1
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Liu S, Mo X, Sun L, Gao L, Su L, An Y, Zhou P. MsDjB4, a HSP40 Chaperone in Alfalfa ( Medicago sativa L.), Improves Alfalfa Hairy Root Tolerance to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2808. [PMID: 37570962 PMCID: PMC10421020 DOI: 10.3390/plants12152808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
The toxicity of aluminum (Al) in acidic soils poses a significant limitation to crop productivity. In this study, we found a notable increase in DnaJ (HSP40) expression in the roots of Al-tolerant alfalfa (WL-525HQ), which we named MsDjB4. Transient conversion assays of tobacco leaf epidermal cells showed that MsDjB4 was targeted to the membrane system including Endoplasmic Reticulum (ER), Golgi, and plasma membrane. We overexpressed (MsDjB4-OE) and suppressed (MsDjB4-RNAi) MsDjB4 in alfalfa hairy roots and found that MsDjB4-OE lines exhibited significantly better tolerance to Al stress compared to wild-type and RNAi hairy roots. Specifically, MsDjB4-OE lines had longer root length, more lateral roots, and lower Al content compared to wild-type and RNAi lines. Furthermore, MsDjB4-OE lines showed lower levels of lipid peroxidation and ROS, as well as higher activity of antioxidant enzymes SOD, CAT, and POD compared to wild-type and RNAi lines under Al stress. Moreover, MsDjB4-OE lines had higher soluble protein content compared to wild-type and RNAi lines after Al treatment. These findings provide evidence that MsDjB4 contributes to the improved tolerance of alfalfa to Al stress by facilitating protein synthesis and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Siyan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Xin Mo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Linjie Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.L.); (X.M.); (L.S.); (L.G.); (L.S.); (Y.A.)
| |
Collapse
|
3
|
Kudhair BK, Green J. Overproduction and purification of Mycobacterium tuberculosis WhiB3 in Escherichia coli is enhanced by co-expression with trigger factor chaperone. Protein Expr Purif 2023; 202:106197. [PMID: 36332747 DOI: 10.1016/j.pep.2022.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Members of the WhiB-like (Wbl) family of proteins are found in Acintomycetes and are somewhat recalcitrant to overproduction as soluble proteins in the laboratory protein expression workhorse Esherichia coli. The aim of this study was to evaluate the effects of culture conditions and co-expression of the chaperone protein, trigger factor (TF), on the soluble production of recombinant Mycobacterium tuberculosis (Mtb) WhiB3. A pET28a derived expression plasmid coding for His6-WhiB3 was created and the effects of varying the concentration of inducer (IPTG), the timing of induction, the nature of the inducer (auto-induction medium) and the temperature of the cultivation on the production of soluble His6-WhiB3 were tested. Whilst His6-WhiB3 protein was readily detected, the overwhelming majority of the protein was present in the insoluble fraction of cell-free extracts. However, co-expression of the tig from pTf16, coding for TF, increased His6-WhiB3 solubility dramatically, facilitating its isolation by affinity chromatography. Purified His6-WhiB3 was shown to be monomeric, and UV-visible spectra suggested that ∼10% of the isolated protein possessed a [4Fe-4S] cluster. The secondary structural properties of His6-WhiB3 were altered by acquisition of an iron-sulfur cluster. By developing a protocol to readily overproduce and purify WhiB3, this study paves the way for future structure-function experiments.
Collapse
Affiliation(s)
- Bassam K Kudhair
- Department of Laboratory Investigations, Faculty of Science, University of Kufa, Najaf, 54001, Iraq.
| | - Jeffrey Green
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
4
|
Upadhyay A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharm Sin B 2021; 11:2995-3014. [PMID: 34729300 PMCID: PMC8546668 DOI: 10.1016/j.apsb.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cells have different sets of molecules for performing an array of physiological functions. Nucleic acids have stored and carried the information throughout evolution, whereas proteins have been attributed to performing most of the cellular functions. To perform these functions, proteins need to have a unique conformation and a definite lifespan. These attributes are achieved by a highly coordinated protein quality control (PQC) system comprising chaperones to fold the proteins in a proper three-dimensional structure, ubiquitin-proteasome system for selective degradation of proteins, and autophagy for bulk clearance of cell debris. Many kinds of stresses and perturbations may lead to the weakening of these protective cellular machinery, leading to the unfolding and aggregation of cellular proteins and the occurrence of numerous pathological conditions. However, modulating the expression and functional efficiency of molecular chaperones, E3 ubiquitin ligases, and autophagic proteins may diminish cellular proteotoxic load and mitigate various pathological effects. Natural medicine and small molecule-based therapies have been well-documented for their effectiveness in modulating these pathways and reestablishing the lost proteostasis inside the cells to combat disease conditions. The present article summarizes various similar reports and highlights the importance of the molecules obtained from natural sources in disease therapeutics.
Collapse
Key Words
- 17-AAG, 17-allylamino-geldanamycin
- APC, anaphase-promoting complex
- Ageing
- Autophagy
- BAG, BCL2-associated athanogene
- CAP, chaperone-assisted proteasomal degradation
- CASA, chaperone-assisted selective autophagy
- CHIP, carboxy-terminus of HSC70 interacting protein
- CMA, chaperone-mediated autophagy
- Cancer
- Chaperones
- DUBs, deubiquitinases
- Drug discovery
- EGCG, epigallocatechin-3-gallate
- ESCRT, endosomal sorting complexes required for transport
- HECT, homologous to the E6-AP carboxyl terminus
- HSC70, heat shock cognate 70
- HSF1, heat shock factor 1
- HSP, heat shock protein
- KFERQ, lysine-phenylalanine-glutamate-arginine-glutamine
- LAMP2a, lysosome-associated membrane protein 2a
- LC3, light chain 3
- NBR1, next to BRCA1 gene 1
- Natural molecules
- Neurodegeneration
- PQC, protein quality control
- Proteinopathies
- Proteostasis
- RING, really interesting new gene
- UPS, ubiquitin–proteasome system
- Ub, ubiquitin
- Ubiquitin proteasome system
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Bandar Sindari, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
5
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
6
|
Rey M, Dhenin J, Kong Y, Nouchikian L, Filella I, Duchateau M, Dupré M, Pellarin R, Duménil G, Chamot-Rooke J. Advanced In Vivo Cross-Linking Mass Spectrometry Platform to Characterize Proteome-Wide Protein Interactions. Anal Chem 2021; 93:4166-4174. [DOI: 10.1021/acs.analchem.0c04430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martial Rey
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Youxin Kong
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Lucienne Nouchikian
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Isaac Filella
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Mathieu Dupré
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
7
|
Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014; 77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
8
|
Truman AW, Kristjansdottir K, Wolfgeher D, Ricco N, Mayampurath A, Volchenboum SL, Clotet J, Kron SJ. Quantitative proteomics of the yeast Hsp70/Hsp90 interactomes during DNA damage reveal chaperone-dependent regulation of ribonucleotide reductase. J Proteomics 2014; 112:285-300. [PMID: 25452130 DOI: 10.1016/j.jprot.2014.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED The highly conserved molecular chaperones Hsp90 and Hsp70 are indispensible for folding and maturation of a significant fraction of the proteome, including many proteins involved in signal transduction and stress response. To examine the dynamics of chaperone-client interactions after DNA damage, we applied quantitative affinity-purification mass spectrometry (AP-MS) proteomics to characterize interactomes of the yeast Hsp70 isoform Ssa1 and Hsp90 isoform Hsp82 before and after exposure to methyl methanesulfonate. Of 256 proteins identified and quantified via (16)O(/18)O labeling and LC-MS/MS, 142 are novel Hsp70/90 interactors. Nearly all interactions remained unchanged or decreased after DNA damage, but 5 proteins increased interactions with Ssa1 and/or Hsp82, including the ribonucleotide reductase (RNR) subunit Rnr4. Inhibiting Hsp70 or 90 chaperone activity destabilized Rnr4 in yeast and its vertebrate homolog hRMM2 in breast cancer cells. In turn, pre-treatment of cancer cells with chaperone inhibitors sensitized cells to the RNR inhibitor gemcitabine, suggesting a novel chemotherapy strategy. All MS data have been deposited in the ProteomeXchange with identifier PXD001284. BIOLOGICAL SIGNIFICANCE This study provides the dynamic interactome of the yeast Hsp70 and Hsp90 under DNA damage which suggest key roles for the chaperones in a variety of signaling cascades. Importantly, the cancer drug target ribonucleotide reductase was shown to be a client of Hsp70 and Hsp90 in both yeast and breast cancer cells. As such, this study highlights the potential of a novel cancer therapeutic strategy that exploits the synergy of chaperone and ribonucleotide reductase inhibitors.
