1
|
Simon T, Thole T, Castelli S, Timmermann B, Jazmati D, Schwarz R, Fuchs J, Warmann S, Hubertus J, Schmidt M, Rogasch J, Körber F, Vokuhl C, Schäfer J, Schulte JH, Deubzer H, Rosswog C, Fischer M, Lang P, Langer T, Astrahantseff K, Lode H, Hero B, Eggert A. GPOH Guidelines for Diagnosis and First-line Treatment of Patients with Neuroblastic Tumors, update 2025. KLINISCHE PADIATRIE 2025; 237:117-140. [PMID: 40345224 DOI: 10.1055/a-2556-4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The clinical course of neuroblastoma is more heterogeneous than any other malignant disease. Many low-risk patients experience regression after limited or even no chemotherapy. However, more than half of high-risk patients die from disease despite intensive multimodal treatment. Precise disease characterization for each patient at diagnosis is key for risk-adapted treatment. The guidelines presented here incorporate results from national and international clinical trials to produce recommendations for diagnosing and treating neuroblastoma patients in German hospitals outside of clinical trials.
Collapse
Affiliation(s)
- Thorsten Simon
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Theresa Thole
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Sveva Castelli
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Beate Timmermann
- Westgerman Protontherapycenter Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Danny Jazmati
- Department of Radiation Oncology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | - Jörg Fuchs
- Pediatric Surgery and Urology, University of Tübingen, Tübingen, Germany
| | - Steven Warmann
- Department of Pediatric Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Marien-Hospital Witten, Witten, Germany
| | | | - Julian Rogasch
- Nuclear Medicine, Charité University Hospital Berlin, Berlin, Germany
| | - Friederike Körber
- Institut und Poliklinik für Radiologische Diagnostik, Kinderradiologie, University of Cologne, Cologne, Germany
| | - Christian Vokuhl
- Pediatric Pathology, Institute for Pathology, University of Bonn, Bonn, Germany
| | - Jürgen Schäfer
- Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | | | - Hedwig Deubzer
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Carolina Rosswog
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Peter Lang
- Pediatric Oncology and Hematology, University of Tübingen, Tübingen, Germany
| | - Thorsten Langer
- Childrens' Hospital, University Hospital Schleswig-Holstein Lübeck Campus, Lübeck, Germany
| | - Kathy Astrahantseff
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Holger Lode
- Pediatric Oncology and Hematology, University of Greifswald, Greifswald, Germany
| | - Barbara Hero
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
2
|
Luo ZY, Fan LQ, Guo WL, Yang JP, Li ZY, Huang YX, Jiang H, Zhang XH. Effect of tandem autologous stem cell transplantation on survival in pediatric patients with high-risk solid tumors in South China. World J Stem Cells 2025; 17:100621. [DOI: 10.4252/wjsc.v17.i2.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Despite advances in treatment, the prognosis for patients with high-risk pediatric solid tumors remains dismal. Tandem autologous stem cell transplantation (ASCT) offers promise for improving outcomes in these patients. This study aimed to examine the efficacy and prognostic factors of tandem ASCT in pediatric patients with high-risk solid tumors.
AIM To determine the survival outcomes and prognostic factors in pediatric patients with high-risk solid tumors undergoing tandem ASCT.
METHODS A total of 40 pediatric patients with high-risk solid tumors treated from March 2015 to August 2022 were included in this retrospective study. The diagnoses of the patients included neuroblastoma, germ cell tumors, atypical teratoid/rhabdoid tumor, medulloblastoma, and pineoblastoma. After induction chemotherapy, all patients received tandem ASCT and were allocated into two groups (group A and group B) based on high-dose chemotherapy regimens. Prognostic relevance was evaluated by examining patient characteristics, such as sex, age, lactate dehydrogenase levels, primary site, the number of metastatic sites, and bone marrow involvement.
