1
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Sun S, Dong H, Yan T, Li J, Liu B, Shao P, Li J, Liang C. Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:139. [PMID: 32600280 PMCID: PMC7325168 DOI: 10.1186/s12881-020-01073-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Background Published studies present conflicting data regarding the impact of Thrombospondin-1 (TSP-1) expression on prognosis of various cancers. We performed this meta-analysis to illustrate the preliminary predictive value of TSP-1. Methods Twenty-four studies with a total of 2379 patients were included. A comprehensive literature search was performed by using PubMed, Cochrane Library, Web of Science, Embase, and hand searches were also conducted of relevant bibliographies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were initially identified to explore relationships between TSP-1 expression and patient prognosis. Results A total of 24 eligible studies were included in this meta-analysis. Our results showed that high level of TSP-1 was correlated significantly with poor overall survival (OS) (HR = 1.40, 95% CI: 1.17 ~ 1.68; P<0.001). However, high TSP-1 expression predicted no significant impact on progression-free survival (PFS)/ metastasis-free survival (MFS) (HR = 1.35, 95%CI: 0.87–2.10; P = 0.176) and disease-free survival (DFS)/ recurrence-free survival (RFS) (HR = 1.40, 95%CI: 0.77–2.53; P = 0.271). In addition, we performed subgroup analyses which showed that high TSP-1 expression predicted poor prognosis in breast cancer and gynecological cancer. Additionally, the relatively small number of studies on PFS/MFS and DFS/RFS is a limitation. The data extracted through Kaplan-Meier curves may not be accurate. Moreover, only English articles were included in this article, which may lead to deviations in the results. Conclusions Our findings indicated high TSP-1 expression may act as a promising biomarker of poor prognosis in cancers, especially in breast cancer and gynecological cancer.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zhou XQ, Ren J, Yang S. [Relationship between thrombospondin-1 and the occurrence and development of oral and maxillofacial malignancy]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:686-690. [PMID: 30593119 DOI: 10.7518/hxkq.2018.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thrombospondin-1 (TSP-1) is widely distributed in human tissues and is important in inhibiting angiogenesis.It also occupies an indispensable position in the formation, growth, differentiation, and metastasis of tumors in different tissues.TSP-1 plays an important role in the occurrence and development of various types of tumors. The inhibitory effect of TSP-1 on the angiogenesis and tumor development of oral and maxillofacial malignant tumors has been demonstrated in recent years. This paper reviews the findings and progress of TSP-1 research involving all kinds of tumors as well as oral and maxillofacial malignancies.
Collapse
Affiliation(s)
- Xue-Qin Zhou
- Graduate School, Zunyi Medical University, Zunyi 563000, China;Dept. of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining 629000, China
| | - Jun Ren
- Graduate School, Zunyi Medical University, Zunyi 563000, China;Dept. of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining 629000, China
| | - Sen Yang
- Graduate School, Zunyi Medical University, Zunyi 563000, China;Dept. of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining 629000, China
| |
Collapse
|
4
|
Chen L, Yang J, Xing Z, Yuan F, Shu Y, Zhang Y, Kong X, Huang T, Li H, Cai YD. An integrated method for the identification of novel genes related to oral cancer. PLoS One 2017; 12:e0175185. [PMID: 28384236 PMCID: PMC5383255 DOI: 10.1371/journal.pone.0175185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer is a significant public health problem worldwide. Complete identification of genes related to one type of cancer facilitates earlier diagnosis and effective treatments. In this study, two widely used algorithms, the random walk with restart algorithm and the shortest path algorithm, were adopted to construct two parameterized computational methods, namely, an RWR-based method and an SP-based method; based on these methods, an integrated method was constructed for identifying novel disease genes. To validate the utility of the integrated method, data for oral cancer were used, on which the RWR-based and SP-based methods were trained, thereby building two optimal methods. The integrated method combining these optimal methods was further adopted to identify the novel genes of oral cancer. As a result, 85 novel genes were inferred, among which eleven genes (e.g., MYD88, FGFR2, NF-κBIA) were identified by both the RWR-based and SP-based methods, 70 genes (e.g., BMP4, IFNG, KITLG) were discovered only by the RWR-based method and four genes (L1R1, MCM6, NOG and CXCR3) were predicted only by the SP-based method. Extensive analyses indicate that several novel genes have strong associations with cancers, indicating the effectiveness of the integrated method for identifying disease genes.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, People’s Republic of China