Collapse
Affiliation(s)
- Andrew W Truman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Natalia Ricco
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalunya, Spain
| | - Anoop Mayampurath
- Computation Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel L Volchenboum
- Computation Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Josep Clotet
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalunya, Spain
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 2014; 37:505-23. [PMID: 24687294 DOI: 10.1007/s10545-014-9701-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
To attain functionality, proteins must fold into their three-dimensional native state. The intracellular balance between protein synthesis, folding, and degradation is constantly challenged by genetic or environmental stress factors. In the last ten years, protein misfolding induced by missense mutations was demonstrated to be the seminal molecular mechanism in a constantly growing number of inborn errors of metabolism. In these cases, loss of protein function results from early degradation of missense-induced misfolded proteins. Increasing knowledge on the proteostasis network and the protein quality control system with distinct mechanisms in different compartments of the cell paved the way for the development of new treatment strategies for conformational diseases using small molecules. These comprise proteostasis regulators that enhance the capacity of the proteostasis network and pharmacological chaperones that specifically bind and rescue misfolded proteins by conformational stabilization. They can be used either alone or in combination, the latter to exploit synergistic effects. Many of these small molecule compounds currently undergo preclinical and clinical pharmaceutical development and two have been approved: saproterin dihydrochloride for the treatment of phenylketonuria and tafamidis for the treatment of transthyretin-related hereditary amyloidosis. Different technologies are exploited for the discovery of new small molecule compounds that belong to the still young class of pharmaceutical products discussed here. These compounds may in the near future improve existing treatment strategies or even offer a first-time treatment to patients suffering from nowadays-untreatable inborn errors of metabolism.
Collapse
Affiliation(s)
- Ania C Muntau
- Department of Molecular Pediatrics, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Lindwurmstrasse 4, 80337, Munich, Germany,
| | | | | | | | | |
Collapse
|
10
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
11
|
Pan X, Whitten DA, Wilkerson CG, Pestka JJ. Dynamic changes in ribosome-associated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol Sci 2013; 138:217-33. [PMID: 24284785 DOI: 10.1093/toxsci/kft270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates cereal-based food, interacts with the ribosome to cause translation inhibition and activate stress kinases in mononuclear phagocytes via the ribotoxic stress response (RSR). The goal of this study was to test the hypothesis that the ribosome functions as a platform for spatiotemporal regulation of translation inhibition and RSR. Specifically, we employed stable isotope labeling of amino acids in cell culture (SILAC)-based proteomics to quantify the early (≤ 30 min) DON-induced changes in ribosome-associated proteins in RAW 264.7 murine macrophage. Changes in the proteome and phosphoproteome were determined using off-gel isoelectric focusing and titanium dioxide chromatography, respectively, in conjunction with LC-MS/MS. Following exposure of RAW 264.7 to a toxicologically relevant concentration of DON (250 ng/ml), we observed an overall decrease in translation-related proteins interacting with the ribosome, concurrently with a compensatory increase in proteins that mediate protein folding, biosynthesis, and cellular organization. Alterations in the ribosome-associated phosphoproteome reflected proteins that modulate translational and transcriptional regulation, and others that converged with signaling pathways known to overlap with phosphorylation changes characterized previously in intact RAW 264.7 cells. These results suggest that the ribosome plays a central role as a hub for association and phosphorylation of proteins involved in the coordination of early translation inhibition as well as recruitment and maintenance of stress-related proteins-both of which enable cells to adapt and respond to ribotoxin exposure. This study provides a template for elucidating the molecular mechanisms of DON and other ribosome-targeting agents.
Collapse
Affiliation(s)
- Xiao Pan
- * Department of Biochemistry and Molecular Biology
| | | | | | | |
Collapse
|
12
|
Ošlaj M, Cluzeau J, Orkić D, Kopitar G, Mrak P, Časar Z. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis. PLoS One 2013; 8:e62250. [PMID: 23667462 PMCID: PMC3647077 DOI: 10.1371/journal.pone.0062250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Employing DERA (2-deoxyribose-5-phosphate aldolase), we developed the first whole-cell biotransformation process for production of chiral lactol intermediates useful for synthesis of optically pure super-statins such as rosuvastatin and pitavastatin. Herein, we report the development of a fed-batch, high-density fermentation with Escherichia coli BL21 (DE3) overexpressing the native E. coli deoC gene. High activity of this biomass allows direct utilization of the fermentation broth as a whole-cell DERA biocatalyst. We further show a highly productive bioconversion processes with this biocatalyst for conversion of 2-substituted acetaldehydes to the corresponding lactols. The process is evaluated in detail for conversion of acetyloxy-acetaldehyde with the first insight into the dynamics of reaction intermediates, side products and enzyme activity, allowing optimization of the feeding strategy of the aldehyde substrates for improved productivities, yields and purities. The resulting process for production of ((2S,4R)-4,6-dihydroxytetrahydro-2H-pyran-2-yl)methyl acetate (acetyloxymethylene-lactol) has a volumetric productivity exceeding 40 g L−1 h−1 (up to 50 g L−1 h−1) with >80% yield and >80% chromatographic purity with titers reaching 100 g L−1. Stereochemical selectivity of DERA allows excellent enantiomeric purities (ee >99.9%), which were demonstrated on downstream advanced intermediates. The presented process is highly cost effective and environmentally friendly. To our knowledge, this is the first asymmetric aldol condensation process achieved with whole-cell DERA catalysis and it simplifies and extends previously developed DERA-catalyzed approaches based on the isolated enzyme. Finally, applicability of the presented process is demonstrated by efficient preparation of a key lactol precursor, which fits directly into the lactone pathway to optically pure super-statins.
