1
|
Seoane P, Tapia-Paniagua ST, Bautista R, Alcaide E, Esteve C, Martínez-Manzanares E, Balebona MC, Claros MG, Moriñigo MA. TarSynFlow, a workflow for bacterial genome comparisons that revealed genes putatively involved in the probiotic character of Shewanella putrefaciens strain Pdp11. PeerJ 2019; 7:e6526. [PMID: 30842906 PMCID: PMC6397758 DOI: 10.7717/peerj.6526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/26/2019] [Indexed: 11/20/2022] Open
Abstract
Probiotic microorganisms are of great interest in clinical, livestock and aquaculture. Knowledge of the genomic basis of probiotic characteristics can be a useful tool to understand why some strains can be pathogenic while others are probiotic in the same species. An automatized workflow called TarSynFlow (Targeted Synteny Workflow) has been then developed to compare finished or draft bacterial genomes based on a set of proteins. When used to analyze the finished genome of the probiotic strain Pdp11 of Shewanella putrefaciens and genome drafts from seven known non-probiotic strains of the same species obtained in this work, 15 genes were found exclusive of Pdp11. Their presence was confirmed by PCR using Pdp11-specific primers. Functional inspection of the 15 genes allowed us to hypothesize that Pdp11 underwent genome rearrangements spurred by plasmids and mobile elements. As a result, Pdp11 presents specific proteins for gut colonization, bile salt resistance and gut pathogen adhesion inhibition, which can explain some probiotic features of Pdp11.
Collapse
Affiliation(s)
- Pedro Seoane
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | | | - Rocío Bautista
- Andalusian Platform for Bioinformatics, Universidad de Málaga, Málaga, Spain
| | - Elena Alcaide
- Department of Microbiology and Ecology, Universidad de Valencia, Valencia, Spain
| | - Consuelo Esteve
- Department of Microbiology and Ecology, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
- Andalusian Platform for Bioinformatics, Universidad de Málaga, Málaga, Spain
| | | |
Collapse
|
2
|
Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease. Clin Microbiol Rev 2017; 30:321-348. [PMID: 27903594 DOI: 10.1128/cmr.00060-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinosinusitis (CRS) encompasses a heterogeneous group of debilitating chronic inflammatory sinonasal diseases. Despite considerable research, the etiology of CRS remains poorly understood, and debate on potential roles of microbial communities is unresolved. Modern culture-independent (molecular) techniques have vastly improved our understanding of the microbiology of the human body. Recent studies that better capture the full complexity of the microbial communities associated with CRS reintroduce the possible importance of the microbiota either as a direct driver of disease or as being potentially involved in its exacerbation. This review presents a comprehensive discussion of the current understanding of bacterial, fungal, and viral associations with CRS, with a specific focus on the transition to the new perspective offered in recent years by modern technology in microbiological research. Clinical implications of this new perspective, including the role of antimicrobials, are discussed in depth. While principally framed within the context of CRS, this discussion also provides an analogue for reframing our understanding of many similarly complex and poorly understood chronic inflammatory diseases for which roles of microbes have been suggested but specific mechanisms of disease remain unclear. Finally, further technological advancements on the horizon, and current pressing questions for CRS microbiological research, are considered.
Collapse
|
3
|
Venter SN, Palmer M, Beukes CW, Chan WY, Shin G, van Zyl E, Seale T, Coutinho TA, Steenkamp ET. Practically delineating bacterial species with genealogical concordance. Antonie van Leeuwenhoek 2017; 110:1311-1325. [DOI: 10.1007/s10482-017-0869-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
4
|
|
5
|
Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2012; 37:336-63. [PMID: 22928673 DOI: 10.1111/j.1574-6976.2012.00353.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window.
Collapse
Affiliation(s)
- Patrick Seitz
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
6
|
Zhang L, Xie J, Patel M, Bakhtyar A, Ehrlich GD, Ahmed A, Earl J, Marrs CF, Clemans D, Murphy TF, Gilsdorf JR. Nontypeable Haemophilus influenzae genetic islands associated with chronic pulmonary infection. PLoS One 2012; 7:e44730. [PMID: 22970300 PMCID: PMC3435294 DOI: 10.1371/journal.pone.0044730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
Background Haemophilus influenzae (Hi) colonizes the human respiratory tract and is an important pathogen associated with chronic obstructive pulmonary disease (COPD). Bacterial factors that interact with the human host may be important in the pathogenesis of COPD. These factors, however, have not been well defined. The overall goal of this study was to identify bacterial genetic elements with increased prevalence among H. influenzae strains isolated from patients with COPD compared to those isolated from the pharynges of healthy individuals. Methodology/Principal Findings Four nontypeable H. influenzae (NTHi) strains, two isolated from the airways of patients with COPD and two from a healthy individual, were subjected to whole genome sequencing using 454 FLX Titanium technology. COPD strain-specific genetic islands greater than 500 bp in size were identified by in silico subtraction. Open reading frames residing within these islands include known Hi virulence genes such as lic2b, hgbA, iga, hmw1 and hmw2, as well as genes encoding urease and other enzymes involving metabolic pathways. The distributions of seven selected genetic islands were assessed among a panel of 421 NTHi strains of both disease and commensal origins using a Library-on-a-Slide high throughput dot blot DNA hybridization procedure. Four of the seven islands screened, containing genes that encode a methyltransferase, a dehydrogenase, a urease synthesis enzyme, and a set of unknown short ORFs, respectively, were more prevalent in COPD strains than in colonizing strains with prevalence ratios ranging from 1.21 to 2.85 (p≤0.0002). Surprisingly, none of these sequences show increased prevalence among NTHi isolated from the airways of patients with cystic fibrosis. Conclusions/Significance Our data suggest that specific bacterial genes, many involved in metabolic functions, are associated with the ability of NTHi strains to survive in the lower airways of patients with COPD.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Campos-Guillén J, Fernández F, Pastrana X, Loske AM. Relationship between plasmid size and shock wave-mediated bacterial transformation. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1078-84. [PMID: 22502888 DOI: 10.1016/j.ultrasmedbio.2012.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 05/15/2023]
Abstract
Bacterial transformation is a fundamental tool in molecular biology; nevertheless, there is still a lack of efficient methods for gene delivery. The use of shock waves has been proposed as an alternative. Recently, our group demonstrated that shock wave-induced transfer of deoxyribonucleic acid (DNA) into bacteria can be increased by enhancing acoustic cavitation; however, so far, little information exists about the effects of shock waves on DNA. The objective of this study was to identify the size regimes of plasmids (DNA molecules that are separate from the chromosomal DNA), which promote shock wave-induced transformation. The transformation efficiency of shock waves and the integrity of DNA were studied for six different plasmid sizes, using the parameters that led to the best results in our previous study.