| | - Jing Yang
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - Zhihao Xing
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Yang Shu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - YunHua Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - XiangYin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- * E-mail: (TH); (HPL); (YDC)
| | - HaiPeng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- * E-mail: (TH); (HPL); (YDC)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
- * E-mail: (TH); (HPL); (YDC)
| |
Collapse
|
5
|
Jyothsna M, Rammanohar M, Kumar K. Histomorphometric Analysis of Angiogenesis using CD31 Immunomarker and Mast Cell Density in Oral Premalignant and Malignant Lesions: A Pilot Study. J Clin Diagn Res 2017; 11:ZC37-ZC40. [PMID: 28274041 DOI: 10.7860/jcdr/2017/23870.9179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Mast cells have been implicated in promoting angiogenesis in malignant tumors of lung, oesophagus and breast, but there are few studies on Oral Squamous Cell Carcinomas (OSCC). Most oral squamous cell carcinomas arise from pre-existing precancerous lesions exhibiting epithelial dysplasia. AIM The present pilot study attempts to compare Mast Cell Density (MCD), Microvessel Density (MVD), Microvessel Area (MVA) histomorphometrically between normal buccal mucosa, severe epithelial dysplasia and OSCC and to correlate the role of mast cells and angiogenesis in tumor progression. MATERIAL AND METHODS The retrospective study was conducted on eight cases of OSCC, eight cases of severe epithelial dysplasia and five cases of normal buccal mucosa. Immunohistochemical staining with anti CD-31, to demonstrate angiogenesis and toluidine blue staining for mast cells were employed. MVA, MVD and MCD were calculated using the measurement tools of the image analysis software and compared between the groups. One way ANOVA (Analysis of Variance) was used for comparing the parameter for multiple groups followed by Games Howell test. To assess the relationship between micro vessel density and mast cell density, Karl Pearson's correlation was used. RESULTS MCD and MVD increased with disease progression and were statistically higher in OSCC than in severe epithelial dysplasia and normal buccal mucosa (p<0.001). MVA increased from normal to severe dysplasia and decreased from dysplasia to OSCC, may be due to revascularization of tumor tissue. A positive correlation was observed between MCD and MVD in OSCC and dysplasia, though were not statistically significant. CONCLUSION These findings suggest that mast cells may up regulate angiogenesis in OSCC. MCD and MVD may be used as indicators for disease progression.
Collapse
Affiliation(s)
- M Jyothsna
- Associate Professor, Department of Oral Pathology, Government Dental College and Hospital , Vijayawada, Andra Pradesh, India
| | - M Rammanohar
- Ex-Professor, Department of Oral Pathology, Educare Institute of Dental Sciences , Malappuram, Kerala, India
| | - Kiran Kumar
- Associate Professor, Department of Oral Pathology, SDM College of Dental Sciences and Hospital , Dharwad, Karnataka, India
| |
Collapse
|
6
|
Pal SK, Nguyen CTK, Morita KI, Miki Y, Kayamori K, Yamaguchi A, Sakamoto K. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med 2016; 45:730-739. [PMID: 26850833 DOI: 10.1111/jop.12430] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND THBS1 (thrombospondin-1) is the extracellular matrix (ECM) protein that affects diverse cellular activities. It constitutes the tumor stroma, but the role of THBS1 in oral squamous cell carcinoma (OSCC) development is unclear. The aim of this study was to clarify the relevance of THBS1 in the pathogenesis of OSCC. MATERIALS AND METHODS The expression of THBS1 was examined in 44 OSCC by immunohistochemical analysis and in 43 OSCC by cDNA microarray analysis. Cell culture experiments were conducted using human OSCC cell lines HSC3 and HO1N1 and mouse fibroblast ST2 cells to examine the effect of TGFB1 on THBS1 expression, and the effect of THBS1 on cellular behaviors. RESULTS THBS1 was specifically induced in the tumor microenvironment of OSCC. THBS1 appeared to be produced mainly by the stromal cells, but also by OSCC cells. TGFB1 stimulated THBS1 expression in ST2, primary fibroblasts, and the OSCC cells. THBS1 promoted migration and invasion of HSC3 and HO1N1 in transwell migration assays. THBS1 stimulated the expression of MMP3 (matrix metalloprotease 3), MMP9, MMP11, and MMP13 in ST2 cells and MMP3, MMP11, and MMP13 in HO1N1 cells. The RGD peptide suppressed the THBS1-stimulated migration and upregulation of MMP11 and MMP13. CONCLUSIONS THBS1 is a tumor-specific ECM protein that is induced by TGFB1 and promotes migration of cancer cells and stimulates the expression of MMPs partly through the integrin signaling, thereby favoring OSCC invasion.
