1
|
Líbalová H, Závodná T, Vrbová K, Sikorová J, Vojtíšek-Lom M, Beránek V, Pechout M, Kléma J, Ciganek M, Machala M, Neča J, Rössner P, Topinka J. Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503414. [PMID: 34798934 DOI: 10.1016/j.mrgentox.2021.503414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (μg PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene expression changes in human lung BEAS-2B cells, exposed for 4 h and 24 h to a subtoxic dose of each PM extract. After 4 h exposure, numerous dysregulated genes and processes such as oxidative stress, lipid and steroid metabolism, PPARα signaling and immune response, were found to be common for both extract treatments. On the other hand, 24 h exposure resulted in more distinctive gene expression patterns. Although we identified several common modulated processes indicating the metabolism of PAHs and activation of aryl hydrocarbon receptor (AhR), E15 specifically dysregulated a variety of other genes and pathways related to cancer promotion and progression. Overall, our findings suggest that the ethanol addition to gasoline changed the intrinsic properties of PM emissions and increased the PAH content in PM organic extract, thus contributing to a more extensive toxic response particularly after 24 h exposure in BEAS-2B cells.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Kristýna Vrbová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jitka Sikorová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Vojtíšek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Vít Beránek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, Kamycka 127, 165 21, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo namesti 13, 121 35, Prague, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
2
|
Phillips NA, Lillico DM, Qin R, McAllister M, El-Din MG, Belosevic M, Stafford JL. Inorganic fraction of oil sands process-affected water induces mammalian macrophage stress gene expression and acutely modulates immune cell functional markers at both the gene and protein levels. Toxicol In Vitro 2020; 66:104875. [DOI: 10.1016/j.tiv.2020.104875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
|
3
|
Islam MT, Streck L, de Alencar MVOB, Cardoso Silva SW, da Conceição Machado K, da Conceição Machado K, Gomes Júnior AL, Paz MFCJ, da Mata AMOF, de Castro E Sousa JM, da Costa Junior JS, Lins Rolim HM, da Silva-Junior AA, de Carvalho Melo-Cavalcante AA. Evaluation of toxic, cytotoxic and genotoxic effects of phytol and its nanoemulsion. CHEMOSPHERE 2017; 177:93-101. [PMID: 28284120 DOI: 10.1016/j.chemosphere.2017.02.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Phytol (PYT) is a diterpenoid having important biological activity. However, it is a water non-soluble compound. This study aims to prepare PYT nanoemulsion (PNE) and evaluation of toxic, cytotoxic and genotoxic activities of PYT and PNE. For this, the PNE was prepared by the phase inversion method. The cytotoxicity test was performed in Artemia salina, while toxicity, cytotoxicity and genotoxicity in Allium cepa at concentrations of 2, 4, 8 and 16 mM. Potassium dichromate and copper sulfate were used as positive controls for the tests of A. salina and A. cepa, respectively. In addition, an adaptation response was detected in A. cepa by using the comet assay. The results suggest that both PYT and PNE exhibited toxic and cytotoxic effects at 4-16 mM in either test system, while genotoxicity at 2-16 mM in A. cepa. PNE exhibited more toxic, cytotoxic and genotoxic effects at 8 and 16 mM than the PYT. However, both PYT and PNE at 2 and 4 mM decreased the index and frequency of damage in A. cepa after 48 and 72 h, suggesting a possible adaptation response or DNA damage preventing capacity. Nanoemulsified PYT (PNE) may readily cross the biological membranes with an increase in bioavailability and produce more toxic, cytotoxic and genotoxic effects in the used test systems.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil; Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh.
| | - Leticia Streck
- Department of Pharmacy, Federal University of Rio Grande do Norte, 59012-570, Natal, RN, Brazil
| | | | - Samara Wanessa Cardoso Silva
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | - Kátia da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | - Keylla da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | - Antonio Luiz Gomes Júnior
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | - Márcia Fernanda Correia Jardim Paz
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | | | | | - Hercília Maria Lins Rolim
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, 64.049-550, Brazil
| |
Collapse
|
4
|
Wang H, Wu D, Wang X, Chen G, Zhang Y, Yan W, Luo X, Han M, Ning Q. Hepatitis B virus surface protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. Biol Chem 2016; 397:1173-1185. [DOI: 10.1515/hsz-2015-0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
Abstract
The protein inhibitor of activated STAT1 (PIAS1) plays important roles in regulating virus-induced chronic hepatitis, but the interaction between hepatitis B virus (HBV) and hPIAS1 is not clear. Our aim was to verify if HBV encoding proteins enhance the transcription of hPIAS1 and which cis-elements and transcription factors were involved in the mechanism. In order to do, so a series of molecular biological methods, along with functional and histological studies, were performed. We found that the HBV surface protein (HBs) enhanced hPIAS1 transcription through the activities of TAL1, E47, myogenin (MYOG), and NFI, dependent on the activation of p38MAPK and ERK signaling pathways in vitro, which might contribute to the ineffectiveness of treatment in CHB patients. Furthermore, liver samples from patients with high HBsAg levels and HBV DNA displayed increased hPIAS1 expression and high levels of TAL1, E47, MYOG, and NFI, compared to those patients with low HBsAg levels and HBV DNA, and healthy controls. These findings suggest that the HBs protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. It provides new potential targets for antiviral therapeutic strategies for controlling HBV-associated diseases.
