1
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
2
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Brenneis G, Schwentner M, Giribet G, Beltz BS. Insights into the genetic regulatory network underlying neurogenesis in the parthenogenetic marbled crayfish Procambarus virginalis. Dev Neurobiol 2021; 81:939-974. [PMID: 34554654 DOI: 10.1002/dneu.22852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
Nervous system development has been intensely studied in insects (especially Drosophila melanogaster), providing detailed insights into the genetic regulatory network governing the formation and maintenance of the neural stem cells (neuroblasts) and the differentiation of their progeny. Despite notable advances over the last two decades, neurogenesis in other arthropod groups remains by comparison less well understood, hampering finer resolution of evolutionary cell type transformations and changes in the genetic regulatory network in some branches of the arthropod tree of life. Although the neurogenic cellular machinery in malacostracan crustaceans is well described morphologically, its genetic molecular characterization is pending. To address this, we established an in situ hybridization protocol for the crayfish Procambarus virginalis and studied embryonic expression patterns of a suite of key genes, encompassing three SoxB group transcription factors, two achaete-scute homologs, a Snail family member, the differentiation determinants Prospero and Brain tumor, and the neuron marker Elav. We document cell type expression patterns with notable similarities to insects and branchiopod crustaceans, lending further support to the homology of hexapod-crustacean neuroblasts and their cell lineages. Remarkably, in the crayfish head region, cell emigration from the neuroectoderm coupled with gene expression data points to a neuroblast-independent initial phase of brain neurogenesis. Further, SoxB group expression patterns suggest an involvement of Dichaete in segmentation, in concordance with insects. Our target gene set is a promising starting point for further embryonic studies, as well as for the molecular genetic characterization of subregions and cell types in the neurogenic systems in the adult crayfish brain.
Collapse
Affiliation(s)
- Georg Brenneis
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA.,Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Martin Schwentner
- Naturhistorisches Museum Wien, Vienna, Austria.,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA
| |
Collapse
|
4
|
Schomburg C, Turetzek N, Prpic NM. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:105-120. [PMID: 32036446 PMCID: PMC7128011 DOI: 10.1007/s00427-020-00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.
Collapse
Affiliation(s)
- Christoph Schomburg
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Natascha Turetzek
- Ludwig-Maximilians-Universität München, Lehrstuhl für Evolutionäre Ökologie, Biozentrum II, Großhadernerstraße 2, 82152, Planegg-Martinsried, Germany
| | - Nikola-Michael Prpic
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
5
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
6
|
Hartmann K, Laumann M, Bergmann P, Heethoff M, Schmelzle S. Development of the synganglion and morphology of the adult nervous system in the miteArchegozetes longisetosusAoki (Chelicerata, Actinotrichida, Oribatida). J Morphol 2016; 277:537-48. [DOI: 10.1002/jmor.20517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Konstantin Hartmann
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin; Philippstraße 13 Haus 6 Berlin 10115 Germany
| | - Michael Laumann
- Electron Microscopy Center, University of Konstanz, Universitaetsstrasse 10; Konstanz 78457 Germany
| | - Paavo Bergmann
- Evolutionary Biology of Invertebrates, University of Tuebingen, Auf Der Morgenstelle 28E; Tuebingen 72076 Germany
| | - Michael Heethoff
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| | - Sebastian Schmelzle
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| |
Collapse
|
7
|
Molecular characterization and embryonic origin of the eyes in the common house spider Parasteatoda tepidariorum. EvoDevo 2015; 6:15. [PMID: 26034574 PMCID: PMC4450840 DOI: 10.1186/s13227-015-0011-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 01/30/2023] Open
Abstract