Collapse
Affiliation(s)
- Samir Kumar Pal
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-Ichi Morita
- Department of Oral Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshio Miki
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Nassar AF, Williams BJ, Yaworksy DC, Patel V, Rusling JF. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry. Proteomics Clin Appl 2016; 10:280-9. [DOI: 10.1002/prca.201500025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/19/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ala. F. Nassar
- Department of Internal Medicine, School of Medicine; Yale University; New Haven CT USA
- Department of Chemistry; University of Connecticut; Storrs CT USA
| | | | | | - Vyomesh Patel
- Cancer Research Initiatives Foundation (CARF); Sime Darby Medical Centre; Subang Jaya Malaysia
| | - James F. Rusling
- Department of Chemistry; University of Connecticut; Storrs CT USA
- Neag Comprehensive Cancer Center; University of Connecticut Health Center; Farmington CT USA
- Department of Cell Biology; University of Connecticut Health Center; Farmington CT USA
- Institute of Material Science; University of Connecticut; Storrs CT USA
- School of Chemistry; National University of Ireland; Galway Ireland
| |
Collapse
|
8
|
Kalungi S, Wabinga H, Bostad L. Expression of apoptosis associated proteins Survivin, Livin and Thrombospondin-1 in Burkitt lymphoma. APMIS 2012; 121:239-45. [DOI: 10.1111/j.1600-0463.2012.02962.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - Henry Wabinga
- Department of Pathology; Makerere University College of Health Sciences; Kampala; Uganda
| | | |
Collapse
|
9
|
Extracellular matrix proteins and tumor angiogenesis. JOURNAL OF ONCOLOGY 2010; 2010:586905. [PMID: 20671917 PMCID: PMC2910498 DOI: 10.1155/2010/586905] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 05/26/2010] [Indexed: 01/09/2023]
Abstract
Tumor development is a complex process that relies on interaction and communication
between a number of cellular compartments. Much of the mass of a solid tumor is comprised of
the stroma which is richly invested with extracellular matrix. Within this matrix are a host of
matricellular proteins that regulate the expression and function of a myriad of proteins that
regulate tumorigenic processes. One of the processes that is vital to tumor growth and
progression is angiogenesis, or the formation of new blood vessels from preexisting vasculature.
Within the extracellular matrix are structural proteins, a host of proteases, and resident pro- and
antiangiogenic factors that control tumor angiogenesis in a tightly regulated fashion. This paper discusses the role that the extracellular matrix and ECM proteins play in the regulation of tumor angiogenesis.
Collapse
|
10
|
Reynolds AR. Potential relevance of bell-shaped and u-shaped dose-responses for the therapeutic targeting of angiogenesis in cancer. Dose Response 2010; 8:253-84. [PMID: 20877487 DOI: 10.2203/dose-response.09-049.reynolds] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor angiogenesis, the growth of new blood vessels into tumors, facilitates tumor growth and thus represents an attractive therapeutic target. Numerous experimental angiogenesis inhibitors have been characterised and subsequently trialled in patients. Some of these agents have failed to show any substantial activity in patients. In contrast, others have been more successful, but even these provide only a few months extra patient survival. Recent work has focused on understanding the effects of anti-angiogenic agents on tumor biology and has revealed a number of new findings that may help to explain the limited efficacy of angiogenesis inhibitors. Herein, I review the evidence that hormetic dose-responses (i.e. bell-shaped and U-shaped dose-response curves) are often observed with anti-angiogenic agents. Agents reported to exhibit these types of dose-response include: 5-fluorouracil, ATN-161, bortezomib, cisplatin, endostatin, enterostatin, integrin inhibitors, interferon-α, plasminogen activator-1 (PAI-1), rapamycin, rosiglitazone, statins, thrombospondin-1, TGF-α1 and TGF-α3. Hormesis may also be relevant for drugs that target the vascular endothelial growth factor (VEGF) signalling pathway and for metronomic chemotherapy. Here I argue that hormetic dose-responses present a challenge for the clinical translation of several anti-angiogenic agents and discuss how these problems might be circumvented.