Collapse
|
5
|
Effects of Coptidis Rhizoma on Cell Cycle, DNA Damage, and Apoptosis in L929 Murine Fibroblast Cells. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Ziegler V, Albers A, Fritz G. Lovastatin protects keratinocytes from DNA damage-related pro-apoptotic stress responses stimulated by anticancer therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1082-92. [PMID: 26876155 DOI: 10.1016/j.bbamcr.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Oral mucositis (OM) is a relevant adverse effect of anticancer therapy involving ionizing radiation (IR) and doxorubicin (Doxo). Because DNA damage of keratinocytes is causative for the pathogenesis of OM, we aim to identify pharmacological measures for geno- and cytoprotection of keratinocytes. METHODS We investigated the influence of the lipid-lowering drug lovastatin on cell death, proliferation and DNA damage response (DDR) mechanisms of human keratinocytes following treatment with IR and Doxo. RESULTS Lovastatin protected keratinocytes from the cytotoxic and genotoxic effects of IR and Doxo as shown by a diminished induction of apoptosis as well as a reduced formation and slightly improved repair of DNA damage following Doxo and IR treatment, respectively. Lovastatin selectively blocked the activation of Chk1 and ATR kinases following treatment with IR, Doxo and the ribonucleotide reductase inhibitor hydroxyurea, indicating that the statin antagonizes ATR/Chk1-regulated replicative stress responses. Part of the cytoprotective activity of lovastatin seems to rest on a delayed entry of lovastatin treated cells into S-phase. Yet, because the statin also protected non-proliferating keratinocytes from IR- and Doxo-induced cytotoxicity, cell cycle independent protective mechanisms are involved, too. CONCLUSIONS Lovastatin attenuates pro-toxic DNA damage-related responses of keratinocytes stimulated by OM-inducing anticancer therapeutics. The data encourage forthcoming in vivo and clinical studies addressing the usefulness of statins in the prevention of OM.
Collapse
Affiliation(s)
- Verena Ziegler
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Anne Albers
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Kim EH, Kim MS, Jeong YK, Cho I, You SH, Cho SH, Lee H, Jung WG, Kim HD, Kim J. Mechanisms for SU5416 as a radiosensitizer of endothelial cells. Int J Oncol 2015; 47:1440-50. [PMID: 26314590 DOI: 10.3892/ijo.2015.3127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs), that comprise the tumor vasculature, are critical targets for anticancer radiotherapy. The aim of this work was to study the mechanism by which SU5416, a known anti-angiogenesis inhibitor, modifies the radiation responses of human vascular ECs. Two human endothelial cell lines (HUVEC and 2H11) were treated with SU5416 alone, radiation alone, or a combination of both. In vitro tests were performed using colony forming assays, FACS analysis, western blotting, immunohistochemistry, migration assay, invasion assays and endothelial tube formation assays. The combination of radiation and SU5416 significantly inhibited cell survival, the repair of radiation-induced DNA damage, and induced apoptosis. It also caused cell cycle arrest, inhibited cell migration and invasion, and suppressed angiogenesis. In this study, our results first provide a scientific rationale to combine SU5416 with radiotherapy to target ECs and suggest its clinical application in combination cancer treatment with radiotherapy.
Collapse
Affiliation(s)
- Eun Ho Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Mi-Sook Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Youn Kyoung Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Ilsung Cho
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Seung Hoon You
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Sung Ho Cho
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hanna Lee
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Won-Gyun Jung
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
8
|
Simões MR, Aguado A, Fiorim J, Silveira EA, Azevedo BF, Toscano CM, Zhenyukh O, Briones AM, Alonso MJ, Vassallo DV, Salaices M. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways. Toxicol Appl Pharmacol 2015; 283:127-38. [DOI: 10.1016/j.taap.2015.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/21/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022]
|
9
|
Panda BB, Achary VMM. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L. FRONTIERS IN PLANT SCIENCE 2014; 5:256. [PMID: 24926302 PMCID: PMC4046574 DOI: 10.3389/fpls.2014.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/19/2014] [Indexed: 05/24/2023]
Abstract
In the current study, we studied the role of signal transduction in aluminum (Al(3+))-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al(3+) (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al(3+) (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al(3+) (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al(3+) induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al(3+)-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa.
Collapse
Affiliation(s)
- Brahma B. Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur UniversityBerhampur, India
| | | |
Collapse
|
10
|
Singh A, Srivastava AK, Singh AK. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L. ENVIRONMENTAL TOXICOLOGY 2013; 28:666-672. [PMID: 21954193 DOI: 10.1002/tox.20745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 05/31/2023]
Abstract
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations.