RESULTS The median follow-up duration since the first ASCT was 24 months (range: 1-91 months), with 5-year overall survival (OS) and event-free survival (EFS) rates of 73% and 70%, respectively, for the entire cohort. The 3-year OS rates were 67% for group A and 87% for group B (P = 0.29), with corresponding 3-year EFS rates of 67% and 79% (P = 0.57). Among neuroblastoma patients, the 5-year OS and EFS were 69% and 63% (P = 0.23). Univariable analysis revealed a notable association of age ≥ 36 months and elevated lactate dehydrogenase level at diagnosis with poorer OS. Despite acute adverse effects, all patients demonstrated good tolerance to the treatment, with no occurrences of transplant-related mortality.
CONCLUSION Tandem ASCT demonstrates promising survival outcomes for patients with high-risk solid tumors, particularly neuroblastoma, with manageable toxicity and no transplant-related mortality.
Collapse
Affiliation(s)
- Zi-Yan Luo
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Li-Qun Fan
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Wen-Ling Guo
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jian-Ping Yang
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Zhuo-Yan Li
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yong-Xian Huang
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Hua Jiang
- Division of Hematology and Oncology, Department of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Hong Zhang
- Department of Pediatric Hematology Oncology, Guangdong Women and Children Hospital, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
3
|
Bansal S, Kumar R, Gupta AK, Meena JP, Seth R. Post Transplant Outcomes of High-Risk Neuroblastoma From a Tertiary Care Unit in India. Indian Pediatr 2025; 62:148-150. [PMID: 39912276 DOI: 10.1007/s13312-025-3381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/01/2024] [Indexed: 02/07/2025]
Abstract
The management of high-risk neuroblastoma has dismal outcomes in low-and-middle-income countries (LMICs). There is limited data on post transplant outcomes of high-risk neuroblastoma from LMICs. We report the outcomes of twelve patients with high-risk neuroblastoma who underwent autologous stem cell transplanatation (ASCT) at a single tertiary care center in Northen India. At a median follow-up of 25.5 months, the event-free survival was 63.6%. Relapse occurred in four patients (33.3%), who subsequently died. All patients had febrile neutropenia; there was no ASCT-related mortality. Multidisciplinary therapy even with omission of dinutuximab in our cohort had acceptable outcomes.
Collapse
Affiliation(s)
- Shivam Bansal
- Division of Pediatric Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, All India Institute of Medical Sciences, New Delhi, India. Correspondence to: Dr Aditya Kumar Gupta, Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi-110029, India.
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Seth
- Division of Pediatric Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Matser YA, Samim A, Fiocco M, van de Mheen M, van der Ham M, de Sain-van der Velden MG, Verhoeven-Duif NM, van Grotel M, Kraal KC, Dierselhuis MP, van Eijkelenburg NK, Langenberg KP, van Noesel MM, van Kuilenburg AB, Tytgat GA. Urinary Catecholamines Predict Relapse During Complete Remission in High-Risk Neuroblastoma. JCO Precis Oncol 2025; 9:e2400491. [PMID: 39983076 PMCID: PMC11867808 DOI: 10.1200/po-24-00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/23/2025] Open
Abstract
PURPOSE Urinary catecholamine metabolites are well-known biomarkers for the diagnosis (Dx) of neuroblastoma, but their clinical significance in determining therapy response during treatment is not well established. Therefore, catecholamines are not included in criteria for assessing response and complete remission (CR). This study investigated the use of urinary catecholamines in response monitoring and predicting survival outcomes. METHODS From 2005 to 2021, a panel of eight urinary catecholamines were measured in patients with high-risk neuroblastoma at Dx and at standard evaluation moments during treatment. At the same time points, response and CR were assessed according to the revised International Neuroblastoma Response Criteria. RESULTS The total cohort consists of 153 high-risk patients, and at least one of the eight metabolites was elevated (ie, catecholamine status positive) in 141 of 146 (97%), 104 of 128 (81%), and 39 of 69 (57%) patients at Dx, postinduction, and at CR, respectively. Primary tumor resection significantly reduced catecholamine levels (P < .01). A positive catecholamine status at Dx, during treatment, and at the end of treatment was not significantly associated with event-free survival (EFS) or overall survival (OS). However, in patients who achieved CR, those with a positive catecholamine status had poor EFS (38% v 80%, respectively; P < .01) and OS (52% v 86%, respectively; P = .01) compared with those with a negative catecholamine status. Notably, 3-methoxytyramine levels at CR seem to be a prognostic marker for poor OS (hazard ratio, 7.5 [95% CI, 2.0 to 28.6]). CONCLUSION Catecholamine measurements contribute to the assessment of CR and identifies patients with high-risk neuroblastoma with an increased risk of relapse and death.