Background Two visual systems are present in most arthropod groups: median and lateral eyes. Most of our current knowledge about the developmental and molecular mechanisms involved in eye formation in arthropods comes from research in the model system Drosophila melanogaster. Here, a core set of retinal determination genes, namely, sine-oculis (so), eyes absent (eya), dachshund (dac), and the two pax6 orthologues eyeless (ey) and twin of eyeless (toy) govern early retinal development. By contrast, not much is known about the development of the up-to-eight eyes present in spiders. Therefore, we analyzed the embryonic expression of core retinal determination genes in the common house spider Parasteatoda tepidariorum. Results We show that the anlagen of the median and lateral eyes in P. tepidariorum originate from different regions of the non-neurogenic ectoderm in the embryonic head. The median eyes are specified as two individual anlagen in an anterior median position in the developing head and subsequently move to their final position following extensive morphogenetic movements of the non-neurogenic ectoderm. The lateral eyes develop from a more lateral position. Intriguingly, they are specified as a unique field of cells that splits into the three individual lateral eyes during late embryonic development. Using gene expression analyses, we identified a unique combination of determination gene expression in the anlagen of the lateral and median eyes, respectively. Conclusions This study of retinal determination genes in the common house spider P. tepidariorum represents the first comprehensive analysis of the well-known retinal determination genes in arthropods outside insects. The development of the individual lateral eyes via the subdivision of one single eye primordium might be the vestige of a larger composite eye anlage, and thus supports the notion that the composite eye is the plesiomorphic state of the lateral eyes in arthropods. The molecular distinction of the two visual systems is similar to the one described for compound eyes and ocelli in Drosophila, suggesting that a unique core determination network for median and lateral eyes, respectively, might have been in place already in the last common ancestor of spiders and insects. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0011-9) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Brenneis G, Scholtz G. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS One 2014; 9:e95435. [PMID: 24736377 PMCID: PMC3988247 DOI: 10.1371/journal.pone.0095435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented 'opisthosoma' during pycnogonid evolution.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| |
Collapse
|
9
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
10
|
Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 2012; 364:66-76. [PMID: 22306923 DOI: 10.1016/j.ydbio.2012.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 11/22/2022]
Abstract
In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim function has evolved in parallel to the evolution of midline cell function in the individual Mandibulata lineages.
Collapse
|
11
|
Abstract
Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
12
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|
13
|
Linne V, Stollewerk A. Conserved and novel functions for Netrin in the formation of the axonal scaffold and glial sheath cells in spiders. Dev Biol 2011; 353:134-46. [PMID: 21334324 DOI: 10.1016/j.ydbio.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/15/2022]
Abstract
Netrins are well known for their function as long-range chemotropic guidance cues, in particular in the ventral midline of vertebrates and invertebrates. Over the past years, publications are accumulating that support an additional short-range function for Netrins in diverse developmental processes such as axonal pathfinding and cell adhesion. We describe here the formation of the axonal scaffold in the spiders Cupiennius salei and Achaearanea tepidariorum and show that axonal tract formation seems to follow the same sequence as in insects and crustaceans in both species. First, segmental neuropiles are established which then become connected by the longitudinal fascicles. Interestingly, the commissures are established at the same time as the longitudinal tracts despite the large gap between the corresponding hemi-neuromeres which results from the lateral movement of the germband halves during spider embryogenesis. We show that Netrin has a conserved function in the ventral midline in commissural axon guidance. This function is retained by an adaptation of the expression pattern to the specific morphology of the spider embryo. Furthermore, we demonstrate a novel function of netrin in the formation of glial sheath cells that has an impact on neural precursor differentiation. Loss of Netrin function leads to the absence of glial sheath cells which in turn results in premature segregation of neural precursors and overexpression of the early motor- and interneuronal marker islet. We suggest that Netrin is required in the differentiated sheath cells for establishing and maintaining the interaction between NPGs and sheath cells. This short-range adhesive interaction ensures that the neural precursors maintain their epithelial character and remain attached to the NPGs. Both the conserved and novel functions of Netrin seem to be required for the proper formation of the axonal scaffold.