Collapse
Affiliation(s)
- Andrew R Reynolds
- Tumor Angiogenesis Group, The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, U.K
| |
Collapse
|
11
|
Kim SO, Choi YH. The ethyl alcohol extract of Hizikia fusiforme inhibits matrix metalloproteinase activity and regulates tight junction related protein expression in Hep3B human hepatocarcinoma cells. J Med Food 2010; 13:31-8. [PMID: 20136433 DOI: 10.1089/jmf.2009.1233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We tested the correlation between the tightness of tight junctions (TJs) and the anti-invasive activity of the ethyl alcohol extract of Hizikia fusiforme (EHF) in Hep3B human hepatocarcinoma cells. EHF inhibited cell proliferation, motility, and invasiveness, which were associated with increased TJ tightness, as demonstrated by an increase in transepithelial electrical resistance. EHF dose-dependently decreased the secretion of matrix metalloprotease-2 and -9, which correlated with a decrease in mRNA and protein expression, but increased tissue inhibitor of metalloproteinase-1 and -2 mRNA levels. Additionally, immunoblotting results indicated that EHF suppressed the major components of TJ, claudins (-1, -3, and -4), which play a key role in the control and selectivity of paracellular transport. These data indicate that EHF may inhibit cancer cell invasion through the tightening of TJs, which may counteract the up-regulation of claudins. Furthermore, EHF treatment decreased the expression of insulin-like growth factor-1 receptor proteins, while concurrently increasing that of thrombospondin-1 and E-cadherin. In conclusion, these results suggest that EHF treatment may inhibit tumor metastasis and invasion and therefore act as a dietary resource for decreasing the risk of developing cancer.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Biomaterial Control (BK21 Program), Dongeui University Graduate School, Busan, Republic of Korea
| | | |
Collapse
|
12
|
Anti-invasive Activity of Human Breast Carcinoma Cells by Genistein through Modulation of Tight Junction Function. ACTA ACUST UNITED AC 2009. [DOI: 10.5352/jls.2009.19.9.1200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Chi LM, Lee CW, Chang KP, Hao SP, Lee HM, Liang Y, Hsueh C, Yu CJ, Lee IN, Chang YJ, Lee SY, Yeh YM, Chang YS, Chien KY, Yu JS. Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS. Mol Cell Proteomics 2009; 8:1453-74. [PMID: 19297561 PMCID: PMC2709179 DOI: 10.1074/mcp.m800460-mcp200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/09/2009] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) remains one of the most common cancers worldwide, and the mortality rate of this disease has increased in recent years. No molecular markers are available to assist with the early detection and therapeutic evaluation of OSCC; thus, identification of differentially expressed proteins may assist with the detection of potential disease markers and shed light on the molecular mechanisms of OSCC pathogenesis. We performed a multidimensional (16)O/(18)O proteomics analysis using an integrated ESI-ion trap and MALDI-TOF/TOF MS system and a computational data analysis pipeline to identify proteins that are differentially expressed in microdissected OSCC tumor cells relative to adjacent non-tumor epithelia. We identified 1233 unique proteins in microdissected oral squamous epithelia obtained from three pairs of OSCC specimens with a false discovery rate of <3%. Among these, 977 proteins were quantified between tumor and non-tumor cells. Our data revealed 80 dysregulated proteins (53 up-regulated and 27 down-regulated) when a 2.5-fold change was used as the threshold. Immunohistochemical staining and Western blot analyses were performed to confirm the overexpression of 12 up-regulated proteins in OSCC tissues. When the biological roles of 80 differentially expressed proteins were assessed via MetaCore analysis, the interferon (IFN) signaling pathway emerged as one of the most significantly altered pathways in OSCC. As many as 20% (10 of 53) of the up-regulated proteins belonged to the IFN-stimulated gene (ISG) family, including ubiquitin cross-reactive protein (UCRP)/ISG15. Using head-and-neck cancer tissue microarrays, we determined that UCRP is overexpressed in the majority of cheek and tongue cancers and in several cases of larynx cancer. In addition, we found that IFN-beta stimulates UCRP expression in oral cancer cells and enhances their motility in vitro. Our findings shed new light on OSCC pathogenesis and provide a basis for the future development of novel biomarkers.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Databases, Protein
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Interferons/metabolism
- Male
- Microdissection
- Molecular Sequence Data
- Mouth Neoplasms/chemistry
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxygen Isotopes/metabolism
- Proteome/analysis
- Signal Transduction/physiology
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Tandem Mass Spectrometry/methods
- Tissue Array Analysis
Collapse
Affiliation(s)
- Lang-Ming Chi
- From the ‡Molecular Medicine Research Center
- Departments of §Medical Research and Development
| | | | | | | | | | - Ying Liang
- From the ‡Molecular Medicine Research Center
| | - Chuen Hsueh
- From the ‡Molecular Medicine Research Center