Collapse
Affiliation(s)
- Aradhana Singh
- Genotoxic Lab, Department of Botany, Udai Pratap Autonomous College, Varanasi, 221002, Uttar Pradesh, India
| | | | | |
Collapse
|
11
|
Wang H, Xi S, Xu Y, Wang F, Zheng Y, Li B, Li X, Zheng Q, Sun G. Sodium arsenite induces cyclooxygenase-2 expression in human uroepithelial cells through MAPK pathway activation and reactive oxygen species induction. Toxicol In Vitro 2013; 27:1043-8. [PMID: 23376440 DOI: 10.1016/j.tiv.2013.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 10/22/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Arsenic can induce reactive oxygen species (ROS) leading to oxidative stress and carcinogenesis. Bladder is one of the major target organs of arsenic, and cyclooxygenase-2 (COX-2) may play an important role in arsenic-induced bladder cancer. However, the mechanism by which arsenic induces COX-2 in bladder cells remains unclear. This study aimed at investigating arsenic-mediated intracellular redox status and signaling cascades leading to COX-2 induction in human uroepithelial cells (SV-HUC-1). SV-HUC-1 cells were exposed to sodium arsenite and COX-2 expression, mitogen-activated protein kinase (MAPK) phosphorylation, glutathione (GSH) levels, ROS induction and Nrf2 expression were quantified. Our results demonstrate that arsenite (1-10 μM) elevates COX-2 expression, GSH levels, ROS and Nrf2 expression. Arsenite treatment for 24h stimulates phosphorylation of ERK and p38, but not JNK in SV-HUC-1 cells. Induction of Cox-2 mRNA levels by arsenite was attenuated by inhibitors of ERK, p38 and JNK. Arsenite-induced ROS generation and COX-2 expression were significantly attenuated by treatment with melatonin (a ROS scavenger), but enhanced by DL-buthionine-(S, R)-sulfoximine (BSO, an inhibitor of gamma-glutamylcysteine synthetase (γ-GCS) resulting in lower GSH and increased ROS levels). These data indicate that arsenite promotes an induction of ROS, which results in an induction of COX-2 expression through activation of the MAPK pathway.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brose RD, Shin G, McGuinness MC, Schneidereith T, Purvis S, Dong GX, Keefer J, Spencer F, Smith KD. Activation of the stress proteome as a mechanism for small molecule therapeutics. Hum Mol Genet 2012; 21:4237-52. [PMID: 22752410 DOI: 10.1093/hmg/dds247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.
Collapse
Affiliation(s)
- Rebecca Deering Brose
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Intracellular Signaling MAPK Pathway After Cerebral Ischemia–Reperfusion Injury. Neurochem Res 2012; 37:1568-77. [DOI: 10.1007/s11064-012-0752-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 12/22/2022]
|
14
|
Matsuo T, Shimose S, Kubo T, Fujimori J, Yasunaga Y, Sugita T, Ochi M. Correlation between p38 mitogen-activated protein kinase and human telomerase reverse transcriptase in sarcomas. J Exp Clin Cancer Res 2012; 31:5. [PMID: 22243975 PMCID: PMC3296589 DOI: 10.1186/1756-9966-31-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 11/27/2022] Open
Abstract
Background One of the major components of telomerase is the human telomerase reverse transcriptase (hTERT) as the catalytic protein. hTERT mRNA expression are reported to be associated with prognosis and tumor progression in several sarcomas. However, there is no clear understanding of the mechanisms of hTERT in human sarcomas. Recent studies have suggested that signals transmitted through p38 mitogen-activated protein kinase (MAPK) can increase or decrease hTERT transcription in human cells. The purpose of this study was to analyse the correlation between p38 MAPK and hTERT in sarcoma samples. Methods We investigated 36 soft tissue malignant fibrous histiocytomas (MFH), 24 liposarcomas (LS) and 9 bone MFH samples for hTERT and p38 MAPK expression. Quantitative detection of hTERT and p38 MAPK was performed by RT-PCR. Results There was a significant positive correlation between the values of hTERT and p38 MAPK in all samples (r = 0.445, p = 0.0001), soft tissue MFH (r = 0.352, p = 0.0352), LS (r = 0.704, p = 0.0001) and bone MFH samples (r = 0.802, p = 0.0093). Patients who had a higher than average expression of p38 MAPK had a significantly worse prognosis than other patients (p = 0.0036). Conclusions p38 MAPK may play a role in up-regulation of hTERT, and therefore, p38 MAPK may be a useful marker in the assessment of hTERT and patients' prognosis in sarcomas.
Collapse
Affiliation(s)
- Toshihiro Matsuo
- Department of Orthopaedic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center: 3-1, Aoyamacho, Kure, Hiroshima, 7370023 Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 2011; 585:1625-39. [PMID: 21570395 DOI: 10.1016/j.febslet.2011.05.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
The DNA of all organisms is constantly subjected to damaging agents, both exogenous and endogenous. One extremely harmful lesion is the double-strand break (DSB), which activates a massive signaling network - the DNA damage response (DDR). The chief activator of the DSB response is the ATM protein kinase, which phosphorylates numerous key players in its various branches. Recent phosphoproteomic screens have extended the scope of damage-induced phosphorylations beyond the direct ATM substrates. We review the evidence for the involvement of numerous other protein kinases in the DDR, obtained from documentation of specific pathways as well as high-throughput screens. The emerging picture of the protein phosphorylation landscape in the DDR broadens the current view on the role of this protein modification in the maintenance of genomic stability. Extensive cross-talk between many of these protein kinases forms an interlaced signaling network that spans numerous cellular processes. Versatile protein kinases in this network affect pathways that are different from those they have been identified with to date. The DDR appears to be one of the most extensive signaling responses to cellular stimuli.
