1
|
Saritha P, Hemavathy N, Sneha S, Prabhu D, Umashankar V, Jeyakanthan J. Structural insights of WBmDapE and deciphering of potent anti-filarial inhibitors: a state-of-art computational approach. Mol Divers 2025:10.1007/s11030-025-11207-5. [PMID: 40349274 DOI: 10.1007/s11030-025-11207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Lymphatic filariasis (LF) stands as a debilitating tropical ailment, impacting a considerable global populace. Existing drug therapies for LF exhibit limited effectiveness across all parasite stages, thereby accentuating the imperative for novel anti-filarial medications characterized by enhanced prognostic attributes and minimized adverse reactions. A promising avenue involves targeting the microbial enzyme WBmDapE, pivotal in worm survival and intricately linked to the lysine biosynthetic pathway and peptidoglycan cell wall construction. This investigation employs in silico methodologies encompassing molecular docking, Molecular Dynamics Simulation (MDS), conformational analysis, Shape-Based Virtual Screening (SBVS), ADMETox, MMGBSA, and Density Functional Theory (DFT) calculations to discern potential inhibitors of WBmDapE. Through discerning the conformational shifts of the WBmDapE-bound substrate and product, key amino acids implicated in substrate binding (Arg182 and Asp248) are unveiled. While the apo and substrate-bound structures exhibit an open conformation, the product-bound structure displays marked conformational alterations, including shifts within the catalytic domain and the cofactor in the dimerization domain, suggestive of an active and closed conformation. From the prism of shape-based virtual screening, two preeminent compounds (ZINC42784280 and ZINC84308049) have surfaced as potential hits. These compounds evince heightened binding affinity, optimal binding free energy, pivotal hydrogen bond interactions, and akin attributes to the product-bound complex. Subsequently, these compounds emerge as prospective candidates for filariasis treatment. In summation, our study furnishes invaluable insights into the fabrication of innovative WBmDapE inhibitors, potentially serving as anti-filarial agents. Rigorous experimental substantiation and fine-tuning of these compounds are requisite for prospective therapeutic interventions against LF.
Collapse
Affiliation(s)
- Poopandi Saritha
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Nagarajan Hemavathy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Subramaniyan Sneha
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Dhamodharan Prabhu
- Centre for Drug Discovery, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Vetrivel Umashankar
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, (Govt. of India), Chennai, 600 031, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
2
|
Mediati DG, Dan W, Lalaouna D, Dinh H, Pokhrel A, Rowell KN, Michie KA, Stinear TP, Cain AK, Tree JJ. The 3' UTR of vigR is required for virulence in Staphylococcus aureus and has expanded through STAR sequence repeat insertions. Cell Rep 2024; 43:114082. [PMID: 38583155 DOI: 10.1016/j.celrep.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| | - William Dan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David Lalaouna
- Université de Strasbourg, CNRS, ARN UPR 9002, Strasbourg, France
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia; School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Keiran N Rowell
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Katharine A Michie
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amy K Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Zhou H, Zhang Y, Long CP, Xia X, Xue Y, Ma Y, Antoniewicz MR, Tao Y, Lin B. A citric acid cycle-deficient Escherichia coli as an efficient chassis for aerobic fermentations. Nat Commun 2024; 15:2372. [PMID: 38491007 PMCID: PMC10943122 DOI: 10.1038/s41467-024-46655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Tricarboxylic acid cycle (TCA cycle) plays an important role for aerobic growth of heterotrophic bacteria. Theoretically, eliminating TCA cycle would decrease carbon dissipation and facilitate chemicals biosynthesis. Here, we construct an E. coli strain without a functional TCA cycle that can serve as a versatile chassis for chemicals biosynthesis. We first use adaptive laboratory evolution to recover aerobic growth in minimal medium of TCA cycle-deficient E. coli. Inactivation of succinate dehydrogenase is a key event in the evolutionary trajectory. Supply of succinyl-CoA is identified as the growth limiting factor. By replacing endogenous succinyl-CoA dependent enzymes, we obtain an optimized TCA cycle-deficient E. coli strain. As a proof of concept, the strain is engineered for high-yield production of four separate products. This work enhances our understanding of the role of the TCA cycle in E. coli metabolism and demonstrates the advantages of using TCA cycle-deficient E. coli strain for biotechnological applications.
Collapse
Affiliation(s)
- Hang Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiwen Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Christopher P Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA
| | - Xuesen Xia
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanfen Xue
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanhe Ma
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Paul A, Mishra S. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution. Comput Biol Chem 2023; 103:107832. [PMID: 36805170 DOI: 10.1016/j.compbiolchem.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
DapE is a microbial metalloenzyme that hosts two Zn ions in its active site, although it shows catalytic activity with varying efficiency when the Zn ions in one or both of its metal-binding sites (MBS) are replaced by other transition-metal ions. The metal-ion promiscuity of DapE is believed to be a microbial strategy to overcome the homeostatic regulation of Zn ions by the mammalian host. Here, a hybrid QM/MM study is performed on a series of mixed-metal DapEs, where the Zn ion in the first MBS (MBS-1) is substituted by Mn, Co, Ni, and Cu ions, while the MBS-2 is occupied by Zn(II). The substrate binding affinity and the mechanism of catalytic action are estimated by optimizing the intermediates and the transition states with hybrid QM/MM method. Comparison of the binding affinity of the MBS-1 and MBS-2 substituted DapEs reveals that the MBS-1 substitution does not affect the substrate binding affinity in the mixed-metal DapEs, while a strong metal specificity was observed in MBS-2 substituted DapEs. On the contrary, the activation energy barriers show a high metal specificity at MBS-1 compared to MBS-2. Taken together, the QM/MM studies indicate that MBS-2 leads the substrate binding process, while MBS-1 steers the catalytic activity of the DapE enzyme.