Collapse
Affiliation(s)
- Viktoria Linne
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London E14NS, UK
| | | |
Collapse
|
14
|
Eriksson BJ, Stollewerk A. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci U S A 2010; 107:22576-81. [PMID: 21149708 PMCID: PMC3012506 DOI: 10.1073/pnas.1008822108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the controversial debates on euarthropod relationships centers on the question as to whether insects, crustaceans, and myriapods (Mandibulata) share a common ancestor or whether myriapods group with the chelicerates (Myriochelata). The debate was stimulated recently by studies in chelicerates and myriapods that show that neural precursor groups (NPGs) segregate from the neuroectoderm generating the nervous system, whereas in insects and crustaceans the nervous tissue is produced by stem cells. Do the shared neural characters of myriapods and chelicerates represent derived characters that support the Myriochelata grouping? Or do they rather reflect the ancestral pattern? Analyses of neurogenesis in a group closely related to euarthropods, the onychophorans, show that, similar to insects and crustaceans, single neural precursors are formed in the neuroectoderm, potentially supporting the Myriochelata hypothesis. Here we show that the nature and the selection of onychophoran neural precursors are distinct from euarthropods. The onychophoran nervous system is generated by the massive irregular segregation of single neural precursors, contrasting with the limited number and stereotyped arrangement of NPGs/stem cells in euarthropods. Furthermore, neural genes do not show the spatiotemporal pattern that sets up the precise position of neural precursors as in euarthropods. We conclude that neurogenesis in onychophorans largely does not reflect the ancestral pattern of euarthropod neurogenesis, but shows a mixture of derived characters and ancestral characters that have been modified in the euarthropod lineage. Based on these data and additional evidence, we suggest an evolutionary sequence of arthropod neurogenesis that is in line with the Mandibulata hypothesis.
Collapse
Affiliation(s)
- Bo Joakim Eriksson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| | | |
Collapse
|
15
|
Pechmann M, Khadjeh S, Sprenger F, Prpic NM. Patterning mechanisms and morphological diversity of spider appendages and their importance for spider evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:453-467. [PMID: 20696272 DOI: 10.1016/j.asd.2010.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/07/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.
Collapse
Affiliation(s)
- Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | | | | | | |
Collapse
|
16
|
Döffinger C, Stollewerk A. How can conserved gene expression allow for variation? Lessons from the dorso-ventral patterning gene muscle segment homeobox. Dev Biol 2010; 345:105-16. [DOI: 10.1016/j.ydbio.2010.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
17
|
Ungerer P, Scholtz G. Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc Biol Sci 2008; 275:369-76. [PMID: 18048285 PMCID: PMC2596827 DOI: 10.1098/rspb.2007.1391] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complex spatio-temporal patterns of development and anatomy of nervous systems play a key role in our understanding of arthropod evolution. However, the degree of resolution of neural processes is not always detailed enough to claim homology between arthropod groups. One example is neural precursors and their progeny in crustaceans and insects. Pioneer neurons of crustaceans and insects show some similarities that indicate homology. In contrast, the differentiation of insect and crustacean neuroblasts (NBs) shows profound differences and their homology is controversial. For Drosophila and grasshoppers, the complete lineage of several NBs up to formation of pioneer neurons is known. Apart from data on median NBs no comparable results exist for Crustacea. Accordingly, it is not clear where the crustacean pioneer neurons come from and whether there are NBs lateral to the midline homologous to those of insects. To fill this gap, individual NBs in the ventral neuroectoderm of the crustacean Orchestia cavimana were labelled in vivo with a fluorescent dye. A partial neuroblast map was established and for the first time lineages from individual NBs to identified pioneer neurons were established in a crustacean. Our data strongly suggest homology of NBs and their lineages, providing further evidence for a close insect-crustacean relationship.
