastic leukemia (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:448-455. [PMID: 35968586 PMCID: PMC9800224 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
36
|
Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:894-915. [PMID: 35141049 PMCID: PMC8803965 DOI: 10.1016/j.omtn.2022.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects. Aptamers are single-chained oligonucleotides that bind their targets with high specificity and affinity owing to their three-dimensional (3D) structures, and they are one potential way to address this need. In particular, bispecific aptamers (bsApts) have been shown to induce artificial immune synapses that promote T cell activation and subsequent tumor cell lysis in various in vitro and in vivo pre-clinical models. We discuss these advances here, along with gaps in bsApt biology at both the cellular and resident tissue levels that should be addressed to accelerate their translation into the clinic. The broad application, minimal production cost, and relative lack of immunogenicity of bsApts give them some ideal qualities for manipulating the immune system. Building upon lessons from other novel therapies, bsApts could soon provide clinicians with an immunomodulating toolbox that is not only potent and efficacious but exercises a wide therapeutic index.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
37
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
38
|
Ghosh S, Huda P, Fletcher N, Campbell D, Thurecht KJ, Walsh B. Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opin Biol Ther 2022; 22:603-613. [DOI: 10.1080/14712598.2022.2033204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
39
|
Haddad F, Daver N. An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:273-295. [PMID: 34972969 DOI: 10.1007/978-3-030-79308-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient's system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.
Collapse
Affiliation(s)
- Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
40
|
Rodak A, Stadlmayr G, Stadlbauer K, Lichtscheidl D, Bobbili MR, Rüker F, Wozniak-Knopp G. Bispecific T-Cell Engagers Targeting Membrane-Bound IgE. Biomedicines 2021; 9:1568. [PMID: 34829798 PMCID: PMC8615095 DOI: 10.3390/biomedicines9111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
The increased incidence of allergies and asthma has sparked interest in IgE, the central player in the allergic response. Interaction with its high-affinity receptor FcεRI leads to sensitization and allergen presentation, extracellular membrane-proximal domain in membrane IgE can act as an antigen receptor on B cells, and the interaction with low-affinity IgE receptor CD23 additionally influences its homeostatic range. Therapeutic anti-IgE antibodies act by the inhibition of IgE functions by interfering with its receptor binding or by the obliteration of IgE-B cells, causing a reduction of serum IgE levels. Fusion proteins of antibody fragments that can act as bispecific T-cell engagers have proven very potent in eliciting cytotoxic T-lymphocyte-mediated killing. We have tested five anti-IgE Fc antibodies, recognizing different epitopes on the membrane-expressed IgE, for the ability to elicit specific T-cell activation when expressed as single-chain Fv fragments fused with anti-CD3ε single-chain antibody. All candidates could specifically stain the cell line, expressing the membrane-bound IgE-Fc and bind to CD3-positive Jurkat cells, and the specific activation of engineered CD3-overexpressing Jurkat cells and non-stimulated CD8-positive cells was demonstrated for 8D6- and ligelizumab-based bispecific antibodies. Thus, such anti-IgE antibodies have the potential to be developed into agents that reduce the serum IgE concentration by lowering the numbers of IgE-secreting cells.
Collapse
Affiliation(s)
- Aleksandra Rodak
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Gerhard Stadlmayr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Dominic Lichtscheidl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
- Ludwig Boltzmann Institute for Experimental, Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Gordana Wozniak-Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| |
Collapse
|
41
|
Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci 2021; 22:ijms222111694. [PMID: 34769123 PMCID: PMC8583892 DOI: 10.3390/ijms222111694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Biological therapies have changed the face of oncology by targeting cancerous cells while reducing the effect on normal tissue. This publication focuses mainly on new therapies that have contributed to the advances in treatment of certain malignancies. Immunotherapy, which has repeatedly proven to be a breakthrough therapy in melanoma, as well as B-ALL therapy with CAR T cells, are of great merit in this progress. These therapies are currently being developed by modifying bispecific antibodies and CAR T cells to improve their efficiency and bioavailability. Work on improving the therapy with oncolytic viruses is also progressing, and efforts are being made to improve the immunogenicity and stability of cancer vaccines. Combining various biological therapies, immunotherapy with oncolytic viruses or cancer vaccines is gaining importance in cancer therapy. New therapeutic targets are intensively sought among neoantigens, which are not immunocompromised, or antigens associated with tumor stroma cells. An example is fibroblast activation protein α (FAPα), the overexpression of which is observed in the case of tumor progression. Universal therapeutic targets are also sought, such as the neurotrophic receptor tyrosine kinase (NTRK) gene fusion, a key genetic driver present in many types of cancer. This review also raises the problem of the tumor microenvironment. Stromal cells can protect tumor cells from chemotherapy and contribute to relapse and progression. This publication also addresses the problem of cancer stem cells resistance to treatment and presents attempts to avoid this phenomenon. This review focuses on the most important strategies used to improve the selectivity of biological therapies.
