1
|
Achatz MI, Villani A, Bertuch AA, Bougeard G, Chang VY, Doria AS, Gallinger B, Godley LA, Greer MLC, Kamihara J, Khincha PP, Kohlmann WK, Kratz CP, MacFarland SP, Maese LD, Maxwell KN, Mitchell SG, Nakano Y, Pfister SM, Wasserman JD, Woodward ER, Garber JE, Malkin D. Update on Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clin Cancer Res 2025; 31:1831-1840. [PMID: 40072304 DOI: 10.1158/1078-0432.ccr-24-3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/05/2025] [Accepted: 03/11/2025] [Indexed: 05/16/2025]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer predisposition condition characterized by a high lifetime risk for a wide spectrum of malignancies associated with germline pathogenic/likely pathogenic variants in the TP53 tumor suppressor gene. Secondary malignant neoplasms are particularly common. Early cancer detection through surveillance enables early intervention and leads to improved clinical outcomes with reduced tumor-related mortality and treatment-related morbidity. Since the 2017 publication of LFS tumor surveillance guidelines from the inaugural American Association for Cancer Research Childhood Cancer Predisposition Workshop, understanding the genotype-phenotype relationships in LFS has evolved, and adaptations of the guidelines have been implemented in institutions worldwide. The "Toronto Protocol" remains the current standard for lifelong surveillance; however, as outlined in this perspective, modifications should be considered about the use of certain modalities to target organs in an age-dependent manner. The Working Group's recommendations have also been extended to include a more detailed outline for surveillance in the adult TP53 pathogenic/likely pathogenic variant carrier population, based on the recognition that early education of both practitioners and patients on what to expect after the transition from childhood/adolescence to young adulthood is important in preparing them for changes in surveillance strategies. In this perspective, we provide an up-to-date clinical overview of LFS and present our updated consensus tumor surveillance recommendations from the 2023 American Association for Cancer Research Childhood Cancer Predisposition Workshop.
Collapse
Affiliation(s)
| | - Anita Villani
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Gaëlle Bougeard
- Department of Genetics, Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Rouen, France
| | - Vivian Y Chang
- Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Andrea S Doria
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Bailey Gallinger
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | | | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wendy K Kohlmann
- VA Medical Center, National TeleOncology Program, Clinical Cancer Genetics Service, Durham, North Carolina
- University of Utah Huntsman Cancer Institute, Salt Lake City, Utah
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Suzanne P MacFarland
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luke D Maese
- University of Utah-Huntsman Cancer Institute, Primary Children's Hospital, Salt Lake City, Utah
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Medicine Service, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sarah G Mitchell
- Department of Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Yoshiko Nakano
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Stefan M Pfister
- Division Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonathan D Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Emma R Woodward
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Centre for Genomic Medicine, Manchester, United Kingdom
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Omran M, Malkin D. Limiting surveillance in individuals with the Palestinian TP53 p. R181C founder variant-is it too soon to draw conclusions? J Natl Cancer Inst 2025; 117:819-821. [PMID: 39913257 DOI: 10.1093/jnci/djaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 05/09/2025] Open
Affiliation(s)
- Meis Omran
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Lee JW. Li-Fraumeni Syndrome : Current Strategies and Future Perspectives. J Korean Neurosurg Soc 2025; 68:305-310. [PMID: 40289692 PMCID: PMC12062525 DOI: 10.3340/jkns.2025.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare inherited cancer predisposition syndrome caused by germline mutations in the TP53 tumor suppressor gene. It predisposes affected individuals to a wide spectrum of early-onset malignancies, including sarcomas, breast cancer, brain tumors, and adrenocortical carcinoma. Advances in genetic testing and risk management strategies have enhanced the identification and clinical management of LFS patients. Comprehensive surveillance has demonstrated increased survival rates through proactive screening. Beyond surveillance, research is exploring novel approaches such as liquid biopsy for early cancer detection and chemoprevention strategies, including metformin trials, to mitigate cancer risk. This review discusses the molecular basis, clinical spectrum, surveillance strategies, and emerging research in LFS.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Kamihara J, Schienda J, McGee RB, Friedman DN, Rednam SP, Brzezinski JJ, Kim SY, Becktell KD, Lupo PJ, Gallie BL, Greer MLC, Hansford JR, Brodeur GM. Update on Retinoblastoma Predisposition and Surveillance Recommendations for Children. Clin Cancer Res 2025; 31:1573-1579. [PMID: 39998650 DOI: 10.1158/1078-0432.ccr-24-3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Hereditary retinoblastoma is a classic cancer predisposition syndrome with risks beginning in early infancy. About 45% of children with retinoblastoma (RB) have hereditary disease. These children are at risk for both intraocular disease and additional neoplasms throughout their lifetime. Germline pathogenic/likely pathogenic variants in RB1 typically lead to bilateral intraocular disease, elevated risks of trilateral RB, and risks of non-ocular subsequent malignant neoplasms (SMN), especially sarcomas and melanomas. There is further increased risk of SMNs if radiation treatment is used. In this report, with a reconvening of the American Association for Cancer Research (AACR) Childhood Cancer Predisposition Workshop, we expand on strategies for identifying individuals with hereditary RB, with a focus on testing strategies for children with RB. We also provide updates from previous recommendations. Given the high penetrance of retinal tumors, we review the importance of close intraocular surveillance and consider recent data on surveillance for SMNs. Finally, we discuss the importance of counseling for survivors of intraocular disease to address risks of adult-onset tumors as well as to consider reproductive risks.
Collapse
Affiliation(s)
- Junne Kamihara
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Rose B McGee
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Surya P Rednam
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jack J Brzezinski
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Kerri D Becktell
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Brenda L Gallie
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, Australia
- South Australia Health and Medical Research Institute, Adelaide, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, and University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Lolas-Hamameh S, Lieberman S, Sarahneh A, Walsh T, Lee MK, Gulsuner S, Rabie G, Beeri R, Aburayyan A, Mandell JB, Fridman H, Lazer-Derbeko G, Klopstock T, Freireich O, Lahad A, King MC, Levy-Lahad E, Kanaan MN. TP53 missense allele predisposing to high risk of breast cancer but not pediatric cancers. J Natl Cancer Inst 2025; 117:1069-1073. [PMID: 39673796 DOI: 10.1093/jnci/djae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024] Open
Abstract
Pathogenic TP53 germline variants cause young-onset breast cancer and other cancers of the Li-Fraumeni syndrome (LFS) spectrum, but the clinical consequences of partial-loss-of function TP53 variants are incompletely understood. In the consecutive cohort of Palestinian breast cancer patients of the Middle East Breast Cancer Study (MEBCS), breast cancer risk among TP53 p.R181C heterozygotes was 50% by age 50 years and 81% by age 80 years. In contrast, prevalence of pediatric cancers in the MEBCS was similar among first-degree relatives of TP53 p.R181C carriers (3/519 = 0.0058) and first-degree relatives of MEBCS patients with no pathogenic germline variant in any known breast cancer gene (7/1082 = 0.0065; odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.23 to 3.49], Fisher P = .90 [2-tailed]). This result suggests that in families harboring this TP53 allele, genetic testing in children is unwarranted, and screening children for LFS tumors is unnecessary. More generally, some TP53 missense alleles can predispose to very high risk of breast cancer without pleiotropic effects.
Collapse
Affiliation(s)
- Suhair Lolas-Hamameh
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| | - Sari Lieberman
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Alaa Sarahneh
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| | - Tom Walsh
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Ming K Lee
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Suleyman Gulsuner
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Grace Rabie
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| | - Rachel Beeri
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Amal Aburayyan
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Jessica B Mandell
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Hila Fridman
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Galit Lazer-Derbeko
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Tehila Klopstock
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Orit Freireich
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Amnon Lahad
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Family Medicine, Clalit Health Services, Jerusalem 9548323, Israel
| | - Mary-Claire King
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Ephrat Levy-Lahad
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Moien N Kanaan
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| |
Collapse
|
6
|
Bhutani MS, Faraoni EY, Mork ME, McAllister F. Gastric cancer prevention and screening during pancreatic cancer screening in high-risk individuals: an opportunity not to be missed. Gastrointest Endosc 2025; 101:1073-1076. [PMID: 39653170 DOI: 10.1016/j.gie.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erika Y Faraoni
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen E Mork
- Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Florencia McAllister
- Department of Genetics, Clinical Cancer Genetics Program, Department of Gastrointestinal Medical Oncology, Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
7
|
Connolly EA, Boye K, Bonvalot S, Kratz CP, Leithner A, Malkin D, Messiou C, Miah AB, Pantziarka P, Timmermann B, van der Graaf WT, Thomas DM, Stacchiotti S. Genetic predisposition in sarcomas: clinical implications and management. EClinicalMedicine 2025; 83:103203. [PMID: 40291347 PMCID: PMC12032185 DOI: 10.1016/j.eclinm.2025.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Recent studies indicate up to 20% of sarcomas may be associated with predisposition genes, and this number will probably increase as genetic testing becomes more available. Evidence on the management of patients with sarcoma and genetic predisposition remains, however, scarce. This review compiles available research on genetic predisposition syndromes associated with sarcoma and sarcoma treatment within such syndromes, addressing key gaps in knowledge. We explore the current evidence on how genetic predisposition may influence treatment decisions and clinical management, focusing on surgery, radiotherapy, systemic treatment, and surveillance. Evidence-based recommendations are currently not available for most syndromes, and we have therefore included pragmatic advice for clinicians. Unanswered questions and unmet needs are also identified, underscoring the importance of multidisciplinary input from specialists such as geneticists, radiologists, surgeons and oncologists. The review stresses the need for future research to improve clinical outcomes for patients with sarcoma and genetic predisposition. Funding No funding has been provided for this work.
Collapse
Affiliation(s)
- Elizabeth A. Connolly
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, Australia
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sylvie Bonvalot
- Department of Surgery, Institut Curie, Comprehensive Cancer Center, Paris, France
| | - Christian P. Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - David Malkin
- Division of Haematology-Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Christina Messiou
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Aisha B. Miah
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Pan Pantziarka
- Anticancer Fund, Meise, Belgium
- George Pantziarka TP53 Trust, London, United Kingdom
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), Essen, Germany
| | - Winette T.A. van der Graaf
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - David M. Thomas
- Garvan Institute of Medical Research, Sydney, Australia
- Centre for Molecular Oncology, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Ghoreyshi N, Heidari R, Farhadi A, Chamanara M, Farahani N, Vahidi M, Behroozi J. Next-generation sequencing in cancer diagnosis and treatment: clinical applications and future directions. Discov Oncol 2025; 16:578. [PMID: 40253661 PMCID: PMC12009796 DOI: 10.1007/s12672-025-01816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 04/22/2025] Open
Abstract
Next-generation sequencing (NGS) has emerged as a pivotal technology in the field of oncology, transforming the approach to cancer diagnosis and treatment. This paper provides a comprehensive overview of the integration of NGS into clinical settings, emphasizing its significant contributions to precision medicine. NGS enables detailed genomic profiling of tumors, identifying genetic alterations that drive cancer progression and facilitating personalized treatment plans targeting specific mutations, thereby improving patient outcomes. This capability facilitates the development of personalized treatment plans targeting specific mutations, leading to improved patient outcomes and the potential for better prognosis. The application of NGS extends beyond identifying actionable mutations; it is instrumental in detecting hereditary cancer syndromes, thus aiding in early diagnosis and preventive strategies. Furthermore, NGS plays a crucial role in monitoring minimal residual disease, offering a sensitive method to detect cancer recurrence at an early stage. Its use in guiding immunotherapy by identifying biomarkers that predict response to treatment is also highlighted. Ethical issues related to genetic testing, such as concerns around patient consent and data privacy, are also important considerations that need to be addressed for the broader implementation of NGS. These include the complexities of data interpretation, the need for robust bioinformatics support, cost considerations, and ethical issues related to genetic testing. Addressing these challenges is essential for the widespread adoption of NGS. Looking forward, advancements such as single-cell sequencing and liquid biopsies promise to further enhance the precision of cancer diagnostics and treatment. This review emphasizes the transformative impact of NGS in oncology and advocates for its incorporation into routine clinical practice to promote molecularly driven cancer care.