Collapse
Affiliation(s)
- Petra Ungerer
- Institut für Biologie/Vergleichende Zoologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| | | |
Collapse
|
18
|
Harzsch S, Hafner G. Evolution of eye development in arthropods: phylogenetic aspects. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:319-340. [PMID: 18089079 DOI: 10.1016/j.asd.2006.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/24/2006] [Indexed: 05/25/2023]
Abstract
The architecture of the adult arthropod visual system for many decades has contributed important character sets that are useful for reconstructing the phylogenetic relationships within this group. In the current paper we explore whether aspects of eye development can also contribute new arguments to the discussion of arthropod phylogeny. We review the current knowledge on eye formation in Trilobita, Xiphosura, Myriapoda, Hexapoda, and Crustacea. All euarthropod taxa share the motif of a proliferation zone at the side of the developing eye field that contributes new eye elements. Two major variations of this common motif can be distinguished: 1. The "row by row type" of Trilobita, Xiphosura, and Diplopoda. In this type, the proliferation zone at the side of the eye field generates new single, large elements with a high and variable cell number, which are added to the side of the eye and extend rows of existing eye elements. Cell proliferation, differentiation and ommatidial assembly seem to be separated in time but spatially confined within the precursors of the optic units which grow continuously once they are formed (intercalary growth). 2. The "morphogenetic front type" of eye formation in Crustacea+Hexapoda (Tetraconata). In this type, there is a clear temporal and spatial separation of the formation and differentiation processes. Proliferation and the initial steps of pattern formation take place in linear and parallel mitotic and morphogenetic fronts (the mitotic waves and the morphogenetic furrow/transition zone) and numerous but small new elements with a strictly fixed set of cells are added to the eye field. In Tetraconata, once formed, the individual ommatidia do not grow any more. Scutigeromorph chilopods take an intermediate position between these two major types. We suggest that the "row by row type" as seen in Trilobita, Xiphosura and Diplopoda represents the plesiomorphic developmental mode of eye formation from the euarthropod ground pattern whereas the "morphogenetic front type" is apomorphic for the Tetraconata. Our data are discussed with regard to two competing hypotheses on arthropod phylogeny, the "Tracheata" versus "Tetraconata" concept. The modes of eye development in Myriapoda is more parsimonious to explain in the Tetraconata hypothesis so that our data raise the possibility that myriapod eyes may not be secondarily reconstructed insect eyes as the prevailing hypothesis suggests.
Collapse
Affiliation(s)
- Steffen Harzsch
- Universität Ulm, Abteilung Neurobiologie and Sektion Biosystematische Dokumentation, Albert-Einstein-Str. 11, D-89081 Ulm, Germany
| | | |
Collapse
|
19
|
Pioro HL, Stollewerk A. The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata. Dev Genes Evol 2006; 216:417-30. [PMID: 16724224 DOI: 10.1007/s00427-006-0078-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
We have shown recently that the expression and function of proneural genes is conserved in chelicerates and myriapods, although groups of neural precursors are specified in the ventral neuroectoderm of these arthropod groups, rather than single cells as in insects and crustaceans. We present additional evidence that the pattern of neurogenesis seen in chelicerates and in previously analyzed myriapod species is representative of both arthropod groups, by analysing the formation of neural precursors in the diplopod Archispirostreptus sp. This raises the question as to what extent the genetic network has been modified to result in different modes of neurogenesis in the arthropod group. To find out which components of the neural genetic network might account for the different mode of neural precursor formation in chelicerates and myriapods, we identified genes in the diplopod Glomeris marginata that are known to be involved in early neurogenesis in Drosophila and studied their expression pattern. In Drosophila, early neurogenesis is controlled by proneural genes that encode HLH transcription factors. These genes belong to two major subfamilies, the achaete-scute group and the atonal group. Different proneural proteins activate both a common neural programme and distinct neuronal subtype-specific target genes. We show that the expression pattern of homologs of the Drosophila proneural genes daughterless, atonal, and Sox B1 are partially conserved in Glomeris mariginata. While the expression of the pan-neural gene snail is conserved in the ventral neuroectoderm of G. marginata, we found an additional expression domain in the ventral midline. We conclude that, although the components of the genetic network involved in specification of neural precursors seem to be conserved in chelicerates, myriapods, and Drosophila, the function of some of the genes might have changed during evolution.
Collapse
Affiliation(s)
- Hilary L Pioro
- Department of Genetics, University of Mainz, Johann-Joachim-Becherweg 32, 55099 Mainz, Germany.
| | | |
Collapse
|
20
|
Simonnet F, Célérier ML, Quéinnec E. Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol 2006; 216:467-80. [PMID: 16804731 DOI: 10.1007/s00427-006-0093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 05/13/2006] [Indexed: 11/24/2022]
Abstract
Members of the orthodenticle (otd/Otx) and empty spiracles (ems/Emx) gene families are head gap genes that encode homeodomain-containing DNA-binding proteins. Although numerous studies show their central role in developmental processes in brain specification, a surprisingly high number of other developmental processes have been shown to involve their expression. In this paper, we report the identification and expression of ems and otd in two chelicerate species: a scorpion, Euscorpius flavicaudis (Chactidae, Scorpiona, Arachnida, Euchelicerata) and a spider, Tegenaria saeva (Aranea, Arachnida, Euchelicerata). We show that both ems and otd are expressed not only in an anterior head domain but also along the entire anterior-posterior axis during embryonic development. The expression patterns for both genes are typically segmental and concern neurectodermal territories. During patterning of the opisthosoma, ems and otd are expressed in the lateral ectoderm just anterior to the limb bud primordia giving rise to respiratory organs and spinnerets (spider). This common pattern found in two divergent species thus appears to be a conserved character of chelicerates. These results are discussed in terms of evolutionary origin of respiratory organs and/or functional pathway recruitment.