Collapse
Affiliation(s)
| | - Atia Samim
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center, Utrecht, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Biomedical Data Science, Section Medical Statistics, Leiden University Medical Centre, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | | | - Maria van der Ham
- Department of Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | - Nanda M. Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | | | | | | | | | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center, Utrecht, the Netherlands
| | - André B.P. van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Free University Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Godelieve A.M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
van Zogchel LMJ, Decarolis B, van Wezel EM, Zappeij-Kannegieter L, Gelineau NU, Schumacher-Kuckelkorn R, Simon T, Berthold F, van Noesel MM, Fiocco M, van der Schoot CE, Hero B, Stutterheim J, Tytgat GAM. Sensitive liquid biopsy monitoring correlates with outcome in the prospective international GPOH-DCOG high-risk neuroblastoma RT-qPCR validation study. J Exp Clin Cancer Res 2024; 43:331. [PMID: 39722049 DOI: 10.1186/s13046-024-03261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Liquid biopsies offer less burdensome sensitive disease monitoring. Bone marrow (BM) metastases, common in various cancers including neuroblastoma, is associated with poor outcomes. In pediatric high-risk neuroblastoma most patients initially respond to treatment, but in the majority the disease recurs with only 40% long-term survivors, stressing the need for more sensitive detection of disseminated disease during therapy. METHODS To validate sensitive neuroblastoma mRNA RT-qPCR BM testing, we prospectively assessed serial BM samples from 345 international high-risk neuroblastoma patients, treated in trials NB2004 (GPOH) or NBL2009 (DCOG), using PHOX2B, TH, DDC, CHRNA3, and GAP43 RT-qPCR mRNA markers and BM GD2-immunocytology. Association between BM-infiltration levels and event-free survival (EFS) and overall survival (OS) was estimated by using Cox regression models and Kaplan-Meier's methodology. RESULTS BM infiltration >10% by RT-qPCR at diagnosis was prognostic for survival (adjusted hazard ratio (HR) 1.82 [95%CI 1.25-2.63] and 2.04 [1.33-3.14] for EFS and OS, respectively). Any post-induction RT-qPCR positivity correlated with poor EFS and OS, with a HR of 2.10 [1.27-3.49] and 1.76 [1.01-3.08] and 5-years EFS of 26.6% [standard error 5.2%] versus 60.4% [6.7] and OS of 43.8% [5.9] versus 65.7% [6.6] for RT-qPCR-positive patients versus RT-qPCR-negative patients. In contrast, post-induction immunocytology positivity was not associated with EFS or OS (HR 1.22 [0.68-2.19] and 1.26 [0.54-2.42]). CONCLUSION This study validates the association of not clearing of BM metastases by sensitive RT-qPCR detection with very poor outcome. We therefore propose implementation of RT-qPCR for minimal residual disease testing in neuroblastoma to guide therapy.