Collapse
Affiliation(s)
- Nima Ghoreyshi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Chamanara
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Nastaran Farahani
- Department of Genetics and Biotechnology, Faculty of Life Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mahmood Vahidi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Javad Behroozi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Debortoli E, McGahan E, Yanes T, Berkman J, Fuentes-Bolanos N, Milch V, Steinberg J, McInerney-Leo A. Utility of genomic testing in children, adolescents, and young adults with cancer. J Natl Cancer Inst 2025; 117:601-610. [PMID: 39312684 DOI: 10.1093/jnci/djae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Genomic testing can inform the diagnosis and personalize management of cancers in children, adolescents, and young adults (CAYA). This scoping review explored the clinical utility and impact of genomic testing in general CAYA cancer cohorts. Relevant records published in English between 2017 and 2024 were identified by searching PubMed. 36 studies (32 original articles; 4 reviews) were identified on genomic testing in CAYA cancers, most of which were advanced cancers. Studies internationally reported that approximately 16%-18% of CAYAs with cancer carry an associated pathogenic germline variant where 40% are de novo, and can guide treatment (eg, DNA repair gene variants). Somatic variants, predominantly copy number or structural rearrangements, inform diagnosis in up to 95% of primary cancers. Between 18% and 69% of patients have a somatic variant with a matched therapy, but only one third receive the genomic-guided recommendation, predominantly due to declining patient condition. Few studies evaluated the impact of matched therapies on response and survival. Combining comprehensive DNA and RNA sequencing maximises sensitivity. Circulating tumour DNA was detected in most primary cancers and shows high concordance with tumour tissue. In conclusion, genomic testing of CAYA cancers is feasible, informs diagnoses and guides personalised care. Further research is needed on response to genomic-guided treatments.
Collapse
Affiliation(s)
- Emily Debortoli
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Ella McGahan
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Tatiane Yanes
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Jennifer Berkman
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Noemi Fuentes-Bolanos
- School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
- Children's Cancer Institute, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Vivienne Milch
- Cancer Australia, Sydney, NSW, Australia
- Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Aideen McInerney-Leo
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Standing S, Malkin D, Johnston DL. A Unique Case of a Pediatric Patient with Six Childhood Cancers in Association with a Germline TP53 Gene Pathogenic Variant. Pediatr Blood Cancer 2025; 72:e31487. [PMID: 39702904 DOI: 10.1002/pbc.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Affiliation(s)
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatircs, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Donna L Johnston
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Louis J, Rolain M, Levacher C, Baudry K, Pujol P, Ruminy P, Baert Desurmont S, Bou J, Bouvignies E, Coutant S, Kasper E, Lienard G, Vasseur S, Vezain M, Houdayer C, Charbonnier F, Bougeard G. Li-Fraumeni syndrome: a germline TP53 splice variant reveals a novel physiological alternative transcript. J Med Genet 2025; 62:160-168. [PMID: 39788694 DOI: 10.1136/jmg-2024-110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline TP53 variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.6:c.1101-2A>C (rs587781664) variant, located at the splice acceptor site of the last intron of TP53, identified in a female patient with breast cancer diagnosed in her 20s. METHODS To interpret this variant, which has been classified as a variant of uncertain significance (VUS), we developed specific assays including a p53 functional assay, RT-QMPSF, Splice and Expression Analyses by exon Ligation and High-Throughput Sequencing and long RT-droplet digital PCR. RESULTS We demonstrated a loss of p53 transcriptional activity, and a half reduction in TP53 mRNA expression. Additionally, we detected the use of a novel alternative last exon downstream of exon 11, which we have named exon 12. This transcript, typically detectable at low levels in most individuals, was found to be more highly expressed in the c.1101-2A>C carrier, predominantly transcribed from the mutant allele due to the disruption of the splice acceptor site in intron 10. CONCLUSION By combining these approaches, we successfully reclassified this intronic VUS as 'pathogenic', enabling appropriate genetic counselling for the patient and her family. Additionally, we identified a novel TP53 alternative transcript that is expressed in both physiological and pathological contexts, with heightened expression in the patient with LFS. This discovery provides a basis for further investigation into the role of TP53 isoforms in LFS oncogenesis.
Collapse
Affiliation(s)
- Jeanne Louis
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Marion Rolain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Corentin Levacher
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Karen Baudry
- CHU Montpellier, Département d'oncogénétique, F-34000, Montpellier, France
| | - Pascal Pujol
- CHU Montpellier, Département d'oncogénétique, F-34000, Montpellier, France
- Univ Montpellier et CREEC, UMR IRD 224-CNRS 5290, F-34000, Montpellier, France
| | - Philippe Ruminy
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Centre Henri Becquerel, F-76000, Rouen, France
| | - Stéphanie Baert Desurmont
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Jacqueline Bou
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Emilie Bouvignies
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Sophie Coutant
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Edwige Kasper
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Gwendoline Lienard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Stéphanie Vasseur
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Myriam Vezain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Claude Houdayer
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Françoise Charbonnier
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| |
Collapse
|
12
|
Danishevich A, Fedorova D, Bodunova N, Makarova M, Byakhova M, Semenova A, Galkin V, Litvinova M, Nikolaev S, Efimova I, Osinin P, Lisitsa T, Khakhina A, Shipulin G, Nasedkina T, Shumilova S, Gusev O, Bilyalov A, Shagimardanova E, Shigapova L, Nemtsova M, Sagaydak O, Woroncow M, Gadzhieva S, Khatkov I. Assessing germline TP53 mutations in cancer patients: insights into Li-Fraumeni syndrome and genetic testing guidelines. Hered Cancer Clin Pract 2025; 23:5. [PMID: 39962599 PMCID: PMC11834258 DOI: 10.1186/s13053-025-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Germline TP53 gene variants are intricately linked to Li-Fraumeni syndrome, a rare and aggressive hereditary cancer syndrome. This study investigated the frequency and spectrum of TP53 pathogenic variants associated with Li-Fraumeni syndrome in a large cohort of mainly breast cancer patients from Russia. METHODS The study analyzed 3,455 genomic DNA samples from cancer patients using next-generation sequencing panels and whole-genome sequencing. Clinically significant TP53 variants were identified and validated using Sanger sequencing. The clinical and family history characteristics of patients with TP53 variants were analyzed. RESULTS The analysis identified 13 (0.4%) individuals with clinically significant germline TP53 variants, all of whom were females with either unilateral breast cancer or breast cancer as part of multiple primary malignant neoplasms. The average age of breast cancer manifestation was 39.9 years, with a median of 36 years. Only 38.5% of the TP53 mutation carriers met the modified Chompret criteria for TP53 testing. CONCLUSIONS The findings underscore the necessity of thorough phenotype and family history analysis in genetic counseling to effectively diagnose LFS, and emphasize the importance of identifying TP53 variant carriers for developing treatment strategies, prognosis, and monitoring, as well as for identifying high-risk family members. The study also highlights that the current guidelines fail to identify over half of the TP53 mutation carriers, suggesting the need for a more comprehensive approach to genetic testing in suspected hereditary cancer cases.
Collapse
Affiliation(s)
- Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia.
| | - Daria Fedorova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Maria Makarova
- Evogen LLC, Moscow, 115191, Russia
- Russian Scientific Center of Roentgenoradiology of the Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| | - Maria Byakhova
- City Clinical Oncological Hospital No. 1 of Moscow Healthcare Department, Moscow, 117152, Russia
| | - Anna Semenova
- City Clinical Oncological Hospital No. 1 of Moscow Healthcare Department, Moscow, 117152, Russia
| | - Vsevolod Galkin
- City Clinical Oncological Hospital No. 1 of Moscow Healthcare Department, Moscow, 117152, Russia
| | - Maria Litvinova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Irina Efimova
- Medical Genetic Research Center Named After Academician N.P. Bochkov, Moscow, 115522, Russia
| | - Pavel Osinin
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Tatyana Lisitsa
- FSBI "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical and Biological Agency, Moscow, 119435, Russia
- FSBI "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Anastasiya Khakhina
- FSBI "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical and Biological Agency, Moscow, 119435, Russia
| | - German Shipulin
- FSBI "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical and Biological Agency, Moscow, 119435, Russia
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Syuykum Shumilova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oleg Gusev
- Life Improvement By Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | - Airat Bilyalov
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
- Kazan Federal University, Kazan, 420008, Russia
| | - Elena Shagimardanova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
- Life Improvement By Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | | | - Marina Nemtsova
- Evogen LLC, Moscow, 115191, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russian Federation (Sechenov University), Moscow, 119991, Russia
- Medical Genetic Research Center Named After Academician N.P. Bochkov, Moscow, 115522, Russia
| | | | - Mary Woroncow
- National Medical Research Center of Endocrinology, Moscow, 117292, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia.
| |
Collapse
|
13
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
14
|
Wang Z, Zhang J. Genetic and epigenetic bases of long-term adverse effects of childhood cancer therapy. Nat Rev Cancer 2025; 25:129-144. [PMID: 39511414 PMCID: PMC11924961 DOI: 10.1038/s41568-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Over the past decade, genome-scale molecular profiling of large childhood cancer survivorship cohorts has led to unprecedented advances in our understanding of the genetic and epigenetic bases of therapy-related adverse health outcomes in this vulnerable population. To facilitate the integration of knowledge generated from these studies into formulating next-generation precision care for survivors of childhood cancer, we summarize key findings of genetic and epigenetic association studies of long-term therapy-related adverse effects including subsequent neoplasms and cardiomyopathies among others. We also discuss therapy-related genotoxicities including clonal haematopoiesis and DNA methylation, which may underlie accelerated molecular ageing. Finally, we highlight enhanced risk prediction models for survivors of childhood cancer that incorporate both genetic factors and treatment exposures, aiming to achieve enhanced accuracy in predicting risks for this population. These new insights will hopefully inspire future studies that harness both expanding omics resources and evolving data science methodology to accelerate the translation of precision medicine for survivors of childhood cancer.
Collapse
Affiliation(s)
- Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
15
|
Kuhlen M, Weins AB, Stadler N, Angelova-Toshkina D, Frühwald MC. Non-malignant features of cancer predisposition syndromes manifesting in childhood and adolescence: a guide for the general pediatrician. World J Pediatr 2025; 21:131-148. [PMID: 39641826 PMCID: PMC11885337 DOI: 10.1007/s12519-024-00853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Cancer predisposition syndromes are genetic disorders that significantly raise the risk of developing malignancies. Although the malignant manifestations of cancer predisposition syndromes are well-studied, recognizing their non-malignant features is crucial for early diagnosis, especially in children and adolescents. METHODS A comprehensive literature search was conducted using the PubMed database, focusing on non-malignant manifestations of cancer predisposition syndromes in children and adolescents. Key sources included the Clinical Cancer Research pediatric oncology series and ORPHANET. Studies that described clinical signs and symptoms affecting specific organ systems were included. RESULTS Non-malignant dermatological features often serve as early indicators of cancer predisposition syndromes, including café-au-lait spots in Neurofibromatosis Type 1 and facial angiofibromas in Tuberous Sclerosis Complex. Neurological and developmental anomalies such as cerebellar ataxia in ataxia-telangiectasia and intellectual disabilities in neurofibromatosis type 1 and tuberous sclerosis complex are significant indicators. Growth and metabolic anomalies are also notable, including overgrowth in Beckwith-Wiedemann syndrome and growth hormone deficiency in neurofibromatosis Type 1. In addition, facial anomalies, ocular manifestations, hearing issues, and thyroid anomalies are prevalent across various cancer predisposition syndromes. For instance, hearing loss may be significant in neurofibromatosis Type 2, while thyroid nodules are common in PTEN hamartoma tumor syndrome and DICER1 syndrome. Cardiovascular, abdominal, musculoskeletal, pulmonary, genitourinary manifestations, and prenatal deviations further complicate the clinical picture. CONCLUSIONS Recognizing non-malignant features of cancer predisposition syndromes is essential for early diagnosis and management. This organ-specific overview furthers awareness among healthcare providers, facilitating timely genetic counseling, surveillance programs, and preventive measures, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany.
