1
|
Huang X, Fan J, Guo C, Chen Y, Qiu J, Zhang Q. Integrated Transcriptomics and Metabolomics Analysis Reveal the Regulatory Mechanisms Underlying Sodium Butyrate-Induced Carotenoid Biosynthesis in Rhodotorula glutinis. J Fungi (Basel) 2024; 10:320. [PMID: 38786675 PMCID: PMC11122558 DOI: 10.3390/jof10050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Sodium butyrate (SB) is a histone deacetylase inhibitor that can induce changes in gene expression and secondary metabolite titers by inhibiting histone deacetylation. Our preliminary analysis also indicated that SB significantly enhanced the biosynthesis of carotenoids in the Rhodotorula glutinis strain YM25079, although the underlying regulatory mechanisms remained unclear. Based on an integrated analysis of transcriptomics and metabolomics, this study revealed changes in cell membrane stability, DNA and protein methylation levels, amino acid metabolism, and oxidative stress in the strain YM25079 under SB exposure. Among them, the upregulation of oxidative stress may be a contributing factor for the increase in carotenoid biosynthesis, subsequently enhancing the strain resistance to oxidative stress and maintaining the membrane fluidity and function for normal cell growth. To summarize, our results showed that SB promoted carotenoid synthesis in the Rhodotorula glutinis strain YM25079 and increased the levels of the key metabolites and regulators involved in the stress response of yeast cells. Additionally, epigenetic modifiers were applied to produce fungal carotenoid, providing a novel and promising strategy for the biosynthesis of yeast-based carotenoids.
Collapse
Affiliation(s)
| | | | | | | | - Jingwen Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.H.); (J.F.); (C.G.); (Y.C.)
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.H.); (J.F.); (C.G.); (Y.C.)
| |
Collapse
|
2
|
Sodedji KAF, Assogbadjo AE, Lee B, Kim HY. An Integrated Approach for Biofortification of Carotenoids in Cowpea for Human Nutrition and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:412. [PMID: 38337945 PMCID: PMC10856932 DOI: 10.3390/plants13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Stress-resilient and highly nutritious legume crops can alleviate the burden of malnutrition and food security globally. Here, we focused on cowpea, a legume grain widely grown and consumed in regions at a high risk of micronutrient deficiencies, and we discussed the past and present research on carotenoid biosynthesis, highlighting different knowledge gaps and prospects for increasing this micronutrient in various edible parts of the crop. The literature survey revealed that, although carotenoids are important micronutrients for human health and nutrition, like in many other pulses, the potential of carotenoid biofortification in cowpea is still underexploited. We found that there is, to some extent, progress in the quantification of this micronutrient in cowpea; however, the diversity in content in the edible parts of the crop, namely, grains, pods, sprouts, and leaves, among the existing cowpea genetic resources was uncovered. Based on the description of the different factors that can influence carotenoid biosynthesis and accumulation in cowpea, we anticipated that an integrated use of omics in breeding coupled with mutagenesis and genetic engineering in a plant factory system would help to achieve a timely and efficient increase in carotenoid content in cowpea for use in the food systems in sub-Saharan Africa and South Asia.
Collapse
Affiliation(s)
- Kpedetin Ariel Frejus Sodedji
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin;
| | - Achille Ephrem Assogbadjo
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin;
| | - Bokyung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Huang D, Liu C, Su M, Zeng Z, Wang C, Hu Z, Lou S, Li H. Enhancement of β-carotene content in Chlamydomonas reinhardtii by expressing bacterium-driven lycopene β-cyclase. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:127. [PMID: 37573357 PMCID: PMC10423417 DOI: 10.1186/s13068-023-02377-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
β-Carotene is one of the economically important carotenoids, having functions as the antioxidant to remove harmful free radicals and as the precursor for vitamin A and other high-valued xanthophyll such as zeaxanthin and astaxanthin. Lycopene cyclase plays an important role in the branching of β-carotene and α-carotene. Aiming to develop the microalgae with enhanced β-carotene productivity, the CrtY gene from bacterium Pantoea agglomerans was integrated into Chlamydomonas reinhardtii. The lycopene-producing E. coli harboring CrtY gene produced 1.59 times of β-carotene than that harboring DsLcyb1 from Dunaliella salina (a microalga with abundant β-carotene), confirming the superior activity of CrtY on β-carotene biosynthesis. According to the pigment analysis by HPLC, in microalgal transformants that were confirmed by molecular analysis, the expression of CrtY significantly increased β-carotene content from 12.48 mg/g to 30.65 mg/g (dry weight), which is about 2.45-fold changes. It is noted that three out of five transformants have statistically significant higher amount of lutein, even though the increment was 20% in maximum. Besides, no growth defect was observed in the transformants. This is the first report of functional expression of prokaryotic gene in eukaryotic microalgae, which will widen the gene pool targeting carotenoids biosynthesis using microalgae as the factory and thereby provide more opportunity for high-valued products engineering in microalgae.
Collapse
Affiliation(s)
- Danqiong Huang
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chenglong Liu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Mingshan Su
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiyong Zeng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chaogang Wang
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Sulin Lou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Hui Li
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Kim M, Jung DH, Hwang CY, Siziya IN, Park YS, Seo MJ. 4,4'-Diaponeurosporene Production as C 30 Carotenoid with Antioxidant Activity in Recombinant Escherichia coli. Appl Biochem Biotechnol 2023; 195:135-151. [PMID: 36066805 DOI: 10.1007/s12010-022-04147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Carotenoids, a group of isoprenoid pigments, are naturally synthesized by various microorganisms and plants, and are industrially used as ingredients in food, cosmetic, and pharmaceutical product formulations. Although several types of carotenoids and diverse microbial carotenoid producers have been reported, studies on lactic acid bacteria (LAB)-derived carotenoids are relatively insufficient. There is a notable lack of research focusing on C30 carotenoids, the functional characterizations of their biosynthetic genes and their mass production by genetically engineered microorganisms. In this study, the biosynthesis of 4,4'-diaponeurosporene in Escherichia coli harboring the core biosynthetic genes, dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN), from Lactiplantibacillus plantarum subsp. plantarum KCCP11226 was constructed to evaluate and enhance 4,4'-diaponeurosporene production and antioxidant activity. The production of 4,4'-diapophytoene, a substrate of 4,4'-diaponeurosporene, was confirmed in E. coli expressing only the crtM gene. In addition, recombinant E. coli carrying both C30 carotenoid biosynthesis genes (crtM and crtN) was confirmed to biosynthesize 4,4'-diaponeurosporene and exhibited a 6.1-fold increase in carotenoid production compared to the wild type and had a significantly higher antioxidant activity compared to synthetic antioxidant, butylated hydroxytoluene. This study presents the discovery of an important novel E. coli platform in consideration of the industrial applicability of carotenoids.