Collapse
Affiliation(s)
- Ariel Bensimon
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
16
|
Lee CH, Yoo KY, Park OK, Choi JH, Kang IJ, Bae E, Kim SK, Hwang IK, Won MH. Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. Mol Cells 2010; 29:373-8. [PMID: 20213312 DOI: 10.1007/s10059-010-0046-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated extracellular signal-regulated kinase (pERK) mediates neuronal synaptic plasticity, long-term potentiation, and learning and memory in the hippocampus. In this study, we examined pERK1/2 immunoreactivity and its protein level in the gerbil hippocampus at various ages. In the postnatal month 1 (PM 1) group, very weak pERK1/2 immunoreactivity was detected in the hippocampus. In the CA1 region, pERK1/2 immunoreactivity was considerably increased in the stratum pyramidale in the PM 6 group. Thereafter, pERK1/2 immunoreactivity was decreased. In the CA2/3 region, pERK1/2 immunoreactivity increased in an age-dependent manner until PM 12. Thereafter, numbers of pERK1/2-immunoreactive neurons were decreased. However, in the mossy fiber zone, pERK1/2 immunostaining became stronger with age. In the dentate gyrus, a few pERK1/2-immunoreactive cells were observed until PM 12. In the PM 18 and 24 groups, numbers of pERK1/2-immunoreactive cells were increased, especially in the polymorphic layer. In Western blot analysis, pERK1/2 level in the gerbil hippocampus was increased with age. These results indicate that total pERK1/2 levels are increased in the hippocampus with age. However pERK1/2 immunoreactivity in subregions of the gerbil hippocampus was changed with different pattern during normal aging.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Razidlo GL, Johnson HJ, Stoeger SM, Cowan KH, Bessho T, Lewis RE. KSR1 is required for cell cycle reinitiation following DNA damage. J Biol Chem 2009; 284:6705-15. [PMID: 19147494 DOI: 10.1074/jbc.m806457200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KSR1 (kinase suppressor of Ras 1) is a molecular scaffold and positive regulator of the Raf/MEK/ERK phosphorylation cascade. KSR1 is required for maximal ERK activation induced by growth factors and by some cytotoxic agents. We show here that KSR1 is also required for maximal ERK activation induced by UV light, ionizing radiation, or the DNA interstrand cross-linking agent mitomycin C (MMC). We further demonstrate a role for KSR1 in the reinitiation of the cell cycle and proliferation following cell cycle arrest induced by MMC. Cells lacking KSR1 underwent but did not recover from MMC-induced G(2)/M arrest. Expression of KSR1 allowed KSR1(-/-) cells to re-enter the cell cycle following MMC treatment. However, cells expressing a mutated form of KSR1 unable to bind ERK did not recover from MMC-induced cell cycle arrest, demonstrating the requirement for the KSR1-ERK interaction. In addition, constitutive activation of ERK was not sufficient to promote cell cycle reinitiation in MMC-treated KSR1(-/-) cells. Only cells expressing KSR1 recovered from MMC-induced cell cycle arrest. Importantly, MMC-induced DNA damage was repaired in KSR1(-/-) cells, as determined by resolution of gamma-H2AX-containing foci. These data indicate that cell cycle reinitiation is not actively signaled in the absence of KSR1, even when DNA damage has been resolved. These data reveal a specific role for the molecular scaffold KSR1 and KSR1-mediated ERK signaling in the cellular response to DNA interstrand cross-links.
Collapse
Affiliation(s)
- Gina L Razidlo
- Eppley Institute for the Research of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | |
Collapse
|
18
|
Rumora L, Milevoj L, Popović-Grle S, Barišić K, Čepelak I, Grubišić TŽ. Levels changes of blood leukocytes and intracellular signalling pathways in COPD patients with respect to smoking attitude. Clin Biochem 2008; 41:387-94. [DOI: 10.1016/j.clinbiochem.2007.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 01/28/2023]
|
19
|
Haykal J, Fernainy P, Itani W, Haddadin M, Geara F, Smith C, Gali-Muhtasib H. Radiosensitization of EMT6 mammary carcinoma cells by 2-benzoyl-3-phenyl-6,7-dichloroquinoxaline 1,4-dioxide. Radiother Oncol 2007; 86:412-8. [PMID: 18006096 DOI: 10.1016/j.radonc.2007.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/24/2007] [Accepted: 10/10/2007] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Previously, we have reported that 2-benzoyl-3-phenyl-6,7-dichloroquinoxaline 1,4-dioxide (DCQ) is a radiosensitizer. Here, we investigate the mechanism of radiosensitization. MATERIALS AND METHODS EMT6 cells were treated with DCQ for 4h prior to ionizing radiation (IR). Flow cytometry, clonogenic assay, TUNEL, and Western blotting were performed to assess the effect of treatment on cells. RESULTS Propidium iodide staining of EMT6 cells treated with IR+/-DCQ revealed high numbers of cells with decreased DNA, consistent with an apoptotic response. TUNEL assay revealed apoptosis was 4%, 38%, and 49% 24h after treatment with IR alone, DCQ alone, and DCQ+IR, respectively. Clonogenic assays revealed that the survival of irradiated EMT6 cells was significantly reduced by DCQ treatment. DCQ treatment abrogated the radiation-induced expression of p21 and p53. The increased apoptosis observed in DCQ+IR-treated cells was correlated to suppression of radiation-induced phosphorylation of Akt and the expression of Bcl-X(L). DCQ also caused the phosphorylation of mitogen-activated protein kinases Erk and Jnk. CONCLUSIONS The radiosensitization effect of DCQ occurs through enhancement of radiation-induced apoptosis, which correlates to the inhibition of p-Akt kinase and Bcl-X(L) and the activation of Erk and Jnk kinases, but appears independent of p53 induction or modulation of Bax/Bcl-2 gene expression. These data suggest DCQ should be tested as a radiosensitizer in vivo and has potential in the treatment of human solid tumors.