Collapse
Affiliation(s)
- Matej Ošlaj
- Genetics, Anti-Infectives, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Jérôme Cluzeau
- API Development, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Damir Orkić
- API Development, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Gregor Kopitar
- Genetics, Anti-Infectives, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Peter Mrak
- Genetics, Anti-Infectives, Lek Pharmaceuticals d.d., Mengeš, Slovenia
- * E-mail: (PM); (ZC)
| | - Zdenko Časar
- API Development, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Mengeš, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (ZC)
| |
Collapse
|
13
|
Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2013; 151:1042-54. [PMID: 23178123 PMCID: PMC3534965 DOI: 10.1016/j.cell.2012.10.044] [Citation(s) in RCA: 489] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.
Collapse
Affiliation(s)
- Onn Brandman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi SI, Son A, Lim KH, Jeong H, Seong BL. Macromolecule-assisted de novo protein folding. Int J Mol Sci 2012; 13:10368-10386. [PMID: 22949867 PMCID: PMC3431865 DOI: 10.3390/ijms130810368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 01/24/2023] Open
Abstract
In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell.
Collapse
Affiliation(s)
- Seong Il Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Ahyun Son
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Keo-Heun Lim
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Hotcherl Jeong
- Vismer Co., Ltd., Ansan, Kyeonggi-do 426-791, Korea
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Baik L. Seong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| |
Collapse
|
15
|
Meriin AB, Mense M, Colbert JD, Liang F, Bihler H, Zaarur N, Rock KL, Sherman MY. A novel approach to recovery of function of mutant proteins by slowing down translation. J Biol Chem 2012; 287:34264-72. [PMID: 22902621 DOI: 10.1074/jbc.m112.397307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein homeostasis depends on a balance of translation, folding, and degradation. Here, we demonstrate that mild inhibition of translation results in a dramatic and disproportional reduction in production of misfolded polypeptides in mammalian cells, suggesting an improved folding of newly synthesized proteins. Indeed, inhibition of translation elongation, which slightly attenuated levels of a copepod GFP mutant protein, significantly enhanced its function. In contrast, inhibition of translation initiation had minimal effects on copepod GFP folding. On the other hand, mild suppression of either translation elongation or initiation corrected folding defects of the disease-associated cystic fibrosis transmembrane conductance regulator mutant F508del. We propose that modulation of translation can be used as a novel approach to improve overall proteostasis in mammalian cells, as well as functions of disease-associated mutant proteins with folding deficiencies.
Collapse
Affiliation(s)
- Anatoli B Meriin
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Preissler S, Deuerling E. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci 2012; 37:274-83. [PMID: 22503700 DOI: 10.1016/j.tibs.2012.03.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 01/14/2023]
Abstract
De novo protein folding is delicate and error-prone and requires the guidance of molecular chaperones. Besides cytosolic and organelle-specific chaperones, cells have evolved ribosome-associated chaperones that support early folding events and prevent misfolding and aggregation. This class of chaperones includes the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC) and specialized eukaryotic heat shock protein (Hsp) 70/40 chaperones. This review focuses on the cellular activities of ribosome-associated chaperones and highlights new findings indicating additional functions beyond de novo folding. These activities include the assembly of oligomeric complexes, such as ribosomes, modulation of translation and targeting of proteins.
Collapse
Affiliation(s)
- Steffen Preissler
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
17
|
RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proc Natl Acad Sci U S A 2012; 109:4621-6. [PMID: 22393021 DOI: 10.1073/pnas.1113113109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA-mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remained unknown. We report that RelA, a protein long known as the central regulator of the bacterial-stringent response, acts on Hfq and thereby affects the physiological activity of RyhB sRNA as a regulator of iron homeostasis. RyhB requires RelA in vivo to arrest growth during iron depletion and to down-regulate a subset of its target mRNAs (fdoG, nuoA, and sodA), whereas the sodB and sdhC targets are barely affected by RelA. In vitro studies with recombinant proteins show that RelA enhances multimerization of Hfq monomers and stimulates Hfq binding of RyhB and other sRNAs. Hfq from polysomes extracted from wild-type cells binds RyhB in vitro, whereas Hfq from polysomes of a relA mutant strain shows no binding. We propose that, by increasing the level of the hexameric form of Hfq, RelA enables binding of RNAs whose affinity for Hfq is low. Our results suggest that, under specific conditions and/or environments, Hfq concentrations are limiting for RNA binding, which thereby provides an opportunity for cellular proteins such as RelA to impact sRNA-mediated responses by modulating the activity of Hfq.
Collapse
|
18
|
Abstract
TRP channels have emerged as key biological sensors in vision, taste, olfaction, hearing, and touch. Despite their importance, virtually nothing is known about the folding and transport of TRP channels during biosynthesis. Here, we identify XPORT (exit protein of rhodopsin and TRP) as a critical chaperone for TRP and its G protein-coupled receptor (GPCR), rhodopsin (Rh1). XPORT is a resident ER and secretory pathway protein that interacts with TRP and Rh1, as well as with Hsp27 and Hsp90. XPORT promotes the targeting of TRP to the membrane in Drosophila S2 cells, a finding that provides a critical first step toward solving a longstanding problem in the successful heterologous expression of TRP. Mutations in xport result in defective transport of TRP and Rh1, leading to retinal degeneration. Our results identify XPORT as a molecular chaperone and provide a mechanistic link between TRP channels and their GPCRs during biosynthesis and transport.
Collapse
|
19
|
Suzuki T, Zhang J, Miyazawa S, Liu Q, Farzan MR, Yao WD. Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J Neurochem 2011; 119:64-77. [PMID: 21797867 DOI: 10.1111/j.1471-4159.2011.07404.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED J. Neurochem. (2011) 119, 64-77. ABSTRACT Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not because of the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Chaperoning roles of macromolecules interacting with proteins in vivo. Int J Mol Sci 2011; 12:1979-90. [PMID: 21673934 PMCID: PMC3111645 DOI: 10.3390/ijms12031979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/15/2011] [Accepted: 03/17/2011] [Indexed: 11/28/2022] Open
Abstract
The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.