Collapse
Affiliation(s)
- Atanuka Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
6
|
Sharma S, Jayasinghe YP, Mishra NK, Orimoloye MO, Wong TY, Dalluge JJ, Ronning DR, Aldrich CC. Structural and Functional Characterization of Mycobacterium tuberculosis Homoserine Transacetylase. ACS Infect Dis 2023; 9:540-553. [PMID: 36753622 DOI: 10.1021/acsinfecdis.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) lacking functional homoserine transacetylase (HTA) is compromised in methionine biosynthesis, protein synthesis, and in the activity of multiple essential S-adenosyl-l-methionine-dependent enzymes. Additionally, deficient mutants are further disarmed by the toxic accumulation of lysine due to a redirection of the metabolic flux toward the lysine biosynthetic pathway. Studies with deletion mutants and crystallographic studies of the apoenzyme have, respectively, validated Mtb HTA as an essential enzyme and revealed a ligandable binding site. Seeking a mechanistic characterization of this enzyme, we report crucial structural details and comprehensive functional characterization of Mtb HTA. Crystallographic and mass spectral observation of the acetylated HTA intermediate and initial velocity studies were consistent with a ping-pong kinetic mechanism. Wild-type HTA and its site-directed mutants were kinetically characterized with a panel of natural and alternative substrates to understand substrate specificity and identify critical residues for catalysis. Titration experiments using fluorescence quenching showed that both substrates─acetyl-CoA and l-homoserine─engage in a strong and weak binding interaction with HTA. Additionally, substrate inhibition by acetyl-CoA and product inhibition by CoA and O-acetyl-l-homoserine were proposed to form the basis of a feedback regulation mechanism. By furnishing key mechanistic and structural information, these studies provide a foundation for structure-based design efforts around this attractive Mtb target.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Neeraj Kumar Mishra
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Diaminopimelic Acid Metabolism by Pseudomonadota in the Ocean. Microbiol Spectr 2022; 10:e0069122. [PMID: 36040174 PMCID: PMC9602339 DOI: 10.1128/spectrum.00691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diaminopimelic acid (DAP) is a unique component of the cell wall of Gram-negative bacteria. It is also an important component of organic matter and is widely utilized by microbes in the world's oceans. However, neither DAP concentrations nor marine DAP-utilizing microbes have been investigated. Here, DAP concentrations in seawater were measured and the diversity of marine DAP-utilizing bacteria and the mechanisms for their DAP metabolism were investigated. Free DAP concentrations in seawater, from surface to a 5,000 m depth, were found to be between 0.61 μM and 0.96 μM in the western Pacific Ocean. DAP-utilizing bacteria from 20 families in 4 phyla were recovered from the western Pacific seawater and 14 strains were further isolated, in which Pseudomonadota bacteria were dominant. Based on genomic and transcriptomic analyses combined with gene deletion and in vitro activity detection, DAP decarboxylase (LysA), which catalyzes the decarboxylation of DAP to form lysine, was found to be a key and specific enzyme involved in DAP metabolism in the isolated Pseudomonadota strains. Interrogation of the Tara Oceans database found that most LysA-like sequences (92%) are from Pseudomonadota, which are widely distributed in multiple habitats. This study provides an insight into DAP metabolism by marine bacteria in the ocean and contributes to our understanding of the mineralization and recycling of DAP by marine bacteria. IMPORTANCE DAP is a unique component of peptidoglycan in Gram-negative bacterial cell walls. Due to the large number of marine Gram-negative bacteria, DAP is an important component of marine organic matter. However, it remains unclear how DAP is metabolized by marine microbes. This study investigated marine DAP-utilizing bacteria by cultivation and bioinformational analysis and examined the mechanism of DAP metabolism used by marine bacteria. The results demonstrate that Pseudomonadota bacteria are likely to be an important DAP-utilizing group in the ocean and that DAP decarboxylase is a key enzyme involved in DAP metabolism. This study also sheds light on the mineralization and recycling of DAP driven by bacteria.
Collapse
|
8
|
Liu N, Zhang TT, Rao ZM, Zhang WG, Xu JZ. Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in Corynebacterium glutamicum. Int J Mol Sci 2021; 22:9065. [PMID: 34445771 PMCID: PMC8396482 DOI: 10.3390/ijms22169065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/17/2023] Open
Abstract
The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in Corynebacterium glutamicum. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. The effect of ammonium (NH4+) concentration on L-lysine biosynthesis was investigated, and the results indicated that the biosynthesis of L-lysine can be promoted in a high NH4+ environment. In order to reduce the requirement of NH4+, the nitrogen source regulatory protein AmtR was knocked out, resulting in an 8.5% increase in L-lysine production (i.e., 52.3 ± 4.31 g/L). Subsequently, the dehydrogenase pathway was upregulated by blocking or weakening the tetrahydrodipicolinate succinylase (DapD)-coding gene dapD and overexpressing the ddh gene to further enhance L-lysine biosynthesis. The final strain XQ-5-W4 could produce 189 ± 8.7 g/L L-lysine with the maximum specific rate (qLys,max.) of 0.35 ± 0.05 g/(g·h) in a 5-L jar fermenter. The L-lysine titer and qLys,max achieved in this study is about 25.2% and 59.1% higher than that of the original strain without enhancement of dehydrogenase pathway, respectively. The results indicated that the dehydrogenase pathway could serve as a breakthrough point to reconstruct the diaminopimelic acid (DAP) pathway and promote L-lysine production.
Collapse
Affiliation(s)
- Ning Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Ting-Ting Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| |
Collapse
|
9
|
Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site. J Biol Inorg Chem 2021; 26:569-582. [PMID: 34241683 DOI: 10.1007/s00775-021-01875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Metalloenzymes are ubiquitous in nature catalyzing a number of crucial biochemical processes in animal and plant kingdoms. For better adaptation to the relative abundance of different metal ions in different cellular fluids, many of these enzymes exhibit metal promiscuity. The microbial enzyme DapE, an essential enzyme for bacterial growth and survival and a potentially safe target for antibiotics, continues to show enzyme activity when the two zinc ions in its active site are replaced by other transition metal ions. The effect of metal-ion substitution at the second metal-binding site of DapE on its substrate affinity and catalytic efficiency is investigated by QM/MM treatment of the enzyme-substrate complex, by modelling the enzyme with Mn(II), Co(II), Ni(II), or Cu(II) ion in place of Zn(II) at its second metal-binding site, while retaining Zn(II) ion at the first metal-binding site. On the basis of substrate binding energy and activation energy barrier for the chemical catalysis, it is found that Zn-Mn DapE shows poor binding affinity as well as inefficient chemical catalysis. Although Zn-Cu and Zn-Ni DapEs show activation energy barriers comparable to that of wild-type Zn-Zn DapE, their weaker substrate affinity renders these mixed-metal enzymes less efficient. On the other hand, Zn-Co DapE is found to outperform the naturally occurring Zn-Zn DapE, both in terms of substrate affinity and chemical catalysis. The observed metal promiscuity may have played an important role in the survival of bacteria even in those cellular media where Zn ions are in limited supply. Metal nonspecificity in the catalysis of DapE enzyme allows bacteria to thrive in different cellular media.
Collapse
|
10
|
O-Succinyl-l-homoserine overproduction with enhancement of the precursor succinyl-CoA supply by engineered Escherichia coli. J Biotechnol 2020; 325:164-172. [PMID: 33157196 DOI: 10.1016/j.jbiotec.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/22/2020] [Accepted: 11/01/2020] [Indexed: 11/22/2022]
Abstract
O-Succinyl-l-homoserine (OSH) is an important platform chemical in production of C4 chemicals such as succinic acid, homoserine lactone, γ‑butyrolactone, and 1,4‑butanediol. The production of OSH through chemical method or the current engineering strain is difficult and not optimal, and thereby there remains a need to develop new engineering strategy. Here, we engineered an OSH overproducing Escherichia coli strain through deleting the degradation and competitive pathways, overexpressing thrA and metL to enhance the metabolic flux from l-asparate to l-homoserine. Additionally, increasing the precursor succinyl-CoA supply through simultaneously knocking out sucD and overexpressing sucA further increased the yield of OSH. The engineered strain OSH9/pTrc-metA11-yjeH with above strategies produced OSH at the concentration of 24.1 g/L (0.609 g/g glucose) in batch fermentation. To gain detailed insight into metabolism of the engineered strain, comparative metabolic profiling was performed between the engineered and wide-type strain. The metabolomics data deciphered that the carbon was directed toward the OSH biosynthesis resulting in less flexibility of the genetically modified strain than the wide-type strain.