Collapse
Affiliation(s)
- Mibang Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, Korea.,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
5
|
He MX, Wang JL, Lin YY, Huang JC, Liu AZ, Chen F. Engineering an oilseed crop for hyper-accumulation of carotenoids in the seeds without using a traditional marker gene. PLANT CELL REPORTS 2022; 41:1751-1761. [PMID: 35748890 DOI: 10.1007/s00299-022-02889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Ketocarotenoids were synthesized successfully in Camelina sativa seeds by genetic modification without using a traditional selection marker genes. This method provided an interesting tool for metabolic engineering of seed crops. Camelina sativa (L.) Crantz is an important oil crop with many excellent agronomic traits. This model oil plant has been exploited to accumulate value-added bioproducts using genetic manipulation that depends on antibiotic- or herbicide-based selection marker genes (SMG), one of the major concerns for genetically modified foods. Here we reported metabolic engineering of C. sativa to synthesize red ketocarotenoids that could serve as a reporter to visualize transgenic events without using a traditional SMG. Overexpression of a non-native β-carotene ketolase gene coupled with three other carotenogenous genes (phytoene synthase, β-carotene hydroxylase, and Orange) in C. sativa resulted in production of red seeds that were visibly distinguishable from the normal yellow ones. Constitutive expression of the transgenes led to delayed plant development and seed germination. In contrast, seed-specific transformants demonstrated normal growth and seed germination despite the accumulation of up to 70-fold the level of carotenoids in the seeds compared to the controls, including significant amounts of astaxanthin and keto-lutein. As a result, the transgenic seed oils exhibited much higher antioxidant activity. No significant changes were found in the profiles of fatty acids between transgenic and control seeds. This study provided an interesting tool for metabolic engineering of seed crops without using a disputed SMG.
Collapse
Affiliation(s)
- Ming-Xia He
- Southwest Forestry University, Kunming, 650224, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie-Lin Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yuan-Yuan Lin
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun-Chao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China.
| | - Ai-Zhong Liu
- Southwest Forestry University, Kunming, 650224, Yunnan, China.
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Arias D, Arenas-M A, Flores-Ortiz C, Peirano C, Handford M, Stange C. Daucus carota DcPSY2 and DcLCYB1 as Tools for Carotenoid Metabolic Engineering to Improve the Nutritional Value of Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:677553. [PMID: 34512681 PMCID: PMC8427143 DOI: 10.3389/fpls.2021.677553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are pigments with important nutritional value in the human diet. As antioxidant molecules, they act as scavengers of free radicals enhancing immunity and preventing cancer and cardiovascular diseases. Moreover, α-carotene and β-carotene, the main carotenoids of carrots (Daucus carota) are precursors of vitamin A, whose deficiency in the diet can trigger night blindness and macular degeneration. With the aim of increasing the carotenoid content in fruit flesh, three key genes of the carotenoid pathway, phytoene synthase (DcPSY2) and lycopene cyclase (DcLCYB1) from carrots, and carotene desaturase (XdCrtI) from the yeast Xanthophyllomyces dendrorhous, were optimized for expression in apple and cloned under the Solanum chilense (tomatillo) polygalacturonase (PG) fruit specific promoter. A biotechnological platform was generated and functionally tested by subcellular localization, and single, double and triple combinations were both stably transformed in tomatoes (Solanum lycopersicum var. Microtom) and transiently transformed in Fuji apple fruit flesh (Malus domestica). We demonstrated the functionality of the S. chilense PG promoter by directing the expression of the transgenes specifically to fruits. Transgenic tomato fruits expressing DcPSY2, DcLCYB1, and DcPSY2-XdCRTI, produced 1.34, 2.0, and 1.99-fold more total carotenoids than wild-type fruits, respectively. Furthermore, transgenic tomatoes expressing DcLCYB1, DcPSY2-XdCRTI, and DcPSY2-XdCRTI-DcLCYB1 exhibited an increment in β-carotene levels of 2.5, 3.0, and 2.57-fold in comparison with wild-type fruits, respectively. Additionally, Fuji apple flesh agroinfiltrated with DcPSY2 and DcLCYB1 constructs showed a significant increase of 2.75 and 3.11-fold in total carotenoids and 5.11 and 5.84-fold in β-carotene, respectively whereas the expression of DcPSY2-XdCRTI and DcPSY2-XdCRTI-DcLCYB1 generated lower, but significant changes in the carotenoid profile of infiltrated apple flesh. The results in apple demonstrate that DcPSY2 and DcLCYB1 are suitable biotechnological genes to increase the carotenoid content in fruits of species with reduced amounts of these pigments.
Collapse
Affiliation(s)
- Daniela Arias
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Anita Arenas-M
- Laboratorio de Nutrición y Genómica de Plantas, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Flores-Ortiz
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Clio Peirano
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Michael Handford
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| |
Collapse
|
7
|
Girón-Calva PS, Pérez-Fons L, Sandmann G, Fraser PD, Christou P. Nitrogen inputs influence vegetative metabolism in maize engineered with a seed-specific carotenoid pathway. PLANT CELL REPORTS 2021; 40:899-911. [PMID: 33787959 DOI: 10.1007/s00299-021-02689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Metabolomic profiling of a maize line engineered with an endosperm-specific carotenogenic pathway revealed unexpected metabolic readjustments of primary metabolism in leaves and roots. High-carotenoid (HC) maize was engineered to accumulate high levels of carotenoids in the endosperm. The metabolic interventions influenced the flux through non-target pathways in tissues that were not affected by the targeted intervention. HC maize at the vegetative stage also showed a reduced susceptibility to insect feeding. It is unknown, however, whether the metabolic history of the embryo has any impact on the metabolite composition in vegetative tissues. We, therefore, compared HC maize and its isogenic counterpart (M37W) to test the hypothesis that boosting the carotenoid content in the endosperm triggers compensatory effects in core metabolism in vegetative tissues. Specifically, we investigated whether the metabolite composition of leaves and roots at the V6 stage differs between HC and M37W, and whether N inputs further alter the core metabolism of HC compared to M37W. We found an increase in the abundance of organic acids from the tricarboxylic acid (TCA) cycle in HC even under restricted N conditions. In contrast, low levels of carotenoids and chlorophyll were measured regardless of N levels. Sugars were also significantly depleted in HC under low N. We propose a model explaining the observed genotype-dependent and input-dependent effects, in which organic acids derived from the TCA cycle accumulate during vegetative growth and contribute to the increased demand for pyruvate and/or acetyl-CoA in the endosperm and embryo. This response may in part reflect the transgenerational priming of vegetative tissues in the embryo induced by the increased demand for metabolic precursors during seed development in the previous generation.