Collapse
|
21
|
Mendu V, Chiu M, Barajas D, Li Z, Nagy PD. Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology 2010; 406:342-51. [PMID: 20709345 DOI: 10.1016/j.virol.2010.07.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/20/2010] [Accepted: 07/15/2010] [Indexed: 01/27/2023]
Abstract
To identify host proteins interacting with the membrane-bound replication proteins of tombusviruses, we performed membrane yeast two-hybrid (MYTH) screens based on yeast cDNA libraries. The screens led to the identification of 57 yeast proteins interacting with replication proteins of two tombusviruses. Results from a split ubiquitin assay with 12 full-length yeast proteins and the viral replication proteins suggested that the replication proteins of two tombusviruses interact with a similar set of host proteins. Follow-up experiments with the yeast Cpr1p cyclophilin, which has prolyl isomerase activity that catalyzes cis-trans isomerization of peptidyl-prolyl bonds, confirmed that Cpr1p interacted with the viral p33 replication protein in yeast and in vitro. Replication of Tomato bushy stunt virus replicon RNA increased in cpr1Δ yeast, while over-expression of Cpr1p decreased viral replication. We also show that the Ess1p parvulin prolyl isomerase partly complements Cpr1p function as an inhibitor of tombusvirus replication.
Collapse
Affiliation(s)
- Venugopal Mendu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
22
|
Peisker K, Chiabudini M, Rospert S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:662-72. [PMID: 20226819 DOI: 10.1016/j.bbamcr.2010.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a decade client proteins which require Ssb for proper folding have remained elusive. It was therefore speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function, is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently known about Ssb's multiple functions and what remains to be ascertained by future research.
Collapse
Affiliation(s)
- Kristin Peisker
- Department of Cell and Molecular Biology, Biomedicinskt Centrum BMC, Uppsala, Sweden
| | | | | |
Collapse
|
23
|
Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger Factor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:650-61. [PMID: 20132842 DOI: 10.1016/j.bbamcr.2010.01.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/22/2010] [Indexed: 01/16/2023]
Abstract
Newly synthesized proteins often require the assistance of molecular chaperones to efficiently fold into functional three-dimensional structures. At first, ribosome-associated chaperones guide the initial folding steps and protect growing polypeptide chains from misfolding and aggregation. After that folding into the native structure may occur spontaneously or require support by additional chaperones which do not bind to the ribosome such as DnaK and GroEL. Here we review the current knowledge on the best-characterized ribosome-associated chaperone at present, the Escherichia coli Trigger Factor. We describe recent progress on structural and dynamic aspects of Trigger Factor's interactions with the ribosome and substrates and discuss how these interactions affect co-translational protein folding. In addition, we discuss the newly proposed ribosome-independent function of Trigger Factor as assembly factor of multi-subunit protein complexes. Finally, we cover the functional cooperation between Trigger Factor, DnaK and GroEL in folding of cytosolic proteins and the interplay between Trigger Factor and other ribosome-associated factors acting in enzymatic processing and translocation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Anja Hoffmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Fiaux J, Horst J, Scior A, Preissler S, Koplin A, Bukau B, Deuerling E. Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. J Biol Chem 2009; 285:3227-34. [PMID: 19920147 DOI: 10.1074/jbc.m109.075804] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.
Collapse
Affiliation(s)
- Jocelyne Fiaux
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF282, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
von Plehwe U, Berndt U, Conz C, Chiabudini M, Fitzke E, Sickmann A, Petersen A, Pfeifer D, Rospert S. The Hsp70 homolog Ssb is essential for glucose sensing via the SNF1 kinase network. Genes Dev 2009; 23:2102-15. [PMID: 19723765 DOI: 10.1101/gad.529409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast senses the availability of external energy sources via multiple interconnected signaling networks. One of the central components is SNF1, the homolog of mammalian AMP-activated protein kinase, which in yeast is essential for the expression of glucose-repressed genes. When glucose is available hyperphosphorylated SNF1 is rendered inactive by the type 1 protein phosphatase Glc7. Dephosphorylation requires Reg1, which physically targets Glc7 to SNF1. Here we show that the chaperone Ssb is required to keep SNF1 in the nonphosphorylated state in the presence of glucose. Using a proteome approach we found that the Deltassb1Deltassb2 strain displays alterations in protein expression and suffers from phenotypic characteristics reminiscent of glucose repression mutants. Microarray analysis revealed a correlation between deregulation on the protein and on the transcript level. Supporting studies uncovered that SSB1 was an effective multicopy suppressor of severe growth defects caused by the Deltareg1 mutation. Suppression of Deltareg1 by high levels of Ssb was coupled to a reduction of Snf1 hyperphosphorylation back to the wild-type phosphorylation level. The data are consistent with a model in which Ssb is crucial for efficient regulation within the SNF1 signaling network, thereby allowing an appropriate response to changing glucose levels.
Collapse
Affiliation(s)
- Ulrike von Plehwe
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sharma D, Masison DC. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 2009; 16:571-81. [PMID: 19519514 DOI: 10.2174/092986609788490230] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock proteins protect cells from various conditions of stress. Hsp70, the most ubiquitous and highly conserved Hsp, helps proteins adopt native conformation or regain function after misfolding. Various co-chaperones specify Hsp70 function and broaden its substrate range. We discuss Hsp70 structure and function, regulation by co-factors and influence on propagation of yeast prions.
Collapse
Affiliation(s)
- Deepak Sharma
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National institutes of Health, Bethesda, MD 20892-0851, USA
| | | |
Collapse
|
27
|
Rajan VBV, D'Silva P. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 2009; 9:433-46. [PMID: 19633874 DOI: 10.1007/s10142-009-0132-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 12/22/2022]
Abstract
Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized.
Collapse
|
28
|
The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 2009; 16:589-97. [PMID: 19491936 DOI: 10.1038/nsmb.1614] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The early events in the life of newly synthesized proteins in the cellular environment are remarkably complex. Concurrently with their synthesis by the ribosome, nascent polypeptides are subjected to enzymatic processing, chaperone-assisted folding or targeting to translocation pores at membranes. The ribosome itself has a key role in these different tasks and governs the interplay between the various factors involved. Indeed, the ribosome serves as a platform for the spatially and temporally regulated association of enzymes, targeting factors and chaperones that act upon the nascent polypeptides emerging from the exit tunnel. Furthermore, the ribosome provides opportunities to coordinate the protein-synthesis activity of its peptidyl transferase center with the protein targeting and folding processes. Here we review the early co-translational events involving the ribosome that guide cytosolic proteins to their native state.
Collapse
|
29
|
Facciponte JG, MacDonald IJ, Wang XY, Kim H, Manjili MH, Subjeck JR. Heat Shock Proteins and Scavenger Receptors: Role in Adaptive Immune Responses. Immunol Invest 2009; 34:325-42. [PMID: 16136784 DOI: 10.1081/imm-200064505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor-derived heat shock proteins have shown promise as anti-cancer vaccines in clinical trials. Heat shock proteins (HSPs) can generate potent anti-tumor immunity and elicit antigen-specific CD8+ T cell responses in murine studies. Antigen presenting cells (APC), such as macrophages and dendritic cells (DCs), can elicit antigen-specific CD8+ T cell responses mediated by HSPs. CD91 was the first identified endocytic scavenger receptor for HSPs on APC that can facilitate the process of cross-presentation. Other scavenger receptors may also play a similar role in this process. The present review critically evaluates the identified HSP endocytic receptors on APCs that may generate adaptive immune responses. A better understanding of this interaction between HSPs and APCs may further unravel mechanisms of immunoadjuvant function of HSPs.
