1
|
Xu B, Zheng C, Sun T, Wu Y, He M, Chen W, Zhang P, Jiang H. Beneficial effects of triadimefon in overcoming drought stress in soybean at fluorescence stage. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154015. [PMID: 37301038 DOI: 10.1016/j.jplph.2023.154015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max [L.] Merr.) at fluorescence stage frequently experiences drought stress. Although triadimefon has been observed to improve drought tolerance of plants, reports on its role in drought resistance on leaf photosynthesis and assimilate transport are limited. This study examined the effects of triadimefon on leaf photosynthesis and assimilate transport at fluorescence stage of soybean experiencing drought stress. Results showed that triadimefon application relieved the inhibitory effects of drought stress on photosynthesis and increased RuBPCase activity. Drought increased soluble sugar contents, yet reduced starch content in the leaves by heightening the activities of sucrose phosphate synthase (SPS), fructose-1,6-bisphosphatase (FBP), invertase (INV), and amylolytic enzyme, impeding the translocation of carbon assimilates to roots and reducing plant biomass. Nevertheless, triadimefon elevated starch content and minimized sucrose degradation by augmenting sucrose synthase (SS) activity and restraining the activities of SPS, FBP, INV, and amylolytic enzyme compared with drought alone, regulating the carbohydrate balance of drought-stressed plants. Therefore, triadimefon application could reduce the photosynthesis inhibition and regulate the carbohydrate balance of drought-stressed soybean plants to lessen the impacts of drought on soybean biomass.
Collapse
Affiliation(s)
- Bingjie Xu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chonglan Zheng
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China; Liangshan Yi Aotonomous Prefecture Academy of Forestry and Grassland Sciences, 615000, PR China
| | - Ting Sun
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingjie He
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiping Chen
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Pei Zhang
- Jiangsu Meteorological Bureau, Nanjing, 210008, PR China.
| | - Haidong Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
2
|
Guo R, Zhou J, Zhong X, Gu F, Liu Q, Li H. Effect of simulated warming on the functional traits of Leymus chinensis plant in Songnen grassland. AOB PLANTS 2019; 11:plz073. [PMID: 32010438 PMCID: PMC6986685 DOI: 10.1093/aobpla/plz073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Leymus chinensis grassland in Northeast China provides a natural laboratory for the investigation of climate change. The response of L. chinensis to experimental warming can provide insight into its regeneration behaviour and the likely composition of future communities under warmer climate. We used MSR-2420 infrared radiators to elevate temperature and examined soil organic carbon and nitrogen and soil total phosphorus and determined the growth and physiology of L. chinensis in response to manipulations of ambient condition and warming. Results showed that compared with the control, L. chinensis subjected to warming treatment showed increased soil organic carbon and soil total nitrogen, but no significant difference was observed in soil total phosphorus. Climate warming increased shoot biomass, ecosystem respiration, and ecosystem water-use efficiency and reduced net ecosystem CO2 exchange and evapotranspiration. This result implies that warming could rapidly alter carbon fluxes. The effect of warming treatment significantly increased the contents of glucose and fructose and significantly inhibited sucrose synthesis. However, the TCA cycle was enhanced when citric and malic acid contents further accumulated. The results implied that L. chinensis probably enhanced its warming adaption mechanism mainly through increasing glycolysis consumption when it was exposed to elevated temperature. These results provide an understanding of the fundamental evidence explaining the primary metabolism of L. chinensis in response to warming and suggest the future impact of the terrestrial carbon-cycle feedback on global climate change.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ji Zhou
- Land Consolidation and Rehabilitation Centre, Ministry of Natural Resources of the People’s Republic of China, Beijing, P.R. China
| | - Xiuli Zhong
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Fengxue Gu
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Qi Liu
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haoru Li
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Salinas P, Salinas C, Contreras RA, Zuñiga GE, Dupree P, Cardemil L. Water deficit and abscisic acid treatments increase the expression of a glucomannan mannosyltransferase gene (GMMT) in Aloe vera Burm. F. PHYTOCHEMISTRY 2019; 159:90-101. [PMID: 30605853 DOI: 10.1016/j.phytochem.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
The main polysaccharide of the gel present in the leaves of or Aloe vera Burm.F., (Aloe barbadensis Miller) a xerophytic crassulacean acid metabolism (CAM) plant, is an acetylated glucomannan named acemannan. This polysaccharide is responsible for the succulence of the plant, helping it to retain water. In this study we determined using polysaccharide analysis by carbohydrate gel electrophoresis (PACE) that the acemannan is a glucomannan without galactose side branches. We also investigated the expression of the gene responsible for acemannan backbone synthesis, encoding a glucomannan mannosyltransferase (GMMT, EC 2.4.1.32), since there are no previous reports on GMMT expression under water stress in general and specifically in Aloe vera. It was found by in silico analyses that the GMMT gene belongs to the cellulose synthase-like A type-9 (CSLA9) subfamily. Using RT-qPCR it was found that the expression of GMMT increased significantly in Aloe vera plants subjected to water stress. This expression correlates with an increase of endogenous ABA levels, suggesting that the gene expression could be regulated by ABA. To corroborate this hypothesis, exogenous ABA was applied to non-water-stressed plants, resulting in a significant increase of GMMT expression after 48 h of ABA treatment.