Collapse
Affiliation(s)
- Juan Campos-Guillén
- Unidad de Microbiología Básica y Aplicada, Universidad Autónoma de Querétaro, Querétaro, México
| | | | | | | |
Collapse
|
8
|
Georgiades K, Raoult D. How microbiology helps define the rhizome of life. Front Cell Infect Microbiol 2012; 2:60. [PMID: 22919651 PMCID: PMC3417629 DOI: 10.3389/fcimb.2012.00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/16/2012] [Indexed: 01/24/2023] Open
Abstract
In contrast to the tree of life (TOF) theory, species are mosaics of gene sequences with different origins. Observations of the extensive lateral sequence transfers in all organisms have demonstrated that the genomes of all life forms are collections of genes with different evolutionary histories that cannot be represented by a single TOF. Moreover, genes themselves commonly have several origins due to recombination. The human genome is not free from recombination events, so it is a mosaic like other organisms' genomes. Recent studies have demonstrated evidence for the integration of parasitic DNA into the human genome. Lateral transfer events have been accepted as major contributors of genome evolution in free-living bacteria. Furthermore, the accumulation of genomic sequence data provides evidence for extended genetic exchanges in intracellular bacteria and suggests that such events constitute an agent that promotes and maintains all bacterial species. Archaea and viruses also form chimeras containing primarily bacterial but also eukaryotic sequences. In addition to lateral transfers, orphan genes are indicative of the fact that gene creation is a permanent and unsettled phenomenon. Currently, a rhizome may more adequately represent the multiplicity and de novo creation of a genome. We wanted to confirm that the term “rhizome” in evolutionary biology applies to the entire cellular life history. This view of evolution should resemble a clump of roots representing the multiple origins of the repertoires of the genes of each species.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Faculté de Médecine La Timone, Unité de Recherche en Maladies Infectieuses Tropical Emergentes (URMITE), CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France
| | | |
Collapse
|
9
|
Turkarslan S, Reiss DJ, Gibbins G, Su WL, Pan M, Bare JC, Plaisier CL, Baliga NS. Niche adaptation by expansion and reprogramming of general transcription factors. Mol Syst Biol 2011; 7:554. [PMID: 22108796 PMCID: PMC3261711 DOI: 10.1038/msb.2011.87] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023] Open
Abstract
Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network.
Collapse
Affiliation(s)
| | - David J Reiss
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | - Wan Lin Su
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | - Min Pan
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Nitin S Baliga
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Biology, Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Loske AM, Campos-Guillen J, Fernández F, Castaño-Tostado E. Enhanced shock wave-assisted transformation of Escherichia coli. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:502-510. [PMID: 21316563 DOI: 10.1016/j.ultrasmedbio.2010.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 05/30/2023]
Abstract
The objective of the study was to demonstrate that shock wave-induced transfer of DNA into bacteria can be increased by enhancing cavitation using dual-pulse (tandem) shock waves. Escherichia coli and plasmid were transferred to test vials. Competent cells were prepared at different concentrations of CaCl(2). Single pulses and tandem shock waves were compared as were three treatment temperatures: 0, 10 and 25 °C. Three delays (250, 500, 750 μs) between double pulses were tested. Characterization was achieved by using a plasmid that provided green fluorescent protein expression. At 0 °C double pulses generated at a delay of 750 μs significantly increased the number of fluorescent colonies compared with single pulses. In general, the lowest temperature enhanced the mean number of transformants compared with the two higher temperatures. A strong influence of the CaCl(2) concentration on the transformation efficiency was also found. The main conclusion is that gene transfer to target cells may be increased up to 50 times at 0 °C by enhancing cavitation using pairs of shock waves.
Collapse
Affiliation(s)
- Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Qro., México.
| | | | | | | |
Collapse
|
11
|
Trevors J, Masson L. How much cytoplasm can a bacterial genome control? J Microbiol Methods 2011; 84:147-50. [DOI: 10.1016/j.mimet.2010.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
|
12
|
|
13
|
Siew N, Fischer D. Unravelling the ORFan Puzzle. Comp Funct Genomics 2010; 4:432-41. [PMID: 18629076 PMCID: PMC2447361 DOI: 10.1002/cfg.311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 06/05/2003] [Accepted: 06/05/2003] [Indexed: 12/27/2022] Open
Abstract
ORFans are open reading frames (ORFs) with no detectable sequence similarity
to any other sequence in the databases. Each newly sequenced genome contains a
significant number of ORFans. Therefore, ORFans entail interesting evolutionary
puzzles. However, little can be learned about them using bioinformatics tools, and
their study seems to have been underemphasized. Here we present some of the
questions that the existence of so many ORFans have raised and review some of
the studies aimed at understanding ORFans, their functions and their origins. These
works have demonstrated that ORFans are an untapped source of research, requiring
further computational and experimental studies.
Collapse
Affiliation(s)
- Naomi Siew
- Department of Chemistry, Ben Gurion University, Beer-Sheva 84105, Israel
| | | |
Collapse
|
14
|
Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 2010; 132:2469-93. [PMID: 20121095 DOI: 10.1021/ja909118a] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this Perspective, we explore how connecting Nature's small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and non-ribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future?
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
15
|
Andreote FD, Azevedo JL, Araújo WL. Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 2009; 40:417-32. [PMID: 24031382 PMCID: PMC3768544 DOI: 10.1590/s1517-83822009000300001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/27/2008] [Accepted: 02/15/2009] [Indexed: 12/20/2022] Open
Abstract
Plant-bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants.
Collapse
Affiliation(s)
- Fernando Dini Andreote
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo , Piracicaba, SP , Brasil ; Laboratório de Microbiologia Ambiental, Embrapa Meio Ambiente , Jaguariúna, SP , Brasil
| | | | | |
Collapse
|
16
|
Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J, Siozios S, Nene V, Werren J, Bourtzis K, Bordenstein SR, Tettelin H. Extensive genomic diversity of closely related Wolbachia strains. MICROBIOLOGY-SGM 2009; 155:2211-2222. [PMID: 19389774 DOI: 10.1099/mic.0.027581-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/divergent genes being unique to a given strain. Each strain caused an average of approximately 60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21-87% of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution.