Collapse
Affiliation(s)
- John G Facciponte
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | | | | | |
Collapse
|
30
|
Amorim MJ, Mata J. Rng3, a member of the UCS family of myosin co-chaperones, associates with myosin heavy chains cotranslationally. EMBO Rep 2008; 10:186-91. [PMID: 19098712 DOI: 10.1038/embor.2008.228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 11/09/2022] Open
Abstract
The production of functional myosin heavy chains in many eukaryotic organisms requires the function of proteins containing UCS domains (UNC-45/CRO1/She4), which bind to the myosin head domain and stimulate its folding. UCS proteins are essential for myosin-related functions such as muscle formation, RNA localization and cytokinesis. Here, we show that the Schizosaccharomyces pombe UCS protein Rng3 associates with polysomes, suggesting that UCS proteins might assist myosin folding cotranslationally. To identify Rng3 cotranslational targets systematically, we purified Rng3-associated RNAs and used DNA microarrays to identify the transcripts. Rng3 copurified with only seven transcripts (around 0.1% of S. pombe genes), including all five messenger RNAs encoding myosin heavy chains. These results suggest that every myosin heavy chain in S. pombe is a cotranslational target of Rng3. Furthermore, our data suggest that microarray-based approaches allow the genome-wide identification of cotranslational chaperone targets, and thus pave the way for the dissection of translation-linked chaperone networks.
Collapse
Affiliation(s)
- Maria J Amorim
- Hopkins Building, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | | |
Collapse
|
31
|
Alleviation of deleterious effects of protein mutation through inactivation of molecular chaperones. Mol Genet Genomics 2008; 280:409-17. [PMID: 18762987 DOI: 10.1007/s00438-008-0374-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/14/2008] [Indexed: 12/11/2022]
Abstract
Molecular chaperones recognize and bind destabilized proteins. This can be especially important for proteins whose stability is reduced by mutations. We focused our study on a major chaperone system, RAC-Ssb, which assists folding of newly synthesized polypeptides in the yeast cytosol. A sensitive phenotypic assay, the red color of Ade2 mutants, was used to screen for variants with metabolic activity dependent on RAC-Ssb. None of the Ade2 mutants were found to exhibit lower metabolic activity after inactivation of RAC-Ssb. In order to explicitly test the relationship between protein instability and activity of chaperones, a series of temperature sensitive Ade2 mutants were tested in the presence or absence of RAC-Ssb. The growth of Ade2(ts) mutants at elevated temperatures was enhanced if chaperones were missing. Similar pattern was found for thermally sensitive mutants of several other genes. Because RAC-Ssb normally supports the folding of proteins, it appears paradoxical that catabolic activity of mutants is reduced when these chaperones are present. We suggest that under non-stressful conditions, molecular chaperones are tuned to support folding of native proteins, but not that of mutated ones.
Collapse
|
32
|
Choi SI, Han KS, Kim CW, Ryu KS, Kim BH, Kim KH, Kim SI, Kang TH, Shin HC, Lim KH, Kim HK, Hyun JM, Seong BL. Protein solubility and folding enhancement by interaction with RNA. PLoS One 2008; 3:e2677. [PMID: 18628952 PMCID: PMC2444022 DOI: 10.1371/journal.pone.0002677] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/17/2008] [Indexed: 11/18/2022] Open
Abstract
While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Institute of Life Science and Biotechnology, Yonsei University, Seodaemun-Gu, Seoul, Korea
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Kyoung Sim Han
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Chul Woo Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Ki-Sun Ryu
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Byung Hee Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine, and Center for Diagnostic Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Seo-Il Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Tae Hyun Kang
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Hang-Cheol Shin
- Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University, Seoul, Korea
| | - Keo-Heun Lim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Hyo Kyung Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Jeong-Min Hyun
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Baik L. Seong
- Institute of Life Science and Biotechnology, Yonsei University, Seodaemun-Gu, Seoul, Korea
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
33
|
Presynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein. J Neurosci 2008; 28:3668-82. [PMID: 18385325 DOI: 10.1523/jneurosci.5553-07.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted eight-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, an approximately threefold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wild-type fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca(2+) concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca(2+) channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca(2+) channel domains required for efficient coupling of the Ca(2+) influx and synaptic vesicle exocytosis during neurotransmission.
Collapse
|
34
|
Abstract
Background Molecular chaperones help to restore the native states of proteins after their destabilization by external stress. It has been proposed that another function of chaperones is to maintain the activity of proteins destabilized by mutation, weakening the selection against suboptimal protein variants. This would allow for the accumulation of genetic variation which could then be exposed during environmental perturbation and facilitate rapid adaptation. Results We focus on studies describing interactions of chaperones with mutated polypeptides. There are some examples that chaperones can alleviate the deleterious effects of mutations through increased assistance of destabilized proteins. These experiments are restricted to bacteria and typically involve overexpression of chaperones. In eukaryotes, it was found that the malfunctioning of chaperones aggravated phenotypic aberrations associated with mutations. This effect could not be linked to chaperone-mediated stabilization of mutated proteins. More likely, the insufficient activity of chaperones inflicted a deregulation of multiple cellular systems, including those responsible for signaling and therefore important in development. As to why the assistance of mutated proteins by chaperones seems difficult to demonstrate, we note that chaperone-assisted folding can often co-exist with chaperone-assisted degradation. There is growing evidence that some chaperones, including those dependent on Hsp90, can detect potentially functional but excessively unstable proteins and direct them towards degradation instead of folding. This implies that at least some mutations are exposed rather than masked by the activity of molecular chaperones. Conclusion It is at present impossible to determine whether molecular chaperones are mostly helpers or examiners of mutated proteins because experiments showing either of these roles are very few. Depending on whether assistance or disposal prevails, molecular chaperones could speed up or slow down evolution of protein sequences. Similar uncertainties arise when the concept of chaperones (mostly Hsp90) as general regulators of evolvability is considered. If the two roles of chaperones are antagonistic, then any (even small) modification of the chaperone activities to save mutated polypeptides could lead to increased misfolding and aggregation of other proteins. This would be a permanent burden, different from the stochastic cost arising from indiscriminate buffering of random mutations of which many are maladaptive. Reviewers This article was reviewed by A. S. Kondrashov, J. Höhfeld (nominated by A. Eyre-Walker) and D. A. Drummond (nominated by C. Adami). For the full reviews, please go to the Reviewers' comments section.