Collapse
Affiliation(s)
- Joelle Haykal
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
20
|
Rumora L, Lovrić J, Sairam MR, Maysinger D. Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice. Exp Gerontol 2007; 42:619-28. [PMID: 17470386 DOI: 10.1016/j.exger.2007.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/20/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
The central nervous system is exposed to the chronic oxidative stress during aging when the endogenous defence weakens and the load of reactive oxygen species enhances. Sex hormones and heat shock proteins (Hsps) participate in these responses to stress. Their regulation is disturbed in aging. We assessed the expression of Hsps in hippocampus and cortex of follitropin receptor knockout (FORKO) mice, known to exhibit gender and age-dependent imbalance in sex steroids and gonadotropins. These imbalances could contribute to an impaired regulation of Hsps thereby increasing the risk of developing neurodegenerative disorders. Our study shows that, in the hippocampus the expression of Hsp70 and Hsp25 was reduced in 20-month-old FORKO mice. However, in the cortex both Hsps were significantly down regulated only in elderly females. There is a well-established co-regulation between Hsps and mitogen-activated protein kinases (MAPKs). Significant, gender-specific impairments in the translocation of phosphorylated ERK and JNK were found in the CNS structures in aged FORKO mice. Our results suggest that hormonal imbalances lead to a disturbed subcellular distribution of activated MAPKs which contribute to the impairments of signal transduction networks maintaining normal physiological functions in the cortex and hippocampus that are associated with neurodegenerative changes in aging.
Collapse
Affiliation(s)
- Lada Rumora
- Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, Zagreb, Croatia
| | | | | | | |
Collapse
|
21
|
Andrysík Z, Machala M, Chramostová K, Hofmanová J, Kozubík A, Vondrácek J. Activation of ERK1/2 and p38 kinases by polycyclic aromatic hydrocarbons in rat liver epithelial cells is associated with induction of apoptosis. Toxicol Appl Pharmacol 2006; 211:198-208. [PMID: 16005925 DOI: 10.1016/j.taap.2005.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/27/2005] [Accepted: 06/03/2005] [Indexed: 11/20/2022]
Abstract
Deregulation of various signaling pathways, linked either to induction of cell proliferation or to modulation of cellular differentiation and apoptosis, has been proposed to contribute to carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). In the present study, we investigated effects of the PAHs previously shown to induce cell proliferation and/or apoptosis in contact-inhibited rat liver epithelial WB-F344 cells, with an aim to define the role of mitogen-activated protein kinases in both events. We found that only strong genotoxin dibenzo[a,l]pyrene (DBalP) activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 kinase, but not c-Jun N-terminal kinases (JNKs), at concentrations inducing both apoptosis and phosphorylation of p53 tumor suppressor at serine 15 residue. In contrast, the PAHs stimulating cell proliferation in WB-F344 cell line had no effect on activation of ERK1/2, p38 or JNKs. Synthetic inhibitors of ERK1/2 activation (U0126) or p38 kinase activity (SB203580) prevented both apoptosis and induction of p53 phosphorylation by DBalP. Pifithrin-alpha, inhibitor of p53 transcriptional activity, prevented induction of apoptosis and activation of ERK1/2 and p38. Taken together, our data suggest that both ERK1/2 and p38 are activated in response to DBalP and that they might be involved in regulation of cellular response to DNA damage induced by DBalP, while neither kinase is involved in the release from contact inhibition induced by PAHs.