Collapse
Affiliation(s)
- Patricia S Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Laura Pérez-Fons
- Department of Biological Sciences, Royal Holloway, University London, Egham, Surrey, UK
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Frankfurt am Main, Germany
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway, University London, Egham, Surrey, UK.
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
8
|
Engineered Maize Hybrids with Diverse Carotenoid Profiles and Potential Applications in Animal Feeding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33783733 DOI: 10.1007/978-981-15-7360-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Multi-gene transformation methods need to be able to introduce multiple transgenes into plants in order to reconstitute a transgenic locus where the introduced genes express in a coordinated manner and do not segregate in subsequent generations. This simultaneous multiple gene transfer enables the study and modulation of the entire metabolic pathways and the elucidation of complex genetic control circuits and regulatory hierarchies. We used combinatorial nuclear transformation to produce multiplex-transgenic maize plants. In proof of principle experiments, we co-expressed five carotenogenic genes in maize endosperm. The resulting combinatorial transgenic maize plant population, equivalent to a "mutant series," allowed us to identify and complement rate-limiting steps in the extended endosperm carotenoid pathway and to recover corn plants with extraordinary levels of β-carotene and other nutritionally important carotenoids. We then introgressed the induced (transgenic) carotenoid pathway in a transgenic line accumulating high levels of nutritionally important carotenoids into a wild-type yellow-endosperm variety with a high β:ε ratio. Novel hybrids accumulated zeaxanthin at unprecedented amounts. We introgressed the same pathway into a different yellow corn line with a low β:ε ratio. The resulting hybrids, in this case, had a very different carotenoid profile. The role of genetic background in determining carotenoid profiles in corn was elucidated, and further rate-limiting steps in the pathway were identified and resolved in hybrids. Astaxanthin accumulation was engineered by overexpression of a β-carotene ketolase in maize endosperm. In early experiments, limited astaxanthin accumulation in transgenic maize plants was attributed to a bottleneck in the conversion of adonixanthin (4-ketozeaxanthin) to astaxanthin. More recent experiments showed that a synthetic β-carotene ketolase with a superior β-carotene/zeaxanthin ketolase activity is critical for the high-yield production of astaxanthin in maize endosperm. Engineered lines were used in animal feeding experiments which demonstrated not only the safety of the engineered lines but also their efficacy in a range of different animal production applications.
Collapse
|
9
|
Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021; 11:92. [PMID: 33561985 PMCID: PMC7915786 DOI: 10.3390/metabo11020092] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids' demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their use in the food and feed industry. This review also describes some issues that are linked with biotechnological production of fungal and yeasts carotenoids, as well as new approaches/directions to make their biotechnological production more efficient.
Collapse
Affiliation(s)
- Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str. 1-537, LV-1004 Riga, Latvia
| | - Irina Guzhova
- Laboratory of Cell Protective Mechanisms, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint Petersburg, Russia;
| | - Lorenzo Bernetti
- Department of Agricultural, Food and Environmental Sciences and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (L.B.); (P.B.)
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (L.B.); (P.B.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| |
Collapse
|
10
|
Colasuonno P, Marcotuli I, Blanco A, Maccaferri M, Condorelli GE, Tuberosa R, Parada R, de Camargo AC, Schwember AR, Gadaleta A. Carotenoid Pigment Content in Durum Wheat ( Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1347. [PMID: 31787991 PMCID: PMC6853866 DOI: 10.3389/fpls.2019.01347] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/27/2019] [Indexed: 05/21/2023]
Abstract
Carotenoid pigment content is an important quality trait as it confers a natural bright yellow color to pasta preferred by consumers (whiteness vs. yellowness) and nutrients, such as provitamin A and antioxidants, essential for human diet. The main goal of the present review is to summarize the knowledge about the genetic regulation of the accumulation of pigment content in durum wheat grain and describe the genetic improvements obtained by using breeding approaches in the last two decades. Although carotenoid pigment content is a quantitative character regulated by various genes with additive effects, its high heritability has facilitated the durum breeding progress for this quality trait. Mapping research for yellow index and yellow pigment content has identified quantitative trait loci (QTL) on all wheat chromosomes. The major QTL, accounting for up to 60%, were mapped on 7L homoeologous chromosome arms, and they are explained by allelic variations of the phytoene synthase (PSY) genes. Minor QTL were detected on all chromosomes and associated to significant molecular markers, indicating the complexity of the trait. Despite there being currently a better knowledge of the mechanisms controlling carotenoid content and composition, there are gaps that require further investigation and bridging to better understand the genetic architecture of this important trait. The development and the utilization of molecular markers in marker-assisted selection (MAS) programs for improving grain quality have been reviewed and discussed.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Blanco
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | | | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Roberto Parada
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adriano Costa de Camargo
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés R. Schwember
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
11
|
Singh G, Sahota HK. Impact of benzimidazole and dithiocarbamate fungicides on the photosynthetic machinery, sugar content and various antioxidative enzymes in chickpea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:166-173. [PMID: 30195856 DOI: 10.1016/j.plaphy.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Fungicides, though beneficial for agricultural productivity, are known to interfere with the basic metabolism and induce the formation of various biomolecules and also alter the physiological parameters of plant growth. The present study is an attempt to understand the effect of different conc. of benzimidazole (Carbendazim) and dithocarbamate (Mancozeb) fungicides on photosynthetic components such as chlorophyll content, total sugar and phenolic content and various antioxidative enzymes in developing seedlings of chickpea. MATERIAL AND METHODS Chickpea seeds of two cultivars (PDG-4 and GPF-2) were incubated with different conc. (0.1, 0.25 and 0.5%) of the fungicide for 24 and 48 h and then allowed to germinate for 10 days in an incubated chamber. Seedlings were analyzed for various physiological parameters such as variation in root/shoot length, photosynthetic activity (chlorophyll content), total sugar and phenolic content and activity of antioxidative enzymes such as GPX, CAT and SOD etc. RESULTS AND CONCLUSIONS: Compared to the unstressed samples, fungicide stress resulted in an overall decrease in root/shoot length, relative water content etc. thus indicating that the applied fungicides adversely affects the rate of germination of seedlings. A differential behaviour of various chlorophyll (Chla, Chlb, total chlorophyll) contents suggests that fungicides stress affects the photosynthetic machinery. Estimations of sugar and total phenolic content indicated that higher conc. of the fungicide lowered the total sugar content at the 10-day-old seedling stage; thereby giving an indication that the fungicide may interferes with carbohydrate metabolism. We observed that the level of peroxidase increased at higher conc. of the both types of fungicide as compared to control samples whereas the catalase activity increased in PDG 4 but a lower activity was observed in GPF-2 under increasing conc. of both the fungicides. The levels of superoxide dismutase decreased in PDG-4 but increased in GPF-2 under higher conc. of both the fungicides thus indicating that different varieties of chickpea behaved differently and triggers various antioxidant enzymes as defence mechanism to counter the fungicides stress.