| | - Andreas B Weins
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
- Augsburger Zentrum für Seltene Erkrankungen, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Nicole Stadler
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Daniela Angelova-Toshkina
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| |
Collapse
|
16
|
Sarkies L, Thomas P, Edeko EA, Leiter S, Trotman J, Armstrong R, Vedi A. Developing a Paired Whole Genome Sequencing Service for Children With Cancer. Clin Oncol (R Coll Radiol) 2025; 38:103623. [PMID: 39214827 DOI: 10.1016/j.clon.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The uniqueness of paired (tumor and germline) whole genome sequencing (PWGS) in cancer diagnosis and management lies in not just its ability to uncover oncogenic drivers and potential treatment targets but also on the identification of underlying cancer predisposition syndromes, which has significant implications for the patient and their family. AIMS This is a descriptive article highlighting the processes taken by our team to incorporate PWGS into routine National Health Service (NHS) clinical care for children with cancer. The main aim of this article is to share our experience with other centers that may wish to set up similar services and set the stage for future quantitative/qualitative research. METHODS This article is further supported by an audit focusing on children in whom an underlying cancer predisposition was confirmed. RESULTS The audit highlights the success of the program to date, with 100% of families identified as being at risk of a cancer predisposition syndrome being offered referral to clinical genetics and 100% of at-risk first-degree relatives being offered predictive counseling and testing. Areas requiring improvement included discussion of reproductive options as only six out of nine families (67%) had a documented discussion. CONCLUSIONS Incorporation of the audit recommendations will improve our service, and sharing of our experience will hopefully encourage more pediatric oncology services to introduce PWGS into routine clinical care and reduce inequity of access. Further work is required to assess the long-term cancer risk reduction and establish the psychosocial impact of PWGS for the child and family.
Collapse
Affiliation(s)
- L Sarkies
- Cambridge University Hospitals NHS Foundation Trust, UK
| | - P Thomas
- Cambridge University Hospitals NHS Foundation Trust, UK
| | - E A Edeko
- Cambridge University Hospitals NHS Foundation Trust, UK
| | - S Leiter
- Cambridge University Hospitals NHS Foundation Trust, UK; Department of Paediatrics, University of Cambridge, UK
| | - J Trotman
- Cambridge University Hospitals NHS Foundation Trust, UK
| | - R Armstrong
- Cambridge University Hospitals NHS Foundation Trust, UK
| | - A Vedi
- Cambridge University Hospitals NHS Foundation Trust, UK; Department of Paediatrics, University of Cambridge, UK.
| |
Collapse
|
17
|
Dacoregio MI, Abrahão Reis PC, Gonçalves Celso DS, Romero LE, Altmayer S, Vilbert M, Moraes FY, Gomy I. Baseline surveillance in Li Fraumeni syndrome using whole-body MRI: a systematic review and updated meta-analysis. Eur Radiol 2025; 35:643-651. [PMID: 39075300 DOI: 10.1007/s00330-024-10983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVES Li-Fraumeni syndrome (LFS) is a cancer syndrome associated with early-onset neoplasias. The use of whole-body magnetic resonance imaging (WBMRI) is recommended for regular cancer screening, however, evidence supporting the benefits in asymptomatic LFS patients is limited. This study aims to assess the clinical utility of WBMRI in germline TP53 mutation carriers at baseline and follow-up. MATERIALS AND METHODS We systematically searched PubMed, Cochrane, and Embase databases for studies evaluating WBMRI as an early detection method for tumor screening in patients with LFS. We pooled the prevalence of the included variables along with their corresponding 95% confidence intervals (CIs). Statistical analyses were performed using R software, version 4.3.1. RESULTS From 1687 results, 11 comprising 703 patients (359 females (51%); with a median age of 32 years (IQR 1-74)) were included. An estimated detection rate of 31% (95% CI: 0.28, 0.34) for any suspicious lesions was found in asymptomatic TP53 carriers who underwent baseline WBMRI. A total of 277 lesions requiring clinical follow-up were identified in 215 patients. Cancer was confirmed in 46 lesions across 39 individuals. The estimated cancer diagnosis rate among suspicious lesions was 18% (95% CI: 0.13, 0.25). WBMRI detected 41 of the 46 cancers at an early-disease stage, with an overall detection rate of 6% (95% CI: 0.05, 0.08). The incidence rate was 2% per patient round of WBMRI (95% CI: 0.01, 0.04), including baseline and follow-up. CONCLUSION This meta-analysis provides evidence that surveillance with WBMRI is effective in detecting cancers in asymptomatic patients with LFS. CLINICAL RELEVANCE STATEMENT Our study demonstrates that whole-body MRI is an effective tool for early cancer detection in asymptomatic Li-Fraumeni Syndrome patients, highlighting its importance in surveillance protocols to improve diagnosis and treatment outcomes. KEY POINTS Current evidence for whole-body MRI screening of asymptomatic Li-Fraumeni Syndrome (LFS) patients remains scarce. Whole-body MRI identified 41 out of 46 cancers at an early stage, achieving an overall detection rate of 6%. Whole-body MRI surveillance is a valuable method for detecting cancers in asymptomatic LFS patients.
Collapse
Affiliation(s)
| | | | | | - Lorena Escalante Romero
- Oncology Pediatrics Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Maysa Vilbert
- Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, US
| | - Fabio Ynoe Moraes
- Radiation Oncology Department, Queen's University and Kingston Health Science Center, Kingston, ON, Canada
| | - Israel Gomy
- Genetics Department, Faculdade de Medicina de Ribeirão Preto-USP RP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Seeling C, Dahlum S, Marienfeld R, Jan V, Rack B, Gerstenmaier U, Beer AJ, Mayer-Steinacker R, Thaiss W, Barth TFE, Seufferlein T, Gaisa NT, Stilgenbauer S, Janni W, Siebert R, Döhner H, Gaidzik VI. Exploiting somatic oncogenic driver alterations in a patient with Li-Fraumeni syndrome- paving the path towards precision medicine: a case report. J Cancer Res Clin Oncol 2025; 151:37. [PMID: 39820556 PMCID: PMC11739273 DOI: 10.1007/s00432-024-06077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients. However, there is limited evidence supporting the effectiveness of targeted therapy approaches in LFS patients. CASE PRESENTATION We present the case of a woman with breast cancer and subsequent osteosarcoma, both treated with surgery and chemotherapy. Constitutional genetic germline testing identified a pathogenic TP53 variant in line with the clinical features of Li-Fraumeni syndrome. Subsequent molecular analysis of the osteosarcoma tissue revealed homozygous loss of the CDKN2A gene locus, warranting treatment with CDK4/6 inhibitor palbociclib. Palbociclib therapy was discontinued after one year with no evidence of disease. One year later, ovarian cancer was diagnosed, with molecular analysis indicating interstitial heterozygous loss of the BRCA2 gene locus, providing a rationale for targeted therapy with the PARP inhibitor olaparib. CONCLUSIONS In the era of accessible and comprehensive genetic and phenotypic tumor profiling, this case study of a patient with Li-Fraumeni syndrome underscores the success of precision oncology in harnessing additional somatic oncogenic driver alterations. Furthermore, it emphasizes the indispensable role of an interdisciplinary molecular tumor board, enhancing the awareness of molecular profiling and targeted therapies in patients with rare cancer susceptibility disorders.
Collapse
Affiliation(s)
- Carolin Seeling
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, University Hospital Ulm and University of Ulm, Ulm, Germany
| | - Ralf Marienfeld
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Vera Jan
- Institute of Human Genetics, University Hospital Ulm and University of Ulm, Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | | | - Ambros J Beer
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Wolfgang Thaiss
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital Ulm, Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Ulm and University of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
19
|
Manna EDF, Serrano D, Cazzaniga L, Mannucci S, Zanzottera C, Fava F, Aurilio G, Guerrieri-Gonzaga A, Risti M, Calvello M, Feroce I, Marabelli M, Altemura C, Bertario L, Bonanni B, Lazzeroni M. Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies. Genes (Basel) 2025; 16:82. [PMID: 39858629 PMCID: PMC11764557 DOI: 10.3390/genes16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Women carrying pathogenic/likely pathogenic (P/LP) variants in moderate- or high-penetrance genes have an increased risk of developing breast cancer. However, most P/LP variants associated with breast cancer risk show incomplete penetrance. Age, gender, family history, polygenic risk, lifestyle, reproductive, hormonal, and environmental factors can affect the expressivity and penetrance of the disease. However, there are gaps in translating how individual genomic variation affects phenotypic presentation. The expansion of criteria for genetic testing and the increasing utilization of comprehensive genetic panels may enhance the identification of individuals carrying P/LP variants linked to hereditary breast cancer. Individualized risk assessment could facilitate the implementation of personalized risk-reduction strategies for these individuals. Preventive interventions encompass lifestyle modifications, chemoprevention, enhanced surveillance through breast imaging, and risk-reducing surgeries. This review addresses the current literature's inconsistencies and limitations, particularly regarding risk factors and the intensity of preventive strategies for women with P/LP variants in moderate- and high-penetrance genes. In addition, it synthesizes the latest evidence on risk assessment and primary and secondary prevention in women at high risk of breast cancer.
Collapse
Affiliation(s)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Laura Cazzaniga
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
- Department of Health Sciences, Medical Genetics, University of Milan, 20122 Milan, Italy
| | - Sara Mannucci
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Francesca Fava
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Gaetano Aurilio
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Matilde Risti
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
- Department of Health Sciences, Medical Genetics, University of Milan, 20122 Milan, Italy
- Oncology Competence Center, Gruppo Ospedaliero Moncucco, 6900 Lugano, Switzerland
| | - Irene Feroce
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Cecilia Altemura
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Lucio Bertario
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| |
Collapse
|
20
|
Bernal SG, Chan SS, Cho YY, Daldrup-Link HE, Gee MS, Kemp JM, Kraus MS, Meyers AB, von Krüchten VR, Greer MLC. Whole-Body MRI in Children: Concepts and Controversies- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025. [PMID: 39772586 DOI: 10.2214/ajr.24.32178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The use of whole-body MRI (WBMRI) in children, from infancy to adolescence, has expanded rapidly over the past decade, with increasing uptake and a broadening range of clinical indications. Current indications include screening for presymptomatic lesions in cancer predisposition syndromes; tumor staging in known malignancies; investigating fevers of unknown origin; as well as diagnosing and monitoring rheumatologic diseases, vascular anomalies and neuromuscular disorders. This AJR Expert Panel Narrative Review aims to offer a comprehensive discussion of WBMRI in pediatric patients, exploring protocols and other technical considerations, clinical indications, implementation challenges and troubleshooting, as well as controversies in widespread adoption, while considering emerging trends and directions. Commonalities and variations in WBMRI protocols across indications and institutions are presented, highlighting the need for greater standardization. Barriers to WBMRI access, particularly in resource-limited settings, are considered, along with potential solutions. The available evidence regarding potential patient benefit from WBMRI across various applications is summarized.