Collapse
|
11
|
Bearne SL. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases. Chemistry 2020; 26:10367-10390. [DOI: 10.1002/chem.201905826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry & Molecular BiologyDepartment of ChemistryDalhousie University Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
12
|
Characterization of an NAD(P) +-dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140476. [PMID: 32599299 DOI: 10.1016/j.bbapap.2020.140476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
meso-Diaminopimelate dehydrogenase (meso-DAPDH) catalyzes the reversible NADP+-dependent oxidative deamination of meso-2,6-diaminopimelate (meso-DAP) to produce l-2-amino-6-oxopimelate. meso-DAPDH is divided into two major clusters, types I and II, based on substrate specificity and structural characteristic. Here, we describe a novel type II meso-DAPDH from Thermosyntropha lipolytica (TlDAPDH). The gene encoding a putative TlDAPDH was expressed in Escherichia coli cells, and then the enzyme was purified 7.3-fold to homogeneity from the crude cell extract. The molecule of TlDAPDH seemed to form a hexamer, which is the typical structural characteristic of type II meso-DAPDHs. The purified enzyme exhibited oxidative deamination activity toward meso-DAP with both NADP+ and NAD+ as coenzymes. TlDAPDH exhibited reductive amination activity of corresponding 2-oxo acid to produce d-amino acid. In particular, the productivities for d-aspartate and d-glutamate have not been reported in the type II enzymes. The optimum pH and temperature for oxidative deamination of meso-DAP were 10.5 and 55°C, respectively. TlDAPDH retained more than 80% of its activity after incubation for 30 min at temperatures between 50°C and 65°C and in the pH range of 4.5-9.5. Moreover, the coenzyme and substrate recognition mechanisms of TlDAPDH were elucidated based on a multiple sequence alignment and the homology model. The results of these analyses suggested that the molecular mechanisms for coenzyme and substrate recognition of TlDAPDH were similar to those of meso-DAPDH from S. thermophilum, which is the representative type II enzyme. Based on the kinetic characteristics and structural comparison, TlDAPDH was considered to be a novel type II meso-DAPDH.
Collapse
|
13
|
Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, Elsner M. Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 2020; 96:5828077. [DOI: 10.1093/femsec/fiaa080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTVirtually all heterotrophs incorporate carbon dioxide by anaplerotic fixation. Little explored, however, is the interdependency of pathways and rates of CO2fixation on the concurrent usage of organic substrate(s). Potentially, this could reveal which substrates out of a pool of dissolved organic carbon are utilised by environmental microorganisms. To explore this possibility, Bacillus subtilis W23 was grown in a minimal medium with normalised amounts of either glucose, lactate or malate as only organic substrates, each together with 1 g/L NaH13CO3. Incorporation of H13CO3− was traced by elemental analysis-isotope ratio mass spectrometry of biomass and gas chromatography-mass spectrometry of protein-derived amino acids. Until the late logarithmic phase, 13C incorporation into the tricarboxylic acid cycle increased with time and occurred via [4–13C]oxaloacetate formed by carboxylation of pyruvate. The levels of 13C incorporation were highest for growth on glucose and lowest on malate. Incorporation of 13C into gluconeogenesis products was mainly detected in the lactate and malate experiment, whereas glucose down-regulated this path. A proof-of-principle study with a natural groundwater community confirmed the ability to determine incorporation from H13CO3− by natural communities leading to specific labelling patterns. This underlines the potential of the labelling approach to characterise carbon sources of heterotrophic microorganisms in their natural environments.
Collapse
Affiliation(s)
- Marina Spona-Friedl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Alexander Braun
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Huber
- Chair of Biochemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Chair of Biochemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Functional and Evolutionary Ecology, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
| | - Andreas Kappler
- Geomicrobiology, Eberhard-Karls-University Tuebingen, Sigwartstr. 10, 72076 Tuebingen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistr. 17, 81377 München, Germany
| |
Collapse
|
14
|
Majdi Yazdi M, Saran S, Mrozowich T, Lehnert C, Patel TR, Sanders DAR, Palmer DRJ. Asparagine-84, a regulatory allosteric site residue, helps maintain the quaternary structure of Campylobacter jejuni dihydrodipicolinate synthase. J Struct Biol 2019; 209:107409. [PMID: 31678256 DOI: 10.1016/j.jsb.2019.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.
Collapse
Affiliation(s)
- Mohadeseh Majdi Yazdi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Sagar Saran
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler Mrozowich
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Cheyanne Lehnert
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; Li Ka Shing Institute of Virology and DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
15
|
Abstract
The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.
Collapse
|
16
|
Crowther JM, Cross PJ, Oliver MR, Leeman MM, Bartl AJ, Weatherhead AW, North RA, Donovan KA, Griffin MDW, Suzuki H, Hudson AO, Kasanmascheff M, Dobson RCJ. Structure-function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. J Biol Chem 2019; 294:8505-8515. [PMID: 30962284 DOI: 10.1074/jbc.ra118.006825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
meso-Diaminopimelate decarboxylase catalyzes the decarboxylation of meso-diaminopimelate, the final reaction in the diaminopimelate l-lysine biosynthetic pathway. It is the only known pyridoxal-5-phosphate-dependent decarboxylase that catalyzes the removal of a carboxyl group from a d-stereocenter. Currently, only prokaryotic orthologs have been kinetically and structurally characterized. Here, using complementation and kinetic analyses of enzymes recombinantly expressed in Escherichia coli, we have functionally tested two putative eukaryotic meso-diaminopimelate decarboxylase isoforms from the plant species Arabidopsis thaliana We confirm they are both functional meso-diaminopimelate decarboxylases, although with lower activities than those previously reported for bacterial orthologs. We also report in-depth X-ray crystallographic structural analyses of each isoform at 1.9 and 2.4 Å resolution. We have captured the enzyme structure of one isoform in an asymmetric configuration, with one ligand-bound monomer and the other in an apo-form. Analytical ultracentrifugation and small-angle X-ray scattering solution studies reveal that A. thaliana meso-diaminopimelate decarboxylase adopts a homodimeric assembly. On the basis of our structural analyses, we suggest a mechanism whereby molecular interactions within the active site transduce conformational changes to the active-site loop. These conformational differences are likely to influence catalytic activity in a way that could allow for d-stereocenter selectivity of the substrate meso-diaminopimelate to facilitate the synthesis of l-lysine. In summary, the A. thaliana gene loci At3g14390 and At5g11880 encode functional. meso-diaminopimelate decarboxylase enzymes whose structures provide clues to the stereochemical control of the decarboxylation reaction catalyzed by these eukaryotic proteins.
Collapse
Affiliation(s)
- Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Penelope J Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Michael R Oliver
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Mary M Leeman
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623
| | - Austin J Bartl
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623
| | - Anthony W Weatherhead
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623.