Collapse
|
42
|
Ai L, Peng T, Li Y, Kuai H, Sima Y, Su M, Wang D, Yang Q, Wang XQ, Tan W. Dual-targeting Circular Aptamer Strategy Enabled Recognition of Different Leukemia Cells with Enhanced Binding Ability. Angew Chem Int Ed Engl 2021; 61:e202109500. [PMID: 34676964 DOI: 10.1002/anie.202109500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Currently, the broad use of monovalent aptamers in oncology faces challenges, including insufficient recognition and internalization caused by finite unitary receptors, as well as confined recognition spectrum. Herein, we describe the development of a dual-targeting circular aptamer (DTCA) that can recognize two different biomarkers on living cells to augment aptamer-receptor interactions, thus allowing the enhanced recognition event to occur. This improvement not only boosts binding and internalization abilities, but also expands the recognition spectrum for different leukemia cells. Moreover, the stability of DTCA in serum can be significantly improved by an enzyme-promoted terminal ligation strategy. The chemical incorporation of 5-fluorodeoxyuridine into DTCA resulted in a pharmaceutically functional aptamer that exhibited excellent selectivity, as demonstrated by its high cytotoxicity against target cancer cells, but not to normal cells. The superiority of our newly developed strategy was further highlighted by its precise tumor imaging capability.
Collapse
Affiliation(s)
- Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Minhui Su
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- The Cancer Hospital of the University of, Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
43
|
Ghalamfarsa F, Khatami SH, Vakili O, Taheri-Anganeh M, Tajbakhsh A, Savardashtaki A, Fazli Y, Uonaki LR, Shabaninejad Z, Movahedpour A, Ghalamfarsa G. Bispecific antibodies in colorectal cancer therapy: recent insights and emerging concepts. Immunotherapy 2021; 13:1355-1367. [PMID: 34641708 DOI: 10.2217/imt-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is identified as a life-threatening malignancy. Despite several efforts and proceedings available for CRC therapy, it is still a health concern. Among a vast array of novel therapeutic procedures, employing bispecific antibodies (BsAbs) is currently considered to be a promising approach for cancer therapy. BsAbs, as a large family of molecules designed to realize two distinct epitopes or antigens, can be beneficial microgadgets to target the tumor-associated antigen pairs. On the other hand, applying the immune system's capabilities to attack malignant cells has been proven as a tremendous development in cancer therapeutic projects. The current study has attempted to overview some of the approved BsAbs in CRC therapy and those under clinical trials. For this purpose, reputable scientific search engines and databases, such as PubMed, ScienceDirect, Google Scholar, Scopus, etc., were explored using the keywords 'bispecific antibodies', 'colorectal cancer', 'immunotherapy' and 'tumor markers'.
Collapse
Affiliation(s)
- Farideh Ghalamfarsa
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Fazli
- Dena Clinical Diagnostic Laboratory, Yasuj, Iran
| | - Leila Rezaei Uonaki
- Department of Biotechnology, School of Science, Shahrekord University, Shahrekord, Iran
| | - Zahra Shabaninejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Department of Microbiology & Immunology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
44
|
Al-Baradie RS. Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics. Hum Antibodies 2021; 28:259-272. [PMID: 32831197 DOI: 10.3233/hab-200425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies and vaccines have widely been studied for the immunotherapy of cancer, though their large size appears to limit their functionality in solid tumors, in large part due to unique properties of tumor microenvironment. Smaller formats of antibodies have been developed to throw such restrictions. These small format antibodies include antigen binding fragments, single-chain variable fragments, single variable domain of camelid antibody (so-called nanobody (Nb) or VHH). Since their serendipitous discovery, nanobodies have been studies at length in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes out performing monoclonal antibodies. In addition, these small camelid heavy-chain antibodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. In this review, we shed light on the current status of nanobodies in diagnosis and imaging of tumor and exploiting nanobodies revert immunosuppressive events, modulation of immune checkpoints, and as deliverers of drugs for targeted tumor therapy.