Collapse
Affiliation(s)
- Pamela Salinas
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Carlos Salinas
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Rodrigo A Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Gustavo E Zuñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, UK
| | - Liliana Cardemil
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile.
| |
Collapse
|
4
|
|
5
|
Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels. Front Bioeng Biotechnol 2015; 3:182. [PMID: 26636072 PMCID: PMC4646955 DOI: 10.3389/fbioe.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels.
Collapse
Affiliation(s)
- Nam V. Hoang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Blake A. Simmons
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
6
|
Muthamilarasan M, Khan Y, Jaishankar J, Shweta S, Lata C, Prasad M. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering. FRONTIERS IN PLANT SCIENCE 2015; 6:965. [PMID: 26583030 PMCID: PMC4631826 DOI: 10.3389/fpls.2015.00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 05/08/2023]
Abstract
Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si) is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl), callose (Gsl) and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD) and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2, and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.
Collapse
Affiliation(s)
| | - Yusuf Khan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Shweta Shweta
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Charu Lata
- Division of Plant-Microbe Interactions, CSIR-National Botanical Research InstituteLucknow, India
| | - Manoj Prasad
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
7
|
Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. J Proteomics 2015; 128:113-22. [PMID: 26244907 DOI: 10.1016/j.jprot.2015.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 12/23/2022]
Abstract
The midrib of maize leaves provides the primary support for the blade and is largely associated with leaf angle size. To elucidate the role of the midrib in leaf angle formation, the maize line Shen137 (larger leaf angle) and a near isogenic line (NIL, smaller leaf angle) were used in the present study. The results of the analysis showed that both the puncture forces and proximal collenchyma number of the midribs of the first and second leaves above the ear were higher in NIL than in Shen137. Comparative proteomic analysis was performed to reveal protein profile differences in the midribs of the 5th, 10th and 19th newly expanded leaves between Shen137 and NIL. Quantitative analysis of 24 identified midrib proteins indicated that the maximum changes in abundance of 22 proteins between Shen137 and NIL appeared at the 10th leaf stage, of which phosphoglycerate kinase, adenosine kinase, fructose-bisphosphate aldolase and adenylate kinase were implicated in glycometabolism. Thus, glycometabolism might be associated with leaf angle formation and the physical and mechanical properties of the midribs. These results provide insight into the mechanism underlying maize leaf angle formation.
Collapse
|
8
|
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 2015; 5:11166. [PMID: 26058368 PMCID: PMC4461920 DOI: 10.1038/srep11166] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23-47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
9
|
Sager R, Lee JY. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6337-58. [PMID: 25262225 PMCID: PMC4303807 DOI: 10.1093/jxb/eru365] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways.
Collapse
Affiliation(s)
- Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
10
|
Sanju S, Thakur A, Siddappa S, Sreevathsa R, Srivastava N, Shukla P, Singh BP. Pathogen virulence of Phytophthora infestans: from gene to functional genomics. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:165-77. [PMID: 24431484 PMCID: PMC3656195 DOI: 10.1007/s12298-012-0157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The oomycete, Phytophthora infestans, is one of the most important plant pathogens worldwide. Much of the pathogenic success of P. infestans, the potato late blight agent, relies on its ability to generate large amounts of sporangia from mycelia, which release zoospores that encyst and form infection structures. Until recently, little was known about the molecular basis of oomycete pathogenicity by the avirulence molecules that are perceived by host defenses. To understand the molecular mechanisms interplay in the pathogen and host interactions, knowledge of the genome structure was most important, which is available now after genome sequencing. The mechanism of biotrophic interaction between potato and P. infestans could be determined by understanding the effector biology of the pathogen, which is until now poorly understood. The recent availability of oomycete genome will help in understanding of the signal transduction pathways followed by apoplastic and cytoplasmic effectors for translocation into host cell. Finally based on genomics, novel strategies could be developed for effective management of the crop losses due to the late blight disease.