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, D-44227 Dortmund, Germany.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
17
|
Murphy RD, Bobbi E, Oliveira FCS, Cryan S, Heise A. Gelating polypeptide matrices based on the difunctional
N
‐carboxyanhydride diaminopimelic acid cross‐linker. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert D. Murphy
- Department of ChemistryRoyal College of Surgeons in Ireland Dublin 2 Ireland
| | - Elena Bobbi
- Department of ChemistryRoyal College of Surgeons in Ireland Dublin 2 Ireland
| | | | - Sally‐Ann Cryan
- Drug Delivery & Advanced Materials TeamSchool of Pharmacy RCSI, Dublin 2 Ireland
- Trinity Centre for BioengineeringTrinity College Dublin (TCD) Dublin 2 Ireland
- Centre for Research in Medical Devices (CURAM)RCSI, Dublin 2 and National University of Ireland Galway Ireland
| | - Andreas Heise
- Department of ChemistryRoyal College of Surgeons in Ireland Dublin 2 Ireland
- Centre for Research in Medical Devices (CURAM)RCSI, Dublin 2 and National University of Ireland Galway Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI and TCD Dublin 2 Ireland
| |
Collapse
|
18
|
Akita H, Hayashi J, Sakuraba H, Ohshima T. Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application. Front Microbiol 2018; 9:1760. [PMID: 30123202 PMCID: PMC6085447 DOI: 10.3389/fmicb.2018.01760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023] Open
Abstract
Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Junji Hayashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University Biwako-Kusatsu Campus, Shiga, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
19
|
Dutta D, Mishra S. L-Captopril and its derivatives as potential inhibitors of microbial enzyme DapE: A combined approach of drug repurposing and similarity screening. J Mol Graph Model 2018; 84:82-89. [PMID: 29936366 DOI: 10.1016/j.jmgm.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The perils of antimicrobial drug resistance can be overcome by finding novel antibiotic targets and corresponding small molecule inhibitors. Microbial enzyme DapE is a promising antibiotic target due to its importance to the bacterial survival. The potency of L-Captopril, a well known angiotensin-converting enzyme inhibitor, as an inhibitor of DapE enzyme has been evaluated by analyzing its binding modes and binding affinity towards DapE enzyme. L-Captopril is found to bind the metal centers of DapE enzyme either via its thiolate group or through its carboxylate group. While the latter binding mode is found to be thermodynamically favorable, the former binding mode, also seen in the crystal structure, is kinetically favored. To optimize the binding affinity of the inhibitor towards DapE enzyme, a series of L-Captopril-based inhibitors have been modelled by changing the side groups of L-Captopril. The introduction of a bipolar functional group at the C4 position of the pyrrolidine ring of L-Captopril and the substitution of the thiol group with a carboxylate group, have been shown to provide excellent enzyme affinity that supersedes the binding affinity of DapE enzyme towards its natural substrate, thus making this molecule a potential inhibitor with great promise.
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
20
|
Mukherjee S, Barash D, Sengupta S. Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria. PLoS One 2017; 12:e0184314. [PMID: 28873470 PMCID: PMC5584792 DOI: 10.1371/journal.pone.0184314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Riboswitches are cis-regulatory elements that regulate the expression of genes involved in biosynthesis or transport of a ligand that binds to them. Among the nearly 40 classes of riboswitches discovered so far, three are known to regulate the concentration of biologically encoded amino acids glycine, lysine, and glutamine. While some comparative genomics studies of riboswitches focusing on their gross distribution across different bacterial taxa have been carried out recently, systematic functional annotation and analysis of lysine riboswitches and the genes they regulate are still lacking. We analyzed 2785 complete bacterial genome sequences to systematically identify 468 lysine riboswitches (not counting hits from multiple strains of the same species) and obtain a detailed phylogenomic map of gene-specific lysine riboswitch distribution across diverse prokaryotic phyla. We find that lysine riboswitches are most abundant in Firmicutes and Gammaproteobacteria where they are found upstream to both biosynthesis and/or transporter genes. They are relatively rare in all other prokaryotic phyla where if present they are primarily found upstream to operons containing many lysine biosynthesis genes. The genome-wide study of the genetic organisation of the lysine riboswitches show considerable variation both within and across different Firmicute orders. Correlating the location of a riboswitch with its genomic context and its phylogenetic relationship with other evolutionarily related riboswitch carrying species, enables identification and annotation of many lysine biosynthesis, transporter and catabolic genes. It also reveals previously unknown patterns of lysine riboswitch distribution and gene/operon regulation and allows us to draw inferences about the possible point of origin of lysine riboswitches. Additionally, evidence of horizontal transfer of riboswitches was found between Firmicutes and Actinobacteria. Our analysis provides a useful resource that will lead to a better understanding of the evolution of these regulatory elements and prove to be beneficial for exploiting riboswitches for developing targeted therapies.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- * E-mail:
| |
Collapse
|
21
|
Dutta D, Mishra S. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation. J Phys Chem B 2017; 121:7075-7085. [DOI: 10.1021/acs.jpcb.7b04431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Kim SK, Park YM, Jung KH, Chai YG. Deletion of a putative NlpC/P60 endopeptidase BAS1812 affects germination, long-term survival and endospore formation in Bacillus anthracis. MICROBIOLOGY-SGM 2016; 163:144-152. [PMID: 28008818 DOI: 10.1099/mic.0.000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus anthracis, an aetiologic agent of the zoonotic disease anthrax, encodes a putative NlpC/P60 endopeptidase BAS1812. It harbours a signal peptide, three bacterial SH3 domains and an NlpC/P60 family domain. Previous studies showed that BAS1812 is immunogenic in infected hosts and is a potential biomarker for anthrax treatment. To date, however, little information is known about its function and involvement in anthrax pathogenesis. Here we describe the phenotypic effect of BAS1812 deletion in B. anthracis Sterne strain. Transcriptional analysis showed that BAS1812 expression in a host-like environment was enhanced at the end of log phase, started to diminish after entry to stationary phase and increased again late in stationary phase. The constructed BAS1812 mutant showed impaired long-term survival in the stationary growth phase, less resilience to detergent, lesser endospore formation and delayed germination. The mutant also showed diminished ability to degrade peptidoglycan, but its ability to produce anthrax exotoxins was not affected. We hypothesize that BAS1812 is a cell wall hydrolase involved in biological activities related to maintaining cell wall integrity, sporulation and spore germination.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yun Min Park
- Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.,Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
23
|
Faheem M, Martins-de-Sa D, Vidal JFD, Álvares ACM, Brandão-Neto J, Bird LE, Tully MD, von Delft F, Souto BM, Quirino BF, Freitas SM, Barbosa JARG. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome. Sci Rep 2016; 6:38031. [PMID: 27934875 PMCID: PMC5146660 DOI: 10.1038/srep38031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a Kb of 1.8 × 105 M-1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space Rg of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Diogo Martins-de-Sa
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Julia F. D. Vidal
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Alice C. M. Álvares
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, England
| | - Louise E. Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, United Kingdom
| | - Mark D. Tully
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, England
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, England
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Betulia M. Souto
- Embrapa Agroenergia, Parque Estação Biológica - PqEB s/n°, Brasília, DF, 70770-901, Brazil
| | - Betania F. Quirino
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
- Embrapa Agroenergia, Parque Estação Biológica - PqEB s/n°, Brasília, DF, 70770-901, Brazil
| | - Sonia M. Freitas
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - João Alexandre R. G. Barbosa
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
24
|