Collapse
|
35
|
Bourn WR, Jansen Y, Stutz H, Warren RM, Williamson AL, van Helden PD. Creation and characterisation of a high-copy-number version of the pAL5000 mycobacterial replicon. Tuberculosis (Edinb) 2007; 87:481-8. [PMID: 17888739 DOI: 10.1016/j.tube.2007.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/31/2007] [Accepted: 08/04/2007] [Indexed: 11/21/2022]
Abstract
The majority of mycobacterial plasmid vectors are derived from the pAL5000 replicon and maintained at approximately five copies per cell. We have devised a method that directly selects for high-copy-number plasmids. This involves enriching for high copy number plasmids by repeatedly isolating and retransforming plasmids from a mutant library. Using this method we have selected a copy-up version of the pAL5000 replicon. In Mycobacterium smegmatis the copy-number was shown to have increased 7-fold to between 32 and 64 copies/cell, and the plasmid remained relatively stable after 100 generations in the absence of antibiotic selection. The plasmid also has a high-copy-number phenotype in M. bovis BCG and can be used to increase expression of cloned genes, as we have demonstrated with the green fluorescent protein. The mutation was found to be the deletion of an alanine residue in the C-terminal end of the RepA replication protein. We argue that the mutation exerts its effect through altered RNA folding, thereby affecting the translationally coupled RepA-RepB expression.
Collapse
Affiliation(s)
- William R Bourn
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | | | | | | | | | | |
Collapse
|
36
|
Rikhvanov EG, Romanova NV, Chernoff YO. Chaperone effects on prion and nonprion aggregates. Prion 2007; 1:217-22. [PMID: 19164915 PMCID: PMC2634534 DOI: 10.4161/pri.1.4.5058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022] Open
Abstract
Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones, and some of them help cells to cope with heat-induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat-damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of "chaperones' team," including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.
Collapse
Affiliation(s)
- Eugene G Rikhvanov
- Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Irkutsk, Russia
| | | | | |
Collapse
|
37
|
Akimitsu N, Tanaka J, Pelletier J. Translation of nonSTOP mRNA is repressed post-initiation in mammalian cells. EMBO J 2007; 26:2327-38. [PMID: 17446866 PMCID: PMC1864977 DOI: 10.1038/sj.emboj.7601679] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 03/15/2007] [Indexed: 11/08/2022] Open
Abstract
We investigated the fate of aberrant mRNAs lacking in-frame termination codons (called nonSTOP mRNA) in mammalian cells. We found that translation of nonSTOP mRNA was considerably repressed although a corresponding reduction of mRNA was not observed. The repression appears to be post-initiation since (i) repressed nonSTOP mRNAs were associated with polysomes, (ii) translation of IRES-initiated and uncapped nonSTOP mRNA were repressed, and (iii) protein production from nonSTOP mRNA associating with polysomes was significantly reduced when used to program an in vitro run-off translation assay. NonSTOP mRNAs distributed into lighter polysome fractions compared to control mRNAs encoding a stop codon, and a significant amount of heterogeneous polypeptides were produced during in vitro translation of nonSTOP RNAs, suggesting premature termination of ribosomes translating nonSTOP mRNA. Moreover, a run-off translation assay using hippuristanol and RNAse protection assays suggested the presence of a ribosome stalled at the 3' end of nonSTOP mRNAs. Taken together, these data indicate that ribosome stalling at the 3' end of nonSTOP mRNAs can block translation by preventing upstream translation events.
Collapse
Affiliation(s)
- Nobuyoshi Akimitsu
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba-shi, Ibaraki, Japan.
| | | | | |
Collapse
|
38
|
Meyer AE, Hung NJ, Yang P, Johnson AW, Craig EA. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 2007; 104:1558-63. [PMID: 17242366 PMCID: PMC1785244 DOI: 10.1073/pnas.0610704104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Indexed: 12/20/2022] Open
Abstract
J-proteins and Hsp70 chaperones function together in diverse cellular processes. We identified a cytosolic J-protein, Jjj1, of Saccharomyces cerevisiae that is associated with 60S ribosomal particles. Unlike Zuo1, a 60S subunit-associated J-protein that is a component of the chaperone machinery that binds nascent polypeptide chains upon their exit from the ribosome, Jjj1 plays a role in ribosome biogenesis. Cells lacking Jjj1 have phenotypes very similar to those lacking Rei1, a ribosome biogenesis factor associated with pre-60S ribosomal particles in the cytosol. Jjj1 stimulated the ATPase activity of the general cytosolic Hsp70 Ssa, but not Ssb, Zuo1's ribosome-associated Hsp70 partner. Overexpression of Jjj1, which is normally approximately 40-fold less abundant than Zuo1, can partially rescue the phenotypes of cells lacking Zuo1 as well as cells lacking Ssb. Together, these results are consistent with the idea that Jjj1 normally functions with Ssa in a late, cytosolic step of the biogenesis of 60S ribosomal subunits. In addition, because of its ability to bind 60S subunits, we hypothesize that Jjj1, when overexpressed, is able to partially substitute for the Zuo1:Ssb chaperone machinery by recruiting Ssa to the ribosome, facilitating its interaction with nascent polypeptide chains.
Collapse
Affiliation(s)
- Alison E. Meyer
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| | - Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and Institute of Molecular Biology, University of Texas, Austin, TX 78712
| | - Peizhen Yang
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| | - Arlen W. Johnson
- Section of Molecular Genetics and Microbiology and Institute of Molecular Biology, University of Texas, Austin, TX 78712
| | - Elizabeth A. Craig
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| |
Collapse
|
39
|
Bobula J, Tomala K, Jez E, Wloch DM, Borts RH, Korona R. Why molecular chaperones buffer mutational damage: a case study with a yeast Hsp40/70 system. Genetics 2006; 174:937-44. [PMID: 16849597 PMCID: PMC1602100 DOI: 10.1534/genetics.106.061564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/17/2006] [Indexed: 11/18/2022] Open
Abstract
The malfunctioning of molecular chaperones may result in uncovering genetic variation. The molecular basis of this phenomenon remains largely unknown. Chaperones rescue proteins unfolded by environmental stresses and therefore they might also help to stabilize mutated proteins and thus mask damages. To test this hypothesis, we carried out a genomewide mutagenesis followed by a screen for mutations that were synthetically harmful when the RAC-Ssb1/2 cytosolic chaperones were inactive. Mutants with such a phenotype were found and mapped to single nucleotide substitutions. However, neither the genes identified nor the nature of genetic lesions implied that folding of the mutated proteins was being supported by the chaperones. In a second screen, we identified temperature-sensitive (ts) mutants, a phenotype indicative of structural instability of proteins. We tested these for an association with sensitivity to loss of chaperone activity but found no such correlation as might have been expected if the chaperones assisted the folding of mutant proteins. Thus, molecular chaperones can mask the negative effects of mutations but the mechanism of such buffering need not be direct. A plausible role of chaperones is to stabilize genetic networks, thus making them more tolerant to malfunctioning of their constituents.