Collapse
Affiliation(s)
- Gurpreet Singh
- Post-Graduate Department of Biotechnology, Lyallpur Khalsa College, Jalandhar, 144001, Punjab, India.
| | - Harkamal Kaur Sahota
- Post-Graduate Department of Biotechnology, Lyallpur Khalsa College, Jalandhar, 144001, Punjab, India
| |
Collapse
|
12
|
Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M. Availability and Utilization of Pigments from Microalgae. Crit Rev Food Sci Nutr 2017; 56:2209-22. [PMID: 25674822 DOI: 10.1080/10408398.2013.764841] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option. There are various factors such as nutrient availability, salinity, pH, temperature, light wavelength, and light intensity that affect pigment production in microalgae. This paper reviews the availability and characteristics of microalgal pigments, factors affecting pigment production, and the application of pigments produced from microalgae. The potential of microalgal pigments as a source of natural colors is enormous as an alternative to synthetic coloring agents, which has limited applications due to regulatory practice for health reasons.
Collapse
Affiliation(s)
- Hasina Begum
- a Institute of Bioscience, Universiti Putra Malaysia , Selangor , Malaysia
| | - Fatimah Md Yusoff
- a Institute of Bioscience, Universiti Putra Malaysia , Selangor , Malaysia.,b Department of Aquaculture , Faculty of Agriculture, Universiti Putra Malaysia , Selangor , Malaysia
| | - Sanjoy Banerjee
- a Institute of Bioscience, Universiti Putra Malaysia , Selangor , Malaysia
| | - Helena Khatoon
- a Institute of Bioscience, Universiti Putra Malaysia , Selangor , Malaysia.,c Department of Aquaculture Sciences , Faculty of Fisheries and Aqua-Industry, Universiti Malaysia Terengganu , Kuala Terengganu , Malaysia
| | - Mohamed Shariff
- a Institute of Bioscience, Universiti Putra Malaysia , Selangor , Malaysia
| |
Collapse
|
13
|
Khan S, ur Rahman L. Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Wang D, Fu A. The Plastid Terminal Oxidase is a Key Factor Balancing the Redox State of Thylakoid Membrane. Enzymes 2016; 40:143-171. [PMID: 27776780 DOI: 10.1016/bs.enz.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondria possess oxygen-consuming respiratory electron transfer chains (RETCs), and the oxygen-evolving photosynthetic electron transfer chain (PETC) resides in chloroplasts. Evolutionarily mitochondria and chloroplasts are derived from ancient α-proteobacteria and cyanobacteria, respectively. However, cyanobacteria harbor both RETC and PETC on their thylakoid membranes. It is proposed that chloroplasts could possess a RETC on the thylakoid membrane, in addition to PETC. Identification of a plastid terminal oxidase (PTOX) in the chloroplast from the Arabidopsis variegation mutant immutans (im) demonstrated the presence of a RETC in chloroplasts, and the PTOX is the committed oxidase. PTOX is distantly related to the mitochondrial alternative oxidase (AOX), which is responsible for the CN-insensitive alternative RETC. Similar to AOX, an ubiquinol (UQH2) oxidase, PTOX is a plastoquinol (PQH2) oxidase on the chloroplast thylakoid membrane. Lack of PTOX, Arabidopsis im showed a light-dependent variegation phenotype; and mutant plants will not survive the mediocre light intensity during its early development stage. PTOX is very important for carotenoid biosynthesis, since the phytoene desaturation, a key step in the carotenoid biosynthesis, is blocked in the white sectors of Arabidopsis im mutant. PTOX is found to be a stress-related protein in numerous research instances. It is generally believed that PTOX can protect plants from various environmental stresses, especially high light stress. PTOX also plays significant roles in chloroplast development and plant morphogenesis. Global physiological roles played by PTOX could be a direct or indirect consequence of its PQH2 oxidase activity to maintain the PQ pool redox state on the thylakoid membrane. The PTOX-dependent chloroplast RETC (so-called chlororespiration) does not contribute significantly when chloroplast PETC is normally developed and functions well. However, PTOX-mediated RETC could be the major force to regulate the PQ pool redox balance in the darkness, under conditions of stress, in nonphotosynthetic plastids, especially in the early development from proplastids to chloroplasts.
Collapse
Affiliation(s)
- D Wang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - A Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China.
| |
Collapse
|
15
|
Engineered maize as a source of astaxanthin: processing and application as fish feed. Transgenic Res 2016; 25:785-793. [DOI: 10.1007/s11248-016-9971-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
16
|
Zhai S, Xia X, He Z. Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1197. [PMID: 27559339 PMCID: PMC4978713 DOI: 10.3389/fpls.2016.01197] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/27/2016] [Indexed: 05/02/2023]
Abstract
Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grains. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1) seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including 1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, phytoene synthase, β-cyclase, and ε-cyclase controlling biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and carotenoid cleavage dioxygenases responsible for degradation, and orange gene conditioning sequestration sink; (2) provitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3) quantitative trait loci for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and 10 gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be beneficial in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for provitamin A biofortification.
Collapse
Affiliation(s)
- Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
17
|
Fujii R, Yamano N, Hashimoto H, Misawa N, Ifuku K. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin. PLANT & CELL PHYSIOLOGY 2016; 57:1518-1529. [PMID: 26644463 DOI: 10.1093/pcp/pcv187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, 1O2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin.