Dutta D, Mishra S. Loss of Catalytic Activity in the E134D, H67A, and H349A Mutants of DapE: Mechanistic Analysis with QM/MM Investigation. J Phys Chem B 2016; 120:11654-11664. [DOI: 10.1021/acs.jpcb.6b07446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
25
|
Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GEM, Lameira J, Lamichhane G, Kruger HG, Honarparvar B. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn 2016; 34:2399-417. [PMID: 26612108 DOI: 10.1080/07391102.2015.1117397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Zeynab Fakhar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Suhashni Naiker
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Claudio N Alves
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Thavendran Govender
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Glenn E M Maguire
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa.,c School of Chemistry and Physics , University of KwaZulu-Natal , 4001 Durban , South Africa
| | - Jeronimo Lameira
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Gyanu Lamichhane
- d Division of Infectious Diseases, Center for Tuberculosis Research , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Hendrik G Kruger
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Bahareh Honarparvar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| |
Collapse
|
26
|
Zhao L, Jiang J, Zhu Z, Liao Z, Yao X, Yang Y, Cao Y, Jiang Y. Lysine enhances the effect of amphotericin B against Candida albicans in vitro. Acta Biochim Biophys Sin (Shanghai) 2016; 48:182-93. [PMID: 26711896 DOI: 10.1093/abbs/gmv125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/18/2015] [Indexed: 01/11/2023] Open
Abstract
Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus and has been used for >50 years in the treatment of acute systemic fungal infections. In the present study, we demonstrated that lysine, an essential amino acid, could enhance the effect of AmB against Candida albicans in vitro, although lysine itself did not exert a fungicidal effect. In addition, the combination of AmB with lysine could provide an enhanced action against Candida parapsilosis and Cryptococcus neoformans compared with AmB alone. Lysine could also enhance the antifungal effect of caspofungin or nystatin. An enhanced effect of the combination of lysine with AmB was observed for the prevention of biofilm and hypha formation. Furthermore, our results demonstrated that lysine-mediated oxidative damage, such as the generation of endogenous reactive oxygen species, may be the mechanism underlying the enhancing effect of lysine on AmB. Our results also showed that CaMCA1 gene plays an important role in increasing the sensitivity of C. albicans cells upon AmB treatment. Using AmB together with lysine may be a promising strategy for the therapy of disseminated candidiasis.
Collapse
Affiliation(s)
- Liuya Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China Pharmacy Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingchen Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zebin Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiangwen Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yingying Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
27
|
Allard N, Garneau D, Poulin-Laprade D, Burrus V, Brzezinski R, Roy S. A diaminopimelic acid auxotrophic Escherichia coli donor provides improved counterselection following intergeneric conjugation with actinomycetes. Can J Microbiol 2015; 61:565-74. [PMID: 26166710 DOI: 10.1139/cjm-2015-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considering the medical, biotechnological, and economical importance of actinobacteria, there is a continuous need to improve the tools for genetic engineering of a broad range of these microorganisms. Intergeneric conjugation has proven to be a valuable yet imperfect tool for this purpose. The natural resistance of many actinomycetes to nalidixic acid (Nal) is generally exploited to eliminate the sensitive Escherichia coli donor strain following conjugation. Nevertheless, Nal can delay growth and have other unexpected effects on the recipient strain. To provide an improved alternative to antibiotics, we propose a postconjugational counterselection using a diaminopimelic acid (DAP) auxotrophic donor strain. The DAP-negative phenotype was obtained by introducing a dapA deletion into the popular methylase-negative donor strain E. coli ET12567/pUZ8002. The viability of ET12567 and its ΔdapA mutant exposed to DAP deprivation or Nal selection were compared in liquid pure culture and after mating with Streptomyces coelicolor. Results showed that death of the E. coli ΔdapA Nal-sensitive donor strain occurred more efficiently when subjected to DAP deprivation than when exposed to Nal. Our study shows that postconjugational counterselection based on DAP deprivation circumvents the use of antibiotics and will facilitate the transfer of plasmids into actinomycetes with high biotechnological potential, yet currently not accessible to conjugative techniques.
Collapse
Affiliation(s)
- Nancy Allard
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Daniel Garneau
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Dominic Poulin-Laprade
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Ryszard Brzezinski
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Roy
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
28
|
Hlaváček J, Vítovcová M, Sázelová P, Pícha J, Vaněk V, Buděšínský M, Jiráček J, Gillner DM, Holz RC, Mikšík I, Kašička V. Mono-N-acyl-2,6-diaminopimelic acid derivatives: Analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity. Anal Biochem 2014; 467:4-13. [DOI: 10.1016/j.ab.2014.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/15/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
29
|
Conly CJT, Skovpen YV, Li S, Palmer DRJ, Sanders DAR. Tyrosine 110 Plays a Critical Role in Regulating the Allosteric Inhibition of Campylobacter jejuni Dihydrodipicolinate Synthase by Lysine. Biochemistry 2014; 53:7396-406. [DOI: 10.1021/bi5012157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Shuo Li
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
30
|
Nocek B, Starus A, Makowska-Grzyska M, Gutierrez B, Sanchez S, Jedrzejczak R, Mack JC, Olsen KW, Joachimiak A, Holz RC. The dimerization domain in DapE enzymes is required for catalysis. PLoS One 2014; 9:e93593. [PMID: 24806882 PMCID: PMC4012986 DOI: 10.1371/journal.pone.0093593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
Collapse
Affiliation(s)
- Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Starus
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Blanca Gutierrez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Stephen Sanchez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Robert Jedrzejczak
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Jamey C. Mack
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Kenneth W. Olsen
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- * E-mail: (AJ); (RCH)
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (AJ); (RCH)
| |
Collapse
|
31
|
Dutta D, Mishra S. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method. Phys Chem Chem Phys 2014; 16:26348-58. [DOI: 10.1039/c4cp03986f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate binding and the mechanism of action of the DapE-encodedN-succinyl-l,l-diaminopimelic acid desuccinylase (DapE).
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| |
Collapse
|
32
|
Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 2013; 80:138-45. [PMID: 24141122 DOI: 10.1128/aem.02571-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative transfer ranges of three different plasmids of the incompatibility groups IncP-1 (pBP136), IncP-7 (pCAR1), and IncP-9 (NAH7) were investigated in soil bacterial communities by culture-dependent and culture-independent methods. Pseudomonas putida, a donor of each plasmid, was mated with soil bacteria, and green fluorescent protein (GFP), encoded on the plasmid, was used as a reporter protein for successful transfer. GFP-expressing transconjugants were detected and separated at the single-cell level by flow cytometry. Each cell was then analyzed by PCR and sequencing of its 16S rRNA gene following either whole-genome amplification or cultivation. A large number of bacteria within the phylum Proteobacteria was identified as transconjugants for pBP136 by both culture-dependent and culture-independent methods. Transconjugants belonging to the phyla Actinobacteria, Bacteroidetes, and Firmicutes were detected only by the culture-independent method. Members of the genus Pseudomonas (class Gammaproteobacteria) were identified as major transconjugants of pCAR1 and NAH7 by both methods, whereas Delftia species (class Betaproteobacteria) were detected only by the culture-independent method. The transconjugants represented a minority of the soil bacteria. Although pCAR1-containing Delftia strains could not be cultivated after a one-to-one filter mating assay between the donor and cultivable Delftia strains as recipients, fluorescence in situ hybridization detected pCAR1-containing Delftia cells, suggesting that Delftia was a "transient" host of pCAR1.