Collapse
Affiliation(s)
- Nadeeza Ishmael
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Sarah Biber
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joyce Sakamoto
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Vishvanath Nene
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - John Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| |
Collapse
|
17
|
Klubin AV, Rogov SI, Momynaliev KT. A new method for estimating the C → T transition rate in methylation sites of Helicobacter pylori. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Obuekwe C, Al-Jadi Z, Al-Saleh E. Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants ofPseudomonas aeruginosa. J Appl Microbiol 2008; 105:1876-87. [DOI: 10.1111/j.1365-2672.2008.03887.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Guzmán E, Romeu A, Garcia-Vallve S. Completely sequenced genomes of pathogenic bacteria: a review. Enferm Infecc Microbiol Clin 2008; 26:88-98. [PMID: 18341921 DOI: 10.1157/13115544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six out of ten completely sequenced bacterial genomes are pathogenic or opportunistic bacteria. The genome sequence of at least one strain of all the principal pathogenic bacteria will soon be available. This information should enable us to identify genes that encode virulence factors. As these genes are potential targets for drugs and vaccines, their identification should have considerable repercussions on prevention, diagnosis, and treatment of the main bacterial infectious diseases. Comparison of genome sequences of several strains of the same species should allow identification of the genetic clues responsible for the differing behavior of related bacterial pathogens. This article reviews the genomes from pathogenic bacteria that have been or are currently being sequenced, describes the main tasks to be accomplished after a genome sequence becomes available, and discusses the benefits of having the genome sequence of bacterial pathogens.
Collapse
Affiliation(s)
- Eduard Guzmán
- Institut Català de la Salut, Area Bàsica de Salut, Tarragona, Spain.
| | | | | |
Collapse
|
20
|
Mena J, Chen C. Identification of strain-specific DNA of Actinobacillus actinomycetemcomitans by representational difference analysis. ACTA ACUST UNITED AC 2007; 22:429-32. [PMID: 17949347 DOI: 10.1111/j.1399-302x.2007.00371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genomic subtraction method, the representational difference analysis (RDA), was tested for its use in identifying strain-specific DNA in Actinobacillus actinomycetemcomitans. Subtraction of strain D7S with strain HK1651 yielded D7S-specific 2.3-kilobase (kb) islet-A and 5.3-kb islet-B. Islet-A contains a 1.5-kb region that is homologous to a region found in the A. actinomycetemcomitans plasmid pVT745. Islet-B contains a 2.1-kb homolog of vgr, a component of a DNA repeat element rhs. The distribution of these islets among A. actinomycetemcomitans strains was further examined by polymerase chain reaction. Islet-A was found in nine serotype a and two serotype b strains but was missing from 34 strains. Islet-B was found in one serotype a strain, four serotype d strains and two serotype e strains, but was missing from 34 strains.
Collapse
Affiliation(s)
- J Mena
- Division of Primary Oral Health Care, School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
21
|
Song Y, Hahn T, Thompson IP, Mason TJ, Preston GM, Li G, Paniwnyk L, Huang WE. Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res 2007; 35:e129. [PMID: 17890732 PMCID: PMC2095817 DOI: 10.1093/nar/gkm710] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In environmental microbiology, the most commonly used methods of bacterial DNA transfer are conjugation and electroporation. However, conjugation requires physical contact and cell–pilus–cell interactions; electroporation requires low-ionic strength medium and high voltage. These limitations have hampered broad applications of bacterial DNA delivery. We have employed a standard low frequency 40 kHz ultrasound bath to successfully transfer plasmid pBBR1MCS2 into Pseudomonas putida UWC1, Escherichia coli DH5α and Pseudomonas fluorescens SBW25 with high efficiency. Under optimal conditions: ultrasound exposure time of 10 s, 50 mM CaCl2, temperature of 22°C, plasmid concentration of 0.8 ng/µl, P. putida UWC1 cell concentration of 2.5 × 109 CFU (colony forming unit)/ml and reaction volume of 500 µl, the efficiency of ultrasound DNA delivery (UDD) was 9.8 ± 2.3 × 10−6 transformants per cell, which was nine times more efficient than conjugation, and even four times greater than electroporation. We have also transferred pBBR1MCS2 into E. coli DH5α and P. fluorescens SBW25 with efficiencies of 1.16 ± 0.13 × 10−6 and 4.33 ± 0.78 × 10−6 transformants per cell, respectively. Low frequency UDD can be readily scaled up, allowing for the application of UDD not only in laboratory conditions but also on an industrial scale.
Collapse
Affiliation(s)
- Yizhi Song
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Thomas Hahn
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Ian P. Thompson
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Timothy J. Mason
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Gail M. Preston
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Guanghe Li
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Larysa Paniwnyk
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Wei E. Huang
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- *To whom correspondence should be addressed. +44 (0)114 2225796+44 (0)114 2225701,
| |
Collapse
|
22
|
Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M, Grossman A. Genomics, environmental genomics and the issue of microbial species. Heredity (Edinb) 2007; 100:207-19. [PMID: 17551524 DOI: 10.1038/sj.hdy.6801011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A microbial species concept is crucial for interpreting the variation detected by genomics and environmental genomics among cultivated microorganisms and within natural microbial populations. Comparative genomic analyses of prokaryotic species as they are presently described and named have led to the provocative idea that prokaryotes may not form species as we think about them for plants and animals. There are good reasons to doubt whether presently recognized prokaryotic species are truly species. To achieve a better understanding of microbial species, we believe it is necessary to (i) re-evaluate traditional approaches in light of evolutionary and ecological theory, (ii) consider that different microbial species may have evolved in different ways and (iii) integrate genomic, metagenomic and genome-wide expression approaches with ecological and evolutionary theory. Here, we outline how we are using genomic methods to (i) identify ecologically distinct populations (ecotypes) predicted by theory to be species-like fundamental units of microbial communities, and (ii) test their species-like character through in situ distribution and gene expression studies. By comparing metagenomic sequences obtained from well-studied hot spring cyanobacterial mats with genomic sequences of two cultivated cyanobacterial ecotypes, closely related to predominant native populations, we can conduct in situ population genetics studies that identify putative ecotypes and functional genes that determine the ecotypes' ecological distinctness. If individuals within microbial communities are found to be grouped into ecologically distinct, species-like populations, knowing about such populations should guide us to a better understanding of how genomic variation is linked to community function.