Collapse
Affiliation(s)
- Ritsuko Fujii
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
- Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
- JST, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| | - Nami Yamano
- Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
| | - Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
- Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
- Present address: Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-Shi Ishikawa, 921-8836 Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
18
|
Farré G, Perez-Fons L, Decourcelle M, Breitenbach J, Hem S, Zhu C, Capell T, Christou P, Fraser PD, Sandmann G. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Res 2016; 25:477-89. [DOI: 10.1007/s11248-016-9943-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
|
19
|
Song X, Diao J, Ji J, Wang G, Li Z, Wu J, Josine TL, Wang Y. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana. Gene 2016; 576:395-403. [DOI: 10.1016/j.gene.2015.10.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/29/2015] [Accepted: 10/20/2015] [Indexed: 12/27/2022]
|
20
|
Gayen D, Ghosh S, Paul S, Sarkar SN, Datta SK, Datta K. Metabolic Regulation of Carotenoid-Enriched Golden Rice Line. FRONTIERS IN PLANT SCIENCE 2016; 7:1622. [PMID: 27840631 PMCID: PMC5083848 DOI: 10.3389/fpls.2016.01622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/13/2016] [Indexed: 05/21/2023]
Abstract
Vitamin A deficiency (VAD) is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy) and phytoene desaturase (crtI). In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase, and glucose-1-phosphate adenylyltransferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 μg/g) was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244) after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.
Collapse
Affiliation(s)
- Dipak Gayen
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Subhrajyoti Ghosh
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
| | - Soumitra Paul
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
| | - Sailendra N. Sarkar
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
| | - Swapan K. Datta
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
- Department of Crop Sciences, Institute of Agriculture, Visva Bharati UniversitySantiniketan, India
| | - Karabi Datta
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
- *Correspondence: Karabi Datta
| |
Collapse
|
21
|
Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Fritschi FB. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements. PLoS One 2015; 10:e0137213. [PMID: 26368323 PMCID: PMC4569184 DOI: 10.1371/journal.pone.0137213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.
Collapse
Affiliation(s)
- Arun Prabhu Dhanapal
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffery D. Ray
- Crop Genetics Research Unit, USDA-ARS, Stoneville, Mississippi, United States of America
| | - Shardendu K. Singh
- Crop Systems and Global Change Lab, USDA-ARS, Beltsville, Maryland, United States of America
| | - Valerio Hoyos-Villegas
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - James R. Smith
- Crop Genetics Research Unit, USDA-ARS, Stoneville, Mississippi, United States of America
| | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - C. Andy King
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
22
|
Varela JC, Pereira H, Vila M, León R. Production of carotenoids by microalgae: achievements and challenges. PHOTOSYNTHESIS RESEARCH 2015; 125:423-36. [PMID: 25921207 DOI: 10.1007/s11120-015-0149-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 05/26/2023]
Abstract
Carotenoids are a wide group of lipophylic isoprenoids synthesized by all photosynthetic organisms and also by some non-photosynthetic bacteria and fungi. Animals, which cannot synthesize carotenoids de novo, must include them in their diet to fulfil essential provitamin, antioxidant, or colouring requirements. Carotenoids are indispensable in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. In this review, we outline the factors inducing carotenoid accumulation in microalgae, the knowledge acquired on the metabolic pathways responsible for their biosynthesis, and the recent achievements in the genetic engineering of this pathway. Despite the considerable progress achieved in understanding and engineering algal carotenogenesis, many aspects remain to be elucidated. The increasing number of sequenced microalgal genomes and the data generated by high-throughput technologies will enable a better understanding of carotenoid biosynthesis in microalgae. Moreover, the growing number of industrial microalgal species genetically modified will allow the production of novel strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- João C Varela
- Centre of Marine Science, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | |
Collapse
|
23
|
Ye J, Hu T, Yang C, Li H, Yang M, Ijaz R, Ye Z, Zhang Y. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis. PLoS One 2015; 10:e0130885. [PMID: 26133783 PMCID: PMC4489915 DOI: 10.1371/journal.pone.0130885] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tixu Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Congmei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mingze Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Raina Ijaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
24
|
Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, Zhu C, Capell T, Christou P, Fraser P, Sandmann G. Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3141-50. [PMID: 25796085 PMCID: PMC4449536 DOI: 10.1093/jxb/erv120] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line. In-depth analysis of the data, including changes of metabolite pools and increased enzyme and transcript concentrations, gave a first insight into the metabolic variation precipitated by the higher up-stream metabolite demand by the extended biosynthesis capacities for terpenoids and fatty acids. An integrative model is put forward to explain the metabolic regulation for the increased provision of terpenoid and fatty acid precursors, particularly glyceraldehyde 3-phosphate and pyruvate or acetyl-CoA from imported fructose and glucose. The model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway. Although pyruvate and acetyl-CoA utilization was higher in the engineered line, pyruvate kinase activity was lower. A sufficient provision of both metabolites may be supported by a by-pass in a reaction sequence involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme.
Collapse
Affiliation(s)
- Mathilde Decourcelle
- Unité de Biochimie et Physiologie Moléculaire des Plantes, INRA, 34060 Montpellier, France
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| | | | - Sabine Steiger
- Biosynthesis Group, Institute of Molecular Biosciences, Goethe University Frankfurt/M, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | | | - Sonia Hem
- Unité de Biochimie et Physiologie Moléculaire des Plantes, INRA, 34060 Montpellier, France
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain Institució Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Paul Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| | - Gerhard Sandmann
- Biosynthesis Group, Institute of Molecular Biosciences, Goethe University Frankfurt/M, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
25
|
Padayachee A, Day L, Howell K, Gidley MJ. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit Rev Food Sci Nutr 2015; 57:59-81. [DOI: 10.1080/10408398.2013.850652] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Padayachee
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - L. Day
- CSIRO Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - K. Howell
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - M. J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
26
|
Guggisberg AM, Amthor RE, Odom AR. Isoprenoid biosynthesis in Plasmodium falciparum. EUKARYOTIC CELL 2014; 13:1348-59. [PMID: 25217461 PMCID: PMC4248697 DOI: 10.1128/ec.00160-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research.