Collapse
Affiliation(s)
- Zdenek Andrysík
- Laboratory of Cytokinetics, Institute of Biophysics, ASCR, 612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Lee JC, Wang GX, Schickling O, Peter ME. Fusing DEDD with ubiquitin changes its intracellular localization and apoptotic potential. Apoptosis 2005; 10:1483-95. [PMID: 16235027 DOI: 10.1007/s10495-005-1833-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DEDD, a highly conserved and ubiquitous death effector domain containing protein, exists in non, mono, and diubiquitinated forms. We previously reported that endogenous unmodified DEDD is only found in nucleoli and that mono- and diubiquitinated DEDD associate with caspase-3 in the cytosol suggesting that ubiquitination may be important to the apoptosis regulating functions of DEDD in the cytosol. We now demonstrate that many of its 16 lysine residues can serve as alternative acceptors for ubiquitination to maintain the monoubiquitination status of DEDD. A central region in DEDD (amino acids 109-305) outside the death effector domain was found to be essential for ubiquitination and/or the docking of the ubiquitination machinery. Fusion of ubiquitin to the C-terminus of DEDD to mimic monoubiquitinated DEDD relocated DEDD from nucleoli to the cytosol. This fusion protein also demonstrated a greater apoptosis potential than unmodified DEDD. Finally, we show that both mono- and polyubiquitination of DEDD can be achieved by the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP-1/2). In addition, the cotransfection of DEDD with cIAP-1 or cIAP-2 results in the relocalization of the IAPs to the nucleoli. Our data suggest that monoubiquitination of DEDD regulates both its cytoplasmic localization and its proapoptotic potential and that IAP proteins can regulate DEDD's ubiquitination status.
Collapse
Affiliation(s)
- J C Lee
- The Ben May Institute for Cancer Research, University of Chicago, 924 E. 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
23
|
Jeung HC, Che XF, Haraguchi M, Furukawa T, Zheng CL, Sumizawa T, Rha SY, Roh JK, Akiyama SI. Thymidine phosphorylase suppresses apoptosis induced by microtubule-interfering agents. Biochem Pharmacol 2005; 70:13-21. [PMID: 15907805 DOI: 10.1016/j.bcp.2005.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
We investigated the ability of thymidine phosphorylase (TP) to confer cancer cells resistance to MIA (microtubule-interfering agents)-induced apoptosis. Jurkat cells were stably transfected with TP cDNA (Jurkat/TP) and the sensitivity to MIAs were examined. Jurkat/TP cells were more resistant to apoptosis induced by nocodazole, vincristine, vinblastine, paclitaxel and 2-methoxyestradiol than mock-transfected Jurkat/CV cells. TP enzymatic activity was not required for this effect of TP. Jurkat/TP cells showed weak phosphorylation of Bcl-2, and kinase inhibitors staurosporine and genistein attenuated not only MIA-induced Bcl-2 phosphorylation but also cytotoxicity of MIA in Jurkat/CV, but not in Jurkat/TP. MIAs diminished expression of FasL in Jurkat/TP but not in Jurkat/CV, and neutralization of FasL by anti-FasL antibody considerably attenuated the cytotoxic effect of the MIAs in Jurkat/CV, but the effect of the antibody was marginal in Jurkat/TP cells. Our study provides further evidence that TP functions in conferring resistance on cancer cells to the stress induced by MIAs. In addition, we show that TP-induced inhibition of Bcl-2 phosphorylation and suppression of FasL may contribute to the protective function of TP in cancer cells.
Collapse
Affiliation(s)
- Hei-Cheul Jeung
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine that plays a critical role in diverse cellular events, including cell proliferation, differentiation and apoptosis. TNF is also involved in many types of diseases. In recent years, the molecular mechanisms of TNF functions have been intensively investigated. Studies from many laboratories have demonstrated that the TNF-mediated diverse biological responses are achieved through activating multiple signaling pathways. Especially the activation of transcription factors NF-kB and AP-1 plays a critical role in mediating these cellular responses. Several proteins, including FADD, the death domain kinase RIP and the TNF receptor associated factor TRAF2 have been identified as the key effectors of TNF signaling. Recently, we found that the effector molecules of TNF signaling, such as RIP and TRAF2, are also involved in other cellular responses. These finding suggests that RIP and TRAF2 serve a broader role than as just an effector of TNF signaling.
Collapse
Affiliation(s)
- Zheng Gang Liu
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Gao Z, Yang J, Huang Y, Yu Y. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway. Mutat Res 2005; 570:175-84. [PMID: 15708576 DOI: 10.1016/j.mrfmmm.2004.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 11/04/2004] [Accepted: 11/06/2004] [Indexed: 10/25/2022]
Abstract
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.
Collapse
Affiliation(s)
- Zhihua Gao
- Department of Pathology and Pathophysiology, Center for Environmental Genomics, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | | | | | | |
Collapse
|
26
|
Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G, Bredberg A. Expression of DNA-dependent protein kinase in human granulocytes. Cell Res 2005; 14:331-40. [PMID: 15353130 DOI: 10.1038/sj.cr.7290233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNA-PK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Department of Medical Microbiology, Lund University, Malmo University Hospital, S-205 02 Malmo, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Patra J, Sahoo MK, Panda BB. Salicylic acid triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in root meristem cells of Allium cepa L. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 581:173-80. [PMID: 15725616 DOI: 10.1016/j.mrgentox.2004.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
Salicylic acid (SA), 0.01 mM, a signalling phytohormone, was tested for induction of adaptive response against genotoxicity of methyl mercuric chloride (MMCl), 0.013 mM; ethylmethane sulfonate (EMS), 2.5 mM, or maleic hydrazide (MH), 5 mM, in root meristem cells of Allium cepa. Induction of adaptive response to EMS by hydrogen peroxide (H2O2), 1 mM, and yet another secondary signal molecule was tested for comparison. Assessed by the incidence of mitoses with spindle and/or chromosome aberration and micronucleus, the findings provided evidence that SA-conditioning triggered adaptive response against the genotoxic-challenges of MMCl and EMS, but failed to do so against MH. H2O2, which is known to induce adaptive response to MMCl and MH, failed to induce the same against EMS in the present study. The findings pointed to the possible role of signal transduction in the SA-induced adaptive response to genotoxic stress that perhaps ruled out an involvement of H2O2.