- ‖Pathology, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Chia-Jung Yu
- From the ‡Molecular Medicine Research Center
- **Department of Biochemistry and Molecular Biology, and
| | - I-Neng Lee
- From the ‡Molecular Medicine Research Center
| | | | | | - Yuan-Ming Yeh
- ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University and
| | - Yu-Sun Chang
- From the ‡Molecular Medicine Research Center
- ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University and
| | - Kun-Yi Chien
- From the ‡Molecular Medicine Research Center
- **Department of Biochemistry and Molecular Biology, and
| | - Jau-Song Yu
- From the ‡Molecular Medicine Research Center
- **Department of Biochemistry and Molecular Biology, and
| |
Collapse
|
14
|
Correlation between the expression of thrombospondin-1 and neovascularization in mucoepidermoid carcinoma. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200810010-00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Calvin DP, Hammond ME, Pajak TF, Trotti AM, Meredith RF, Rotman M, Jones CU, Byhardt RW, Demas WF, Ang KK, Fu KK. Microvessel density >or=60 does not predict for outcome after radiation treatment for locally advanced head and neck squamous cell carcinoma: results of a correlative study from the Radiation Therapy Oncology Group (RTOG) 90-03 Trial. Am J Clin Oncol 2007; 30:406-19. [PMID: 17762442 DOI: 10.1097/coc.0b013e3180342fd4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess whether microvessel density (MVD), an immunohistochemical marker for tumor vascularity, predicts for radiotherapy (RT) outcome in locally advanced HNSCC patients. METHODS A total of 459 patients, enrolled on the RTOG 90-03 trial, had biopsy specimens submitted, and a value for MVD determined, prior to definitive RT. 450 patients were analyzable for this study. Tumor microvessels were stained for factor VIII-related antigen using a standard immunoperoxidase method. The mean number of stained microvessel profiles, from three x200 fields containing the highest MVD (hot spot), was recorded as the MVD. A prospective value of >or=60 was chosen as the threshold for high MVD, tumor vascularity. RESULTS The median follow-up for the analyzable patients with MVD assessment was 22.0 months and 79.1 months for all living patients. There were no differences concerning the pretreatment characteristics between those RTOG 90-03 patients with a value for MVD and those without a value for MVD. Thus, the present study cohort possessed comparable characteristics with the entire RTOG 90-03 population. MVD values ranged from 5 to 80, with a median value of 30. Only 37 of 450 (8.2%) patients possessed an MVD >or=60. There were no outcome differences for patients with MVD <60 versus >or=60 on multivariate analysis for time to local-regional failure (P = 0.89), time to distant metastasis (P = 0.80), disease-free survival (P = 0.46), and overall survival (P = 0.39). CONCLUSIONS In this large, correlative study, a MVD >or=60, ie, high tumor vascularity, did not predict for outcome in locally advanced head and neck squamous cell carcinoma patients treated with radiotherapy.
Collapse
|
16
|
Kim SO, Kwon JI, Jeong YK, Kim GY, Kim ND, Choi YH. Induction of Egr-1 is associated with anti-metastatic and anti-invasive ability of beta-lapachone in human hepatocarcinoma cells. Biosci Biotechnol Biochem 2007; 71:2169-76. [PMID: 17827686 DOI: 10.1271/bbb.70103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
beta-lapachone, a quinone compound obtained from the bark of the lapacho tree (Tabebuia avellanedae), was reported to have anti-inflammatory and anti-cancer activities. In this study, we investigated novel functions of beta-lapachone in terms of anti-metastasis and anti-invasion abilities using human hepatocarcinoma cell lines, HepG2 and Hep3B. beta-lapachone dose-dependently inhibited cell viability and migration of both HepG2 and Hep3B cells, as determined by methylthiazoletetrazolium (MTT) assay and wound healing assay. RT-PCR and Western blot data revealed that beta-lapachone dramatically increased the levels of protein, as well as mRNA expression of early growth response gene-1 (Egr-1) and throbospondin-1 (TSP-1) at an early point in time, and then decreased in a time-dependent manner. In addition, down-regulation of Snail and up-regulation of E-cadherin expression were observed in beta-lapachone-treated HepG2 and Hep3B cells, and this the associated with decreased invasive ability as measured by matrigel invasion assay. Taken together, our results strongly suggest that beta-lapachone may be expected to inhibit the progression and metastasis of hepatoma cells, at least in part by inhibiting the invasive ability of the cells via up-regulation of the expression of the Egr-1, TSP-1, and E-cadherin.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Biomaterial Control (BK21 Program), Dongeui University Graduate School, Dongeui University College of Oriental Medicine, Busan 614-052, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Co-expression of angiogenic markers and associations with prognosis in advanced epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2007; 106:221-32. [PMID: 17481705 DOI: 10.1016/j.ygyno.2007.