Collapse
Affiliation(s)
- D M Ward
- Department of Land Resources and Environmental Science, Montana State University, Bozeman, MT 59715, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Shanks OC, Santo Domingo JW, Graham JE. Use of competitive DNA hybridization to identify differences in the genomes of bacteria. J Microbiol Methods 2006; 66:321-30. [PMID: 16469400 DOI: 10.1016/j.mimet.2005.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/19/2005] [Indexed: 11/20/2022]
Abstract
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expensive for most laboratories. Here we report the development and testing of a biochemical approach for targeted sequencing of only those chromosomal regions that differ between two DNA preparations. The method, designated GFE (genome fragment enrichment) uses competitive solution hybridization and positive selection to obtain genomic DNA fragments that are present in one pool of fragments but not another. Repeated comparisons of the genomes of Enterococcus faecalis and E. faecium led to the identification of 225 putative genome-specific DNA fragments. Species and strain variations within these fragments were confirmed by both experimental and bioinformatic analyses. The E. faecalis genome-specific sequences identified included both a preponderance of those predicted to encode surface-exposed proteins, as well as several previously described unique marker regions embedded within highly conserved rrn operons. The GFE strategy we describe efficiently identified genomic differences between two enterococcal genomes, and will be widely applicable for studying genetic variation among closely related bacterial species.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH, USA
| | | | | |
Collapse
|
24
|
Abstract
The microbial world within us includes a vast array of gastrointestinal (GI) tract communities that play an important role in health and disease. Significant progress has been made in recent years in describing the intestinal microbial composition based on the application of 16S ribosomal RNA (rRNA)-based approaches. These were not only instrumental in providing a phylogenetic framework of the more than 1000 different intestinal species but also illustrated the temporal and spatial diversity of the microbial GI tract composition that is host-specific and affected by the genotype. However, our knowledge of the molecular and cellular bases of host-microbe interactions in the GI tract is still very limited. Here an overview is presented of the most recent developments and applications of novel culture-independent approaches that promise to unravel the mechanisms of GI tract functionality and subsequent possibilities to exploit specifically these mechanisms in order to improve gut health.
Collapse
Affiliation(s)
- Erwin G Zoetendal
- Wageningen University and Wageningen Centre for Food Sciences, Laboratory of Microbiology, the Netherlands
| | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Horizontal gene transfer (HGT) is a process by which bacteria acquire genes from organisms of distant taxa. HGT is now recognized as a major driving force in the evolution of bacterial pathogens. Through this process, bacteria may accumulate blocks of DNA such as genomic islands (GEIs) that encode fitness or virulence factors. The periodontal pathogen A. actinomycetemcomitans has been known to exhibit variable virulence potential. It is postulated that GEIs may play a role in modifying the virulence potential of A. actinomycetemcomitans. This study was initiated to identify and determine the distribution of GEIs in A. actinomycetemcomitans. METHODS Forty-seven A. actinomycetemcomitans strains of serotypes a through f were examined. Strain-specific variant DNA in the genomes of A. actinomycetemcomitans was identified by polymerase chain reaction (PCR) genomic mapping and sequenced to identify GEIs. The distribution of the GEIs among test strains of A. actinomycetemcomitans was determined by PCR analysis and Southern hybridization assays. RESULTS An approximately 22 kb GEI of A. actinomycetemcomitans, designated AAI-1, was identified in five serotype b strains. The AAI-1 exhibits low %G+C and encodes proteins of phage, restriction modification systems, mobile elements, and other hypothetical proteins of unknown functions. The insertion of AAI-1 was found to cause truncation of A. actinomycetemcomitans genes at the insertion site. CONCLUSIONS Some A. actinomycetemcomitans strains may harbor GEIs, which were acquired via HGT by the bacteria. The GEIs may increase the gene repertoire of A. actinomycetemcomitans. However, the insertion of the GEIs in A. actinomycetemcomitans may also cause truncation and inactivation of resident genes at the insertion sites. The virulence significance of such gain and loss of genes in A. actinomycetemcomitans remains to be determined.
Collapse
Affiliation(s)
- Weizhen Chen
- Division of Primary Oral Health Care, School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
26
|
Nucleotide Correspondence between Protein-Coding Sequences of Helicobacter pylori Strains 26695 and J99. Mol Biol 2005. [DOI: 10.1007/s11008-005-0101-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Takata T, Ando T, Israel DA, Wassenaar TM, Blaser MJ. Role ofdprAin transformation ofCampylobacter jejuni. FEMS Microbiol Lett 2005; 252:161-8. [PMID: 16194595 DOI: 10.1016/j.femsle.2005.08.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/27/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022] Open
Abstract
The role of a dprA ortholog (Cj0634) in Campylobacter jejuni transformation was phenotypically assessed using two strains. C. jejuni strain 11168 was naturally competent for transformation by chromosomal DNA, while efficiency decreased 100-fold in a Cj0634::aphA mutant, whereas C. jejuni strain 480 was not naturally competent. C. jejuni strain 480 but not 11168 could be electro-transformed by shuttle plasmid pRY111, an effect completely abolished by Cj0634 interruption. Complementation of the Cj0634 mutation in C. jejuni strain 480 in trans with vectors containing the dprA homologs from C. jejuni, Helicobacter pylori, or Haemophilus influenzae, completely (for Cj0634) or partially (H. pylori>H. influenzae) restored electro-transformation. Thus, C. jejuni expresses a DprA ortholog that functionally most closely resembles that of H. pylori and is involved in DNA transformation.
Collapse
Affiliation(s)
- Tohru Takata
- Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | |
Collapse
|
28
|
Holland BR, Schmid J. Selecting representative model micro-organisms. BMC Microbiol 2005; 5:26. [PMID: 15904495 PMCID: PMC1156902 DOI: 10.1186/1471-2180-5-26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 05/17/2005] [Indexed: 11/17/2022] Open
Abstract
Background Micro-biological research relies on the use of model organisms that act as representatives of their species or subspecies, these are frequently well-characterized laboratory strains. However, it has often become apparent that the model strain initially chosen does not represent important features of the species. For micro-organisms, the diversity of their genomes is such that even the best possible choice of initial strain for sequencing may not assure that the genome obtained adequately represents the species. To acquire information about a species' genome as efficiently as possible, we require a method to choose strains for analysis on the basis of how well they represent the species. Results We develop the Best Total Coverage (BTC) method for selecting one or more representative model organisms from a group of interest, given that rough genetic distances between the members of the group are known. Software implementing a "greedy" version of the method can be used with large data sets, its effectiveness is tested using both constructed and biological data sets. Conclusion In both the simulated and biological examples the greedy-BTC method outperformed random selection of model organisms, and for two biological examples it outperformed selection of model strains based on phylogenetic structure. Although the method was designed with microbial species in mind, and is tested here on three microbial data sets, it will also be applicable to other types of organism.