Collapse
Affiliation(s)
- Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Boris Decarolis
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Esther M van Wezel
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Lily Zappeij-Kannegieter
- Department of Immunocytology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Nina U Gelineau
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Roswitha Schumacher-Kuckelkorn
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Department of Biomedical data Science, Section Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | | | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Lavan NA, Smyth G, McQuaid D, Gaze MN, Stacey C, Vaidya S, Saran FH, Oelfke U, Mandeville HC. A Four-dimensional Computed Tomography Generated Internal Target Volume Approach to Paediatric High Risk Neuroblastoma to Reduce Organ at Risk and Normal Tissue Irradiation. Clin Oncol (R Coll Radiol) 2024; 36:780-789. [PMID: 39370346 DOI: 10.1016/j.clon.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024]
Abstract
AIMS The magnitude of upper abdominal organ motion in children may be overestimated by current planning target volumes (PTV). A four-dimensional computed tomography (4DCT) - derived internal target volume (ITV) is frequently used in adult radiotherapy to take respiratory-related organ motion into account. In this study, the dosimetric consequences for target coverage and organs at risk from the use of an ITV approach compared to standard PTV margins in children with high-risk neuroblastoma were investigated. MATERIALS AND METHODS 14 patients, median age 4.1 years, range 1.5 - 18.9 years, (9 midline targets, 5 lateralised) each had two dual arc volumetric modulated arc therapy (VMAT) plans (14 ×1.5 Gy) generated. One used an ITV-approach; motion information derived from 4DCT (PTV_itv) with a 5mm ITV to PTV expansion, and the other a PTV margin of 10mm from CTV to PTV (PTV_standard). Differences in absolute PTV volume and organ at risk doses are described. RESULTS The ITV approach resulted in a highly significant reduction in PTV size of 38% (p<0.0001). For midline targets, an ITV approach resulted in a small but statistically significant reduction in combined mean kidney dose of 0.8Gy, p 0.01. Mean heart and lung dose were reduced by an average of 1 Gy with an ITV approach. Non-PTV integral dose from 30.4 Gy L to 27.8 Gy L using an ITV approach. CONCLUSION An ITV-approach to respiratory related organ motion management in children can significantly reduce absolute PTV volumes, maintain target coverage and reduce dose delivered to normal tissue in proximity to the target. This is an essential step to maximising the benefits of highly conformal radiotherapy techniques including VMAT for this patient group, and in the future with Proton Therapy.
Collapse
Affiliation(s)
- N A Lavan
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, UK.
| | - G Smyth
- Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, UK
| | - D McQuaid
- Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, UK
| | - M N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - C Stacey
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Vaidya
- Department of Paediatric Oncology, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, UK
| | - F H Saran
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, UK
| | - U Oelfke
- Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, UK
| | - H C Mandeville
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, UK.
| |
Collapse
|
7
|
Gong B, Qu T, Zhang J, Jia Y, Song Z, Chen C, Yang J, Wang C, Liu Y, Jin Y, Cao W, Zhao Q. Downregulation of ABLIM3 confers to the metastasis of neuroblastoma via regulating the cell adhesion molecules pathway. Comput Struct Biotechnol J 2024; 23:1547-1561. [PMID: 38645433 PMCID: PMC11031727 DOI: 10.1016/j.csbj.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Neuroblastoma (NB) is the most prevalent extracranial solid tumor in pediatric patients, and its treatment failure often associated with metastasis. In this study, LASSO, SVM-RFE, and random forest tree algorithms, was used to identify the pivotal gene involved in NB metastasis. NB cell lines (SK-N-AS and SK-N-BE2), in conjunction with NB tissue were used for further study. ABLIM3 was identified as the hub gene and can be an independent prognostic factor for patients with NB. The immunohistochemical analysis revealed that ABLIM3 is negatively correlated with the metastasis of NB. Patients with low expression of ABLIM3 had a poor prognosis. High ABLIM3 expression correlated with APC co-stimulation and Type1 IFN response, and TIDE analysis indicated that patients with low ABLIM3 expression exhibited enhanced responses to immunotherapy. Downregulation of ABLIM3 by shRNA transfection increased the migration and invasion ability of NB cells. Gene Set Enrichment Analysis (GSEA) revealed that genes associated with ABLIM3 were primarily enriched in the cell adhesion molecules (CAMs) pathway. RT-qPCR and western blot analyses demonstrated that downregulation of ABLIM3 led to decreased expression of ITGA3, ITGA8, and KRT19, the key components of CAMs. This study indicated that ABLIM3 can be an independent prognostic factor for NB patients, and CAMs may mediate the effect of ABLIM3 on the metastasis of NB, suggesting that ABLIM3 is a potential therapeutic target for NB metastasis, which provides a novel strategy for future research and treatment strategies for NB patients.