Collapse
Affiliation(s)
- Sebastian Gallo Bernal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sherwin S Chan
- Department of Radiology, Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Yoon Y Cho
- Department of Radiology, Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Division of Pediatric Radiology, Stanford University School of Medicine / Department of Pediatrics, Pediatric Hematology-Oncology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Palo Alto, CA 94304, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Justine M Kemp
- Department of Radiology, University of Cincinnati College of Medicine / Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, Ohio, 45229, USA
| | - Mareen S Kraus
- Department of Diagnostic Radiology, Dalhousie University/Department of Pediatric Radiology, IWK Health, 5980 University Ave, Halifax, NS B3K 6R8, Canada
| | - Arthur B Meyers
- Department of Radiology, University of Cincinnati College of Medicine / Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, Ohio, 45229, USA
| | - Vanessa Ricarda von Krüchten
- Department of Radiology, Division of Pediatric Radiology, Stanford University School of Medicine / Department of Pediatrics, Pediatric Hematology-Oncology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Palo Alto, CA 94304, USA
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
21
|
Saucier E, Bougeard G, Gomez-Mascard A, Schramm C, Abbas R, Berlanga P, Briandet C, Castex MP, Corradini N, Coze C, Guerrini-Rousseau L, Guinebretière JM, Khneisser P, Lervat C, Mansuy L, Marec-Berard P, Marie-Cardine A, Mascard E, Saumet L, Tabone MD, Winter S, Frebourg T, Gaspar N, Brugieres L. Li-Fraumeni-associated osteosarcomas: The French experience. Pediatr Blood Cancer 2024; 71:e31362. [PMID: 39387369 DOI: 10.1002/pbc.31362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Describe clinical characteristics and outcome of Li-Fraumeni syndrome (LFS)-associated osteosarcomas. METHODS TP53 germline pathogenic/likely pathogenic variant carriers diagnosed with osteosarcoma in France between 1980 and 2019 were identified via the French Li-Fraumeni database at Rouen University Hospital. Sixty-five osteosarcomas in 52 patients with available clinical and histological data were included. The main clinical characteristics were compared with data from National Cancer Institute's SEER (Surveillance, Epidemiology, and End Results) for patients of the same age group. RESULTS Median age at first osteosarcoma diagnosis was 13.7 years (range: 5.9-36.7). Compared to unselected osteosarcomas, LFS-associated osteosarcomas occurred more frequently in patients less than 10 years of age (23% vs. 9%), and when compared with osteosarcomas in patients less than 25 years were characterized by an excess of axial (16% vs. 10%) and jaw sites (15% vs. 3%) and histology with predominant chondroblastic component and periosteal subtypes (17% vs. 1%). Metastases incidence (25%) was as expected in osteosarcomas. After the first osteosarcoma treatment, the rate of good histologic response (62%) and the 5-year progression-free survival (55%, 95% confidence interval [CI]: 42.6-71.1) were as expected in unselected series of osteosarcomas, whereas the 5-year event-free survival was 36.5% [95% CI: 25.3-52.7] due to the high incidence of second malignancies reaching a 10-year cumulative risk of 43.4% [95% CI: 28.5-57.5]. CONCLUSION In osteosarcoma, young age at diagnosis, axial and jaw sites, histology with periosteal or chondroblastic subtype, and synchronous multifocal tumors should prompt suspicion of a germline TP53 mutation. Standard treatments are effective, but multiple malignancies impair prognosis. Early recognition of these patients is crucial for tailored therapy and follow-up.
Collapse
Affiliation(s)
- Emilie Saucier
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - Catherine Schramm
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Rachid Abbas
- Department of Biostatistics and Epidemiology, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Inserm, Clinical Trial Unit 1418 (CIC1418) Clinical Epidemiology, Paris, France
| | - Pablo Berlanga
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Claire Briandet
- Department of Pediatric Haematology-Oncology, Dijon University Hospital, Dijon, France
| | - Marie-Pierre Castex
- Pediatric Immuno-Oncohaematology Unit, Children's Hospital, Toulouse, France
| | - Nadège Corradini
- Department of Paediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Carole Coze
- Department of Pediatric Oncology, Hopital la Timone, APHM, Marseille Aix University, Marseille, France
| | - Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
- Inserm U981, Paris Saclay University, Villejuif, France
| | | | - Pierre Khneisser
- Department of Pathology, Gustave Roussy, Villejuif, France
- Inserm U1015, Paris Saclay University, Villejuif, France
| | - Cyril Lervat
- Department of Pediatric and AYA Oncology, Centre Oscar Lambret, Lille, France
| | - Ludovic Mansuy
- Department of Pediatric Onco-Hematology, Nancy Brabois University Hospital, Vandœuvre-lès-Nancy, France
| | - Perrine Marec-Berard
- Department of Paediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Aude Marie-Cardine
- Pediatric Immuno-Hematology-Oncology Unit, University Hospital of Rouen, Rouen, France
| | - Eric Mascard
- Department of Orthopedic Surgery, APHP, Necker University Hospital, Paris, France
| | - Laure Saumet
- Department of Pediatric Onco-Hematology, Montpellier University Hospital, Montpellier, France
| | - Marie-Dominique Tabone
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - Sarah Winter
- SIREDO Oncology Center Care, (Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - Thierry Frebourg
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Nathalie Gaspar
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
- Inserm U1015, Paris Saclay University, Villejuif, France
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| |
Collapse
|
22
|
Al-Haggar MS, Abdelmoneim ZA. Tricuspid mass-curious case of Li-Fraumeni syndrome: A letter to the editor. World J Clin Cases 2024; 12:6644-6646. [PMID: 39600484 PMCID: PMC11514343 DOI: 10.12998/wjcc.v12.i33.6644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
We focus specifically on the rare occurrence of cardiac thrombi in Li-Fraumeni syndrome (LFS). LFS is a hereditary risk to a diverse range of specific, uncommon, malignancies. Children and young adults have a heightened susceptibility to many malignancies, particularly soft-tissue and bone tumors, breast malignancies, central nervous system malignancies, adrenocortical carcinoma, and blood cancers. Additionally, LFS patients may experience other cancer types such as gastrointestinal, lung, kidney, thyroid, and skin cancers, along with those affecting gonadal organs (ovaries, testicles, and prostate). An accurate diagnosis of LFS is crucial to enable affected families to access appropriate genetic counseling and undergo surveillance for early cancer detection.
Collapse
Affiliation(s)
- Mohammad S Al-Haggar
- Department of Pediatrics and Genetics, Mansoura University Children's Hospital, Mansoura 35516, Egypt
| | - Zahraa A Abdelmoneim
- Department of Pediatrics, Genetic Unit, Mansoura University Children Hospital, Mansoura 35516, Egypt
| |
Collapse
|
23
|
Greer MLC, States LJ, Malkin D, Voss SD, Doria AS. Update on Whole-Body MRI Surveillance for Pediatric Cancer Predisposition Syndromes. Clin Cancer Res 2024; 30:5021-5033. [PMID: 39287924 DOI: 10.1158/1078-0432.ccr-24-1374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Whole-body MRI (WBMRI) is an integral part of screening infants, children, and adolescents for presymptomatic neoplasms in certain cancer predisposition syndromes, which include Li-Fraumeni and constitutional mismatch repair deficiency syndromes, among others. The list of syndromes in which WBMRI adds value, as part of a comprehensive surveillance protocol, continues to evolve in response to new evidence, growing experience, and more widespread adoption. In July 2023, the AACR reconvened an international, multidisciplinary panel to revise and update recommendations stemming from the 2016 AACR Special Workshop on Childhood Cancer Predisposition. That initial meeting resulted in a series of publications in Clinical Cancer Research in 2017, including "Pediatric Cancer Predisposition Imaging: Focus on Whole-Body MRI." This 2024 review of WBMRI in cancer predisposition syndrome updates the 2017 WBMRI publication, the revised recommendations derived from the 2023 AACR Childhood Cancer Predisposition Workshop based on available data, societal guidelines, and expert opinion. Different aspects of acquiring and interpreting WBMRI, including diagnostic accuracy, are discussed. The application of WBMRI in resource-poor environments, as well as integration of whole-body imaging techniques with emerging technologies, such as cell-free DNA ("liquid biopsies") and artificial intelligence/machine learning, is also considered.
Collapse
Affiliation(s)
- Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J States
- Department of Radiology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea S Doria
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Brockman KJ, Thompson MB, Mirabello L, Savage SA, Malayeri A, Hatton JN, Khincha PP. Characterization of sarcoma topography in Li-Fraumeni syndrome. Front Oncol 2024; 14:1415636. [PMID: 39575416 PMCID: PMC11578819 DOI: 10.3389/fonc.2024.1415636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome primarily caused by germline TP53 pathogenic/likely pathogenic (P/LP) variants. Soft tissue and bone sarcomas are among the most frequently occurring of the many LFS-associated cancer types. Cancer screening recommendations for LFS are centered around annual whole-body MRI (wbMRI), the interpretation of which can be challenging. This study aims to characterize sarcoma topography in LFS. Methods Study subjects included individuals from clinically and genetically ascertained cohorts of germline TP53 variant-carriers, namely the National Cancer Institute's LFS longitudinal cohort study (NCI-LFS), the NCI Genetic Epidemiology of Osteosarcoma (NCI-GEO) study, and the germline TP53 Database. Results Data was aggregated for a total of 160 sarcomas that had detailed topography available. Abdominal sarcomas and extremity osteosarcomas were among the most frequent locations of sarcomas. Chi-squared analyses showed no statistical differences in sarcoma topography based on age (pediatric vs adult) or sex (male vs female). A case series of sarcomas from the NCI-LFS study highlights the diagnostic challenges due to topography-related imaging. Discussion While LFS-related sarcomas frequently occur in expected locations such as the extremities, they also occur in less typical sites, leading to difficulties in discerning between differential diagnoses on wbMRI and imaging. Prospective collection of detailed cancer topography in individuals with LFS will further aid in recommendations for radiologic interpretation and personalized screening in individuals with LFS.
Collapse
Affiliation(s)
- Karin J. Brockman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Pediatric Hematology/Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Mone’t B. Thompson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Jessica N. Hatton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Payal P. Khincha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Arnon J, Zick A, Maoz M, Salaymeh N, Gugenheim A, Marouani M, Mor E, Hamburger T, Saadi N, Elia A, Ganz G, Fahham D, Meirovitz A, Kadouri L, Meiner V, Yablonski-Peretz T, Shkedi-Rafid S. Clinical and genetic characteristics of carriers of the TP53 c.541C > T, p.Arg181Cys pathogenic variant causing hereditary cancer in patients of Arab-Muslim descent. Fam Cancer 2024; 23:531-542. [PMID: 38743206 PMCID: PMC11512851 DOI: 10.1007/s10689-024-00391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
TP53 pathogenic variants cause Li-Fraumeni syndrome (LFS), with some variants causing an attenuated phenotype. Herein, we describe the clinical phenotype and genetic characteristics of carriers of NM_000546.6 (TP53): c.541C > T, (p.Arg181Cys) treated at Hadassah Medical Center. We retrospectively examined our genetic databases to identify all carriers of TP53 p.Arg181Cys. We reached out to carriers and their relatives and collected clinical and demographic data, lifestyle factors, carcinogenic exposures as well as additional blood samples for genetic testing and whole exome sequencing. Between 2005 and 2022 a total of 2875 cancer patients underwent genetic testing using genetic panels, whole exome sequencing or targeted TP53 assays. A total of 30 cancer patients, all of Arab-Muslim descent, were found to be carriers of TP53 p.Arg181Cys, the majority from Jerusalem and Hebron, two of which were homozygous for the variant. Carriers were from 24 distinct families of them, 15 families (62.5%) met updated Chompret criteria for LFS. Median age of diagnosis was 35 years-old (range 1-69) with cancers characteristic of LFS (16 Breast cancer; 6 primary CNS tumors; 3 sarcomas) including 4 children with choroid plexus carcinoma, medulloblastoma, or glioblastoma. A total of 21 healthy carriers of TP53 p.Arg181Cys were identified at a median age of 39 years-old (range 2-54)-19 relatives and 2 additional pediatric non-cancer patients, in which the finding was incidental. We report a shared haplotype of 350kb among carriers, limited co-morbidities and low BMI in both cancer patients and healthy carriers. There were no demographic factors or carcinogenic exposures unique to carriers who developed malignancy. Upon exome analysis no other known pathogenic variants in cancer predisposing genes were identified. TP53 p.Arg181Cys is a founder pathogenic variant predominant to the Arab-Muslim population in Jerusalem and Hebron, causing attenuated-LFS. We suggest strict surveillance in established carriers and encourage referral to genetic testing for all cancer patients of Arab-Muslim descent in this region with LFS-associated malignancies as well as family members of established carriers.