Collapse
Affiliation(s)
- Jita Patra
- Genecology and Tissue Culture Laboratory, Department of Botany, Berhampur University, Berhampur 760007, India
| | | | | |
Collapse
|
28
|
Balaian L, Ball ED. Anti-CD33 monoclonal antibodies enhance the cytotoxic effects of cytosine arabinoside and idarubicin on acute myeloid leukemia cells through similarities in their signaling pathways. Exp Hematol 2005; 33:199-211. [PMID: 15676214 DOI: 10.1016/j.exphem.2004.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/28/2004] [Accepted: 11/08/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chemotherapy agents (CA) such as cytosine arabinoside (ara-C), idarubicin (IDA), and etoposide (VP-16) are widely used in the treatment of acute myeloid leukemia (AML) However, their effects on signaling pathways leading to cytotoxicity have only been described recently. Ligation of the leukemia-associated antigen CD33 by anti-CD33 monoclonal antibody (mAb) also results in signaling events that induce a downregulation of cell growth. We examined the possibility that anti-CD33 mAb and CA might cooperate in mediation of growth inhibition in primary AML samples and AML cell lines. MATERIALS AND METHODS We investigated two AML cells lines and 14 primary AML samples for their proliferative response ((3)H-thymidine incorporation), colony formation, and biochemical (Western blot analysis) to anti-CD33 mAb treatment combined with chemotherapy agents. RESULTS CD33 ligation induced a significant increase in ara-C- or IDA- but not VP-16-or Bryostatin-mediated inhibition of proliferation and colony formation. Ara-C and IDA induced SHP-1 and SHP-2 protein tyrosine phosphatase (PTPs) phosphorylation and Lyn/SHP-1 complex formation, while VP-16 and Bryostatin did not. CD33 ligation, however, mediated phosphorylation of these PTPs and Syk/SHP-1 complex formations. Combined treatment of AML cells by ara-C or IDA with anti-CD33 mAb resulted in higher levels of SHP-1 phosphorylation. Reduction in SHP-1 by short interfering RNA abrogated these effects. CONCLUSION These data suggest that combined incubation of leukemia cells with anti-CD33 mAb and ara-C or IDA, but not VP-16 or Bryostatin, independently triggers similar events in the downstream signaling cascade, and therefore leads to additive antiproliferative effects and enhanced cytotoxicity.
Collapse
Affiliation(s)
- Larisa Balaian
- Department of Medicine and Moores UCSD Cancer Center, University of California, San Diego, La Jolla, Calif, USA
| | | |
Collapse
|
29
|
Yu Y, Yang J, Zhu F, Xu F. Response of REV3 promoter to N-methyl-N'-nitro-N-nitrosoguanidine. Mutat Res 2004; 550:49-58. [PMID: 15135640 DOI: 10.1016/j.mrfmmm.2004.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/17/2004] [Accepted: 02/02/2004] [Indexed: 12/01/2022]
Abstract
Previously, we have shown that low concentration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) led to the upregulation of REV3 gene at transcriptional level in cultured human amnion FL cells. In this study, using bioinformatic analysis the putative binding sites for different transcription factors were found to exist in REV3 gene promoter region. A 2570-bp fragment of the 5' flanking region of REV3 gene was amplified by PCR from PAC clone RP3-415N12 and inserted into the pGL3-Basic reporter vector. Dual-luciferase reporter assay demonstrated that the reconstructed plasmid did respond to MNNG exposure in transfected FL cells. Several variants of the reporter plasmids with different deletions of the REV3 promoter region were also constructed and their promoter strength was analyzed. It was found that the MNNG response element might locate at the REV3 gene promoter region -404 to -102 between two Sma1 sites. The shortest responsive fragment containing the putative binding sites for transcription factors CREBP, AP-2, NF-kappaB, and SP1 was also identified.