Collapse
Affiliation(s)
- Baocheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tongyuan Qu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaojiao Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yubin Jia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zian Song
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chong Chen
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiaxing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chaoyu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
8
|
Miera-Maluenda M, Pérez-Torres M, Mañas A, Rubio-San-Simón A, Butjosa-Espín M, Ruiz-Duran P, Seoane JA, Moreno L, Segura MF. Advances in the approaches used to repurpose drugs for neuroblastoma. Expert Opin Drug Discov 2024; 19:1309-1319. [PMID: 39258785 DOI: 10.1080/17460441.2024.2402413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Neuroblastoma (NB) remains a challenging pediatric malignancy with limited treatment options, particularly for high-risk cases. Drug repurposing offers a convenient and cost-effective strategy for treating rare diseases like NB. Using existing drugs with known safety profiles accelerates the availability of new treatments, reduces development costs, and mitigates risks, offering hope for improved patient outcomes in challenging conditions. AREAS COVERED This review provides an overview of the advances in approaches used to repurpose drugs for NB therapy. The authors discuss strategies employed in drug repurposing, including computational and experimental methods, and rational drug design, highlighting key examples of repurposed drugs with promising clinical results. Additionally, the authors examine the challenges and opportunities associated with drug repurposing in NB and discuss future directions and potential areas for further research. EXPERT OPINION The fact that only one new drug has been approved in the last 30 years for the treatment of neuroblastoma plus a significant proportion of high-risk NB patients that remain uncurable, evidences the need for new fast and cost-effective alternatives. Drug repurposing may accelerate the treatment development process while reducing expenses and risks. This approach can swiftly bring effective NB therapies to market, enhancing survival rates and patient quality of life.
Collapse
Affiliation(s)
- Marta Miera-Maluenda
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Pérez-Torres
- Department of Pediatric Oncology and Hematology, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Adriana Mañas
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alba Rubio-San-Simón
- Pediatric Oncology and Hematology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Maria Butjosa-Espín
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paula Ruiz-Duran
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lucas Moreno
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Pediatric Oncology and Hematology, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Castelli S, Thorwarth A, van Schewick C, Wendt A, Astrahantseff K, Szymansky A, Lodrini M, Veldhoen S, Gratopp A, Mall MA, Eggert A, Deubzer HE. Management of Busulfan-Induced Lung Injury in Pediatric Patients with High-Risk Neuroblastoma. J Clin Med 2024; 13:5995. [PMID: 39408056 PMCID: PMC11477708 DOI: 10.3390/jcm13195995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Integrating the cytotoxic drug busulfan into a high-dose chemotherapy regimen prior to autologous hematopoietic stem cell rescue in patients with high-risk neuroblastoma has improved the survival of children battling this deadly disease. Busulfan-induced toxicities can, however, be severe. Here, we describe the diagnosis and successful treatment of acute pulmonary injury by total-body-weight-adjusted busulfan therapy in two children with high-risk neuroblastoma. Case series: Patient 1 developed life-threatening biphasic acute respiratory failure on days +60 and +100 after busulfan therapy, requiring intubation and invasive mechanical ventilation. Despite intensive anti-inflammatory and immunomodulatory therapy, including systemic corticosteroids, topical inhalation regimens, azithromycin, nintedanib and extracorporal photopheresis, patient 1 required extended intensive care measures and non-invasive respiratory support for a total of 20 months. High-resolution computed tomography showed diffuse intra-alveolar and interstitial patterns. Patient 2 developed partial respiratory failure with insufficient oxygen saturation and dyspnea on day +52 after busulfan therapy. Symptoms were resolved after 6 months of systemic corticosteroids, topical inhalation regimens and azithromycin. High-resolution computed tomography showed atypical pneumonic changes with ground-glass opacities. While both patients fully recovered without evidence of pulmonary fibrosis, cancer therapy had to be paused and then modified until full recovery from busulfan-induced lung injury. Conclusions: Busulfan-induced lung injury requires prompt diagnosis and intervention. Symptoms and signs are nonspecific and difficult to differentiate from other causes. Therapeutic busulfan drug level monitoring and the identification of patients at risk for drug overdosing through promoter polymorphisms in the glutathione S-transferase alpha 1 gene encoding the main enzyme in busulfan metabolism are expected to reduce the risk of busulfan-induced toxicities.