Collapse
Affiliation(s)
- Ann M Guggisberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rachel E Amthor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Breitenbach J, Bai C, Rivera SM, Canela R, Capell T, Christou P, Zhu C, Sandmann G. A novel carotenoid, 4-keto-α-carotene, as an unexpected by-product during genetic engineering of carotenogenesis in rice callus. PHYTOCHEMISTRY 2014; 98:85-91. [PMID: 24393458 DOI: 10.1016/j.phytochem.2013.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/29/2013] [Accepted: 12/10/2013] [Indexed: 05/08/2023]
Abstract
Rice endosperm is devoid of carotenoids because the initial biosynthetic steps are absent. The early carotenogenesis reactions were constituted through co-transformation of endosperm-derived rice callus with phytoene synthase and phytoene desaturase transgenes. Subsequent steps in the pathway such as cyclization and hydroxylation reactions were catalyzed by endogenous rice enzymes in the endosperm. The carotenoid pathway was extended further by including a bacterial ketolase gene able to form astaxanthin, a high value carotenoid which is not a typical plant carotenoid. In addition to astaxanthin and precursors, a carotenoid accumulated in the transgenic callus which did not fit into the pathway to astaxanthin. This was subsequently identified as 4-keto-α-carotene by HPLC co-chromatography, chemical modification, mass spectrometry and the reconstruction of its biosynthesis pathway in Escherichia coli. We postulate that this keto carotenoid is formed from α-carotene which accumulates by combined reactions of the heterologous gene products and endogenous rice endosperm cyclization reactions.
Collapse
Affiliation(s)
- Jürgen Breitenbach
- Molecular Biosciences, J.W. Goethe Universität Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt am Main, Germany
| | - Chao Bai
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure, 191, Lleida E-25198, Spain
| | - Sol M Rivera
- Departament de Química, Universitat de Lleida, Avenida Alcalde Rovira Roure, 191, Lleida E-25198, Spain
| | - Ramon Canela
- Departament de Química, Universitat de Lleida, Avenida Alcalde Rovira Roure, 191, Lleida E-25198, Spain
| | - Teresa Capell
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure, 191, Lleida E-25198, Spain
| | - Paul Christou
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure, 191, Lleida E-25198, Spain; Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Changfu Zhu
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure, 191, Lleida E-25198, Spain
| | - Gerhard Sandmann
- Molecular Biosciences, J.W. Goethe Universität Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Sandmann G. Carotenoids of biotechnological importance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:449-67. [PMID: 25326165 DOI: 10.1007/10_2014_277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carotenoids are natural pigments with antioxidative functions that protect against oxidative stress. They are essential for humans and must be supplied through the diet. Carotenoids are the precursors for the visual pigment rhodopsin, and lutein and zeaxanthin must be accumulated in the yellow eye spot to protect the retina from excess light and ultraviolet damage. There is a global market for carotenoids as food colorants, animal feed, and nutraceuticals. Some carotenoids are chemically synthesized, whereas others are from natural sources. Microbial mass production systems of industrial interest for carotenoids are in use, and new ones are being developed by metabolic pathway engineering of bacteria, fungi, and plants. Several examples will be highlighted in this chapter.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt, Germany,
| |
Collapse
|
29
|
Characterization of ‘pinky’ strain grown in culture of Rhodobacter sphaeroides R26.1. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Abney KR, Kopsell DA, Sams CE, Zivanovic S, Kopsell DE. UV-B radiation impacts shoot tissue pigment composition in Allium fistulosum L. cultigens. ScientificWorldJournal 2013; 2013:513867. [PMID: 23606817 PMCID: PMC3628661 DOI: 10.1155/2013/513867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/03/2013] [Indexed: 11/17/2022] Open
Abstract
Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μ mol·m(-2) · s(-2) (2.68 W · m(-2))] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β -carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen "Pesoenyj" responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values.
Collapse
Affiliation(s)
- Kristin R. Abney
- Plant Sciences Department, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996, USA
| | - Dean A. Kopsell
- Plant Sciences Department, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996, USA
| | - Carl E. Sams
- Plant Sciences Department, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996, USA
| | - Svetlana Zivanovic
- Department of Food Science and Technology, The University of Tennessee, 2605 River Drive, Knoxville, TN 37996, USA
| | - David E. Kopsell
- Department of Agriculture, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
31
|
Ruiz-Sola MÁ, Rodríguez-Concepción M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. THE ARABIDOPSIS BOOK 2012; 10:e0158. [PMID: 22582030 PMCID: PMC3350171 DOI: 10.1199/tab.0158] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology.
Collapse
Affiliation(s)
- M. Águila Ruiz-Sola
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Manuel Rodríguez-Concepción
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| |
Collapse
|
32
|
Abstract
Carotenoids are among the most widely distributed pigments in nature, and they are exclusively synthesized by plants and microorganisms. These compounds may serve a protective role against many chronic diseases such as cancers, age-related macular degeneration, and cardiovascular diseases and also act as an excellent antioxidant system within cells. Recent advances in the microbial genome sequences and increased understanding about the genes involved in the carotenoid biosynthetic pathways will assist industrial microbiologists in their exploration of novel microbial carotenoid production strategies. Here we present an overview of microbial carotenogenesis from biochemical, proteomic, and biotechnological points of view.
Collapse
Affiliation(s)
- Preejith Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | |
Collapse
|
33
|
Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl Microbiol Biotechnol 2011; 93:2483-92. [DOI: 10.1007/s00253-011-3764-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
|
34
|
The present perspective of astaxanthin with reference to biosynthesis and pharmacological importance. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0373-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Schörken U, Kempers P. Lipid biotechnology: Industrially relevant production processes. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200900057] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Chander S, Meng Y, Zhang Y, Yan J, Li J. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6506-6511. [PMID: 18620402 DOI: 10.1021/jf7037967] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Among cereals, only maize has not only a high amount of carotenoids, tocopherols, and oil content but also is rich in starch and protein content compared with other major food crops, such as rice and wheat. The present investigation was made primarily to assess the genetic variability for nutritionally important traits in 87 elite maize inbreds representing major heterotic groups in China. Carotenoid and tocopherol fractions were measured by high-performance liquid chromatography (HPLC), whereas oil, starch, and protein contents were detected by a VECTER22/N near-infrared analyzer. Significant interactions between genotypes and years were observed for all the traits. The pooled mean values of beta-carotene, beta-cryptoxanthin, alpha-carotene, lutein, zeaxanthin, and total carotenoids were 0.449, 0.876, 0.121, 5.803, 3.048, and 10.298 microg g (-1), respectively, whereas the combined mean performance of alpha-tocopherol, gamma-tocopherol, delta-tocopherol, and total tocopherols were 23.98, 32.90, 2.189, and 59.55 microg g (-1), respectively. The average protein, starch, and oil contents were observed to be 12.28, 64.51, and 3.55%, respectively. High level of heritability estimates were observed for all the traits and ranged from 65.6% (protein content) to 92.5% (alpha/gamma-tocopherol ratio). Most of the traits studied in this experiment were either significantly positive correlated or independent. The present finding exhibits substantial opportunities to the breeders for improvement of these traits in maize cultivars and also suggests further exploration of a new source of elite breeding stocks containing a high level of these nutritionally important compounds. Finally, these findings may also help in biofortification of maize.