Collapse
Affiliation(s)
- Johnathan Arnon
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Nada Salaymeh
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Ahinoam Gugenheim
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - MazalTov Marouani
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden Mor
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Hamburger
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Nagam Saadi
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Elia
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pathology, Hadassah University Medical Center, Jerusalem, Israel
| | - Gael Ganz
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
| | - Duha Fahham
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Luna Kadouri
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Yablonski-Peretz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Shkedi-Rafid
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Giovino C, Subasri V, Telfer F, Malkin D. New Paradigms in the Clinical Management of Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med 2024; 14:a041584. [PMID: 38692744 PMCID: PMC11529854 DOI: 10.1101/cshperspect.a041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Approximately 8.5%-16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant-a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li-Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning-based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.
Collapse
Affiliation(s)
- Camilla Giovino
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Frank Telfer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
27
|
Byrjalsen A, Stoltze UK, Lautrup C, Christensen LL, Mikkelsen T, Hjalgrim L, Brok JS, Dahl C, Schmiegelow K, Borgwardt L, Diness BR, Hansen TVO, Wadt KAW. Novel germline TP53 variant (p.(Phe109Ile)) confers high risk of cancer. J Med Genet 2024; 61:1023-1025. [PMID: 39317423 DOI: 10.1136/jmg-2024-110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Kristoffer Stoltze
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Torben Mikkelsen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa Hjalgrim
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Sune Brok
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christine Dahl
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Borgwardt
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Rode Diness
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Van Overeem Hansen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Le TT, Ha TS, To LM, Dang QM, Bui HTP, Tran TD, Vu PT, Giang HB, Tran DT, Nguyen XH. Osteosarcoma patient with Li-Fraumeni syndrome: the first case report in Vietnam. Front Oncol 2024; 14:1458232. [PMID: 39439949 PMCID: PMC11493536 DOI: 10.3389/fonc.2024.1458232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary disorder characterized by an increased risk of developing multiple early-onset cancers, primarily due to germline TP53 mutations. Women and men with this mutation face lifetime cancer risks of 90% and 70%, respectively. This report describes the first documented case of LFS with clinical information in Vietnam involving a 9-year-old child diagnosed with osteosarcoma who had multiple first- and second-degree relatives with cancer. Whole-genome sequencing (WGS) revealed a heterozygous, pathogenic, autosomal dominant TP53 variant NM_000546.6:c.733G>A (p.Gly245Ser) and a translocation in the 3'UTR of the ATMIN gene with unknown pathogenicity in both the patient and her mother. Sanger sequencing confirmed the presence of the TP53 c.733G>A mutation, which was subsequently detected in extended family members. Of the 17 family members invited for testing, only 8, none of whom currently have cancer, agreed to participate: all tested negative for the mutation. This case highlights the importance of genetic testing for the early detection and management of cancers in LFS patients. It also underscores significant barriers to genetic screening in Vietnam, including limited access and the psychosocial consequences of testing, which emphasize the need for improved genetic counseling and surveillance strategies that are tailored to local contexts.
Collapse
Affiliation(s)
- Thanh Thien Le
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Tung Sy Ha
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Mai To
- Department of Biology, Hanoi University Science, Hanoi, Vietnam
| | - Quang Minh Dang
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoa Thi Phuong Bui
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Duc Tran
- Sarcoma Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong Thi Vu
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoan Bao Giang
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | | | - Xuan-Hung Nguyen
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
30
|
Azma R, Arenos-Abril J, Junhasavasdiku T, Tewattanarat N, Nourmohammad A, Abadeh A, Panwar S, Villani A, Malkin D, Doria AS. Patterns of Growth of Tumors in Li-Fraumeni Syndrome by Imaging: A Case Series. J Pediatr Hematol Oncol 2024; 46:335-348. [PMID: 39185882 DOI: 10.1097/mph.0000000000002928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/14/2024] [Indexed: 08/27/2024]
Abstract
Although tumors of Li-Fraumeni syndrome (LFS) have a premalignant or dormant phase that could be exploited by early imaging detection, this has been underevaluated in the literature. We present a case series of patients with LFS followed by imaging over time to highlight patterns of growth of tumors and hotspots of missed tumors in this population. Clinical and imaging features were available for 29 tumors of 24 carriers of a germline TP53 pathogenic variant, developed between 1999 and 2023 were retrospectively reviewed in a single tertiary pediatric center. Imaging characteristics of tumors were evaluated with MRI, CT, and radiographs. Local invasion, time interval for developing primary cancer, and/or recurrent disease and metastasis, and factors that delayed the tumor diagnosis were assessed. In patients with multiple tumors the median time intervals for development of first, second, and third primary cancers were 45.9, 79.8, and 28.1 months, respectively. Hotspots of missed tumors included superficial soft tissues, areas close to bones, on the scalp, in tissues around the adrenal region and in small hypodense lesions on brain CT. In conclusion, the pattern of growth of tumors is variable and erratic in LFS patients with some tumors presenting with a dormant pattern.
Collapse
Affiliation(s)
- Roxana Azma
- Department of Radiology and Diagnostic Imaging, University of Alberta, University of Alberta Hospital, Edmonton, AB
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
| | - Jesus Arenos-Abril
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto
| | - Thitiporn Junhasavasdiku
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
| | - Nipaporn Tewattanarat
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Sanuj Panwar
- Department of Radiology, Krishna Advanced M.R.I & C.T Research Center, Vellore, Tamil Nadu, India
| | - Anita Villani
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Pediatrics, Division of Hematology/Oncology
| | - David Malkin
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Pediatrics, Division of Hematology/Oncology
| | - Andrea S Doria
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Elias R, Blake A, Dean L, Flynn JS, Sachner L, Harrison L, McGee RB, Nichols KE, Howard Sharp KM. Playing Russian Roulette: Parent and Adolescent Perspectives on Tumor Surveillance for Adolescents with Cancer Predisposition Syndromes. Clin Cancer Res 2024; 30:3845-3854. [PMID: 38922635 DOI: 10.1158/1078-0432.ccr-24-0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Cancer predisposition syndrome (CPS) surveillance allows for the early detection and treatment of neoplasms; however, the psychosocial impact of tumor surveillance is poorly understood for cancer-affected adolescents with CPS and their parents. To gain further insight, we qualitatively characterized the affective and cognitive experience of adolescents undergoing tumor surveillance. EXPERIMENTAL DESIGN Adolescents with a history of cancer and their parents independently completed semistructured interviews querying their experience with the adolescent's tumor surveillance. Interviews were coded using emotion coding and content analysis before developing themes using thematic analysis. RESULTS Eight adolescents and 11 parents (seven mothers, four fathers) completed interviews. Parent themes included maternal anxiety, relief following surveillance, fathers' positive expectations and emotions surrounding surveillance results, coping strategies, and perception of going through surveillance together with their child. Adolescent themes included normalization of surveillance, indifference about surveillance but excitement to return to the hospital, focus on physical and logistic aspects, relief focused on being done with scans, and belief that outcomes would be good. Past scans/surveillance experiences influencing surveillance feelings were a theme across both parents and adolescents. CONCLUSIONS Our findings suggest that tumor surveillance is not causing marked emotional distress for cancer-affected adolescents with CPS. In contrast, mothers of cancer-affected adolescents undergoing surveillance may present with anxiety leading up to tumor surveillance and, for a subset, in between surveillance appointments. These observations highlight a need for ongoing psychosocial screening for families of children with CPS and a role for psychosocial providers in the multidisciplinary management of CPS.
Collapse
Affiliation(s)
- Rachel Elias
- Department of Genetics, Norton Cancer Institute, Louisville, Kentucky
- Department of Genetic Counseling, College of Health Professions, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alise Blake
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lori Dean
- Department of Genetic Counseling, College of Health Professions, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jessica S Flynn
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leila Sachner
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Psychology, University of Mississippi, Oxford, Mississippi
| | - Lynn Harrison
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rose B McGee
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kim E Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Katianne M Howard Sharp
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
32
|
Lecouvet FE, Chabot C, Taihi L, Kirchgesner T, Triqueneaux P, Malghem J. Present and future of whole-body MRI in metastatic disease and myeloma: how and why you will do it. Skeletal Radiol 2024; 53:1815-1831. [PMID: 39007948 PMCID: PMC11303436 DOI: 10.1007/s00256-024-04723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Metastatic disease and myeloma present unique diagnostic challenges due to their multifocal nature. Accurate detection and staging are critical for determining appropriate treatment. Bone scintigraphy, skeletal radiographs and CT have long been the mainstay for the assessment of these diseases, but have limitations, including reduced sensitivity and radiation exposure. Whole-body MRI has emerged as a highly sensitive and radiation-free alternative imaging modality. Initially developed for skeletal screening, it has extended tumor screening to all organs, providing morphological and physiological information on tumor tissue. Along with PET/CT, whole-body MRI is now accepted for staging and response assessment in many malignancies. It is the first choice in an ever increasing number of cancers (such as myeloma, lobular breast cancer, advanced prostate cancer, myxoid liposarcoma, bone sarcoma, …). It has also been validated as the method of choice for cancer screening in patients with a predisposition to cancer and for staging cancers observed during pregnancy. The current and future challenges for WB-MRI are its availability facing this number of indications, and its acceptance by patients, radiologists and health authorities. Guidelines have been developed to optimize image acquisition and reading, assessment of lesion response to treatment, and to adapt examination designs to specific cancers. The implementation of 3D acquisition, Dixon method, and deep learning-based image optimization further improve the diagnostic performance of the technique and reduce examination durations. Whole-body MRI screening is feasible in less than 30 min. This article reviews validated indications, recent developments, growing acceptance, and future perspectives of whole-body MRI.
Collapse
Affiliation(s)
- Frederic E Lecouvet
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium.
| | - Caroline Chabot
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Lokmane Taihi
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Thomas Kirchgesner
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Perrine Triqueneaux
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Jacques Malghem
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| |
Collapse
|
33
|
Wong D, Tageldein M, Luo P, Ensminger E, Bruce J, Oldfield L, Gong H, Fischer NW, Laverty B, Subasri V, Davidson S, Khan R, Villani A, Shlien A, Kim RH, Malkin D, Pugh TJ. Cell-free DNA from germline TP53 mutation carriers reflect cancer-like fragmentation patterns. Nat Commun 2024; 15:7386. [PMID: 39191772 DOI: 10.1038/s41467-024-51529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls. We find that LFS individuals exhibit an increased prevalence of A/T nucleotides at fragment ends, dysregulated nucleosome positioning at p53 binding sites, and loci-specific changes in chromatin accessibility at development-associated transcription factor binding sites and at cancer-associated open chromatin regions. Machine learning classification resulted in robust differentiation between TP53 mutant versus wildtype cfDNA samples (AUC-ROC = 0.710-1.000) and intra-patient longitudinal analysis of ctDNA fragmentation signal enabled early cancer detection. These results suggest that cfDNA fragmentation may be a useful diagnostic tool in LFS patients and provides an important baseline for cancer early detection.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Maha Tageldein
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Erik Ensminger
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leslie Oldfield
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Haifan Gong
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Brianne Laverty
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Scott Davidson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Reem Khan
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Anita Villani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toroton, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Raymond H Kim
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Blake A, Perrino MR, Morin CE, Taylor L, McGee RB, Lewis S, Hines-Dowell S, Pandey A, Turner P, Kubal M, Su Y, Tang L, Howell L, Harrison LW, Abramson Z, Schechter A, Sabin ND, Nichols KE. Performance of Tumor Surveillance for Children With Cancer Predisposition. JAMA Oncol 2024; 10:1060-1067. [PMID: 38900420 PMCID: PMC11190829 DOI: 10.1001/jamaoncol.2024.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Importance Pediatric oncology patients are increasingly recognized as having an underlying cancer predisposition syndrome (CPS). Surveillance is often recommended to detect new tumors at their earliest and most curable stages. Data on the effectiveness and outcomes of surveillance for children with CPS are limited. Objective To evaluate the performance of surveillance across a wide spectrum of CPSs. Design, Setting, and Participants This cohort study reviewed surveillance outcomes for children and young adults from birth to age 23 years with a clinical and/or molecular CPS diagnosis from January 1, 2009, through September 31, 2021. Patients were monitored using standard surveillance regimens for their corresponding CPS at a specialty pediatric oncology center. Patients with hereditary retinoblastoma and bone marrow failure syndromes were excluded. Data were analyzed between August 1, 2021, and December 6, 2023. Exposure Cancer predisposition syndrome. Main Outcomes and Measures Outcomes of surveillance were reviewed to evaluate the incidence, spectrum, and clinical course of newly detected tumors. Surveillance modalities were classified for accuracy and assessed for common strengths and weaknesses. Results A total of 274 children and young adults (mean age, 8 years [range, birth to 23 years]; 144 female [52.6%]) with 35 different CPSs were included, with a median follow-up of 3 years (range, 1 month to 12 years). During the study period, 35 asymptomatic tumors were detected in 27 patients through surveillance (9.9% of the cohort), while 5 symptomatic tumors were detected in 5 patients (1.8% of the cohort) outside of surveillance, 2 of whom also had tumors detected through surveillance. Ten of the 35 tumors (28.6%) were identified on first surveillance imaging. Malignant solid and brain tumors identified through surveillance were more often localized (20 of 24 [83.3%]) than similar tumors detected before CPS diagnosis (71 of 125 [56.8%]; P < .001). Of the 24 tumors identified through surveillance and surgically resected, 17 (70.8%) had completely negative margins. When analyzed across all imaging modalities, the sensitivity (96.4%), specificity (99.6%), positive predictive value (94.3%), and negative predictive value (99.6%) of surveillance were high, with few false-positive (6 [0.4%]) or false-negative (5 [0.3%]) findings. Conclusions and Relevance These findings suggest that standardized surveillance enables early detection of new tumors across a wide spectrum of CPSs, allowing for complete surgical resection and successful treatment in the majority of patients.