Collapse
Affiliation(s)
- Sveva Castelli
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Anne Thorwarth
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Claudia van Schewick
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Anke Wendt
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Simon Veldhoen
- Department of Pediatric Radiology, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Gratopp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Lung Research (DLZ), Associated Partner Site Berlin, 89337 Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, 89337 Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité and Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
10
|
Park SWS, Fransson S, Sundquist F, Nilsson JN, Grybäck P, Wessman S, Strömgren J, Djos A, Fagman H, Sjögren H, Georgantzi K, Herold N, Kogner P, Granberg D, Gaze MN, Martinsson T, Karlsson K, Stenman JJE. Heterogeneous SSTR2 target expression and a novel KIAA1549:: BRAF fusion clone in a progressive metastatic lesion following 177Lutetium-DOTATATE molecular radiotherapy in neuroblastoma: a case report. Front Oncol 2024; 14:1408729. [PMID: 39324010 PMCID: PMC11422106 DOI: 10.3389/fonc.2024.1408729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
In this case report, we present the treatment outcomes of the first patient enrolled in the LuDO-N trial. The patient is a 21-month-old girl diagnosed with high-risk neuroblastoma (NB) and widespread skeletal metastasis. The patient initially underwent first-line therapy according to SIOPEN HRNBL-1 but was switched to second-line treatments due to disease progression, and she was finally screened for enrollment in the LuDO-N trial due to refractory disease. Upon enrollment, the patient received two rounds of the radiolabeled somatostatin analogue lutetium-177 octreotate (177Lu-DOTATATE), which was well tolerated. A dosimetry analysis revealed a heterogeneous uptake across tumor lesions, resulting in a significant absorbed dose of 54 Gy in the primary tumor, but only 2 Gy at one of the metastatic sites in the distal femur. While the initial treatment response showed disease stabilization, the distal femoral metastasis continued to progress, leading to the eventual death of the patient. A tissue analysis of the biopsies collected throughout the course of the disease revealed heterogeneous drug target expression of somatostatin receptor 2 (SSTR2) across and within tumor lesions. Furthermore, genomic profiling revealed a novel KIAA1549::BRAF fusion oncogene amplification in the distal femoral metastasis at recurrence that might be related with resistance to radiation, possibly through the downregulation of SSTR2. This case report demonstrates a mixed response to molecular radiotherapy (MRT) with 177Lu-DOTATATE. The observed variation in SSTR2 expression between tumor lesions suggests that heterogeneous target expression may have been the reason for treatment failure in this patient's case. Further investigation within the LuDO-N trial will give a more comprehensive understanding of the correlation between SSTR2 expression levels and treatment outcomes, which will be important to advance treatment strategies based on MRT for children with high-risk NB.
Collapse
Affiliation(s)
- Se Whee Sammy Park
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Sundquist
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Strömgren
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tommy Martinsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasper Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jakob J E Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Ek T, Ibrahim RR, Vogt H, Georgantzi K, Träger C, Gaarder J, Djos A, Rahmqvist I, Mellström E, Pujol-Calderón F, Vannas C, Hansson L, Fagman H, Treis D, Fransson S, Österlund T, Chuang TP, Verhoeven BM, Ståhlberg A, Palmer RH, Hallberg B, Martinsson T, Kogner P, Dalin M. Long-Lasting Response to Lorlatinib in Patients with ALK-Driven Relapsed or Refractory Neuroblastoma Monitored with Circulating Tumor DNA Analysis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2553-2564. [PMID: 39177282 PMCID: PMC11440348 DOI: 10.1158/2767-9764.crc-24-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Patients with anaplastic lymphoma kinase (ALK)-driven neuroblastoma may respond to tyrosine kinase inhibitors, but resistance to treatment occurs and methods currently used for detection of residual disease have limited sensitivity. Here, we present a national unselected cohort of five patients with relapsed or refractory ALK-driven neuroblastoma treated with lorlatinib as monotherapy and test the potential of targeted