Collapse
Affiliation(s)
- Franck Simonnet
- Department of Developmental Biology, Joham-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Goettingen, Germany
| | | | | |
Collapse
|
21
|
Chipman AD, Stollewerk A. Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 2006; 290:337-50. [PMID: 16380110 DOI: 10.1016/j.ydbio.2005.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 11/27/2022]
Abstract
Despite differences in the formation of neural precursors, all arthropod species analyzed so far generate about 30 single precursors (insects/crustaceans) or precursor groups (chelicerates/myriapods) per hemi-segment. In Drosophila, each precursor has a distinct identity conferred by segment polarity and dorso-ventral patterning genes that subdivide the ventral neuroectoderm into a grid-like structure. Temporal patterning mechanisms generate additional diversity after delamination from the neuroectoderm. Previous work shows that the genetic network involved in recruitment and specification of neural precursors is conserved in arthropods. However, comparative studies on generation of precursor diversity are few and partial. Here, we test whether aspects of the Drosophila model may apply in the geophilomorph centipede Strigamia maritima. We describe precursor formation, based on morphology and on Delta and Notch expression. We then show that in S. maritima, hunchback and Krüppel are expressed in subsets of neural precursors generating distinct temporal expression domains within the plane of the neuroectoderm. This expression pattern suggests that temporal changes in spatial patterning cues may result in the ordered production of different neural identities. We suggest that temporal patterning mechanisms were present in the last common ancestor of arthropods, although the regulatory interactions of transcription factors might have diverged in the lineage leading to insects.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
22
|
Stollewerk A, Simpson P. Evolution of early development of the nervous system: a comparison between arthropods. Bioessays 2005; 27:874-83. [PMID: 16108062 DOI: 10.1002/bies.20276] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of cells with unique neuronal specificity are generated during development of the central nervous system of animals. Here we discuss the events that generate cell diversity during early development of the ventral nerve cord of different arthropod groups. Neural precursors are generated in a spatial array in the epithelium of each hemisegment over a period of time. Spatial cues within the epithelium are thought to evolve as embryogenesis proceeds. This spatiotemporal information might generate diversity among the neural precursors in all arthropod groups, although the mechanisms regulating the positioning of individual precursors have diverged. However, distinct strategies for the generation of neuronal diversity have evolved in the different arthropod lineages that appear to correlate with specific modes of ontogenesis. We hypothesize that an evolutionary trend towards reduced cell numbers and possibly rapid embryogenesis in insects has culminated in the appearance of stereotyped neuroblast lineages.
Collapse
|
23
|
Harzsch S, Müller CHG, Wolf H. From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and "Myriapoda" but favour the Mandibulata concept. Dev Genes Evol 2005; 215:53-68. [PMID: 15592874 DOI: 10.1007/s00427-004-0451-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 11/05/2004] [Indexed: 11/25/2022]
Abstract
In the new debate on arthropod phylogeny, structure and development of the nervous system provide important arguments. The architecture of the brain of Hexapoda, Crustacea and Chelicerata in recent years has been thoroughly compared against an evolutionary background. However, comparative aspects of the nervous systems in these taxa at the cellular level have been examined in only a few studies. This review sets out to summarize these aspects and to analyse the existing data with respect to the concept of individually identifiable neurons. In particular, mechanisms of neurogenesis, the morphology of serotonergic interneurons, the number of motoneurons, and cellular features and development of the lateral eyes are discussed. We conclude that in comparison to the Mandibulata, in Chelicerata the numbers of neurons in the different classes examined are much higher and in many cases are not fixed but variable. The cell numbers in Mandibulata are lower and the majority of neurons are individually identifiable. The characters explored in this review are mapped onto an existing phylogram, as derived from brain architecture in which the Hexapoda are an in-group of the Crustacea, and there is not any conflict of the current data with such a phylogenetic position of the Hexapoda. Nevertheless, these characters argue against a sister-group relationship of "Myriapoda" and Chelicerata as has been recently suggested in several molecular studies, but instead provide strong evidence in favour of the Mandibulata concept.