Collapse
Affiliation(s)
- Suman Sanju
- />Central potato Research Institute, Shimla, H.P India 171001
| | - Aditi Thakur
- />Central potato Research Institute, Shimla, H.P India 171001
| | | | - Rohini Sreevathsa
- />National Research Centre for Plant Biotechnology, IARI campus, Pusa, New Delhi—12, India
| | - Nidhi Srivastava
- />Department of Biosciences and Biotechnology, Banasthali University (Rajasthan), Tonk, India 304022
| | - Pradeep Shukla
- />Department of Biological Sciences, School of Basic Sciences, SHIATS, Naini, Allahabad, India 211007
| | - B. P. Singh
- />Central potato Research Institute, Shimla, H.P India 171001
| |
Collapse
|
11
|
Iyer PR, Liu YA, Deng Y, McManus JB, Kao TH, Tien M. Processing of cellulose synthase (AcsAB) from Gluconacetobacter hansenii 23769. Arch Biochem Biophys 2012; 529:92-8. [PMID: 23232080 DOI: 10.1016/j.abb.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/02/2012] [Indexed: 11/28/2022]
Abstract
The cellulose synthase protein (AcsAB) is encoded by a single gene in Gluconacetobacter hansenii ATCC 23769. We have examined the processing pattern of this enzyme and the localization of the cleavage products by heterologously expressing the truncated portions of the AcsAB protein and using specific antibodies generated against these regions. We found that the AcsAB protein is processed into three polypeptide subunits of molecular masses 46kDa, 34kDa and 95kDa. The 46kDa polypeptide (AcsA(cat)) harbors the conserved glycosyltransferase domain and hence contains the catalytic subunit of the enzyme. This polypeptide is localized in the cytoplasmic membrane. The 34kDa polypeptide (AcsA(reg)) is the regulatory subunit with the cyclic diGMP-binding PilZ domain. This polypeptide is largely cytoplasmic. The 95kDa subunit (AcsB) is of unknown function and contains a predicted signal peptide at its N-terminus. This subunit is localized in the outer membrane. In addition to this, we have also localized the AcsC protein in the outer membrane, confirming its predicted localization based on the OM-signal sequence at its N-terminus.
Collapse
Affiliation(s)
- Prashanti R Iyer
- Department of Biochemistry and Molecular Biology, 305 South Frear, University Park, The Pennsylvania State University, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall. PLoS One 2012; 7:e35846. [PMID: 22567114 PMCID: PMC3342304 DOI: 10.1371/journal.pone.0035846] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/26/2012] [Indexed: 01/28/2023] Open
Abstract
Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs.
Collapse
|
13
|
Abercrombie JM, O'Meara BC, Moffatt AR, Williams JH. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. EvoDevo 2011; 2:14. [PMID: 21722365 PMCID: PMC3146827 DOI: 10.1186/2041-9139-2-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/01/2011] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. RESULTS We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. CONCLUSION The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms.