Collapse
|
33
|
Proteomic changes in Bacteroides fragilis exposed to subinhibitory concentration of piperacillin/tazobactam. Anaerobe 2013; 22:69-76. [DOI: 10.1016/j.anaerobe.2013.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/12/2013] [Indexed: 11/15/2022]
|
34
|
Gillner DM, Becker DP, Holz RC. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. J Biol Inorg Chem 2013; 18:155-163. [PMID: 23223968 PMCID: PMC3862034 DOI: 10.1007/s00775-012-0965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/12/2023]
Abstract
In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.
Collapse
Affiliation(s)
- Danuta M Gillner
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
- Department of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA
| | - Richard C Holz
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
| |
Collapse
|
35
|
Usha V, Lloyd AJ, Lovering AL, Besra GS. Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiol Lett 2012; 330:10-6. [PMID: 22339732 DOI: 10.1111/j.1574-6968.2012.02527.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 02/11/2012] [Indexed: 11/28/2022] Open
Abstract
Because of an increased emergence of resistance to current antitubercular drugs, there is a need for new antitubercular agents directed against novel targets. Diaminopimelic acid (DAP) biosynthetic enzymes are unique to bacteria and are absent in mammals and provide a rich source of essential targets for antitubercular chemotherapy. Herein, we review the structure and function of the mycobacterial DAP biosynthetic enzymes.
Collapse
|
36
|
Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV, Bell SD, Blombach F, Kletzin A, Kyrpides N, Lanz C, Plagens A, Rampp M, Rosinus A, von Jan M, Makarova KS, Klenk HP, Schuster SC, Hensel R. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 2011; 6:e24222. [PMID: 22003381 PMCID: PMC3189178 DOI: 10.1371/journal.pone.0024222] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 08/08/2011] [Indexed: 11/18/2022] Open
Abstract
Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078T) a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO2/H2) as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I) were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A0A1-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein) that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF) that is so far unique within Archaea.
Collapse
Affiliation(s)
- Bettina Siebers
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Essen, Germany
- * E-mail: (BS); (MZ)
| | - Melanie Zaparty
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- * E-mail: (BS); (MZ)
| | - Guenter Raddatz
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Britta Tjaden
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steve D. Bell
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Arnulf Kletzin
- Institute of Microbiology and Genetics, Technical University Darmstadt, Darmstadt, Germany
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Christa Lanz
- Genome Centre, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - André Plagens
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Markus Rampp
- Computer Centre Garching of the Max-Planck-Society (RZG), Max-Planck-Institute for Plasma Physics, München, Germany
| | - Andrea Rosinus
- Genome Centre, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - Mathias von Jan
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hans-Peter Klenk
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stephan C. Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Reinhard Hensel
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
37
|
Fogle EJ, Toney MD. Analysis of catalytic determinants of diaminopimelate and ornithine decarboxylases using alternate substrates. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1113-9. [PMID: 21640851 PMCID: PMC3124589 DOI: 10.1016/j.bbapap.2011.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Diaminopimelate decarboxylase (DAPDC) and ornithine decarboxylase (ODC) are pyridoxal 5'-phosphate dependent enzymes that are critical to microbial growth and pathogenicity. The latter is the target of drugs that cure African sleeping sickness, while the former is an attractive target for antibacterials. These two enzymes share the (β/α)(8) (i.e., TIM barrel) fold with alanine racemase, another pyridoxal 5'-phosphate dependent enzyme critical to bacterial survival. The active site structural homology between DAPDC and ODC is striking even though DAPDC catalyzes the decarboxylation of a D stereocenter with inversion of configuration and ODC catalyzes the decarboxylation of an L stereocenter with retention of configuration. Here, the structural and mechanistic bases of these interesting properties are explored using reactions of alternate substrates with both enzymes. It is concluded that simple binding determinants do not control the observed stereochemical specificities for decarboxylation, and a concerted decarboxylation/proton transfer at Cα of the D stereocenter of diaminopimelate is a possible mechanism for the observed specificity with DAPDC.
Collapse
Affiliation(s)
- Emily J. Fogle
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Michael D. Toney
- Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
38
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Girish TS, Navratna V, Gopal B. Structure and nucleotide specificity of Staphylococcus aureus dihydrodipicolinate reductase (DapB). FEBS Lett 2011; 585:2561-7. [PMID: 21803042 DOI: 10.1016/j.febslet.2011.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022]
Abstract
Lysine biosynthesis proceeds by the nucleotide-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) by dihydrodipicolinate reductase (DHDPR). The S. aureus DHDPR structure reveals different conformational states of this enzyme even in the absence of a substrate or nucleotide-cofactor. Despite lacking a conserved basic residue essential for NADPH interaction, S. aureus DHDPR differs from other homologues as NADPH is a more preferred co-factor than NADH. The structure provides a rationale-Lys35 compensates for the co-factor site mutation. These observations are significant for bi-ligand inhibitor design that relies on ligand-induced conformational changes as well as co-factor specificity for this important drug target.
Collapse
|
40
|
Wang Y, Wu J, Park ZY, Kim SG, Rakwal R, Agrawal GK, Kim ST, Kang KY. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. J Proteome Res 2011; 10:3136-48. [PMID: 21563842 DOI: 10.1021/pr200202m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnaporthe oryzae is a fungal pathogen that causes blast disease in rice. During its early infection process, during which starvation of nutrients, including nitrogen, prevails before establishment of successful infection, the fungally secreted proteins play an important role in the pathogenicity and stress response. In this study, M. oryzae-secreted proteins were investigated in an N-deficient minimal medium using two-dimensional gel electrophoresis (2-DGE) coupled with mass spectrometry analysis (MALDI-TOF-MS and μLC-ESI-MS/MS). The 2-DGE analysis of secreted proteins detected 89 differentially expressed protein spots (14 downregulated and 75 upregulated) responsive to N starvation. Eighty five of the protein spots were identified by mass spectrometry analyses. Identified proteins were mainly cell wall hydrolase enzymes (22.4%), protein and lipid hydrolases (24.7%), reactive oxygen species detoxifying proteins (22.4%), and proteins with unknown function (14.1%), suggesting early production of prerequisite proteins for successful infection of the host. SignalP analysis predicted the presence of signal peptides in 67% of the identified proteins, suggesting that in addition to the classical Golgi/endoplasmic reticulum secretory pathway, M. oryzae might possess other, as yet undefined, secretory pathways. Those nonclassical or leaderless secretion proteins accounted for 25.9% of the total identified proteins by TatP and SecretomeP predictions. Semiquantitative reverse transcriptase polymerase chain reaction of seven randomly selected N-responsive secreted proteins also revealed a good correlation between RNA and protein levels. Taken together, the establishment of the M. oryzae secretome that is responsive to N starvation provides the first evidence of the secretion of 60 unreported and 25 previously known proteins. This developed protein inventory could be exploited to improve our understanding of the secretory mechanisms of M. oryzae and its invasive growth process in rice tissue.