Collapse
Affiliation(s)
- Steffen Harzsch
- Sektion Biosystematische Dokumentation und Abteilung Neurobiologie, Fakultät für Naturwissenschaften, Universität Ulm, Albert-Einstein-Strasse 11, 89081, Ulm, Germany.
| | | | | |
Collapse
|
24
|
Harzsch S. Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 2004; 259:198-213. [PMID: 14755751 DOI: 10.1002/jmor.10178] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phylogenetic relationships within the Arthropoda have been discussed controversially for more than a century. Comparative studies on structure and development of the nervous system have contributed important arguments to this discussion. Arthropods have individually identifiable neurons that can be used as characters in phylogenetic studies. In the present report, the arrangement of serotonin-immunoreactive neurons in the ventral nerve cord was examined in seven representatives of the Chelicerata, Chilopoda, and Diplopoda. The goal of this analysis was to determine whether number, arrangement, and axonal morphology of the serotonergic neurons in these groups are similar to the pattern found in representatives of the Hexapoda and Crustacea, as explored in a previous study. The results indicate that the pattern in the seven species examined here does not correspond to that present in the Hexapoda and Crustacea. In particular, the pattern in Chilopoda and Diplopoda is clearly different from that of the Hexapoda. The hexapodan pattern most closely resembles that of the Crustacea. These findings are discussed with regard to recent reports on the mechanisms of neurogenesis in these taxa. Furthermore, the proposed ground patterns of the various groups are reconstructed and the characters are plotted on two competing hypotheses of arthropod phylogeny, the traditional Tracheata hypothesis and an alternative hypothesis derived from molecular and recent morphological data, the Tetraconata concept. The data discussed in this article moderately support the Tetraconata hypothesis.
Collapse
Affiliation(s)
- Steffen Harzsch
- Sektion Biosystematische Dokumentation and Abteilung Neurobiologie, Universität Ulm, Helmholtzstrasse 20, D-89081 Ulm, Germany.
| |
Collapse
|
25
|
Harzsch S. Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:17-37. [PMID: 18088994 DOI: 10.1016/s1467-8039(03)00008-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 03/24/2003] [Indexed: 05/25/2023]
Abstract
This review sets out to summarize our current knowledge on the structural layout of the embryonic ventral nerve cord in decapod crustaceans and its development from stem cell to the mature structure. In Decapoda, neuronal stem cells, the neuroblasts, mostly originate from ectodermal stem cells, the ectoteloblast, via a defined lineage. The neuroblasts undergo repeated asymmetric division and generate ganglion mother cells. The ganglion mother cells later divide again to give birth to ganglion cells (neurons) and there is increasing evidence now that ganglion mother cells divide again not only once but repeatedly. Various other aspects of neuroblast proliferation such as their temporal patterns of mitotic activity and spatial arrangement as well as the relation of neurogenesis to the development of the segmental appendages and maturation of motor behaviors are described. The link between cell lineage and cell differentiation in Decapoda so far has only been established for the midline neuroblast. However, there are several other identified early differentiating neurons, the outgrowing neurites of which pioneer the axonal scaffold within the neuromeres of the ventral nerve cord. The maturation of identified neurons as examined by immunohistochemistry against their neurotransmitters or engrailed, is briefly described. These processes are compared to other Arthropoda (including Onychophora, Chelicerata, Diplopoda and Hexapoda) in order to shed light on variations and conserved motifs of the theme 'neurogenesis'. The question of a 'common plan for neuronal development' in the ventral nerve cords of Hexapoda and Crustacea is critically evaluated and the possibility of homologous neurons arising through divergent developmental pathways is discussed.
Collapse
Affiliation(s)
- Steffen Harzsch
- Universität Ulm, Fakultät für Naturwissenschaften, Sektion Biosystematische Dokumentation und Abteilung Neurobiologie, Helmholtzstrasse 20, 89081 Ulm, Germany
| |
Collapse
|