Collapse
Affiliation(s)
- BR Holland
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - J Schmid
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
29
|
Gillings MR, Holley MP, Stokes HW, Holmes AJ. Integrons in Xanthomonas: a source of species genome diversity. Proc Natl Acad Sci U S A 2005; 102:4419-24. [PMID: 15755815 PMCID: PMC555480 DOI: 10.1073/pnas.0406620102] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Indexed: 11/18/2022] Open
Abstract
Integrons are best known for assembling antibiotic resistance genes in clinical bacteria. They capture genes by using integrase-mediated site-specific recombination of mobile gene cassettes. Integrons also occur in the chromosomes of many bacteria, notably beta- and gamma-Proteobacteria. In a survey of Xanthomonas, integrons were found in all 32 strains representing 12 pathovars of two species. Their chromosomal location was downstream from the acid dehydratase gene, ilvD, suggesting that an integron was present at this site in the ancestral xanthomonad. There was considerable sequence and structural diversity among the extant integrons. The majority of integrase genes were predicted to be inactivated by frameshifts, stop codons, or large deletions, suggesting that the associated gene cassettes can no longer be mobilized. In support, groups of strains with the same deletions or stop codons/frameshifts in their integrase gene usually contained identical arrays of gene cassettes. In general, strains within individual pathovars had identical cassettes, and these exhibited no similarity to cassettes detected in other pathovars. The variety and characteristics of contemporary gene cassettes suggests that the ancestral integron had access to a diverse pool of these mobile elements, and that their genes originated outside the Xanthomonas genome. Subsequent inactivation of the integrase gene in particular lineages has largely fixed the gene cassette arrays in particular pathovars during their differentiation and specialization into ecological niches. The acquisition of diverse gene cassettes by different lineages within Xanthomonas has contributed to the species-genome diversity of the genus. The role of gene cassettes in survival on plant surfaces is currently unknown.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | | | | | | |
Collapse
|
30
|
Teyssier C, Marchandin H, Jumas-Bilak E. [The genome of alpha-proteobacteria : complexity, reduction, diversity and fluidity]. Can J Microbiol 2004; 50:383-96. [PMID: 15284884 DOI: 10.1139/w04-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The alpha-proteobacteria displayed diverse and often unconventional life-styles. In particular, they keep close relationships with the eucaryotic cell. Their genomic organization is often atypical. Indeed, complex genomes, with two or more chromosomes that could be linear and sometimes associated with plasmids larger than one megabase, have been described. Moreover, polymorphism in genome size and topology as well as in replicon number was observed among very related bacteria, even in a same species. Alpha-proteobacteria provide a good model to study the reductive evolution, the role and origin of multiple chromosomes, and the genomic fluidity. The amount of new data harvested in the last decade should lead us to better understand emergence of bacterial life-styles and to build the conceptual basis to improve the definition of the bacterial species.
Collapse
Affiliation(s)
- Corinne Teyssier
- Laboratoire de bactériologie, Faculté de pharmacie, Montpellier CEDEX 5, France
| | | | | |
Collapse
|
31
|
Wei G, Pan L, Du H, Chen J, Zhao L. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods 2004; 59:91-108. [PMID: 15325756 DOI: 10.1016/j.mimet.2004.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 11/18/2022]
Abstract
Bacterial populations common to healthy human guts may play important roles in human health. A new strategy for discovering genomic sequences as markers for these bacteria was developed using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting. Structural features within microbial communities are compared with ERIC-PCR followed by DNA hybridization to identify genomic fragments shared by samples from healthy human individuals. ERIC-PCR profiles of fecal samples from 12 diseased or healthy human and piglet subjects demonstrated stable, unique banding patterns for each individual tested. Sequence homology of DNA fragments in bands of identical size was examined between samples by hybridization under high stringency conditions with DIG-labeled ERIC-PCR products derived from the fecal sample of one healthy child. Comparative analysis of the hybridization profiles with the original agarose fingerprints identified three predominant bands as signatures for populations associated with healthy human guts with sizes of 500, 800 and 1000 bp. Clone library profiling of the three bands produced 17 genome fragments, three of which showed high similarity only with regions of the Bacteroides thetaiotaomicron genome, while the remainder were orphan sequences. Association of these sequences with healthy guts was validated by sequence-selective PCR experiments, which showed that a single fragment was present in all 32 healthy humans and 13 healthy piglets tested. Two fragments were present in the healthy human group and in 18 children with non-infectious diarrhea but not in eight children with infectious diarrhea. Genome fragments identified with this novel strategy may be used as genome-specific markers for dynamic monitoring and sequence-guided isolation of functionally important bacterial populations in complex communities such as human gut microflora.
Collapse
Affiliation(s)
- Guifang Wei
- Laboratory of Molecular Microbial Ecology and Ecogenomics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
32
|
Abstract
Methods for comparing gene frequencies across large, epidemiologically defined bacterial collections are limited. A novel microarray technology has been developed called 'library on a slide'. In this technology, hundreds of entire microbial genomes are arrayed, rather than sequences of a single genome or sets of genes. These slides can then be probed for the presence of specific genes allowing researchers to draw inferences regarding important differences between related strains that differ in their pathogenic potential.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.
| |
Collapse
|
33
|
Abstract
Increasing concern about the emergence of resistance in clinically important pathogens has led to the establishment of a number of surveillance programmes to monitor the true extent of resistance at the local, regional and national levels. Although some programmes have been operating for several years, their true usefulness is only now being realised. This review describes some of the major surveillance initiatives and the way in which the data have been used in a number of different settings. In the hospital, surveillance data have been used to monitor local antibiograms and determine infection control strategies and antibiotic usage policies. In the community, surveillance data have been used to monitor public health threats, such as infectious disease outbreaks involving resistant pathogens and the effects of bioterrorism countermeasures, by following the effects of prophylactic use of different antibiotics on resistance. Initially, the pharmaceutical industry sponsored surveillance programmes to monitor the susceptibility of clinical isolates to marketed products. However, in the era of burgeoning resistance, many developers of antimicrobial agents find surveillance data useful for defining new drug discovery and development strategies, in that they assist with the identification of new medical needs, allow modelling of future resistance trends, and identify high-profile isolates for screening the activity of new agents. Many companies now conduct pre-launch surveillance of new products to benchmark activity so that changes in resistance can be monitored following clinical use. Surveillance data also represent an integral component of regulatory submissions for new agents and, together with clinical trial data, are used to determine breakpoints. It is clear that antibiotic resistance surveillance systems will continue to provide valuable data to health care providers, university researchers, pharmaceutical companies, and government and regulatory agencies.