Collapse
|
45
|
Facile Generation of Potent Bispecific Fab via Sortase A and Click Chemistry for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13184540. [PMID: 34572769 PMCID: PMC8467688 DOI: 10.3390/cancers13184540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The formats of bispecific antibody have been investigated for many years to enhance the stability of the structure and anti-tumor efficacy. One of the formats combining two Fabs at their C termini provides unmodified variable region and comparable activity to other fragment-based bispecific antibodies that are usually combined in a head-to-tail manner. However, the current strategy to produce the BiFab molecule is limited to a semisynthetic method that introduces unnatural amino acid to antibodies’ sequences during production. To improve the application of BiFab format in investigational biodrugs, we have applied sortase A-mediated “bio-click” chemistry to generate BiFab, for facile assembly of Fab molecules that have been expressed and stored as BiFab module candidates. The BiFabs made by our method stimulate T cell proliferation and activation with favorable in vitro and in vivo anti-tumor activit. Our results indicate that BiFab made by sortase A-mediated click chemistry could be used to efficiently generate various BiFabs with high potency, which further supports personalized tumor immunotherapy in the future. Abstract Bispecific antibodies (BsAbs) for T cell engagement have shown great promise in cancer immunotherapy, and their clinical applications have been proven in treating hematological malignance. Bispecific antibody binding fragment (BiFab) represents a promising platform for generating non-Fc bispecific antibodies. However, the generation of BiFab is still challenging, especially by means of chemical conjugation. More conjugation strategies, e.g., enzymatic conjugation and modular BiFab preparation, are needed to improve the robustness and flexibility of BiFab preparation. We successfully used chemo-enzymatic conjugation approach to generate bispecific antibody (i.e., BiFab) with Fabs from full-length antibodies. Paired click handles (e.g., N3 and DBCO) was introduced to the C-terminal LPETG tag of Fabs via sortase A mediated transpeptidation, followed by site-specific conjugation between two click handle-modified Fabs for BiFab generation. Both BiFabCD20/CD3 (EC50 = 0.26 ng/mL) and BiFabHer2/CD3 exhibited superior efficacy in mediating T cells, from either PBMC or ATC, to kill target tumor cell lines while spared antigen-negative tumor cells in vitro. The BiFabCD20/CD3 also efficiently inhibited CD20-positive tumor growth in mouse xenograft model. We have established a facile sortase A-mediated click handle installation to generate homogeneous and functional BiFabs. The exemplary BiFabs against different targets showed superior efficacy in redirecting and activating T cells to specifically kill target tumor cells, demonstrating the robustness of sortase A-mediated “bio-click” chemistry in generating various potent BiFabs. This approach also holds promise for further efficient construction of a Fab derivative library for personalized tumor immunotherapy in the future.
Collapse
|
46
|
In vivo pharmacokinetic enhancement of monomeric Fc and monovalent bispecific designs through structural guidance. Commun Biol 2021; 4:1048. [PMID: 34497355 PMCID: PMC8426389 DOI: 10.1038/s42003-021-02565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2021] [Indexed: 11/08/2022] Open
Abstract
In a biologic therapeutic landscape that requires versatility in targeting specificity, valency and half-life modulation, the monomeric Fc fusion platform holds exciting potential for the creation of a class of monovalent protein therapeutics that includes fusion proteins and bispecific targeting molecules. Here we report a structure-guided approach to engineer monomeric Fc molecules to adapt multiple versions of half-life extension modifications. Co-crystal structures of these monomeric Fc variants with Fc neonatal receptor (FcRn) shed light into the binding interactions that could serve as a guide for engineering the half-life of antibody Fc fragments. These engineered monomeric Fc molecules also enabled the generation of a novel monovalent bispecific molecular design, which translated the FcRn binding enhancement to improvement of in vivo serum half-life. Lu Shan et al. present a structure-guided approach to engineer a monovalent form of the fragment crystallizable (Fc) region of an IgG4 antibody to adapt multiple versions of half-life extension modifications and bispecific targeting. Additionally, they report co-crystal structures of the variants bound to the Fc neonatal receptor that allow insights into the binding interactions.
Collapse
|
47
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Cenciarelli C. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med 2021; 10:5019-5030. [PMID: 34145792 PMCID: PMC8335808 DOI: 10.1002/cam4.4064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including FcγRs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.