Collapse
Affiliation(s)
- Alise Blake
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Cara E. Morin
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
- Now with Department of Radiology, Cincinnati Children’s Hospital Medical Center, Ohio
| | - Leslie Taylor
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Rose B. McGee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara Lewis
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Stacy Hines-Dowell
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Arti Pandey
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Paige Turner
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Manish Kubal
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yin Su
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Laura Howell
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lynn W. Harrison
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zachary Abramson
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ann Schechter
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Noah D. Sabin
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kim E. Nichols
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
35
|
Hu B, Kirkey D, Wakeling A, McGuinness M, Kreimer S, Crane J, Spunt SL. Opportunities for Improving Detection of Cancer Predisposition Syndromes in Pediatric Solid Tumor Patients. J Pediatr Hematol Oncol 2024; 46:311-318. [PMID: 38884491 DOI: 10.1097/mph.0000000000002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Detection of cancer predisposition syndromes (CPS) depends on identifying risk factors, including tumor type, family history, and physical findings, to prompt referral for genetic counseling/testing. Whether pediatric oncology providers (POPs) collect adequate family history information is unknown. METHODS A single-institution retrospective chart review of solid tumor patients <18 years of age referred for a CPS evaluation between January 1, 2017 and January 31, 2019 was performed. POP adherence to American Society of Clinical Oncology (ASCO) family history collection recommendations was measured and compared with genetic counselor performance. Whether sufficient family history was documented to satisfy the criteria of three genetic counseling referral guidelines [American College of Medical Genetics (ACMG), updated Jongmans (UJ), and McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG)] was evaluated. RESULTS POPs and genetic counselors achieved all 6 ASCO family history metrics in 3% and 99% of 129 eligible cases, respectively. POPs failed to document sufficient family history to satisfy genetic counseling referral criteria in most cases (74% ACMG, 73% UJ, 79% MIPOGG). CONCLUSIONS POPs perform poorly in family history collection, raising concern that some patients at risk for a CPS based on their family history may not be referred for genetic counseling/testing. Interventions to improve family history collection are needed to enhance CPS detection.
Collapse
Affiliation(s)
- Benjamin Hu
- Department of Pediatrics, Stanford University School of Medicine
| | - Danielle Kirkey
- Department of Pediatrics, Stanford University School of Medicine
| | - Adrienne Wakeling
- Bass Center for Childhood Cancer and Blood Diseases, Stanford Medicine Children's Health, Palo Alto, CA
| | - Molly McGuinness
- Bass Center for Childhood Cancer and Blood Diseases, Stanford Medicine Children's Health, Palo Alto, CA
| | - Sara Kreimer
- Department of Pediatrics, Stanford University School of Medicine
| | - Jacquelyn Crane
- Department of Pediatrics, Stanford University School of Medicine
| | - Sheri L Spunt
- Department of Pediatrics, Stanford University School of Medicine
| |
Collapse
|
36
|
Gosangi B, Dixe de Oliveira Santo I, Keraliya A, Wang Y, Irugu D, Thomas R, Khandelwal A, Rubinowitz AN, Bader AS. Li-Fraumeni Syndrome: Imaging Features and Guidelines. Radiographics 2024; 44:e230202. [PMID: 39024172 DOI: 10.1148/rg.230202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Li-Fraumeni syndrome (LFS) is a rare autosomal dominant familial cancer syndrome caused by germline mutations of the tumor protein p53 gene (TP53), which encodes the p53 transcription factor, also known as the "guardian of the genome." The most common types of cancer found in families with LFS include sarcomas, leukemia, breast malignancies, brain tumors, and adrenocortical cancers. Osteosarcoma and rhabdomyosarcoma are the most common sarcomas. Patients with LFS are at increased risk of developing early-onset gastric and colon cancers. They are also at increased risk for several other cancers involving the thyroid, lungs, ovaries, and skin. The lifetime risk of cancer in individuals with LFS is greater than 70% in males and greater than 90% in females. Some patients with LFS develop multiple primary cancers during their lifetime, and guidelines have been established for screening these patients. Whole-body MRI is the preferred modality for annual screening of these patients. The management guidelines for patients with LFS vary, as these individuals are more susceptible to developing radiation-induced cancers-for example, women with LFS and breast cancer are treated with total mastectomy instead of lumpectomy with radiation to the breast. The authors review the role of imaging, imaging guidelines, and imaging features of tumors in the setting of LFS. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Babina Gosangi
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Irene Dixe de Oliveira Santo
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Abhishek Keraliya
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Yifan Wang
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - David Irugu
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Richard Thomas
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Ashish Khandelwal
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Ami N Rubinowitz
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Anna S Bader
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| |
Collapse
|
37
|
Rios JD, Simbulan F, Reichman L, Caswell K, Tachdjian M, Malkin D, Cotton C, Nathan PC, Goudie C, Pechlivanoglou P. Cost-effectiveness of the McGill interactive pediatric oncogenetic guidelines in identifying Li-Fraumeni syndrome in female patients with osteosarcoma. Pediatr Blood Cancer 2024; 71:e31077. [PMID: 38783403 DOI: 10.1002/pbc.31077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is a penetrant cancer predisposition syndrome (CPS) associated with the development of many tumor types in young people including osteosarcoma and breast cancer (BC). The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) decision-support tool provides a standardized approach to identify patients at risk of CPSs. METHODS We conducted a cost-utility analysis, from the healthcare payer perspective, to compare MIPOGG-guided, physician-guided, and universal genetic testing strategies to detect LFS in female patients diagnosed at an age of less than 18 years with osteosarcoma. We developed a decision tree and discrete-event simulation model to simulate the clinical and cost outcomes of the three genetic referral strategies on a cohort of female children diagnosed with osteosarcoma, especially focused on BC as subsequent cancer. Outcomes included BC incidence, quality-adjusted life-years (QALYs), healthcare costs, and incremental cost-utility ratios (ICURs). We conducted probabilistic and scenario analyses to assess the uncertainty surrounding model parameters. RESULTS Compared to the physician-guided testing, the MIPOGG-guided strategy was marginally more expensive by $105 (-$516; $743), but slightly more effective by 0.003 (-0.04; 0.045) QALYs. Compared to MIPOGG, the universal testing strategy was $1333 ($732; $1953) more costly and associated with 0.011 (-0.043; 0.064) additional QALYs. The ICUR for the MIPOGG strategy was $33,947/QALY when compared to the physician strategy; the ICUR for universal testing strategy was $118,631/QALY when compared to the MIPOGG strategy. DISCUSSION This study provides evidence for clinical and policy decision-making on the cost-effectiveness of genetic referral strategies to identify LFS in the setting of osteosarcoma. MIPOGG-guided strategy was most likely to be cost-effective at a willingness-to-pay threshold value of $50,000/QALY.
Collapse
Affiliation(s)
- Juan David Rios
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frances Simbulan
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lara Reichman
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Kimberly Caswell
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Tachdjian
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David Malkin
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cecilia Cotton
- Department of Statistics and Actuarial Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul C Nathan
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Catherine Goudie
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Hematology-Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Petros Pechlivanoglou
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Abduljaleel Z. Molecular insights into TP53 mutation (p. Arg267Trp) and its connection to Choroid Plexus Carcinomas and Li-Fraumeni Syndrome. Genes Genomics 2024; 46:941-953. [PMID: 38896352 DOI: 10.1007/s13258-024-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Choroid plexus carcinomas (CPCs) are rare malignant tumors primarily affecting pediatric patients and often co-occur with Li-Fraumeni Syndrome (LFS), an inherited predisposition to early-onset malignancies in multiple organ systems. LFS is closely linked to TP53 mutations, with germline TP53 gene mutations present in approximately 75% of Li-Fraumeni syndrome families and 25% of Li-Fraumeni-like syndrome families. Individuals with TP53 mutations also have an elevated probability of carrying mutations in BRCA1 and BRCA2 genes. OBJECTIVE To investigate the structural and functional implications of the TP53: 799C > T, p. (Arg267Trp) missense mutation, initially identified in a Saudi family, and understand its impact on TP53 functionality and related intermolecular interactions. METHODS Computational analyses were conducted to examine the structural modifications resulting from the TP53: 799C > T, p. (Arg267Trp) mutation. These analyses focused on the mutation's impact on hydrogen bonding, ionic interactions, and the specific interaction with Cell Cycle and Apoptosis Regulator 2 (CCAR2), as annotated in UniProt. RESULTS The study revealed that the native Arg267 residue is critical for a salt bridge interaction with glutamic acid at position 258. The mutation-induced charge alteration has the potential to disrupt this ionic bonding. Additionally, the mutation is located within an amino acid region crucial for interaction with CCAR2. The altered properties of the amino acid within this domain may affect its functionality and disrupt this interaction, thereby impacting the regulation of catalytic enzyme activity. CONCLUSIONS Our findings highlight the intricate intermolecular interactions governing TP53 functionality. The TP53: 799C > T, p. (Arg267Trp) mutation causes structural modifications that potentially disrupt critical ionic bonds and protein interactions, offering valuable insights for the development of targeted mutants with distinct functional attributes. These insights could inform therapeutic strategies for conditions associated with TP53 mutations.
Collapse
Affiliation(s)
- Zainularifeen Abduljaleel
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia.
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia.
- Molecular Diagnostics Unit, Department of Molecular Biology, The Regional Laboratory, Ministry of Health (MOH), P.O. Box 6251, Makkah, Kingdom of Saudi Arabia.
| |
Collapse
|
39
|
Tam B, Lagniton PNP, Da Luz M, Zhao B, Sinha S, Lei CL, Wang SM. Comprehensive classification of TP53 somatic missense variants based on their impact on p53 structural stability. Brief Bioinform 2024; 25:bbae400. [PMID: 39140857 PMCID: PMC11323084 DOI: 10.1093/bib/bbae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.