circulating tumor DNA (ctDNA) analysis as a guide for treatment decisions in these patients. We developed a sequencing panel for ultrasensitive detection of ALK mutations associated with neuroblastoma or resistance to tyrosine kinase inhibitors and used it for ctDNA analysis in 83 plasma samples collected longitudinally from the four patients who harbored somatic ALK mutations. All four patients with ALK p.R1275Q experienced major responses and were alive 35 to 61 months after starting lorlatinib. A fifth patient with ALK p.F1174L initially had a partial response but relapsed after 10 months of treatment. In all cases, ctDNA was detected at the start of lorlatinib single-agent treatment and declined gradually, correlating with clinical responses. In the two patients exhibiting relapse, ctDNA increased 9 and 3 months, respectively, before clinical detection of disease progression. In one patient harboring HRAS p.Q61L in the relapsed tumor, retrospective ctDNA analysis showed that the mutation appeared de novo after 8 months of lorlatinib treatment. We conclude that some patients with relapsed or refractory high-risk neuroblastoma show durable responses to lorlatinib as monotherapy, and targeted ctDNA analysis is effective for evaluation of treatment and early detection of relapse in ALK-driven neuroblastoma. SIGNIFICANCE We present five patients with ALK-driven relapsed or refractory neuroblastoma treated with lorlatinib as monotherapy. All patients responded to treatment, and four of them were alive after 3 to 5 years of follow-up. We performed longitudinal ctDNA analysis with ultra-deep sequencing of the ALK tyrosine kinase domain. We conclude that ctDNA analysis may guide treatment decisions in ALK-driven neuroblastoma, also when the disease is undetectable using standard clinical methods.
Collapse
Affiliation(s)
- Torben Ek
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Raghda R. Ibrahim
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Hartmut Vogt
- Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children’s Hospital, and Division of Children’s and Women’s Health, Linköping University, Linköping, Sweden.
| | - Kleopatra Georgantzi
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Catarina Träger
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pediatric Hematology and Oncology, Academic Children’s Hospital, Uppsala, Sweden.
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden.
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ida Rahmqvist
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Elisabeth Mellström
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Fani Pujol-Calderón
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Christoffer Vannas
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Henrik Fagman
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Diana Treis
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anders Ståhlberg
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Per Kogner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Martin Dalin
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Chang S, Ren D, Zhang L, Liu S, Yang W, Cheng H, Zhang X, Hong E, Geng D, Wang Y, Chen C, Zhang J, Shi T, Guo Y, Ni X, Wang H, Jin Y. Therapeutic SHPRH-146aa encoded by circ-SHPRH dynamically upregulates P21 to inhibit CDKs in neuroblastoma. Cancer Lett 2024; 598:217120. [PMID: 39002691 DOI: 10.1016/j.canlet.2024.217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Recent research has underscored the significance of circular RNAs (circRNAs) in various cancers, including neuroblastoma (NB). Specifically, circ-SHPRH, a unique circRNA, has been revealed to inhibit tumor growth by sequestering miRNAs or producing the SHPRH-146aa protein. To explore circ-SHPRH's involvement in NB and its potential application in gene therapy, this study examined circ-SHPRH expression in 94 NB tissues and cell lines (SK-N-BE(2), SH-SY5Y) using real-time PCR and fluorescence in situ hybridization (FISH). Functional assays encompassing both overexpression and knockdown experiments in NB cell lines, as well as in vivo investigations, were conducted. RNA-seq analysis revealed a correlation between circ-SHPRH and the pathway of P21 (CDKN1A), a pivotal cell cycle regulator. Validation through PCR and other techniques confirmed that circ-SHPRH upregulated P21 expression. Furthermore, the regulatory role of circ-SHPRH in the P21-CDK pathway was corroborated through SHPRH-146aa expression analysis. Notably, adenovirus-mediated circ-SHPRH overexpression effectively curbed NB tumor growth in NSG mice, while combining circ-SHPRH with everolimus exhibited potential for NB treatment. This study elucidates the remarkable significance of circ-SHPRH in NB and its prospective utility in gene therapy, thereby paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Saishuo Chang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Liu