Collapse
MESH Headings
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Blood-Brain Barrier
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Cell Movement/immunology
- Cell Movement/physiology
- Clinical Trials as Topic
- Disease Progression
- ErbB Receptors/immunology
- Forecasting
- Glioblastoma/immunology
- Glioblastoma/therapy
- Humans
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Interleukin-13 Receptor alpha2 Subunit/immunology
- Lymphocyte Activation
- Lymphocyte Depletion
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/physiology
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hany E. Marei
- Department of Cytology and HistologyFaculty of Veterinary MedicineMansoura UniversityMansouraEgypt
| | | | | | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringCollege of EngineeringQatar UniversityDohaQatar
| | - Thomas Caceci
- Biomedical SciencesVirginia Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Giacomo Pozzoli
- Pharmacology UnitFondazione Policlinico A. GemelliIRCCSRomeItaly
| | | |
Collapse
|
48
|
Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res 2021; 9:49. [PMID: 34134781 PMCID: PMC8207707 DOI: 10.1186/s40364-021-00301-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy has attracted more and more attention nowadays, and multiple clinical trials have confirmed its effect in a variety of solid tumors. Immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell transfer (ACT), and lymphocyte-promoting cytokines are the main immunotherapy methods. Endometrial cancer (EC) is one of the most frequent tumors in women and the prognosis of recurrent or metastatic EC is poor. Since molecular classification has been applied to EC, immunotherapy for different EC subtypes (especially POLE and MSI-H) has gradually attracted attention. In this review, we focus on the expression and molecular basis of the main biomarkers in the immunotherapy of EC firstly, as well as their clinical application significance and limitations. Blocking tumor immune checkpoints is one of the most effective strategies for cancer treatment in recent years, and has now become the focus in the field of tumor research and treatment. We summarized clinical date of planned and ongoing clinical trials and introduced other common immunotherapy methods in EC, such as cancer vaccine and ACT. Hormone aberrations, metabolic syndrome (MetS) and p53 mutant and that affect the immunotherapy of endometrial cancer will also be discussed in this review.
Collapse
Affiliation(s)
- Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Jean Victoria Fischer
- Department of Pathology, Northwestern Medicine, Gynecologic Pathology Fellow, Chicago, Illinois, USA
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China. .,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China.
| |
Collapse
|
49
|
The potential of adoptive transfer of γ9δ2 T cells to enhance blinatumomab's antitumor activity against B-cell malignancy. Sci Rep 2021; 11:12398. [PMID: 34117317 PMCID: PMC8195997 DOI: 10.1038/s41598-021-91784-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
Blinatumomab, a bispecific T cell engager (BiTE) antibody targeting CD19 and CD3ε, can redirect T cells toward CD19-positive tumor cells and has been approved to treat relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL). However, chemotherapeutic regimens can severely reduce T cells' number and cytotoxic function, leading to an inadequate response to blinatumomab treatment in patients. In addition, it was reported that a substantial portion of R/R B-ALL patients failing blinatumomab treatment had the extramedullary disease, indicating the poor ability of blinatumomab in treating extramedullary disease. In this study, we investigated whether the adoptive transfer of ex vivo expanded γ9δ2 T cells could act as the effector of blinatumomab to enhance blinatumomab's antitumor activity against B-cell malignancies in vivo. Repeated infusion of blinatumomab and human γ9δ2 T cells led to more prolonged survival than that of blinatumomab or human γ9δ2 T cells alone in the mice xenografted with Raji cells. Furthermore, adoptive transfer of γ9δ2 T cells reduced tumor mass outside the bone marrow, indicating the potential of γ9δ2 T cells to eradicate the extramedullary disease. Our results suggest that the addition of γ9δ2 T cells to the blinatumomab treatment regimens could be an effective approach to enhancing blinatumomab's therapeutic efficacy. The concept of this strategy may also be applied to other antigen-specific BiTE therapies for other malignancies.
Collapse
|
50
|
Zhou S, Liu M, Ren F, Meng X, Yu J. The landscape of bispecific T cell engager in cancer treatment. Biomark Res 2021; 9:38. [PMID: 34039409 PMCID: PMC8157659 DOI: 10.1186/s40364-021-00294-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
T cell-based immunotherapies have revolutionized treatment paradigms in various cancers, however, limited response rates secondary to lack of significant T-cell infiltration in the tumor site remain a major problem. To address this limitation, strategies for redirecting T cells to treat cancer are being intensively investigated, while the bispecific T cell engager (BiTE) therapy constitutes one of the most promising therapeutic approaches. BiTE is a bispecific antibody construct with a unique function, simultaneously binding an antigen on tumor cells and a surface molecule on T cells to induce tumor lysis. BiTE therapy represented by blinatumomab has achieved impressive efficacy in the treatment of B cell malignancies. However, major mechanisms of resistance to BiTE therapy are associated with antigen loss and immunosuppressive factors such as the upregulation of immune checkpoints. Thus, modification of antibody constructs and searching for combination strategies designed to further enhance treatment efficacy as well as reduce toxicity has become an urgent issue, especially for solid tumors in which response to BiTE therapy is always poor. In particular, immunotherapies focusing on innate immunity have attracted increasing interest and have shown promising anti-tumor activity by engaging innate cells or innate-like cells, which can be used alone or complement current therapies. In this review, we depict the landscape of BiTE therapy, including clinical advances with potential response predictors, challenges of treatment toxicity and resistance, and developments of novel immune cell-based engager therapy.
Collapse
Affiliation(s)
- Shujie Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingguo Liu
- Department of Oncology, Yuncheng Honesty Hospital, Heze, Shandong, China
| | - Fei Ren
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiangjiao Meng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong, China.
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|