Collapse
Affiliation(s)
- Jason M Abercrombie
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
| | | | | | | |
Collapse
|
14
|
A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genet Biol 2010; 47:499-510. [DOI: 10.1016/j.fgb.2010.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 02/20/2010] [Accepted: 02/28/2010] [Indexed: 02/05/2023]
|
15
|
Effects of Key Enzyme Activities in Sucrose Metabolism on Fiber Quality in High Quality Upland Cotton. ACTA AGRONOMICA SINICA 2009. [DOI: 10.3724/sp.j.1006.2008.01781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Burton RA, Collins HM, Fincher GB. The Role of Endosperm Cell Walls in Barley Malting Quality. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2009. [DOI: 10.1007/978-3-642-01279-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Brownfield L, Wilson S, Newbigin E, Bacic A, Read S. Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes. Biochem J 2008; 414:43-52. [PMID: 18462191 DOI: 10.1042/bj20080693] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The protein NaGSL1 (Nicotiana alata glucan synthase-like 1) is implicated in the synthesis of callose, the 1,3-beta-glucan that is the major polysaccharide in the walls of N. alata (flowering tobacco) pollen tubes. Here we examine the production, intracellular location and post-translational processing of NaGSL1, and relate each of these to the control of pollen-tube callose synthase (CalS). The 220 kDa NaGSL1 polypeptide is produced after pollen-tube germination and accumulates during pollen-tube growth, as does CalS. A combination of membrane fractionation and immunoelectron microscopy revealed that NaGSL1 was present predominantly in the endoplasmic reticulum and Golgi membranes in younger pollen tubes when CalS was mostly in an inactive (latent) form. In later stages of pollen-tube growth, when CalS was present in both latent and active forms, a greater proportion of NaGSL1 was in intracellular vesicles and the plasma membrane, the latter location being consistent with direct deposition of callose into the wall. N. alata CalS is activated in vitro by the proteolytic enzyme trypsin and the detergent CHAPS, but in neither case was activation associated with a detectable change in the molecular mass of the NaGSL1 polypeptide. NaGSL1 may thus either be activated by the removal of a few amino acids or by the removal of another protein that inhibits NaGSL1. These findings are discussed in relation to the control of callose biosynthesis during pollen germination and pollen-tube growth.
Collapse
Affiliation(s)
- Lynette Brownfield
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
18
|
Töller A, Brownfield L, Neu C, Twell D, Schulze-Lefert P. Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:911-23. [PMID: 18315544 DOI: 10.1111/j.1365-313x.2008.03462.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Members of the glucan synthase-like (GSL) family are believed to be involved in synthesis of the cell-wall component callose in specialized locations throughout the plant. We identified two members of the Arabidopsis GSL gene family, GSL8 and GSL10, that are independently required for male gametophyte development and plant growth. Analysis of gsl8 and gsl10 mutant pollen during development revealed specific malfunctions associated with asymmetric microspore division. GSL8 and GSL10 are not essential for normal microspore growth and polarity, but play a role in entry of microspores into mitosis. Impaired function of GSL10 also leads to perturbation of microspore division symmetry, irregular callose deposition and failure of generative-cell engulfment by the cytoplasm of the vegetative cell. Silencing of GSL8 or GSL10 in transgenic lines expressing gene-specific dsRNAi constructs resulted in a dwarfed growth habit, thereby revealing additional and independent wild-type gene functions for normal plant growth.
Collapse
Affiliation(s)
- Armin Töller
- Department of Plant-Microbe Interactions, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | |
Collapse
|
19
|
Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PRJ, Bulone V, van West P. Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. THE PLANT CELL 2008; 20:720-38. [PMID: 18349153 PMCID: PMC2329931 DOI: 10.1105/tpc.107.052043] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 02/14/2008] [Accepted: 03/03/2008] [Indexed: 05/20/2023]
Abstract
Cellulose, the important structural compound of cell walls, provides strength and rigidity to cells of numerous organisms. Here, we functionally characterize four cellulose synthase genes (CesA) in the oomycete plant pathogen Phytophthora infestans, the causal agent of potato (Solanum tuberosum) late blight. Three members of this new protein family contain Pleckstrin homology domains and form a distinct phylogenetic group most closely related to the cellulose synthases of cyanobacteria. Expression of all four genes is coordinately upregulated during pre- and early infection stages of potato. Inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile leads to a dramatic reduction in the number of normal germ tubes with appressoria, severe disruption of the cell wall in the preinfection structures, and a complete loss of pathogenicity. Silencing of the entire gene family in P. infestans with RNA interference leads to a similar disruption of the cell wall surrounding appressoria and an inability to form typical functional appressoria. In addition, the cellulose content of the cell walls of the silenced lines is >50% lower than in the walls of the nonsilenced lines. Our data demonstrate that the isolated genes are involved in cellulose biosynthesis and that cellulose synthesis is essential for infection by P. infestans.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Aberdeen Oomycete Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. EUKARYOTIC CELL 2008; 7:509-17. [PMID: 18223117 DOI: 10.1128/ec.00316-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.
Collapse
|
21
|
Brownfield L, Ford K, Doblin MS, Newbigin E, Read S, Bacic A. Proteomic and biochemical evidence links the callose synthase in Nicotiana alata pollen tubes to the product of the NaGSL1 gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:147-56. [PMID: 17666022 DOI: 10.1111/j.1365-313x.2007.03219.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.