Collapse
Affiliation(s)
- Joanna Bobula
- Institute of Environmental Sciences, Jagiellonian University, Poland
| | | | | | | | | | | |
Collapse
|
40
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
42
|
Wada S, Hamada M, Satoh N. A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis. Cell Stress Chaperones 2006; 11:23-33. [PMID: 16572726 PMCID: PMC1400611 DOI: 10.1379/csc-137r.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular chaperones play crucial roles in various aspects of the biogenesis and maintenance of proteins in the cell. The heat shock protein 70 (HSP70) chaperone system, in which HSP70 proteins act as chaperones, is one of the major molecular chaperone systems conserved among a variety of organisms. To shed light on the evolutionary history of the constituents of the chordate HSP70 chaperone system and to identify all of the components of the HSP70 chaperone system in ascidians, we carried out a comprehensive survey for HSP70s and their cochaperones in the genome of Ciona intestinalis. We characterized all members of the Ciona HSP70 superfamily, J-proteins, BAG family, and some other types of cochaperones. The Ciona genome contains 8 members of the HSP70 superfamily, all of which have human and protostome counterparts. Members of the STCH subfamily of the HSP70 family and members of the HSPA14 subfamily of the HSP110 family are conserved between humans and protostomes but were not found in Ciona. The Ciona genome encodes 36 J-proteins, 32 of which belong to groups conserved in humans and protostomes. Three proteins seem to be unique to Ciona. J-proteins of the RBJ group are conserved between humans and Ciona but were not found in protostomes, whereas J-proteins of the DNAJC14, ZCSL3, FLJ13236, and C21orf55 groups are conserved between humans and protostomes but were not found in Ciona. J-proteins of the sacsin group seem to be specific to vertebrates. There is also a J-like protein without a conserved HPD tripeptide motif in the Ciona genome. The Ciona genome encodes 3 types of BAG family proteins, all of which have human and protostome counterparts (BAG1, BAG3, and BAT3). BAG2 group is conserved between humans and protostomes but was not found in Ciona, and BAG4 and BAG5 groups seem to be specific to vertebrates. Members for SIL1, UBQLN, UBADC1, TIMM44, GRPEL, and Magmas groups, which are conserved between humans and protostomes, were also found in Ciona. No Ciona member was retrieved for HSPBP1 group, which is conserved between humans and protostomes. For several groups of the HSP70 superfamily, J-proteins, and other types of cochaperones, multiple members in humans are represented by a single counterpart in Ciona. These results show that genes of the HSP70 chaperone system can be distinguished into groups that are shared by vertebrates, Ciona, and protostomes, ones shared by vertebrates and protostomes, ones shared by vertebrates and Ciona, and ones specific to vertebrates, Ciona, or protostomes. These results also demonstrate that the components of the HSP70 chaperone system in Ciona are similar to but simpler than those in humans and suggest that changes of the genome in the lineage leading to humans after the separation from that leading to Ciona increased the number and diversity of members of the HSP70 chaperone system. Changes of the genome in the lineage leading to Ciona also seem to have made the HSP70 chaperone system in this species slightly simpler than that in the common ancestor of humans and Ciona.
Collapse
Affiliation(s)
- Shuichi Wada
- CREST, Japan Science Technology Agency, Kawaguchi, Saitama 333-0012 [corrected] Japan.
| | | | | |
Collapse
|
43
|
Musatovova O, Dhandayuthapani S, Baseman JB. Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol 2006; 188:2845-55. [PMID: 16585746 PMCID: PMC1447023 DOI: 10.1128/jb.188.8.2845-2855.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/08/2006] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma genitalium is a human bacterial pathogen linked to urethritis and other sexually transmitted diseases as well as respiratory and joint pathologies. Though its complete genome sequence is available, little is understood about the regulation of gene expression in this smallest known, self-replicating cell, as its genome lacks orthologues for most of the conventional bacterial regulators. Still, the transcriptional repressor HrcA (heat regulation at CIRCE [controlling inverted repeat of chaperone expression]) is predicted in the M. genitalium genome as well as three copies of its corresponding regulatory sequence CIRCE. We investigated the transcriptional response of M. genitalium to elevated temperatures and detected the differential induction of four hsp genes. Three of the up-regulated genes, which encode DnaK, ClpB, and Lon, possess CIRCE within their promoter regions, suggesting that the HrcA-CIRCE regulatory mechanism is functional. Additionally, one of three DnaJ-encoding genes was up-regulated, even though no known regulatory sequences were found in the promoter region. Transcript levels returned to control values after 1 h of incubation at 37 degrees C, reinforcing the transient nature of the heat shock transcriptional response. Interestingly, neither of the groESL operon genes, which encode the GroEL chaperone and its cochaperone GroES, responded to heat shock. These data suggest that M. genitalium selectively regulates a limited number of genes in response to heat shock.
Collapse
Affiliation(s)
- Oxana Musatovova
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, mail code 7758, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
44
|
Ullers RS, Houben ENG, Brunner J, Oudega B, Harms N, Luirink J. Sequence-specific interactions of nascent Escherichia coli polypeptides with trigger factor and signal recognition particle. J Biol Chem 2006; 281:13999-4005. [PMID: 16551615 DOI: 10.1074/jbc.m600638200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As nascent polypeptides exit the ribosomal tunnel they immediately associate with chaperones, folding catalysts, and targeting factors. These interactions are decisive for the future conformation and destination of the protein that is being synthesized. Using Escherichia coli as a model organism, we have systematically analyzed how the earliest contacts of nascent polypeptides with cytosolic factors depend on the nature and future destination of the emerging sequence using a photo cross-linking approach. Together, the data suggest that the chaperone trigger factor is adjacent to emerging sequences by default, consistent with both its placement near the nascent chain exit site and its cellular abundance. The signal recognition particle (SRP) effectively competes the contact with TF when a signal anchor (SA) sequence of a nascent inner membrane protein appears outside the ribosome. The SRP remains in contact with the SA and downstream sequences during further synthesis of approximately 30 amino acids. The contact with trigger factor is then restored unless another transmembrane segment reinitiates SRP binding. Importantly and in contrast to published data, the SRP appears perfectly capable of distinguishing SA sequences from signal sequences in secretory proteins at this early stage in biogenesis.
Collapse
Affiliation(s)
- Ronald S Ullers
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Moseley JL, Chang CW, Grossman AR. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2006; 5:26-44. [PMID: 16400166 PMCID: PMC1360252 DOI: 10.1128/ec.5.1.26-44.2006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Chlamydomonas reinhardtii transcription factor PSR1 is required for the control of activities involved in scavenging phosphate from the environment during periods of phosphorus limitation. Increased scavenging activity reflects the development of high-affinity phosphate transport and the expression of extracellular phosphatases that can cleave phosphate from organic compounds in the environment. A comparison of gene expression patterns using microarray analyses and quantitative PCRs with wild-type and psr1 mutant cells deprived of phosphorus has revealed that PSR1 also controls genes encoding proteins with potential "electron valve" functions--these proteins can serve as alternative electron acceptors that help prevent photodamage caused by overexcitation of the photosynthetic electron transport system. In accordance with this finding, phosphorus-starved psr1 mutants die when subjected to elevated light intensities; at these intensities, the wild-type cells still exhibit rapid growth. Acclimation to phosphorus deprivation also involves a reduction in the levels of transcripts encoding proteins involved in photosynthesis and both cytoplasmic and chloroplast translation as well as an increase in the levels of transcripts encoding stress-associated chaperones and proteases. Surprisingly, phosphorus-deficient psr1 cells (but not wild-type cells) also display expression patterns associated with specific responses to sulfur deprivation, suggesting a hitherto unsuspected link between the signal transduction pathways involved in controlling phosphorus and sulfur starvation responses. Together, these results demonstrate that PSR1 is critical for the survival of cells under conditions of suboptimal phosphorus availability and that it plays a key role in controlling both scavenging responses and the ability of the cell to manage excess absorbed excitation energy.