Collapse
Affiliation(s)
- Benjamin Tam
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | | | - Mariano Da Luz
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Bojin Zhao
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Siddharth Sinha
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Chon Lok Lei
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - San Ming Wang
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| |
Collapse
|
40
|
Corrêa TS, Asprino PF, de Oliveira ESC, Leite ACR, Weis L, Achatz MI, de Oliveira CP, Sandoval RL, Barroso-Sousa R. TP53 p.R337H Germline Variant among Women at Risk of Hereditary Breast Cancer in a Public Health System of Midwest Brazil. Genes (Basel) 2024; 15:928. [PMID: 39062707 PMCID: PMC11276326 DOI: 10.3390/genes15070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the high prevalence of TP53 pathogenic variants (PV) carriers in the South and Southeast regions of Brazil, germline genetic testing for hereditary breast cancer (HBC) is not available in the Brazilian public health system, and the prevalence of Li-Fraumeni syndrome (LFS) is not well established in other regions of Brazil. We assessed the occurrence of TP53 p.R337H carriers among women treated for breast cancer (BC) between January 2021 and January 2022 at public hospitals of Brasilia, DF, Brazil. A total of 180 patients who met at least one of the NCCN criteria for HBC underwent germline testing; 44.4% performed out-of-pocket germline multigene panel testing, and 55.6% were tested for the p.R337H variant by allelic discrimination PCR. The median age at BC diagnosis was 43.5 years, 93% had invasive ductal carcinoma, 50% had estrogen receptor-positive/HER2 negative tumors, and 41% and 11% were diagnosed respectively at stage III and IV. Two patients (1.11%) harbored the p.R337H variant, and cascade family testing identified 20 additional carriers. The TP53 p.R337H detection rate was lower than that reported in other studies from south/southeast Brazil. Nonetheless, identifying TP53 PV carriers through genetic testing in the Brazilian public health system could guide cancer treatment and prevention.
Collapse
Affiliation(s)
- Tatiana Strava Corrêa
- Hospital Sírio-Libanês, Centro de Oncologia de Brasília, Brasília 71635-610, DF, Brazil; (T.S.C.); (A.C.R.L.); (R.L.S.)
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
| | - Paula Fontes Asprino
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
| | | | - Ana Carolina Rathsam Leite
- Hospital Sírio-Libanês, Centro de Oncologia de Brasília, Brasília 71635-610, DF, Brazil; (T.S.C.); (A.C.R.L.); (R.L.S.)
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
- Hospital Materno Infantil de Brasília (HMIB), Asa Sul 70203-900, DF, Brazil
| | - Luiza Weis
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
- Instituto Hospital de Base do Distrito Federal (IHB-DF), Brasília 70330-150, DF, Brazil
- DASA Oncology, Hospital Brasília, Brasília 71681-603, DF, Brazil
| | - Maria Isabel Achatz
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
| | | | - Renata Lazari Sandoval
- Hospital Sírio-Libanês, Centro de Oncologia de Brasília, Brasília 71635-610, DF, Brazil; (T.S.C.); (A.C.R.L.); (R.L.S.)
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
| | - Romualdo Barroso-Sousa
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo 01308-060, SP, Brazil; (P.F.A.); (L.W.); (M.I.A.)
- DASA Oncology, Hospital Brasília, Brasília 71681-603, DF, Brazil
| |
Collapse
|
41
|
Neves R, Panek R, Clarkson K, Panagioti O, Fernandez NS, Wilne S, Suri M, Whitehouse WP, Jagani S, Dandapani M, Glazebrook C, Dineen RA. Feasibility of whole-body MRI for cancer screening in children and young people with ataxia telangiectasia: A mixed methods cross-sectional study. Cancer Med 2024; 13:e70049. [PMID: 39056567 PMCID: PMC11273546 DOI: 10.1002/cam4.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ataxia telangiectasia (A-T) is an inherited multisystem disorder with increased sensitivity to ionising radiation and elevated cancer risk. Although other cancer predisposition syndromes have established cancer screening protocols, evidence-based guidelines for cancer screening in A-T are lacking. This study sought to assess feasibility of a cancer screening protocol based on whole-body MRI (WB-MRI) in children and young people with A-T. DESIGN/METHODS Children and young people with A-T were invited to undergo a one-off non-sedated 3-Tesla WB-MRI. Completion rate of WB-MRI was recorded and diagnostic image quality assessed by two experienced radiologists, with pre-specified success thresholds for scan completion of >50% participants and image quality between acceptable to excellent in 65% participants. Positive imaging findings were classified according to the ONCO-RADS system. Post-participation interviews were performed with recruited families to assess the experience of participating and feelings about waiting for, and communication of, the findings of the scan. RESULTS Forty-six children and young people with A-T were identified, of which 36 were eligible to participate, 18 were recruited and 16 underwent WB-MRI. Nineteen parents participated in interviews. Fifteen participants (83%) completed the full WB-MRI scan protocol. The pre-specified image quality criterion was achieved with diagnostic images obtained in at least 93% of each MRI sequence. Non-malignant scan findings were present in 4 (25%) participants. Six themes were identified from the interviews: (1) anxiety is a familiar feeling, (2) the process of MRI scanning is challenging for some children and families, (3) preparation is essential to reduce stress, (4) WB-MRI provides the reassurance about the physical health that families need, (5) WB-MRI experience turned out to be a positive experience and (6) WB-MRI allows families to be proactive. CONCLUSION This study shows that WB-MRI for cancer screening is feasible and well-accepted by children and young people with A-T and their families.
Collapse
Affiliation(s)
- Renata Neves
- Radiological Sciences, Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- Department of RadiologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Rafal Panek
- Medical Physics and Clinical EngineeringNottingham University Hospitals NHS TrustNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Katie Clarkson
- Radiological Sciences, Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | | | - Natasha Schneider Fernandez
- Independent Patient and Parent Representative, c/o Radiological Sciences, Mental Heatlh and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
| | - Sophie Wilne
- Department of Paediatric OncologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Mohnish Suri
- School of MedicineUniversity of NottinghamNottinghamUK
- Nottingham Clinical Genetics ServiceNottingham University Hospitals NHS TrustNottinghamUK
| | - William P. Whitehouse
- School of MedicineUniversity of NottinghamNottinghamUK
- Paediatric NeurologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Sumit Jagani
- Department of Radiology, Nottingham Children's HospitalNottingham University Hospitals NHS TrustNottinghamUK
| | - Madhumita Dandapani
- Department of Paediatric OncologyNottingham University Hospitals NHS TrustNottinghamUK
- Children's Brain Tumour Research CentreUniversity of NottinghamNottinghamUK
| | - Cris Glazebrook
- Institute of Mental HealthUniversity of NottinghamNottinghamUK
| | - Robert A. Dineen
- Radiological Sciences, Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- Department of RadiologyNottingham University Hospitals NHS TrustNottinghamUK
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
42
|
Agarwal H, Tal P, Goldfinger N, Chattopadhyay E, Malkin D, Rotter V, Attery A. Mutant p53 reactivation restricts the protumorigenic consequences of wild type p53 loss of heterozygosity in Li-Fraumeni syndrome patient-derived fibroblasts. Cell Death Differ 2024; 31:855-867. [PMID: 38745079 PMCID: PMC11239894 DOI: 10.1038/s41418-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The p53 tumor suppressor, encoded by the TP53 gene, serves as a major barrier against malignant transformation. Patients with Li-Fraumeni syndrome (LFS) inherit a mutated TP53 allele from one parent and a wild-type TP53 allele from the other. Subsequently, the wild-type allele is lost and only the mutant TP53 allele remains. This process, which is termed loss of heterozygosity (LOH), results in only mutant p53 protein expression. We used primary dermal fibroblasts from LFS patients carrying the hotspot p53 gain-of-function pathogenic variant, R248Q to study the LOH process and characterize alterations in various pathways before and after LOH. We previously described the derivation of mutant p53 reactivating peptides, designated pCAPs (p53 Conformation Activating Peptides). In this study, we tested the effect of lead peptide pCAP-250 on LOH and on its associated cellular changes. We report that treatment of LFS fibroblasts with pCAP-250 prevents the accumulation of mutant p53 protein, inhibits LOH, and alleviates its cellular consequences. Furthermore, prolonged treatment with pCAP-250 significantly reduces DNA damage and restores long-term genomic stability. pCAPs may thus be contemplated as a potential preventive treatment to prevent or delay early onset cancer in carriers of mutant p53.
Collapse
Affiliation(s)
- Himanshi Agarwal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Perry Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Esita Chattopadhyay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Malkin
- Department of Genetics and Genome Biology and the Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ayush Attery
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
43
|
Fernández Aceñero MJ, Díaz del Arco C. Hereditary Gastrointestinal Tumor Syndromes: When Risk Comes with Your Genes. Curr Issues Mol Biol 2024; 46:6440-6471. [PMID: 39057027 PMCID: PMC11275188 DOI: 10.3390/cimb46070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite recent campaigns for screening and the latest advances in cancer therapy and molecular biology, gastrointestinal (GI) neoplasms remain among the most frequent and lethal human tumors. Most GI neoplasms are sporadic, but there are some well-known familial syndromes associated with a significant risk of developing both benign and malignant GI tumors. Although some of these entities were described more than a century ago based on clinical grounds, the increasing molecular information obtained with high-throughput techniques has shed light on the pathogenesis of several of them. The vast amount of information gained from next-generation sequencing has led to the identification of some high-risk genetic variants, although others remain to be discovered. The opportunity for genetic assessment and counseling in these families has dramatically changed the management of these syndromes, though it has also resulted in significant psychological distress for the affected patients, especially those with indeterminate variants. Herein, we aim to summarize the most relevant hereditary cancer syndromes involving the stomach and colon, with an emphasis on new molecular findings, novel entities, and recent changes in the management of these patients.
Collapse
Affiliation(s)
- María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
44
|
Zhang Y, Wang Y, Zhang W, Feng S, Xing Y, Wang T, Huang N, Li K, Zhang A. Comprehensive transcriptomic analysis identifies SLC25A4 as a key predictor of prognosis in osteosarcoma. Front Genet 2024; 15:1410145. [PMID: 38957810 PMCID: PMC11217516 DOI: 10.3389/fgene.2024.1410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Osteosarcoma (OS) is highly malignant and prone to local infiltration and distant metastasis. Due to the poor outcomes of OS patients, the study aimed to identify differentially expressed genes (DEGs) in OS and explore their role in the carcinogenesis and progression of OS. Methods RNA sequencing was performed to identify DEGs in OS. The functions of the DEGs in OS were investigated using bioinformatics analysis, and DEG expression was verified using RT-qPCR and Western blotting. The role of SLC25A4 was evaluated using gene set enrichment analysis (GSEA) and then investigated using functional assays in OS cells. Results In all, 8353 DEGs were screened. GO and KEGG enrichment analyses indicated these DEGs showed strong enrichment in the calcium signaling pathway and pathways in cancer. Moreover, the Kaplan-Meier survival analysis showed ten hub genes were related to the outcomes of OS patients. Both SLC25A4 transcript and protein expression were significantly reduced in OS, and GSEA suggested that SLC25A4 was associated with cell cycle, apoptosis and inflammation. SLC25A4-overexpressing OS cells exhibited suppressed proliferation, migration, invasion and enhanced apoptosis. Conclusion SLC25A4 was found to be significantly downregulated in OS patients, which was associated with poor prognosis. Modulation of SLC25A4 expression levels may be beneficial in OS treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yinghui Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wenyan Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shaojie Feng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianjiao Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Nana Huang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
45
|
Zhu B, Liu M, Mu T, Li W, Ren J, Li X, Liang Y, Yang Z, Niu Y, Chen S, Lin J. Quadruple primary tumors in a lynch syndrome patient surviving more than 26 years with genetic analysis: a case report and literature review. Front Oncol 2024; 14:1382154. [PMID: 38894864 PMCID: PMC11184617 DOI: 10.3389/fonc.2024.1382154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
The incidence of multiple primary tumors(MPTs) is on the rise in recent years, but patients having four or more primary tumors is still rare. Lynch syndrome (LS) patients have a high risk of developing MPTs. NGS sequencing could identify the genetic alterations in different tumors to make a definite diagnosis of uncommon cases in clinical practice. Here, we report the case of a 66-year-old female patient who develops four MPTS between the ages of 41 and 66, that is sigmoid colon cancer, acute non-lymphocytic leukemia, urothelial carcinoma and ascending colon cancer. She has survived for more than 26 years since the first discovery of tumor. Targeted sequencing indicates that she has a pathogenic germline mutation in the exon 13 of MSH2, and her 2020 ureteral cancer sample and 2023 colon cancer sample have completely different mutation profiles. To the best of our knowledge, this is the first case of multiple primary tumors with an acute non-lymphocytic leukemia in LS patients.