Collapse
Affiliation(s)
- Yingnian Yu
- Department of Pathology and Pathophysiology, Center for Environmental Genomics, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China.
| | | | | | | |
Collapse
|
30
|
Abstract
Cellular response to genotoxic stress is a very complex process, and it usually starts with the “sensing” or “detection” of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood, human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, 353 Yanan Road, Hangzhou, 310031, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
31
|
Vasilevskaya IA, Rakitina TV, O'Dwyer PJ. Quantitative effects on c-Jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines. Mol Pharmacol 2004; 65:235-43. [PMID: 14722256 DOI: 10.1124/mol.65.1.235] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of cisplatin and the hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in combination in a panel of human colon adenocarcinoma cell lines that differ in their p53 and mismatch repair status. Analysis of cytotoxicity after combined treatment revealed additive effects of cisplatin and 17-AAG in the HCT 116, DLD1, and SW480 cell lines and antagonism in HT-29 cells. Clonogenic assays demonstrated antagonism in HT-29, an additive effect in SW480, and synergism in HCT 116 and DLD1 cell lines. Analysis of signaling pathways revealed that cisplatin-induced activation of c-Jun N-terminal kinase (JNK) was fully blocked by 17-AAG in HT-29 and SW480 cells, whereas in HCT 116 and DLD1 cells it was inhibited only partially. The activation of caspases was also more pronounced in DLD1 and HCT 116 cell lines. These data suggested that a minimal level of apoptotic signaling through JNK was required for synergism with this combination. To test this hypothesis, we used the specific JNK inhibitor SP600125; when JNK was inhibited pharmacologically in HCT 116 and DLD1 cells, they demonstrated increased survival in clonogenic assays. Alternatively, sustained activation of JNK pathway led to an increase of the cytotoxicity of the cisplatin/17-AAG combination in HT-29 cells. Taken together, these data suggest that the synergistic interaction of this combination in colon cancer cell lines depends on the effect exerted by 17-AAG on cisplatin-induced signaling through JNK and associated pathways leading to cell death. An implication of that finding is that quantitative effects of signaling inhibitors may be critical for their ability to reverse cisplatin resistance.
Collapse
|
32
|
Waas WF, Rainey MA, Szafranska AE, Dalby KN. Two rate-limiting steps in the kinetic mechanism of the serine/threonine specific protein kinase ERK2: a case of fast phosphorylation followed by fast product release. Biochemistry 2003; 42:12273-86. [PMID: 14567689 DOI: 10.1021/bi0348617] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular regulated protein kinase 2 (ERK2) is a eukaryotic protein kinase whose activity is regulated by mitogenic stimuli. To gain insight into the catalytic properties of ERK2 and to complement structure-function studies, we undertook a pre-steady state kinetic analysis of the enzyme. To do this, ERK2 was quantitatively activated by MAPKK1 in vitro by monitoring the stoichiometry and site specificity of phosphorylation using a combination of protein mass spectrometry, tryptic peptide analysis, and (32)P radiolabeling. Using a quench-flow apparatus, MgATP(2-) was rapidly mixed (<1 ms) with both ERK2 and the protein substrate EtsDelta138 in the presence of a saturating total concentration (20 mM) of magnesium ion at 27 degrees C and pH 7.5. An exponential burst of product was observed over the first few milliseconds that followed mixing. This burst had an amplitude alpha of 0.44 and was followed by a slower linear phase. The pre-steady state burst is consistent with two partially rate-limiting enzymatic steps, which have the following rate constants: k(2) = 109 +/- 9 s(-1) and k(3) = 56 +/- 4 s(-1). These are attributed to rapid phosphorylation of EtsDelta138 and the process of product release, respectively. Single-turnover experiments provided an independent determination of k(2) (106 +/- 25 s(-1)). The observed catalytic constant (k(cat)(obs)) was found to be sensitive to the concentration of ERK2. The data fit a model in which ERK2 monomers form dimers and suggest that both the monomeric and dimeric forms of ERK2 are active with catalytic constants (k(cat)) of 25 and 37 s(-1), respectively. In addition, the model suggests that in the presence of saturating concentrations of both magnesium and substrates ERK2 subunits dissociate with a dissociation constant (K(d)) of 32 +/- 16 nM.
Collapse
Affiliation(s)
- William F Waas
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
33
|
Wang Z, Wang G, Yang J, Guo L, Yu Y. Activation of protein kinase A and clustering of cell surface receptors by N-methyl-N'-nitro-N-nitrosoguanidine are independent of genomic DNA damage. Mutat Res 2003; 528:29-36. [PMID: 12873720 DOI: 10.1016/s0027-5107(03)00079-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces cellular stress leading to chromosomal aberrations, mutations and cell death. Previous reports from our laboratory have shown that low concentration of MNNG induces untargeted mutation (UTM), which occurs on intact DNA in mammalian cells through changes in gene expression profile. It also causes the activation of cAMP-protein kinase A (PKA) and up-regulation of POL-beta, which is demonstrated to play a role in DNA repair system. In order to find out the possible initial signal involved in UTM, we try to investigate whether the activation of PKA-CREB signal pathway is closely related to DNA damage. Our data shows that the treatment of low concentration MNNG (0.2 microM) activates PKA-CREB pathway in a comparable level both in a nuclear and enucleated cell system. And similar to the cell response caused by UV, the clustering of cell surface receptors of epidermal growth factor (EGF) and tumor necrosis factor alpha (TNFalpha) was also observed in cells exposed to MNNG. It was further demonstrated that the clustering of the surface receptors is independent of the genomic DNA damage, as this phenomenon was also observed in enucleated cells. These observations indicate that the initiation of signal cascades induced by low concentration of MNNG might be associated with its interaction with cell surface receptors and/or direct activation of related signal proteins but not its DNA damaging property.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310031 Zhejiang, China
| | | | | | | | | |
Collapse
|