Collapse
|
34
|
Ecevit IZ, McCrea KW, Pettigrew MM, Sen A, Marrs CF, Gilsdorf JR. Prevalence of the hifBC, hmw1A, hmw2A, hmwC, and hia Genes in Haemophilus influenzae Isolates. J Clin Microbiol 2004; 42:3065-72. [PMID: 15243061 PMCID: PMC446296 DOI: 10.1128/jcm.42.7.3065-3072.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adherence of Haemophilus influenzae to respiratory epithelial cells is the first step in the pathogenesis of H. influenzae infection and is facilitated by the action of several adhesins located on the surface of the bacteria. In this study, prevalences of hifBC, which represent the pilus gene cluster; hmw1A, hmw2A, and hmwC, which represent high-molecular-weight (HMW) adhesin genes; and hia, which represents H. influenzae adhesin (Hia) genes were determined among clinical isolates of encapsulated type b (Hib) and nonencapsulated (NTHi) H. influenzae. hifBC genes were detected in 109 of 170 (64%) Hib strains and in 46 of 162 (28%) NTHi isolates (P = 0.0001) and were more prevalent among the invasive type b strains than invasive NTHi strains (P = 0.00003). Furthermore, hifBC genes were significantly more prevalent (P = 0.0398) among NTHi throat isolates than NTHi middle ear isolates. hmw1A, hmw2A, hmwC, and hia genes were not detected in Hib strains. Among NTHi isolates, the prevalence of hmw1A was 51%, the prevalence of hmw2A was 23%, the prevalence of hmwC was 48%, and the prevalence of hia was 33%. The hmw genes were significantly more prevalent among middle ear than throat isolates, while hia did not segregate with a respiratory tract site. These results show the variability of the presence of adhesin genes among clinical H. influenzae isolates and suggest that hemagglutinating pili may play a larger role in H. influenzae nasopharyngeal colonization than in acute otitis media whereas the HMW adhesins may be virulence factors for acute otitis media.
Collapse
Affiliation(s)
- I Zafer Ecevit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-0244, USA
| | | | | | | | | | | |
Collapse
|
35
|
The species concept for prokaryotic microorganisms—An obstacle for describing diversity? ACTA ACUST UNITED AC 2004. [DOI: 10.1007/s10202-004-0068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Michael CA, Gillings MR, Holmes AJ, Hughes L, Andrew NR, Holley MP, Stokes HW. Mobile Gene Cassettes: A Fundamental Resource for Bacterial Evolution. Am Nat 2004; 164:1-12. [PMID: 15266366 DOI: 10.1086/421733] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 03/30/2004] [Indexed: 11/03/2022]
Abstract
Horizontal gene transfer increases genetic diversity in prokaryotes to a degree not allowed by the limitations of reproduction by binary fission. The integron/gene cassette system is one of the most recently characterized examples of a system that facilitates horizontal gene transfer. This system, discovered in the context of multidrug resistance, is recognized in a clinical context for its role in allowing pathogens to adapt to the widespread use of antibiotics. Recent studies suggest that gene cassettes are common and encode functions relevant to many adaptive traits. To estimate the diversity of mobile cassettes in a natural environment, a molecular technique was developed to provide representative distributions of cassette populations at points within a sampling area. Subsequently, statistical methods analogous to those used for calculating species diversity were employed to assess the diversity of gene cassettes within the sample area in addition to gaining an estimate of cassette pool size. Results indicated that the number of cassettes within a 5x10-m sample area was large and that the overall mobile cassette metagenome was likely to be orders of magnitude larger again. Accordingly, gene cassettes appear to be capable of mobilizing a significant genetic resource and consequently have a substantial impact on bacterial adaptability.
Collapse
Affiliation(s)
- Carolyn A Michael
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gilsdorf JR, Marrs CF, Foxman B. Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun 2004; 72:2457-61. [PMID: 15102751 PMCID: PMC387884 DOI: 10.1128/iai.72.5.2457-2461.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Janet R Gilsdorf
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
38
|
Abstract
The enormous sequencing capabilities of our times might be reaching the point of overflowing the possibilities to analyse data and allow for a feedback on where to focus the available resources. We have now a foreseeable future in which most bacterial species will have an annotated genome. However, we know also that most prokaryotic diversity would not be included there. On the one hand, there is the problem of many groups not being easily amenable to culture and hence not represented in culture-centred microbial taxonomy. On the other hand, the gene pools present in one species can be orders of magnitude larger than the genome of one strain (selected for genome sequencing). Contrasting with eukaryotic genomes, the repertoire of genes present in one prokaryotic cell genome does not correlate stringently with its taxonomic identity. Hence gene catalogues from one environment might provide more meaningful information than the classical species catalogues. Metagenomics or microbial environmental genomics provide a different tool that gravitates around the habitat rather than the species. Such a tool could be just the right way to complement "organismal genomics". Its potential to advance our understanding of microbial ecology and prokaryotic diversity and evolution is discussed.
Collapse
Affiliation(s)
- Francisco Rodríguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Campus de San Juan, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
39
|
Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA. Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol 2004; 186:1484-92. [PMID: 14973121 PMCID: PMC344407 DOI: 10.1128/jb.186.5.1484-1492.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogens of the bacterial genus Bordetella cause respiratory disease in humans and animals. Although virulence and host specificity vary across the genus, the genetic determinants of this diversity remain unidentified. To identify genes that may underlie key phenotypic differences between these species and clarify their evolutionary relationships, we performed a comparative analysis of genome content in 42 Bordetella strains by hybridization of genomic DNA to a microarray representing the genomes of three Bordetella species and by subtractive hybridization. Here we show that B. pertussis and B. parapertussis are predominantly differentiated from B. bronchiseptica by large, species-specific regions of difference, many of which encode or direct synthesis of surface structures, including lipopolysaccharide O antigen, which may be important determinants of host specificity. The species also exhibit sequence diversity at a number of surface protein-encoding loci, including the fimbrial major subunit gene, fim2. Gene loss, rather than gene acquisition, accompanied by the proliferation of transposons, has played a fundamental role in the evolution of the pathogenic bordetellae and may represent a conserved evolutionary mechanism among other groups of microbial pathogens.