Collapse
Affiliation(s)
- Yiming Wang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju 660-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Chaiworapongsa T, Gomez R, Nien JK, Yoon BH, Mazor M, Luo J, Banks D, Ryals J, Beecher C. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med 2010; 23:1344-59. [PMID: 20504069 PMCID: PMC3440243 DOI: 10.3109/14767058.2010.482618] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Biomarkers for preterm labor (PTL) and delivery can be discovered through the analysis of the transcriptome (transcriptomics) and protein composition (proteomics). Characterization of the global changes in low-molecular weight compounds which constitute the 'metabolic network' of cells (metabolome) is now possible by using a 'metabolomics' approach. Metabolomic profiling has special advantages over transcriptomics and proteomics since the metabolic network is downstream from gene expression and protein synthesis, and thus more closely reflects cell activity at a functional level. This study was conducted to determine if metabolomic profiling of the amniotic fluid can identify women with spontaneous PTL at risk for preterm delivery, regardless of the presence or absence of intraamniotic infection/inflammation (IAI). STUDY DESIGN Two retrospective cross-sectional studies were conducted, including three groups of pregnant women with spontaneous PTL and intact membranes: (1) PTL who delivered at term; (2) PTL without IAI who delivered preterm; and (3) PTL with IAI who delivered preterm. The first was an exploratory study that included 16, 19, and 20 patients in groups 1, 2, and 3, respectively. The second study included 40, 33, and 40 patients in groups 1, 2, and 3, respectively. Amniotic fluid metabolic profiling was performed by combining chemical separation (with gas and liquid chromatography) and mass spectrometry. Compounds were identified using authentic standards. The data were analyzed using discriminant analysis for the first study and Random Forest for the second. RESULTS (1) In the first study, metabolomic profiling of the amniotic fluid was able to identify patients as belonging to the correct clinical group with an overall 96.3% (53/55) accuracy; 15 of 16 patients with PTL who delivered at term were correctly classified; all patients with PTL without IAI who delivered preterm neonates were correctly identified as such (19/19), while 19/20 patients with PTL and IAI were correctly classified. (2) In the second study, metabolomic profiling was able to identify patients as belonging to the correct clinical group with an accuracy of 88.5% (100/113); 39 of 40 patients with PTL who delivered at term were correctly classified; 29 of 33 patients with PTL without IAI who delivered preterm neonates were correctly classified. Among patients with PTL and IAI, 32/40 were correctly classified. The metabolites responsible for the classification of patients in different clinical groups were identified. A preliminary draft of the human amniotic fluid metabolome was generated and found to contain products of the intermediate metabolism of mammalian cells and xenobiotic compounds (e.g. bacterial products and Salicylamide). CONCLUSION Among patients with spontaneous PTL with intact membranes, metabolic profiling of the amniotic fluid can be used to assess the risk of preterm delivery in the presence or absence of infection/inflammation.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 2010; 12:2539-58. [DOI: 10.1111/j.1462-2920.2010.02227.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Nocek BP, Gillner DM, Fan Y, Holz RC, Joachimiak A. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. J Mol Biol 2010; 397:617-26. [PMID: 20138056 DOI: 10.1016/j.jmb.2010.01.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/15/2022]
Abstract
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.
Collapse
Affiliation(s)
- Boguslaw P Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | |
Collapse
|
44
|
Moreillon P, Majcherczyk PA. Proinflammatory Activity of Cell-wall Constituents from Gram-positive Bacteria. ACTA ACUST UNITED AC 2009; 35:632-41. [PMID: 14620147 DOI: 10.1080/00365540310016259] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Innate immunity reacts to conserved bacterial molecules. The outermost lipopolysaccharide (LPS) of Gram-negative organisms is highly inflammatory. It activates responsive cells via specific CD14 and toll-like receptor-4 (TLR4) surface receptor and co-receptors. Gram-positive bacteria do not contain LPS, but carry surface teichoic acids, lipoteichoic acids and peptidoglycan instead. Among these, the thick peptidoglycan is the most conserved. It also triggers cytokine release via CD14, but uses the TLR2 co-receptor instead of TLR4 used by LPS. Moreover, whole peptidoglycan is 1000-fold less active than LPS in a weight-to-weight ratio. This suggests either that it is not important for inflammation, or that only part of it is reactive while the rest acts as ballast. Biochemical dissection of Staphylococcus aureus and Streptococcus pneumoniae cell walls indicates that the second assumption is correct. Long, soluble peptidoglycan chains (approximately 125 kDa) are poorly active. Hydrolysing these chains to their minimal unit (2 sugars and a stem peptide) completely abrogates inflammation. Enzymatic dissection of the pneumococcal wall generated a mixture of highly active fragments, constituted of trimeric stem peptides, and poorly active fragments, constituted of simple monomers and dimers or highly polymerized structures. Hence, the optimal constraint for activation might be 3 cross-linked stem peptides. The importance of structural constraint was demonstrated in additional studies. For example, replacing the first L-alanine in the stem peptide with a D-alanine totally abrogated inflammation in experimental meningitis. Likewise, modifying the D-alanine decorations of lipoteichoic acids with L-alanine, or deacylating them from their diacylglycerol lipid anchor also decreased the inflammatory response. Thus, although considered as a broad-spectrum pattern-recognizing system, innate immunity can detect very subtle differences in Gram-positive walls. This high specificity underlines the importance of using well-characterized microbial material in investigating the system.
Collapse
Affiliation(s)
- P Moreillon
- Institute of Fundamental Microbiology, University of Lausanne, Switzerland.
| | | |
Collapse
|
45
|
Stenta M, Calvaresi M, Altoè P, Spinelli D, Garavelli M, Galeazzi R, Bottoni A. Catalytic Mechanism of Diaminopimelate Epimerase: A QM/MM Investigation. J Chem Theory Comput 2009; 5:1915-30. [DOI: 10.1021/ct900004x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Stenta
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Piero Altoè
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Domenico Spinelli
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Roberta Galeazzi
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
46
|
Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban B, Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ. Genome sequence of the pathogenic intestinal spirochete brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine. PLoS One 2009; 4:e4641. [PMID: 19262690 PMCID: PMC2650404 DOI: 10.1371/journal.pone.0004641] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/30/2022] Open
Abstract
Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.