Collapse
Affiliation(s)
- Subhash Chander
- National Maize Improvement Centre of China, China Agricultural University, Yuanmingyuan West Road, Haidian, 100094, Beijing, China
| | | | | | | | | |
Collapse
|
37
|
Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 2008; 30:1501-7. [PMID: 18414806 DOI: 10.1007/s10529-008-9705-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 11/27/2022]
Abstract
A phytoene synthase gene SePSY was isolated from euhalophyte Salicornia europaea L. The 1655 bp full-length SePSY has an open reading frame of 1257 bp and encodes a 419-amino acid protein. The overexpression of SePSY enhanced the growth of transgenic Arabidopsis. When the plants were exposed to 100 mM NaCl, the photosynthesis rate and photosystem II activity (Fv/Fm) increased from 92% to 132% and from 9.3% to 16.6% in the transgenic lines than in the wild-type, respectively. The transgenics displayed higher activities of SOD and POD and lower contents of H(2)O(2) and MDA than the WT. In conclusion, the transgenic lines showed higher tolerance to salt stress than WT plants by increased photosynthesis efficiency and antioxidative capacity. This is the first report about improving the salt tolerance by genetic manipulation of carotenoid biosynthesis.
Collapse
|
38
|
Lycopene over-accumulation by disruption of the negative regulator gene crgA in Mucor circinelloides. Appl Microbiol Biotechnol 2008; 78:131-7. [DOI: 10.1007/s00253-007-1281-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
39
|
Riggi E, Patanè C, Ruberto G. Content of carotenoids at different ripening stages in processing tomato in relation to soil water availability. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ar07215] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The influence of 2 water regimes (a fully irrigated treatment receiving 100% of evapotranspiration for the whole growing season and an unirrigated control watered up to plant establishment only) on lycopene and β-carotene accumulation during fruit ripening in a field-grown processing tomato was studied. Since a strong effect of irrigation treatments on fruit water content was expected, carotenoid content on both a fresh and dry matter basis was studied. Regardless of ripening stage and adopted parameter unit (fresh or dry matter), higher amounts of lycopene were measured in the well watered treatment. Positive and no effects of water stress were reported on β-carotene content when expressed, respectively, on a fresh and dry weight basis. Both experimental factors influenced the β-carotene/lycopene ratio mostly in the first 2 ripening stages and there is evidence to suggest that, under soil water deficit conditions, the carotenoid biosynthetic pathway is more ‘β-carotene accumulation’ oriented, especially at the beginning of the fruit ripening process.
Appropriateness of adopting both a fresh and dry basis calculation, in order to better evaluate the role of water stress on carotenoid content, is emphasised. The possibility of reducing the irrigation water supply without drastically decreasing the studied fruit quality characteristics is suggested.
Collapse
|
40
|
Lu G, Zou Q, Guo D, Zhuang X, Yu X, Xiang X, Cao J. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis. PLANT CELL REPORTS 2007; 26:1585-93. [PMID: 17541598 DOI: 10.1007/s00299-007-0382-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/05/2007] [Accepted: 05/07/2007] [Indexed: 05/15/2023]
Abstract
Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.
Collapse
Affiliation(s)
- Gang Lu
- Agr Minist China, Key Lab Hort Plant Growth Dev and Biotechnol, Department of Horticulture, Zhejiang University, Hangzhou 310029, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
41
|
León R, Couso I, Fernández E. Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J Biotechnol 2007; 130:143-52. [PMID: 17433482 DOI: 10.1016/j.jbiotec.2007.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/21/2007] [Accepted: 03/06/2007] [Indexed: 11/18/2022]
Abstract
Most higher plants and microalgae are not able to synthesize ketocarotenoids. In this study the unicellular chlorophyte Chlamydomonas reinhardtii has been genetically engineered with the beta-carotene ketolase cDNA from Haematococcus pluvialis, bkt1 (GeneBank accession no. X86782), involved in the synthesis of astaxanthin, to obtain a transgenic microalga able to synthesize ketocarotenoids. The expression of bkt1 was driven by the Chlamydomonas constitutive promoter of the rubisco small subunit (RbcS2) and the resulting protein was directed to the chloroplast by the Chlamydomonas transit peptide sequences of Rubisco small subunit (RbcS2) or Ferredoxin (Fd). In all transformants containing the bkt1 gene fused to the RbcS2 or the Fd transit peptides a new pigment with the typical ketocarotenoid spectrum was detected. Surprisingly this ketocarotenoid was not astaxanthin nor canthaxanthin. The ketocarotenoid was identified on the basis of its mass spectrum as 3,3'-dihydroxy-beta,epsilon-carotene-4-one (4-keto-lutein) or its isomer ketozeaxanthin.
Collapse
Affiliation(s)
- Rosa León
- Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales, Avda. Fuerzas Armadas s/n, Universidad de Huelva, 21007 Huelva, Spain.
| | | | | |
Collapse
|
42
|
Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 2007; 74:1163-74. [PMID: 17277962 DOI: 10.1007/s00253-007-0844-9] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/28/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers' demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on beta-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.
Collapse
Affiliation(s)
- José A Del Campo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | | | | |
Collapse
|
43
|
|
44
|
Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O. Combinatorial biosynthesis of medicinal plant secondary metabolites. ACTA ACUST UNITED AC 2006; 23:265-79. [PMID: 17049920 DOI: 10.1016/j.bioeng.2006.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 11/23/2022]
Abstract
Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors from their own primary and secondary metabolism that are metabolised to the desired secondary product due to the expression of foreign genes. In this review we discuss the possibilities and limitations of combining genes from different organisms and the expression of heterologous genes. Major focuses are fundamentals of the genetic work, used expression systems and latest progress in this field. Combinatorial biosynthesis is discussed for important classes of natural products, including alkaloids (vinblastine, vincristine), terpenoids (artemisinin, paclitaxel) and flavonoids. The role and importance of today's used host organisms is critically described, and the latest approaches discussed to give an outlook for future trends and possibilities.