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/21/2007] [Accepted: 03/23/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study was to explore the co-expression and prognostic relevance of thrombospondin-1 (THBS-1), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR-1) in epithelial ovarian cancer (EOC). METHODS Frozen tumor specimens with defined p53 status were obtained from 67 patients with previously untreated advanced-stage EOC who participated in a Gynecologic Oncology Group specimen-banking protocol and a phase III treatment protocol. Relative expression of the angiogenic markers was quantified by immunoblot analysis and categorized at the median angiogenic marker/actin ratio. p-values are provided as an indication of confidence in the results and to prioritize further testing. RESULTS An association was observed between categorized VEGF and p53 overexpression (p=0.022), and between VEGFR-1 and race (p=0.027) or histologic subtype (p=0.007). Unadjusted Cox regression analyses indicated that high compared with low THBS-1, but not VEGF or VEGFR-1, was associated with an increased risk of disease progression (hazard ratio [HR]=2.19; 95% confidence interval [CI]=1.29-3.71; p=0.004) and death (HR=1.93; 95% CI=1.12-3.32; p=0.018) whereas bFGF was associated with a reduced risk of disease progression (HR=0.60; 95% CI=0.36-0.99; p=0.046) and death (HR=0.54; 95% CI=0.32-0.93; p=0.026). After adjusting for prognostic factors including clinical characteristics and p53 overexpression, THBS-1 but not bFGF, VEGF or VEGFR-1 was associated with progression-free and overall survival. CONCLUSIONS These data suggest that high THBS-1 is an independent predictor of worse progression-free and overall survival in women with advanced-stage EOC. A larger prospective study is warranted for validation of these findings.
Collapse
|
18
|
Kopp HG, Hooper AT, Broekman MJ, Avecilla ST, Petit I, Luo M, Milde T, Ramos CA, Zhang F, Kopp T, Bornstein P, Jin DK, Marcus AJ, Rafii S. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. J Clin Invest 2007; 116:3277-91. [PMID: 17143334 PMCID: PMC1679710 DOI: 10.1172/jci29314] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/24/2006] [Indexed: 11/17/2022] Open
Abstract
Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell-derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis.
Collapse
Affiliation(s)
- Hans-Georg Kopp
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Andrea T. Hooper
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - M. Johan Broekman
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Scott T. Avecilla
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Isabelle Petit
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Min Luo
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Till Milde
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Carlos A. Ramos
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Fan Zhang
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Tabitha Kopp
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Paul Bornstein
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - David K. Jin
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Aaron J. Marcus
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| | - Shahin Rafii
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University (WMCCU), New York, New York, USA.
Department of Hematology-Oncology, Eberhard-Karls University, Tubingen, Germany.
Divisions of Hematology/Medical Oncology, Medical and Research Service, VA New York Harbor Healthcare System, and Hematology/Medical Oncology, Department of Medicine, WMCCU, New York, New York, USA.
Department of Cell and Developmental Biology, WMCCU, New York, New York, USA.
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington, USA.
Department of Pathology and Laboratory Medicine, WMCCU, New York, New York, USA
| |
Collapse
|
19
|
Macluskey M, Baillie R, Morrow H, Schor SL, Schor AM. Extraction of RNA from archival tissues and measurement of thrombospondin-1 mRNA in normal, dysplastic, and malignant oral tissues. Br J Oral Maxillofac Surg 2006; 44:116-23. [PMID: 15908066 DOI: 10.1016/j.bjoms.2005.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 03/03/2005] [Indexed: 11/21/2022]
Abstract
Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein implicated in the regulation of angiogenesis and tumour development. Our objectives were to ascertain the quantity and quality of RNA extracted from archival, formalin-fixed, paraffin embedded, oral tissues and their application in measuring the concentrations of TSP-1 mRNA in these tissues. We compared three techniques of isolation of RNA as well as related experimental variables. TSP-1 mRNA was measured in specimens of normal, dysplastic, and malignant oral tissues by real-time reverse transcriptase polymerase chain reaction (RT-PCR). RNA suitable for analysis by real-time RT-PCR was obtained by the three techniques tested, although the yield varied depending on the protocol used (range 0.2-3.6 microg/mm(3)). The mean (S.D.) concentrations of TSP-1 mRNA relative to 18S were 21.1 (7.2) in normal oral tissues (n=9), 11.0 (8.2) in dysplastic tissue (n=8) and 7.3 (5.3) in carcinomatous tissue (n=17). The difference between normal and carcinomatous specimens was significant (p=0.01). This reduction in expression of TSP-1 mRNA from normal to dysplasia to carcinoma may favour the angiogenic drive that accompanies the development of oral tumours.