Collapse
Affiliation(s)
- Matthew I. Bellgard
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Phatthanaphong Wanchanthuek
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
- Faculty of Informatics, Mahasarakham University, Mahasarakham, Thailand
| | - Tom La
- Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Karon Ryan
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Zayed Albertyn
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Babak Shaban
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Yair Motro
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - David S. Dunn
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - David Schibeci
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Adam Hunter
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree D. Phillips
- Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
| | - David J. Hampson
- Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
47
|
Gillner DM, Bienvenue DL, Nocek BP, Joachimiak A, Zachary V, Bennett B, Holz RC. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues. J Biol Inorg Chem 2009; 14:1-10. [PMID: 18712420 PMCID: PMC2678232 DOI: 10.1007/s00775-008-0418-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
The catalytic and structural properties of the H67A and H349A dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. On the basis of sequence alignment with the carboxypeptidase from Pseudomonas sp. strain RS-16, both H67 and H349 were predicted to be Zn(II) ligands. The H67A DapE enzyme exhibited a decreased catalytic efficiency (180-fold) compared with wild-type (WT) DapE towards N-succinyldiaminopimelic acid. No catalytic activity was observed for H349A under the experimental conditions used. The electronic paramagnetic resonance (EPR) and electronic absorption data indicate that the Co(II) ion bound to H349A-DapE is analogous to that of WT DapE after the addition of a single Co(II) ion. The addition of 1 equiv of Co(II) to H67A DapE provides spectra that are very different from those of the first Co(II) binding site of the WT enzyme, but that are similar to those of the second binding site. The EPR and electronic absorption data, in conjunction with the kinetic data, are consistent with the assignment of H67 and H349 as active-site metal ligands for the DapE from H. influenzae. Furthermore, the data suggest that H67 is a ligand in the first metal binding site, while H349 resides in the second metal binding site. A three-dimensional homology structure of the DapE from H. influenzae was generated using the X-ray crystal structure of the DapE from Neisseria meningitidis as a template and superimposed on the structure of the aminopeptidase from Aeromonas proteolytica (AAP). This homology structure confirms the assignment of H67 and H349 as active-site ligands. The superimposition of the homology model of DapE with the dizinc(II) structure of AAP indicates that within 4.0 A of the Zn(II) binding sites of AAP all of the amino acid residues of DapE are nearly identical.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian Bennett
- Address correspondence to: Richard C. Holz, Department of Chemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL 60626, Phone (773) 508−3092, Fax: (773) 508−3045, Internet:
| | - Richard C. Holz
- Address correspondence to: Richard C. Holz, Department of Chemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL 60626, Phone (773) 508−3092, Fax: (773) 508−3045, Internet:
| |
Collapse
|
48
|
Triballeau N, Van Name E, Laslier G, Cai D, Paillard G, Sorensen PW, Hoffmann R, Bertrand HO, Ngai J, Acher FC. High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function. Neuron 2008; 60:767-74. [PMID: 19081373 PMCID: PMC2652502 DOI: 10.1016/j.neuron.2008.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 11/27/2022]
Abstract
The detection of diverse chemical structures by the vertebrate olfactory system is accomplished by the recognition of odorous ligands by their cognate receptors. In the present study, we used computational screening to discover novel high-affinity agonists of an olfactory G protein-coupled receptor that recognizes amino acid ligands. Functional testing of the top candidates validated several agonists with potencies higher than any of the receptor's known natural ligands. Computational modeling revealed molecular interactions involved in ligand binding and further highlighted interactions that have been conserved in evolutionarily divergent amino acid receptors. Significantly, the top compounds display robust activities as odorants in vivo and include a natural product that may be used to signal the presence of bacteria in the environment. Our virtual screening approach should be applicable to the identification of new bioactive molecules for probing the structure of chemosensory receptors and the function of chemosensory systems in vivo.
Collapse
Affiliation(s)
- Nicolas Triballeau
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | - Eric Van Name
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute and Functional Genomics Laboratory, University of California, Berkeley, California 94720, USA
| | - Guillaume Laslier
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Diana Cai
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108, USA
| | - Guillaume Paillard
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | - Peter W. Sorensen
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108, USA
| | - Rémy Hoffmann
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | | | - John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute and Functional Genomics Laboratory, University of California, Berkeley, California 94720, USA
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
49
|
The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J Bacteriol 2008; 191:494-505. [PMID: 18996994 DOI: 10.1128/jb.00608-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon nutrient limitation cells of the swarming soil bacterium Myxococcus xanthus form a multicellular fruiting body in which a fraction of the cells develop into myxospores. Spore development includes the transition from a rod-shaped vegetative cell to a spherical myxospore and so is expected to be accompanied by changes in the bacterial cell envelope. Peptidoglycan is the shape-determining structure in the cell envelope of most bacteria, including myxobacteria. We analyzed the composition of peptidoglycan isolated from M. xanthus. While the basic structural elements of peptidoglycan in myxobacteria were identical to those in other gram-negative bacteria, the peptidoglycan of M. xanthus had unique structural features. meso- or LL-diaminopimelic acid was present in the stem peptides, and a new modification of N-acetylmuramic acid was detected in a fraction of the muropeptides. Peptidoglycan formed a continuous, bag-shaped sacculus in vegetative cells. The sacculus was degraded during the transition from vegetative cells to glycerol-induced myxospores. The spherical, bag-shaped coats isolated from glycerol-induced spores contained no detectable muropeptides, but they contained small amounts of N-acetylmuramic acid and meso-diaminopimelic acid.
Collapse
|
50
|
Jang HJ, Nde C, Toghrol F, Bentley WE. Microarray analysis of toxicogenomic effects of ortho-phenylphenol in Staphylococcus aureus. BMC Genomics 2008; 9:411. [PMID: 18793396 PMCID: PMC2562396 DOI: 10.1186/1471-2164-9-411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/15/2008] [Indexed: 12/02/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus), is responsible for many infectious diseases, ranging from benign skin infections to life-threatening endocarditis and toxic shock syndrome. Ortho-phenylphenol (OPP) is an antimicrobial agent and an active ingredient of EPA-registered disinfectants with wide human exposure in various agricultural, hospital and veterinary disinfectant products. Despite many uses, an understanding of a cellular response to OPP and it's mechanism of action, targeted genes, and the connectivity between targeted genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of S. aureus when exposed to 0.82 mM of OPP for 20 and 60 min. Our data indicated that OPP downregulated the biosynthesis of many amino acids, which are required for protein synthesis. In particular, the genes encoding the enzymes of the diaminopimelate (DAP) pathway which results in lysine biosynthesis were significantly downregualted. Intriguingly, we revealed that the transcription of genes encoding ribosomal proteins was upregulated by OPP and at the same time, the genes encoding iron acquisition and transport were downregulated. The genes encoding virulence factors were upregulated and genes encoding phospholipids were downregulated upon 20 min exposure to OPP. Conclusion By using microarray analysis that enables us to simultaneously and globally examine the complete transcriptome during cellular responses, we have revealed novel information regarding the mode of action of OPP on Staphylococcus: OPP inhibits anabolism of many amino acids and highly downregulates the genes that encode the enzymes involved in the DAP pathway. Lysine and DAP are essential for building up the peptidoglycan cell wall. It was concluded that the mode of action of OPP is similar to the mechanism of action of some antibiotics. The discovery of this phenomenon provides useful information that will benefit further antimicrobial research on S. aureus.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|