Collapse
Affiliation(s)
- Lynette Brownfield
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V. How pollen tubes grow. Dev Biol 2007; 303:405-20. [PMID: 17214979 DOI: 10.1016/j.ydbio.2006.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/16/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
Sexual reproduction of flowering plants depends on delivery of the sperm to the egg, which occurs through a long, polarized projection of a pollen cell, called the pollen tube. The pollen tube grows exclusively at its tip, and this growth is distinguished by very fast rates and reaches extended lengths. Thus, one of the most fascinating aspects of pollen biology is the question of how enough cell wall material is produced to accommodate such rapid extension of pollen tube, and how the cell wall deposition and structure are regulated to allow for rapid changes in the direction of growth. This review discusses recent advances in our understanding of the mechanism of pollen tube growth, focusing on such basic cellular processes as control of cell shape and growth by a network of cell wall-modifying enzymes, molecular motor-mediated vesicular transport, and intracellular signaling by localized gradients of second messengers.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Remminghorst U, Rehm BHA. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 2006; 28:1701-12. [PMID: 16912921 DOI: 10.1007/s10529-006-9156-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 12/23/2022]
Abstract
Alginate is a polysaccharide belonging to the family of linear (unbranched), non-repeating copolymers, consisting of variable amounts of beta-D-mannuronic acid and its C5-epimer alpha- L-guluronic acid linked via beta-1,4-glycosidic bonds. Like DNA, alginate is a negatively charged polymer, imparting material properties ranging from viscous solutions to gel-like structures in the presence of divalent cations. Bacterial alginates are synthesized by only two bacterial genera, Pseudomonas and Azotobacter, and have been extensively studied over the last 40 years. While primarily synthesized in form of polymannuronic acid, alginate undergoes chemical modifications comprising acetylation and epimerization, which occurs during periplasmic transfer and before final export through the outer membrane. Alginate with its unique material properties and characteristics has been increasingly considered as biomaterial for medical applications. The genetic modification of alginate producing microorganisms could enable biotechnological production of new alginates with unique, tailor-made properties, suitable for medical and industrial applications.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
24
|
Ciocchini AE, Roset MS, Briones G, Iñón de Iannino N, Ugalde RA. Identification of active site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic beta-1,2-glucan, a Brucella abortus virulence factor. Glycobiology 2006; 16:679-91. [PMID: 16603625 DOI: 10.1093/glycob/cwj113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brucella abortus cyclic glucan synthase (Cgs) is a 320-kDa (2868-amino acid) polytopic integral inner membrane protein responsible for the synthesis of the virulence factor cyclic beta-1,2-glucan by a novel mechanism in which the enzyme itself acts as a protein intermediate. Cgs functions as an inverting processive beta-1,2-autoglucosyltransferase and has the three enzymatic activities required for the synthesis of the cyclic glucan: initiation, elongation, and cyclization. To gain further insight into the protein domains that are essential for the enzymatic activity, we have compared the Cgs sequence with other glycosyltransferases (GTs). This procedure allowed us to identify in the Cgs region (475-818) the widely spaced D, DxD, E/D, (Q/R)xxRW motif that is highly conserved in the active site of numerous GTs. By site-directed mutagenesis and in vitro and in vivo activity assays, we have demonstrated that most of the amino acid residues of this motif are essential for Cgs activity. These sequence and site-directed mutagenesis analyses also indicate that Cgs should be considered a bi-functional modular GT, with an N-terminal GT domain belonging to a new GT family related to GT-2 (GT-84) followed by a GH-94 glycoside hydrolase C-terminal domain. Furthermore, over-expression of inactive mutants results in wild-type (WT) production of cyclic glucan when bacteria co-express the mutant and the WT form, indicating that Cgs may function in the membrane as a monomeric enzyme. Together, these results are compatible with a single addition model by which Cgs acts in the membrane as a monomer and uses the identified motif to form a single center for substrate binding and glycosyl-transfer reaction.