Collapse
Affiliation(s)
- M Macluskey
- Unit of Cell and Molecular Biology, Dental School, University of Dundee, Park Place, Dundee DD1 4HR, UK
| | | | | | | | | |
Collapse
|
20
|
Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta Rev Cancer 2005; 1765:178-88. [PMID: 16406676 DOI: 10.1016/j.bbcan.2005.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/27/2005] [Accepted: 11/28/2005] [Indexed: 01/11/2023]
Abstract
Angiogenesis plays a critical role in the growth and metastasis of tumors. Thrombospondin-1 (TSP-1) is a potent angiogenesis inhibitor, and down-regulation of TSP-1 has been suggested to alter tumor growth by modulating angiogenesis in a variety of tumor types. Expression of TSP-1 is up-regulated by the tumor suppressor gene, p53, and down-regulated by oncogenes such as Myc and Ras. TSP-1 inhibits angiogenesis by inhibiting endothelial cell migration and proliferation and by inducing apoptosis. In addition, activation of transforming growth factor beta (TGF-beta) by TSP-1 plays a crucial role in the regulation of tumor progression. An understanding of the molecular basis of TSP-1-mediated inhibition of angiogenesis and tumor progression will aid in the development of novel therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
21
|
Moon Y, Bottone FG, McEntee MF, Eling TE. Suppression of tumor cell invasion by cyclooxygenase inhibitors is mediated by thrombospondin-1 via the early growth response geneEgr-1. Mol Cancer Ther 2005; 4:1551-8. [PMID: 16227405 DOI: 10.1158/1535-7163.mct-05-0213] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase (COX) inhibitors have antitumorigenic activity and increase the expression of the early growth response gene Egr-1, a tumor suppressor gene and transcription factor. In this study, we have investigated the gene regulatory and anti-invasive activity of two traditional nonsteroidal anti-inflammatory drugs (NSAID), sulindac sulfide and indomethacin. These compounds inhibited tumor cell invasion and induced Egr-1 expression in lung adenocarcinoma A549 cells. Overexpression of Egr-1 reduced cellular invasion in the Matrigel system, whereas suppression of Egr-1 by small interference RNA (siRNA) attenuated the inhibition of Matrigel invasion by these compounds, indicating that Egr-1 is responsible for the decrease in invasion reported following treatment with NSAIDs. Egr-1-overexpressing cells were analyzed for genes involved in invasion and metastasis. Thrombospondin-1 (TSP-1) an antiangiogenic and anti-invasion protein was up-regulated by Egr-1 overexpression, which was confirmed following treatment with sulindac sulfide. Furthermore, the induction of TSP-1 by sulindac sulfide was blocked by Egr-1 siRNA. When TSP-1 was sequestered by the addition of anti-TSP-1 antibody, the inhibition of invasion by sulindac sulfide was attenuated, indicating that TSP-1 is involved in the inhibition of invasion by NSAIDs. We used the Min mouse model to determine if sulindac sulfide would increase Egr-1 and TSP-1 in vivo, because this model is widely used to study the effects of NSAIDs on tumor formation. Treatment of Min mice with concentrations of sulindac sulfide that inhibit tumor formation increased the expression of Egr-1 and TSP-1 in colonic tissues and in the polyps of these mice. This is the first report suggesting that COX inhibitors suppress tumor cell invasion via TSP-1, which occurs downstream of Egr-1.