Collapse
Affiliation(s)
- C A Cummings
- Departments of Microbiology and Immunology. Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
40
|
Antonopoulos DA, Nelson KE, Morrison M, White BA. Strain-specific genomic regions of Ruminococcus flavefaciens FD-1 as revealed by combinatorial random-phase genome sequencing and suppressive subtractive hybridization. Environ Microbiol 2004; 6:335-46. [PMID: 15008812 DOI: 10.1111/j.1462-2920.2004.00576.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two closely related strains of the Gram-positive, cellulolytic ruminal bacterium Ruminococcus flavefaciens were compared at the genomic level by suppressive subtractive hybridization. The two strains investigated in this study differ by 1.94% in their respective 16S rDNA genes. Three hundred and eighty-four PCR-amplified products were cloned and then screened for their strain identity by dot blot hybridization. Based on redundancy percentages of the clones sequenced, 9.5% of the genome of the R. flavefaciens FD-1 strain is not present in the JM1 strain. The majority of identities of individual cloned subtracted products (642 bp average length) bore no relation to deposited sequences in GenBank (42% of the subtracted library), whereas of those with putative assigned functions 7% are loosely associated with fibre-degradation, 6% with insertion elements, transposons and phage-like ORFs, 5% with cell membrane associated proteins and 3% with signal transduction. Subtracted sequences were then supplemented with the draft (2 x coverage) genome sequence of R. flavefaciens FD-1 to indicate potential regions of rearrangement within the genome, including a novel insertion sequence.
Collapse
Affiliation(s)
- Dionysios A Antonopoulos
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Since October 2001, the United States has greatly expanded its commitment to biodefence-related research, with $1.75 billion earmarked for this activity in fiscal year 2003. The goals of this accelerated research and development effort are to understand better the biology of potential bioterror agents and to use this information in the development of new diagnostics, antibiotics and vaccines to protect the world's population against bioterrorism. Genomics, proteomics and bioinformatics approaches are considered to be key enabling technologies in the development of these new products. Genome sequence data for all of the principal human pathogens, including most of the potential bioterror agents on the Center for Disease Control and Prevention (CDC) category A–C lists, are available in public databases and provide a new foundation for follow-up studies. Comparative genomics approaches, together with large-scale methods for studying gene function, such as DNA microarrays, are providing insights into the molecular basis and evolution of pathogenicity, diversity within closely related isolates of the same pathogen and the molecular determinants of host–pathogen interactions. Genomics-based approaches have already proven to be of great use in the identification of new targets for antimicrobial compounds and in the identification of new vaccine candidates. Comparative genomics is also providing important information on the natural variability between closely related isolates that is aiding in the development of the new field of microbial forensics.
The anthrax letter attacks in October 2001, followed by the SARS outbreak in early 2003, dramatically illustrated our vulnerability to both deliberate and natural outbreaks of infectious disease. The availability of pathogen genome sequences and high-throughput methods for studying the biology of both pathogens and their hosts have provided new insights into the mechanisms of pathogenesis and host defence. As infectious disease research expands to include major bioterror agents, genomics-based approaches will provide one of the cornerstones of efforts to develop more accurate diagnostics, new therapeutics and vaccines, and further capabilities for microbial forensics.
Collapse
Affiliation(s)
- Claire M Fraser
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| |
Collapse
|
42
|
Abstract
As each newly sequenced genome contains a significant number of protein-coding ORFs that are species-, family- or lineage-specific, many interesting questions arise about the evolution and role of these ORFs and of the genomes they are part of. We refer to these poorly conserved ORFs as singleton or paralogous ORFans if they are unique to one genome, or as orthologous ORFans if they appear only in a family of closely related organisms and have no homolog in other genomes. In order to study and classify ORFans we have constructed the ORFanage, an ORFan database. This database consists of the predicted ORFs in fully sequenced microbial genomes, and enables searching for the three types of ORFans in any subset of the genomes chosen by the user. The ORFanage could help in choosing interesting targets for further genomic and evolutionary studies. The ORFanage is accessible via http://www.bioinformatics.buffalo. edu/ORFanage.
Collapse
Affiliation(s)
- Naomi Siew
- Department of Chemistry, Ben Gurion University, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|
43
|
Abstract
One of the so called 'species problems' is that no universal concept exists. There is a tendency among microbiologists to criticize the hitherto devised concept. It is considered by some researchers as being too conservative and not suitable to be compared with those for eukaryotes. However, such problem is not only restricted to prokaryotes, but among other taxonomies comparisons seem to be impossible. As it is argued, the underlying cause to this problem is the reductionistic and monistic use of taxonomy. Analyzing the more than 22 devised concepts it seems possible to achieve a universal species concept. However, this might not be pragmatic. For the time being, a pluralistic sense of the species concept might be accepted, and one will have to recognize that any comparison among different taxonomies will be difficult.
Collapse
Affiliation(s)
- Ramon Rosselló-Mora
- Grup d'Oceanografia Interdisciplinar, Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Mallorca, Spain.
| |
Collapse
|
44
|
Haynes S, Darby AC, Daniell TJ, Webster G, Van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE. Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 2003; 69:7216-23. [PMID: 14660369 PMCID: PMC309983 DOI: 10.1128/aem.69.12.7216-7223.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
The bacterial communities of aphids were investigated by terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments generated by PCR with general eubacterial primers. By both methods, the gamma-proteobacterium Buchnera was detected in laboratory cultures of six parthenogenetic lines of the pea aphid Acyrthosiphon pisum and one line of the black bean aphid Aphis fabae, and one or more of four previously described bacterial taxa were also detected in all aphid lines except one of A. pisum. These latter bacteria, collectively known as secondary symbionts or accessory bacteria, comprised three taxa of gamma-proteobacteria (R-type [PASS], T-type [PABS], and U-type [PAUS]) and a rickettsia (S-type [PAR]). Complementary analysis of aphids from natural populations of four aphid species (A. pisum [n = 74], Amphorophora rubi [n = 109], Aphis sarothamni [n = 42], and Microlophium carnosum [n = 101]) from a single geographical location revealed Buchnera and up to three taxa of accessory bacteria, but no other bacterial taxa, in each aphid. The prevalence of accessory bacterial taxa varied significantly among aphid species but not with the sampling month (between June and August 2000). These results indicate that the accessory bacterial taxa are distributed across multiple aphid species, although with variable prevalence, and that laboratory culture does not generally result in a shift in the bacterial community in aphids. Both the transmission patterns of the accessory bacteria between individual aphids and their impact on aphid fitness are suggested to influence the prevalence of accessory bacterial taxa in natural aphid populations.