Collapse
Affiliation(s)
- Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
25
|
Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:145-67. [PMID: 17177793 DOI: 10.1111/j.1467-7652.2005.00169.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cell walls are dynamic structures that represent key determinants of overall plant form, plant growth and development, and the responses of plants to environmental and pathogen-induced stresses. Walls play centrally important roles in the quality and processing of plant-based foods for both human and animal consumption, and in the production of fibres during pulp and paper manufacture. In the future, wall material that constitutes the major proportion of cereal straws and other crop residues will find increasing application as a source of renewable fuel and composite manufacture. Although the chemical structures of most wall constituents have been defined in detail, the enzymes involved in their synthesis and remodelling remain largely undefined, particularly those involved in polysaccharide biosynthesis. There have been real recent advances in our understanding of cellulose biosynthesis in plants, but, with few exceptions, the identities and modes of action of polysaccharide synthases and other glycosyltransferases that mediate the biosynthesis of the major non-cellulosic wall polysaccharides are not known. Nevertheless, emerging functional genomics and molecular genetics technologies are now allowing us to re-examine the central questions related to wall biosynthesis. The availability of the rice, Populus trichocarpa and Arabidopsis genome sequences, a variety of mutant populations, high-density genetic maps for cereals and other industrially important plants, high-throughput genome and transcript analysis systems, extensive publicly available genomics resources and an increasing armoury of analysis systems for the definition of candidate gene function will together allow us to take a systems approach to the description of wall biosynthesis in plants.
Collapse
Affiliation(s)
- Naser Farrokhi
- School of Agriculture and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Remminghorst U, Rehm BHA. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 2006; 72:298-305. [PMID: 16391057 PMCID: PMC1352289 DOI: 10.1128/aem.72.1.298-305.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Deltaalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. (1)H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
27
|
Yeager AR, Finney NS. Second-generation dimeric inhibitors of chitin synthase. Bioorg Med Chem 2004; 12:6451-60. [PMID: 15556762 DOI: 10.1016/j.bmc.2004.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/02/2004] [Accepted: 09/16/2004] [Indexed: 11/26/2022]
Abstract
Chitin synthase (CS) is essential for fungal cell wall biosynthesis and is an attractive medicinal target. Expanded results from our efforts to develop mechanism based inhibitors of CS are presented here. Specifically, we describe uridine dimers linked by tartrate amides as potential pyrophosphate mimics.
Collapse
Affiliation(s)
- Adam R Yeager
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358, USA
| | | |
Collapse
|
28
|
Nakashima K, Yamada L, Satou Y, Azuma JI, Satoh N. The evolutionary origin of animal cellulose synthase. Dev Genes Evol 2004; 214:81-8. [PMID: 14740209 DOI: 10.1007/s00427-003-0379-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
Urochordates are the only animals that produce cellulose, a polysaccharide existing primarily in the extracellular matrices of plant, algal, and bacterial cells. Here we report a Ciona intestinalis homolog of cellulose synthase, which is the core catalytic subunit of multi-enzyme complexes where cellulose biosynthesis occurs. The Ciona cellulose synthase gene, Ci-CesA, is a fusion of a cellulose synthase domain and a cellulase (cellulose-hydrolyzing enzyme) domain. Both the domains have no animal homologs in public databases. Exploiting this fusion of atypical genes, we provided evidence of a likely lateral transfer of a bacterial cellulose synthase gene into the urochordate lineage. According to fossil records, this likely lateral acquisition of the cellulose synthase gene may have occurred in the last common ancestor of extant urochordates more than 530 million years ago. Whole-mount in situ hybridization analysis revealed the expression of Ci-CesA in C. intestinalis embryos, and the expression pattern of Ci-CesA was spatiotemporally consistent with observed cellulose synthesis in vivo. We propose here that urochordates may use a laterally acquired "homologous" gene for an analogous process of cellulose synthesis.
Collapse
Affiliation(s)
- Keisuke Nakashima
- Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
29
|
Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P. AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. PLANT PHYSIOLOGY 2003; 131:547-57. [PMID: 12586879 PMCID: PMC166831 DOI: 10.1104/pp.014555] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 10/25/2002] [Accepted: 11/14/2002] [Indexed: 05/18/2023]
Abstract
The cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide beta-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth. Moreover, the homozygous insertion was embryo lethal. A detailed analysis of seed developmental progression revealed that mutant embryos developed more slowly than wild-type siblings. The mutant embryos also showed abnormal cell patterning and they arrested at a globular stage. The defective embryonic development was associated with reduced proliferation and failed cellularization of the endosperm. AtCSLA7 is widely expressed, and is likely to be required for synthesis of a cell wall polysaccharide found throughout the plant. Our results suggest that this polysaccharide is essential for cell wall structure or for signaling during plant embryo development.