Collapse
Affiliation(s)
- Mattijs K Julsing
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Ye RW, Stead KJ, Yao H, He H. Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin. Appl Environ Microbiol 2006; 72:5829-37. [PMID: 16957201 PMCID: PMC1563626 DOI: 10.1128/aem.00918-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of the commercial carotenoids canthaxanthin and astaxanthin requires beta-carotene ketolase. The functional importance of the conserved amino acid residues of this enzyme from Paracoccus sp. strain N81106 (formerly classified as Agrobacterium aurantiacum) was analyzed by alanine-scanning mutagenesis. Mutations in the three highly conserved histidine motifs involved in iron coordination abolished its ability to catalyze the formation of ketocarotenoids. This supports the hypothesis that the CrtW ketolase belongs to the family of iron-dependent integral membrane proteins. Most of the mutations generated at other highly conserved residues resulted in partial activity. All partially active mutants showed a higher amount of adonixanthin accumulation than did the wild type when expressed in Escherichia coli cells harboring the zeaxanthin biosynthetic gene cluster. Some of the partially active mutants also produced a significant amount of echinenone when expressed in cells producing beta-carotene. In fact, expression of a mutant carrying D117A resulted in the accumulation of echinenone as the predominant carotenoid. These observations indicate that partial inactivation of the CrtW ketolase can often lead to the production of monoketolated intermediates. In order to improve the conversion rate of astaxanthin catalyzed by the CrtW ketolase, a color screening system was developed. Three randomly generated mutants, carrying L175M, M99V, and M99I, were identified to have improved activity. These mutants are potentially useful in pathway engineering for the production of astaxanthin.
Collapse
Affiliation(s)
- Rick W Ye
- DuPont Experimental Station, Route 141 and Henry Clay Road, Wilmington, DE 19880, USA.
| | | | | | | |
Collapse
|
46
|
Hieber AD, Mudalige-Jayawickrama RG, Kuehnle AR. Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. PLANTA 2006; 223:521-31. [PMID: 16151849 DOI: 10.1007/s00425-005-0113-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/27/2005] [Indexed: 05/04/2023]
Abstract
Orchids are one of the most unique and evolved of flowering plants, with many being valuable floricultural crops. Spatial localization of pigments within the flower of the commercially important bi-color Oncidium Gower Ramsey demonstrated a mixture of carotenoids and anthocyanins concentrated in the adaxial epidermis. Chromatography identified the predominant yellow pigment to be an equal mixture of all-trans and 9-cis isomers of violaxanthin, with esterification specific to the 9-cis isomer. Red ornamentation was comprised of the anthocyanins cyanidin and its methylated derivate, peonidin. Five key pigment biosynthesis genes encoding dihydroflavonol 4-reductase (DFR), phytoene synthase (PSY), phytoene desaturase, carotenoid isomerase, and the downstream 9-cis epoxycarotenoid dioxygenase were isolated and their expression profiles determined. Northern analyses showed both phytoene desaturase and carotenoid isomerase expression to be up-regulated in floral tissue relative to leaves whereas PSY was not. Three closely related DFR genes were isolated, including one with an insertion in the 3' coding region. DFR expression occurred throughout flower development in Oncidium, unlike in Dendrobium and Bromheadia orchids. A number of the isolated anthocyanin and carotenoid genes showed variations due to insertion events. These findings raise questions about the genetic stability in interspecific crosses in orchids, such as the tri-specific Oncidium Gower Ramsey.
Collapse
Affiliation(s)
- A David Hieber
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John Rm 102, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
47
|
Ku B, Jeong JC, Mijts BN, Schmidt-Dannert C, Dordick JS. Preparation, characterization, and optimization of an in vitro C30 carotenoid pathway. Appl Environ Microbiol 2005; 71:6578-83. [PMID: 16269684 PMCID: PMC1287715 DOI: 10.1128/aem.71.11.6578-6583.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ispA gene encoding farnesyl pyrophosphate (FPP) synthase from Escherichia coli and the crtM gene encoding 4,4'-diapophytoene (DAP) synthase from Staphylococcus aureus were overexpressed and purified for use in vitro. Steady-state kinetics for FPP synthase and DAP synthase, individually and in sequence, were determined under optimized reaction conditions. For the two-step reaction, the DAP product was unstable in aqueous buffer; however, in situ extraction using an aqueous-organic two-phase system resulted in a 100% conversion of isopentenyl pyrophosphate and dimethylallyl pyrophosphate into DAP. This aqueous-organic two-phase system is the first demonstration of an in vitro carotenoid synthesis pathway performed with in situ extraction, which enables quantitative conversions. This approach, if extended to a wide range of isoprenoid-based pathways, could lead to the synthesis of novel carotenoids and their derivatives.
Collapse
Affiliation(s)
- Bosung Ku
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
48
|
Bhosale P, Bernstein PS. Microbial xanthophylls. Appl Microbiol Biotechnol 2005; 68:445-55. [PMID: 16001255 DOI: 10.1007/s00253-005-0032-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/23/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.
Collapse
Affiliation(s)
- Prakash Bhosale
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 75 North Medical Drive, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
49
|
Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi C, Iturriaga EA. Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 2005; 69:526-31. [PMID: 16034557 DOI: 10.1007/s00253-005-0026-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/05/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Most Mucor species accumulate beta-carotene as the main carotenoid. The crtW and crtZ astaxanthin biosynthesis genes from Agrobacterium aurantiacum were placed under the control of Mucor circinelloides expression signals. Expression vectors containing the bacterial genes were constructed, and PEG-mediated transformations were performed on a selected M. circinelloides strain. Transformants that exhibited altered carotene production were isolated and analyzed. Southern analysis showed that all plasmids behave as autoreplicative elements. Northern analysis detected the actual heterologous transcription products, whereas thin layer chromatography and high-performance liquid chromatography studies revealed the presence of new carotenoid compounds and intermediates among the transformants.
Collapse
Affiliation(s)
- Tamás Papp
- Department of Microbiology, Faculty of Sciences, University of Szeged, P.O. Box 533, 6701, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
50
|
Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J. Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:19-51. [PMID: 16270655 DOI: 10.1007/b136410] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.
Collapse
Affiliation(s)
- Jérôme Maury
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|