Collapse
Affiliation(s)
- Yuseok Moon
- Eicosanoid Biochemistry Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
22
|
Tringler B, Grimm C, Sliutz G, Leodolter S, Speiser P, Reinthaller A, Hefler LA. Immunohistochemical expression of thrombospondin-1 in invasive vulvar squamous cell carcinoma. Gynecol Oncol 2005; 99:80-3. [PMID: 16009408 DOI: 10.1016/j.ygyno.2005.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Thrombospondin-1 (TSP-1) is a multifunctional matricellular glycoprotein involved in several mechanisms critical to the formation and progression of solid tumors including cell adhesion, proliferation, migration, invasion, and angiogenesis. The present study was designed to investigate the expression of TSP-1 in invasive vulvar squamous cell carcinoma. METHODS A total of 75 invasive vulvar squamous cell carcinomas were evaluated for TSP-1 expression by immunohistochemistry. Results were correlated with the clinicopathologic parameters including tumor stage, groin lymph node status, tumor grade, patient's age, patients' disease-free, and overall survival. RESULTS TSP-1 expression was detected in 35/75 (46.7%) specimens of invasive vulvar squamous cell carcinomas. The expression of TSP-1 was generally localized to the cytoplasm and occasionally seen in the nucleus. An increased TSP-1 expression was detected in patients with an advanced tumor stage (P = 0.01) and a positive groin lymph nodes status (P = 0.01). Tumor stage and groin lymph node status were associated with patients' disease-free and overall survival. All other parameters failed to be of prognostic significance. CONCLUSIONS We are the first to report on the immunohistochemical expression of TSP-1 in invasive vulvar squamous cell carcinoma. Increased TSP-1 expression was associated with an advanced tumor stage and a positive groin lymph node status, suggesting its pro-angiogenic potential in vulvar carcinogenesis.
Collapse
Affiliation(s)
- Barbara Tringler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang J, Ito R, Oue N, Zhu X, Kitadai Y, Yoshida K, Nakayama H, Yasui W. Expression of thrombospondin-1 is correlated with microvessel density in gastric carcinoma. Virchows Arch 2003; 442:563-8. [PMID: 12719977 DOI: 10.1007/s00428-003-0810-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 02/18/2003] [Indexed: 10/25/2022]
Abstract
Thrombospondin-1 (TSP-1) has been shown to play a role in angiogenesis in a variety of cancers, but some studies indicated a difference in the mechanism of TSP-1 on neovascularization according to organ or histological type. Wild-type p53 protein has been shown to induce TSP-1 expression. We examined the expression of TSP-1 protein in 80 gastric carcinomas using immunohistochemistry and studied the relationship with microvessel counts, p53 expression and clinicopathological factors. We also performed reverse-transcriptase polymerase chain reaction analysis for the TSP-1 mRNA expression in gastric carcinoma cell lines and gastric cancer tissue after laser capture microdissection. Strong expression of TSP-1 protein was detected in 30 (38%) of the 80 cases. Positive staining for TSP-1 was seen in the cytoplasm of the cancer cells. TSP-1 mRNA expression was confirmed in a majority of gastric carcinoma cell lines and carcinoma tissues. Microvessel counts were significantly higher in tumors with strong TSP-1 protein expression than in those without expression or weak expression of TSP-1 ( P=0.011). No significant correlation was found between TSP-1 expression and p53 staining and clinicopathological factors. Our results support an idea that increased TSP-1 expression may be associated with an angiogenic phenotype in gastric carcinoma and suggest that TSP-1 may play diverse roles in each organ.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, 734-8551, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Thymidine phosphorylase (TP), as an enzyme involved in DNA synthesis, catalyzes the reversible conversion of thymidine to thymine. It is also identical to the angiogenic factor, platelet-derived endothelial cell growth factor. We examined TP expression using immunohistochemistry in 66 archival samples obtained from the patients with primary oral squamous cell carcinoma (SCC) and investigated its relation to tumor vascularity, cell proliferation, apoptosis, clinicopathological features and survival. TP expression was identified in cytonucleus and/or cytoplasm in carcinomas, but was not identified in histologically normal epithelia distant to tumor in most cases. No significant difference of microvessel density (MVD) was found between the carcinomas with high TP expression (H-TP) and low TP expression (L-TP). The percentages of proliferative cells marked by Ki-67 staining in H-TP carcinomas was significantly higher than that in L-TP carcinomas (P=0.0222). The apoptotic indice (AI) in H-TP carcinomas tended to be lower than that in L-TP carcinomas (P=0.0723). Moreover, the level of TP expression was significantly correlated the pattern of tumor invasion (P=0.0146) and marginally correlated with lymph nodal metastasis (P=0.0804). Our results suggested that TP enzyme may play a role in promotion of tumor growth in oral SCC, and that its expression can be indicative of tumor aggressiveness in this tumor type.
Collapse
Affiliation(s)
- Li Yao
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630-Sugitani, Toyama, Japan.
| | | | | |
Collapse
|
25
|
Abstract
Thrombospondin-1 (TSP-1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP-1. However, the TSP-1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP-1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor beta in those tumor cells that are responsive to TGF beta. In this review, the molecular basis for the role of TSP-1 in the inhibition of tumor growth and angiogenesis is summarized.
Collapse
Affiliation(s)
- Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|