Collapse
Affiliation(s)
- Florence Goubet
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP. Cellulose biosynthesis in plants: from genes to rosettes. PLANT & CELL PHYSIOLOGY 2002; 43:1407-20. [PMID: 12514238 DOI: 10.1093/pcp/pcf164] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Modern techniques of gene cloning have identified the CesA genes as encoding the probable catalytic subunits of the plant CelS, the cellulose synthase enzyme complex visualized in the plasma membrane as rosettes. At least 10 CesA isoforms exist in Arabidopsis and have been shown by mutant analyses to play distinct role/s in the cellulose synthesis process. Functional specialization within this family includes differences in gene expression, regulation and, possibly, catalytic function. Current data points towards some CesA isoforms potentially being responsible for initiation or elongation of the recently identified sterol beta-glucoside primer within different cell types, e.g. those undergoing either primary or secondary wall cellulose synthesis. Different CesA isoforms may also play distinct roles within the rosette, and there is some circumstantial evidence that CesA genes may encode the catalytic subunit of the mixed linkage glucan synthase or callose synthase. Various other proteins such as the Korrigan endocellulase, sucrose synthase, cytoskeletal components, Rac13, redox proteins and a lipid transfer protein have been implicated to be involved in synthesizing cellulose but, apart from CesAs, only Korrigan has been definitively linked with cellulose synthesis. These proteins should prove valuable in identifying additional CelS components.
Collapse
|
31
|
Beeckman T, Przemeck GKH, Stamatiou G, Lau R, Terryn N, De Rycke R, Inzé D, Berleth T. Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis. PLANT PHYSIOLOGY 2002; 130:1883-93. [PMID: 12481071 PMCID: PMC166699 DOI: 10.1104/pp.102.010603] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 07/22/2002] [Accepted: 08/29/2002] [Indexed: 05/18/2023]
Abstract
The products of the cellulose synthase A (CESA) gene family are thought to function as isoforms of the cellulose synthase catalytic subunit, but for most CESA genes, the exact role in plant growth is still unknown. Assessing the function of individual CESA genes will require the identification of the null-mutant phenotypes and of the gene expression profiles for each gene. Here, we report that only four of 10 CESA genes, CESA1, CESA2, CESA3, and CESA9 are significantly expressed in the Arabidopsis embryo. We further identified two new mutations in the RADIALLY SWOLLEN1 (RSW1/CESA1) gene of Arabidopsis that obstruct organized growth in both shoot and root and interfere with cell division and cell expansion already in embryogenesis. One mutation is expected to completely abolish the enzymatic activity of RSW1(CESA1) because it eliminated one of three conserved Asp residues, which are considered essential for beta-glycosyltransferase activity. In this presumed null mutant, primary cell walls are still being formed, but are thin, highly undulated, and frequently interrupted. From the heart-stage onward, cell elongation in the embryo axis is severely impaired, and cell width is disproportionally increased. In the embryo, CESA1, CESA2, CESA3, and CESA9 are expressed in largely overlapping domains and may act cooperatively in higher order complexes. The embryonic phenotype of the presumed rsw1 null mutant indicates that the RSW1(CESA1) product has a critical, nonredundant function, but is nevertheless not strictly required for primary cell wall formation.
Collapse
Affiliation(s)
- Tom Beeckman
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Stolz J, Munro S. The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem 2002; 277:44801-8. [PMID: 12235155 DOI: 10.1074/jbc.m208023200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae processes N-linked glycans in the Golgi apparatus in two different ways. Whereas most of the proteins of internal membranes receive a simple core-type structure, a long branched polymer termed mannan is attached to the glycans of many of the proteins destined for the cell wall. The first step in mannan synthesis is the initiation and extension of an alpha-1,6-linked polymannose backbone. This requires the sequential action of two enzyme complexes, mannan polymerases (M-Pol) I and II. M-Pol I contains the proteins Mnn9p and Van1p, although the stoichiometry and individual contributions to enzyme action are unclear. We report here that the two proteins are each present as a single copy in the complex. Both proteins contain a DXD motif found in the active site of many glycosyltransferases, and mutations in this motif in Mnn9p or Van1p reveal that both proteins contribute to mannose polymerization. However, the effects of these mutations on both the in vivo and in vitro activity are distinct, suggesting that the two proteins may have different roles in the complex. Finally, we show that a simple glycoprotein based on hen egg lysozyme can be used as a substrate for modification by purified M-Pol I in vitro.