Collapse
Affiliation(s)
- Jeffrey L Moseley
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, California 94305, USA.
| | | | | |
Collapse
|
46
|
Craig EA, Huang P, Aron R, Andrew A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 2006; 156:1-21. [PMID: 16634144 DOI: 10.1007/s10254-005-0001-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hsp70s and J-proteins, which constitute one of the most ubiquitous types of molecular chaperone machineries, function in a wide variety of cellular processes. J-proteins play a central role by stimulating an Hsp70's ATPase activity, thereby stabilizing its interaction with client proteins. However, while all J-proteins serve this core purpose, individual proteins are both structurally and functionally diverse. Some, but not all, J-proteins interact with client polypeptides themselves, facilitating their binding to an Hsp70. Some J-proteins have many client proteins, others only one. Certain J-proteins, while not others, are tethered to particular locations within a cellular compartment, thus "recruiting" Hsp70s to the vicinity of their clients. Here we review recent work on the diverse family of J-proteins, outlining emerging themes concerning their function.
Collapse
Affiliation(s)
- E A Craig
- University of Wisconsin-Madison, 441E Biochemistry Addition, Department of Biochemistry, 433 Babcock Drive, Madison, 53706 WI, USA.
| | | | | | | |
Collapse
|
47
|
Rauch T, Hundley HA, Pfund C, Wegrzyn RD, Walter W, Kramer G, Kim SY, Craig EA, Deuerling E. Dissecting functional similarities of ribosome-associated chaperones from Saccharomyces cerevisiae and Escherichia coli. Mol Microbiol 2005; 57:357-65. [PMID: 15978070 DOI: 10.1111/j.1365-2958.2005.04690.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosome-tethered chaperones that interact with nascent polypeptide chains have been identified in both prokaryotic and eukaryotic systems. However, these ribosome-associated chaperones share no sequence similarity: bacterial trigger factors (TF) form an independent protein family while the yeast machinery is Hsp70-based. The absence of any component of the yeast machinery results in slow growth at low temperatures and sensitivity to aminoglycoside protein synthesis inhibitors. After establishing that yeast ribosomal protein Rpl25 is able to recruit TF to ribosomes when expressed in place of its Escherichia coli homologue L23, the ribosomal TF tether, we tested whether such divergent ribosome-associated chaperones are functionally interchangeable. E. coli TF was expressed in yeast cells that lacked the endogenous ribosome-bound machinery. TF associated with yeast ribosomes, cross-linked to yeast nascent polypeptides and partially complemented the aminoglycoside sensitivity, demonstrating that ribosome-associated chaperones from divergent organisms share common functions, despite their lack of sequence similarity.
Collapse
Affiliation(s)
- Thomas Rauch
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yam AYW, Albanèse V, Lin HTJ, Frydman J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem 2005; 280:41252-61. [PMID: 16219770 DOI: 10.1074/jbc.m503615200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular chaperones such as Hsp70 use ATP binding and hydrolysis to prevent aggregation and ensure the efficient folding of newly translated and stress-denatured polypeptides. Eukaryotic cells contain several cytosolic Hsp70 subfamilies. In yeast, these include the Hsp70s SSB and SSA as well as the Hsp110-like Sse1/2p. The cellular functions and interplay between these different Hsp70 systems remain ill-defined. Here we show that the different cytosolic Hsp70 systems functionally interact with Hsp110 to form a chaperone network that interacts with newly translated polypeptides during their biogenesis. Both SSB and SSA Hsp70s form stable complexes with the Hsp110 Sse1p. Pulse-chase analysis indicates that these Hsp70/Hsp110 teams, SSB/SSE and SSA/SSE, transiently associate with newly synthesized polypeptides with different kinetics. SSB Hsp70s bind cotranslationally to a large fraction of nascent chains, suggesting an early role in the stabilization of nascent chains. SSA Hsp70s bind mostly post-translationally to a more restricted subset of newly translated polypeptides, suggesting a downstream function in the folding pathway. Notably, loss of SSB dramatically enhances the cotranslational association of SSA with nascent chains, suggesting SSA can partially fulfill an SSB-like function. On the other hand, the absence of SSE1 enhances polypeptide binding to both SSB and SSA and impairs cell growth. It, thus, appears that Hsp110 is an important regulator of Hsp70-substrate interactions. Based on our data, we propose that Hsp110 cooperates with the SSB and SSA Hsp70 subfamilies, which act sequentially during de novo folding.
Collapse
Affiliation(s)
- Alice Yen-Wen Yam
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
49
|
Otto H, Conz C, Maier P, Wölfle T, Suzuki CK, Jenö P, Rücknagel P, Stahl J, Rospert S. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci U S A 2005; 102:10064-9. [PMID: 16002468 PMCID: PMC1177401 DOI: 10.1073/pnas.0504400102] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soluble Hsp70 homologs cotranslationally interact with nascent polypeptides in all kingdoms of life. In addition, fungi possess a specialized Hsp70 system attached to ribosomes, which in Saccharomyces cerevisiae consists of the Hsp70 homologs Ssb1/2p, Ssz1p, and the Hsp40 homolog zuotin. Ssz1p and zuotin are assembled into a unique heterodimeric complex termed ribosome-associated complex. So far, no such specialized chaperones have been identified on ribosomes of higher eukaryotes. However, a family of proteins characterized by an N-terminal zuotin-homology domain fused to a C-terminal two-repeat Myb domain is present in animals and plants. Members of this family, like human MPP11 and mouse MIDA1, have been implicated in the regulation of cell growth. Specific targets of MPP11/MIDA1, however, have remained elusive. Here, we report that MPP11 is localized to the cytosol and associates with ribosomes. Purification of MPP11 revealed that it forms a stable complex with Hsp70L1, a distantly related homolog of Ssz1p. Complementation experiments indicate that mammalian ribosome-associated complex is functional in yeast. We conclude that despite a low degree of homology on the amino acid level cooperation of ribosome-associated chaperones with the translational apparatus is well conserved in eukaryotic cells.
Collapse
Affiliation(s)
- Hendrik Otto
- Institut für Biochemie und Molekularbiologie, and Fakultät für Biologie, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|