Collapse
Affiliation(s)
- S Haynes
- Department of Biology, University of York, York YO10 5YW, England
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Aras RA, Kang J, Tschumi AI, Harasaki Y, Blaser MJ. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc Natl Acad Sci U S A 2003; 100:13579-84. [PMID: 14593200 PMCID: PMC263856 DOI: 10.1073/pnas.1735481100] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Indexed: 02/07/2023] Open
Abstract
Prokaryotic genomes are substantially diverse, even when from closely related species, with the resulting phenotypic diversity representing a repertoire of adaptations to specific constraints. Within the microbial population, genome content may not be fixed, as changing selective forces favor particular phenotypes; however, organisms well adapted to particular niches may have evolved mechanisms to facilitate such plasticity. The highly diverse Helicobacter pylori is a model for studying genome plasticity in the colonization of individual hosts. For H. pylori, neither point mutation, nor intergenic recombination requiring the presence of multiple colonizing strains, is sufficient to fully explain the observed diversity. Here we demonstrate that H. pylori has extensive, nonrandomly distributed repetitive chromosomal sequences, and that recombination between identical repeats contributes to the variation within individual hosts. That H. pylori is representative of prokaryotes, especially those with smaller (<2 megabases) genomes, that have similarly extensive direct repeats, suggests that recombination between such direct DNA repeats is a widely conserved mechanism to promote genome diversification.
Collapse
Affiliation(s)
- Rahul A Aras
- Department of Medicine, New York University School of Medicine and Veterans Affairs Medical Center, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
46
|
Spírek M, Yang J, Groth C, Petersen RF, Langkjaer RB, Naumova ES, Sulo P, Naumov GI, Piskur J. High-rate evolution of Saccharomyces sensu lato chromosomes. FEMS Yeast Res 2003; 3:363-73. [PMID: 12748049 DOI: 10.1016/s1567-1356(02)00204-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Forty isolates belonging to the Saccharomyces sensu lato complex were analyzed for one nuclear and two mitochondrial sequences, and for their karyotypes. These data are useful for description and definition of yeast species based on the phylogenetic species concept. The deduced phylogenetic relationships among isolates based on the nuclear and mitochondrial sequences were usually similar, suggesting that horizontal transfer/introgression has not been frequent. The highest degree of polymorphism was observed at the chromosome level. Even isolates which had identical nuclear and mitochondrial sequences often exhibited variation in the number and size of their chromosomes. Apparently, yeast chromosomes have been frequently reshaped and therefore also the position of genes has been dynamic during the evolutionary history of yeasts.
Collapse
Affiliation(s)
- Mário Spírek
- Eukaryote Molecular Biology Group, BioCentrum-DTU, Technical University of Denmark, Building 301, 2800, Lyngby, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
Mapping, and ultimately preventing, the dissemination of infectious agents is an important topic in public health. Newly developed molecular-microbiological methods have contributed significantly to recent advances in the efficient tracking of the nosocomial and environmental spread of microbial pathogens. Not only has the application of novel technologies led to improved understanding of microbial epidemiology, but the concepts of population structure and dynamics of many of the medically significant microorganisms have advanced significantly also. Currently, genetic identification of microbes is also within the reach of clinical microbiology laboratory professionals including those without specialized technology research interests. This review summarizes the possibilities for high-throughput molecular-microbiological typing in adequately equipped medical microbiology laboratories from both clinical and fundamental research perspectives. First, the development and application of methods for large-scale comparative typing of serially isolated microbial strains are discussed. The outcome of studies employing these methods allows for long-term epidemiologic surveillance of infectious diseases. Second, recent methods enable an almost nucleotide-by-nucleotide genetic comparison of smaller numbers of strains, thereby facilitating the identification of the genetic basis of, for instance, medically relevant microbiological traits. Whereas the first approach provides insights into the dynamic spread of infectious agents, the second provides insights into intragenomic dynamics and genetic functionality. The current state of technology is summarized, and future perspectives are sketched.
Collapse
Affiliation(s)
- A van Belkum
- Erasmus MC, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Toro N, Martínez-Abarca F, Fernández-López M, Muñoz-Adelantado E. Diversity of group II introns in the genome of Sinorhizobium meliloti strain 1021: splicing and mobility of RmInt1. Mol Genet Genomics 2003; 268:628-36. [PMID: 12589437 DOI: 10.1007/s00438-002-0778-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 10/25/2002] [Indexed: 10/25/2022]
Abstract
The number and diversity of known group II introns in eubacteria are continually increasing with the addition of new data from sequencing projects, but the significance of these introns in the evolution of bacterial genomes is unknown. We analyzed the main features of the group II introns present in the genome of the soil microorganism Sinorhizobium meliloti (strain 1021), the nitrogen-fixing symbiont of alfalfa, the DNA sequence of which was recently determined. Strain 1021 harbors three different classes of group II introns: RmInt1, of bacterial class D; SMb2147/SMb21167, which cluster within bacterial class C; and SMa1875, the phylogenetic class of which is uncertain. The group II introns SMb2147/SMb21167 and SMa1875 are widely distributed in S. meliloti, but are present in lower copy numbers than RmInt1. Strain 1021 harbors three copies of RmInt1, which is pSym-specific. Although RmInt1 is spliced in strain 1021, mobility assays suggested that, in contrast to other S. meliloti strains, the genetic background of strain 1021 does not support intron homing events.
Collapse
Affiliation(s)
- N Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain.
| | | | | | | |
Collapse
|
50
|
Holmes AJ, Holley MP, Mahon A, Nield B, Gillings M, Stokes HW. Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J Bacteriol 2003; 185:918-28. [PMID: 12533467 PMCID: PMC142810 DOI: 10.1128/jb.185.3.918-928.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.
Collapse
Affiliation(s)
- Andrew J Holmes
- Key Centre for Biodiversity and Bioresources, Macquarie University, Sydney NSW 2109, Australia.
| | | | | | | | | | | |
Collapse
|