Collapse
Affiliation(s)
- Jurgen Stolz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
33
|
West CM, van der Wel H, Gaucher EA. Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. Glycobiology 2002; 12:17R-27R. [PMID: 11886837 DOI: 10.1093/glycob/12.2.17r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently, complex O-glycosylation of the cytoplasmic/nuclear protein Skp1 has been characterized in the eukaryotic microorganism Dictyostelium. Skp1's glycosylation is mediated by the sequential action of a prolyl hydroxylase and five conventional sugar nucleotide-dependent glycosyltransferase activities that reside in the cytoplasm rather than the secretory compartment. The Skp1-HyPro GlcNAcTransferase, which adds the first sugar, appears to be related to a lineage of enzymes that originated in the prokaryotic cytoplasm and initiates mucin-type O-linked glycosylation in the lumen of the eukaryotic Golgi apparatus. GlcNAc is extended by a bifunctional glycosyltransferase that mediates the ordered addition of beta1,3-linked Gal and alpha1,2-linked Fuc. The architecture of this enzyme resembles that of certain two-domain prokaryotic glycosyltransferases. The catalytic domains are related to those of a large family of prokaryotic and eukaryotic, cytoplasmic, membrane-bound, inverting glycosyltransferases that modify glycolipids and polysaccharides prior to their translocation across membranes toward the secretory pathway or the cell exterior. The existence of these enzymes in the eukaryotic cytoplasm away from membranes and their ability to modify protein acceptors expose a new set of cytoplasmic and nuclear proteins to potential prolyl hydroxylation and complex O-linked glycosylation.
Collapse
Affiliation(s)
- Christopher M West
- Department of Anatomy and Cell Biology, 1600 SW Archer Road, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | |
Collapse
|
34
|
Tarbouriech N, Charnock SJ, Davies GJ. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J Mol Biol 2001; 314:655-61. [PMID: 11733986 DOI: 10.1006/jmbi.2001.5159] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vast majority of glycosidic-bond synthesis in nature is performed by glycosyltransferases, which use activated glycosides as the sugar donor. Typically, the activated leaving group is a nucleoside phosphate, lipid phosphate or phosphate. The nucleotide-sugar-dependent glycosyltransferases fall into over 50 sequence-based families, with the largest and most widespread family of inverting transferases named family GT-2. Here, we present the three-dimensional crystal structure of SpsA, the first and currently the only structural representative from family GT-2, in complex with both Mn-dTDP and Mg-dTDP at a resolution of 2 A. These structures reveal how SpsA and related enzymes may display nucleotide plasticity and permit a comparison of the catalytic centre of this enzyme with those from related sequence families whose three-dimensional structures have recently been determined. Family GT-2 enzymes, together with enzymes from families 7, 13 and 43, appear to form a clan of related structures with identical catalytic apparatus and reaction mechanism.
Collapse
Affiliation(s)
- N Tarbouriech
- Department of Chemistry, Structural Biology Laboratory, Heslington, Y010 5DD, UK
| | | | | |
Collapse
|
35
|
Dhugga KS. Building the wall: genes and enzyme complexes for polysaccharide synthases. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:488-493. [PMID: 11641063 DOI: 10.1016/s1369-5266(00)00205-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The complete sequence of the Arabidopsis genome has revealed a total of 40 cellulose synthase (CesA) and cellulose synthase-like (Csl) genes. Recent studies suggest that each CESA polypeptide contains only one catalytic center, and that two or more polypeptides from different genes might be needed to form a functional cellulose synthase complex.
Collapse
Affiliation(s)
- K S Dhugga
- Agronomic Traits, Traits and Technology Development, Pioneer Hi-Bred International, Inc., Johnston, Iowa 50131, USA.
| |
Collapse
|
36
|
Abstract
Many questions remain about the biosynthesis of cellulose, the major plant cell wall component, not least of which is why plants have so many genes for the cellulose synthase catalytic subunit. Perhaps multiple isoforms of cellulose synthase are needed in the same cell for the formation of functional dimeric complexes.
Collapse
Affiliation(s)
- R M Perrin
- MSU-DOE Plant Research Laboratory, Room 110 Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
37
|
Biosynthesis of Cellulose. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0921-0423(01)80057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|