Collapse
Affiliation(s)
- Bosen Zhu
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ming Liu
- Research and Development Division, HaploX Biotechnology, Shenzhen, China
| | - Tianhao Mu
- Research and Development Division, HaploX Biotechnology, Shenzhen, China
| | - Wentao Li
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junqi Ren
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangtao Li
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Liang
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziyi Yang
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yulin Niu
- Research and Development Division, HaploX Biotechnology, Shenzhen, China
| | - Shifu Chen
- Research and Development Division, HaploX Biotechnology, Shenzhen, China
| | - Junqiong Lin
- Department of Gastroenteroanal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
46
|
Hansford JR, Das A, McGee RB, Nakano Y, Brzezinski J, Scollon SR, Rednam SP, Schienda J, Michaeli O, Kim SY, Greer MLC, Weksberg R, Stewart DR, Foulkes WD, Tabori U, Pajtler KW, Pfister SM, Brodeur GM, Kamihara J. Update on Cancer Predisposition Syndromes and Surveillance Guidelines for Childhood Brain Tumors. Clin Cancer Res 2024; 30:2342-2350. [PMID: 38573059 PMCID: PMC11147702 DOI: 10.1158/1078-0432.ccr-23-4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Tumors of the central nervous system (CNS) comprise the second most common group of neoplasms in childhood. The incidence of germline predisposition among children with brain tumors continues to grow as our knowledge on disease etiology increases. Some children with brain tumors may present with nonmalignant phenotypic features of specific syndromes (e.g., nevoid basal cell carcinoma syndrome, neurofibromatosis type 1 and type 2, DICER1 syndrome, and constitutional mismatch-repair deficiency), while others may present with a strong family history of cancer (e.g., Li-Fraumeni syndrome) or with a rare tumor commonly found in the context of germline predisposition (e.g., rhabdoid tumor predisposition syndrome). Approximately 50% of patients with a brain tumor may be the first in a family identified to have a predisposition. The past decade has witnessed a rapid expansion in our molecular understanding of CNS tumors. A significant proportion of CNS tumors are now well characterized and known to harbor specific genetic changes that can be found in the germline. Additional novel predisposition syndromes are also being described. Identification of these germline syndromes in individual patients has not only enabled cascade testing of family members and early tumor surveillance but also increasingly affected cancer management in those patients. Therefore, the AACR Cancer Predisposition Working Group chose to highlight these advances in CNS tumor predisposition and summarize and/or generate surveillance recommendations for established and more recently emerging pediatric brain tumor predisposition syndromes.
Collapse
Affiliation(s)
- Jordan R. Hansford
- Michael Rice Children’s Hematology and Oncology Center, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmmunoGenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anirban Das
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Dept. of Pediatrics, Univ. of Toronto, Toronto, Ontario, Canada
| | - Rose B. McGee
- Department of Oncology, Division of Cancer Predisposition, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yoshiko Nakano
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Jack Brzezinski
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Dept. of Pediatrics, Univ. of Toronto, Toronto, Ontario, Canada
| | - Sarah R. Scollon
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Surya P. Rednam
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Orli Michaeli
- Division of Hematology/Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Center, Cincinnati, Ohio
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children/Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Dept of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - William D. Foulkes
- Department of Human Genetics, McGill University, and Division of Medical Genetics, Departments of Specialized Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Dept. of Pediatrics, Univ. of Toronto, Toronto, Ontario, Canada
| | - Kristian W. Pajtler
- Division of Pediatric Neurooncology, Hopp Children’s Cancer Center Heidelberg (KiTZ); German Cancer Research Center Heidelberg (DKFZ) and Heidelberg University Hospital, Heidelberg; National Center for Tumor Diseases (NCT) Heidelberg, Germany
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, Hopp Children’s Cancer Center Heidelberg (KiTZ); German Cancer Research Center Heidelberg (DKFZ) and Heidelberg University Hospital, Heidelberg; National Center for Tumor Diseases (NCT) Heidelberg, Germany
| | - Garrett M. Brodeur
- Department of Pediatrics, Division of Oncology, the Children’s Hospital of Philadelphia, and the University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Junne Kamihara
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Beigh M, Vagher J, Codden R, Maese LD, Cook S, Gammon A. Newborn Screening for Li-Fraumeni Syndrome: Patient Perspectives. RESEARCH SQUARE 2024:rs.3.rs-4351728. [PMID: 38798617 PMCID: PMC11118696 DOI: 10.21203/rs.3.rs-4351728/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Li-Fraumeni syndrome (LFS) is an inherited cancer predisposition syndrome with an estimated prevalence of 1 in 3,000-5,000 individuals. LFS poses a significant cancer risk throughout the lifespan, with notable cancer susceptibility in childhood. Despite being predominantly inherited, up to 20% of cases arise de novo. Surveillance protocols facilitate the reduction of mortality and morbidity through early cancer detection. While newborn screening (NBS) has proven effective in identifying newborns with rare genetic conditions, even those occurring as rarely as 1 in 185,000, its potential for detecting inherited cancer predispositions remains largely unexplored. Methods This survey-based study investigates perspectives toward NBS for LFS among individuals with and parents of children with LFS receiving care at single comprehensive cancer center in the U.S. Results All participants unanimously supported NBS for LFS (n = 24). Reasons included empowerment (83.3%), control (66.7%), and peace of mind (54.2%), albeit with concerns about anxiety (62.5%) and devastation (50%) related to receiving positive results. Participants endorsed NBS as beneficial for cancer detection and prevention (91.7%), research efforts (87.5%), and family planning (79.2%) but voiced apprehensions about the financial cost of cancer surveillance (62.5%), emotional burdens (62.5%), and insurance coverage and discrimination (54.2%). Approximately 83% of respondents believed that parental consent should be required to screen newborns for LFS. Conclusion This study revealed strong support for NBS for LFS despite the recognition of various perceived benefits and risks. These findings underscore the complex interplay between clinical, psychosocial, and ethical factors in considering NBS for LFS from the perspective of the LFS community.
Collapse
Affiliation(s)
| | | | - Rachel Codden
- Division of Epidemiology, Department of Internal Medicine, University of Utah
| | | | - Sabina Cook
- Utah Department of Health and Human Services
| | | |
Collapse
|
48
|
K AR, Arumugam S, Muninathan N, Baskar K, S D, D DR. P53 Gene as a Promising Biomarker and Potential Target for the Early Diagnosis of Reproductive Cancers. Cureus 2024; 16:e60125. [PMID: 38864057 PMCID: PMC11165294 DOI: 10.7759/cureus.60125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
One of the crucial aspects of cancer research is diagnosis with specificity and accuracy. Early cancer detection mostly helps make appropriate decisions regarding treatment and metastasis. The well-studied transcription factor tumor suppressor protein p53 is essential for maintaining genetic integrity. p53 is a key tumor suppressor that recognizes the carcinogenic biological pathways and eradicates them by apoptosis. A wide range of carcinomas, especially gynecological such as ovarian, cervical, and endometrial cancers, frequently undergo TP53 gene mutations. This study evaluates the potential of the p53 gene as a biological marker for the diagnosis of reproductive system neoplasms. Immunohistochemistry of p53 is rapid, easy to accomplish, cost-effective, and preferred by pathologists as a surrogate for the analysis of TP53 mutation. Thus, this review lays a groundwork for future efforts to develop techniques using p53 for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Aswathi R K
- Medical Biochemistry, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Suresh Arumugam
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Natrajan Muninathan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Kuppusamy Baskar
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Deepthi S
- Research and Development, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Dinesh Roy D
- Centre for Advanced Genetic Studies, Genetika, Thiruvananthapuram, IND
| |
Collapse
|
49
|
Chiang J, Chua Z, Chan JY, Sule AA, Loke WH, Lum E, Ong MEH, Graves N, Ngeow J. Strategies to improve implementation of cascade testing in hereditary cancer syndromes: a systematic review. NPJ Genom Med 2024; 9:26. [PMID: 38570510 PMCID: PMC10991315 DOI: 10.1038/s41525-024-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Hereditary cancer syndromes constitute approximately 10% of all cancers. Cascade testing involves testing of at-risk relatives to determine if they carry the familial pathogenic variant. Despite growing efforts targeted at improving cascade testing uptake, current literature continues to reflect poor rates of uptake, typically below 30%. This study aims to systematically review current literature on intervention strategies to improve cascade testing, assess the quality of intervention descriptions and evaluate the implementation outcomes of listed interventions. We searched major databases using keywords and subject heading of "cascade testing". Interventions proposed in each study were classified according to the Effective Practice and Organization of Care (EPOC) taxonomy. Quality of intervention description was assessed using the TIDieR checklist, and evaluation of implementation outcomes was performed using Proctor's Implementation Outcomes Framework. Improvements in rates of genetic testing uptake was seen in interventions across the different EPOC taxonomy strategies. The average TIDieR score was 7.3 out of 12. Items least reported include modifications (18.5%), plans to assess fidelity/adherence (7.4%) and actual assessment of fidelity/adherence (7.4%). An average of 2.9 out of 8 aspects of implementation outcomes were examined. The most poorly reported outcomes were cost, fidelity and sustainability, with only 3.7% of studies reporting them. Most interventions have demonstrated success in improving cascade testing uptake. Uptake of cascade testing was highest with delivery arrangement (68%). However, the quality of description of interventions and assessment of implementation outcomes are often suboptimal, hindering their replication and implementation downstream. Therefore, further adoption of standardized guidelines in reporting of interventions and formal assessment of implementation outcomes may help promote translation of these interventions into routine practice.
Collapse
Affiliation(s)
- Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore, 169857, Singapore
| | - Ziyang Chua
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Jia Ying Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Ashita Ashish Sule
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Wan Hsein Loke
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Elaine Lum
- Health Services & Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Marcus Eng Hock Ong
- Health Services & Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore, 169608, Singapore
| | - Nicholas Graves
- Health Services & Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore, 169857, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
50
|
Nees J, Struewe F, Schott S. Medical students' knowledge on cancer predisposition syndromes and attitude toward eHealth. Arch Gynecol Obstet 2024; 309:1535-1541. [PMID: 37934269 PMCID: PMC10894105 DOI: 10.1007/s00404-023-07266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Individuals with cancer predisposition syndromes (CPS) inherit elevated cancer risks. Medical supply gaps for people at risk of CPS cause insufficient outreach and miss potential benefits of individualized care strategies. Increased awareness of CPS and progress in the eHealth sector are untapped sources of health care improvement for affected individuals. METHODS AND RESULTS This study addressed German-speaking medical students with an online questionnaire in respect to their knowledge of CPS, their medical education, and perspectives. The study population (n = 404) reported interest in and knowledge of CPS, supported by a satisfactory and sustainable education for their prospective patient care. The next generation of doctors would implement eHealth to improve medical services. Skepticism about digitization was claimed by students. They were especially concerned about deterioration in the physician-patient relationship, data abuse, dependence on technology, and incorrect diagnoses. CONCLUSION Due to increasing diagnosing of CPS and deeper knowledge, this topic is essential for the curriculum in medical schools. In particular, care providers need know-how on identifying patients at risk for a CPS, certain diagnostic and therapeutic steps, surveillance and prophylactic strategies to improve patients' outcomes. Education in medical school as well as implemented eHealth seems to have potential to meet this demand in an upcoming era of personalized medicine. What does this study add to the clinical work. Medical teaching on cancer predisposition syndromes should be expanded to improve knowledge and individualized and personalized healthcare.
Collapse
Affiliation(s)
- Juliane Nees
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
| | - Farina Struewe
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| |
Collapse
|