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yadi Wang
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongli Guo
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
13
|
Eltelbanei MA, El-Bassiouny NA, Abdalla MS, Khalaf M, Werida RH. Clinical and safety outcomes of BeEAM (Bendamustine, Etoposide, Cytarabine, Melphalan) versus CEM (Carboplatin, Etoposide, Melphalan) in lymphoma patients as a conditioning regimen before autologous hematopoietic cell transplantation. BMC Cancer 2024; 24:1002. [PMID: 39134959 PMCID: PMC11320894 DOI: 10.1186/s12885-024-12694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Autologous stem cell transplantation (ASCT) is a pivotal treatment for lymphoma patients. The BeEAM regimen (Bendamustine, Etoposide, Cytarabine, Melphalan) traditionally relies on cryopreservation, whereas the CEM regimen (Carboplatin, Etoposide, Melphalan) has been optimized for short-duration administration without the need for cryopreservation. This study rigorously compares the clinical and safety profiles of the BeEAM and CEM regimens. METHODS A controlled, randomized clinical trial was conducted with 58 lymphoma patients undergoing ASCT at the International Medical Center (IMC) in Cairo, Egypt. Patients were randomly assigned to either the BeEAM (n = 29) or CEM (n = 29) regimen, with an 18-month follow-up period. Clinical and safety outcomes were meticulously compared, focusing on time to engraftment for neutrophils and platelets, side effects, length of hospitalization, transplant-related mortality (TRM), and survival rates. RESULTS The findings demonstrate a significant advantage for the CEM regimen. Neutrophil recovery was markedly faster in the CEM group, averaging 8.5 days compared to 14.5 days in the BeEAM group (p < 0.0001). Platelet recovery was similarly expedited, with 11 days in the CEM group versus 23 days in the BeEAM group (p < 0.0001). Hospitalization duration was substantially shorter for CEM patients, averaging 18.5 days compared to 30 days for those on BeEAM (p < 0.0001). Furthermore, overall survival (OS) was significantly higher in the CEM group at 96.55% (95% CI: 84.91-99.44%) compared to 79.31% (95% CI: 63.11-89.75%) in the BeEAM group (p = 0.049). Progression-free survival (PFS) was also notably superior in the CEM group, at 86.21% (95% CI: 86.14-86.28%) versus 62.07% (95% CI: 61.94-62.20%) in the BeEAM group (p = 0.036). CONCLUSION The CEM regimen might demonstrate superiority over the BeEAM regimen, with faster neutrophil and platelet recovery, reduced hospitalization time, and significantly improved overall and progression-free survival rates. Future studies with longer duration and larger sample sizes are warranted. TRIAL REGISTRATION This study is registered on ClinicalTrials.gov under the registration number NCT05813132 ( https://clinicaltrials.gov/ct2/show/NCT05813132 ). (The first submitted registration date: is March 16, 2023).
Collapse
Affiliation(s)
- Mohamed A Eltelbanei
- Senior Clinical Pharmacist in Hematology, Oncology, and Stem Cell Transplantation at International Medical Center (IMC) Hospital, Clinical pharmacy & pharmacy practice master candidate at Faculty of pharmacy, Damanhour University, Cairo, Egypt.
| | - Noha A El-Bassiouny
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Mahmoud Salah Abdalla
- Hematology& BMT Department at International Medical Center (IMC) Hospital, Cairo, Egypt
| | - Mohamed Khalaf
- Consultant of Hematology & BMT Department at Maadi Military Hospital, Cairo, Egypt.
| | - Rehab H Werida
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| |
Collapse
|
14
|
Bobin C, Iddir Y, Butterworth C, Masliah-Planchon J, Saint-Charles A, Bellini A, Bhalshankar J, Pierron G, Combaret V, Attignon V, André N, Corradini N, Dumont B, Mansuy L, Khanfar C, Klein S, Briandet C, Plantaz D, Millot F, Thouvenin S, Aerts I, Ndounga-Diakou LA, Laghouati S, Abbou S, Jehanno N, Tissot H, Renault S, Baulande S, Raynal V, Bozec L, Bieche I, Delattre O, Berlanga P, Schleiermacher G. Sequential Analysis of cfDNA Reveals Clonal Evolution in Patients with Neuroblastoma Receiving ALK-Targeted Therapy. Clin Cancer Res 2024; 30:3316-3328. [PMID: 38787533 PMCID: PMC11292203 DOI: 10.1158/1078-0432.ccr-24-0753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.
Collapse
Affiliation(s)
- Charles Bobin
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Yasmine Iddir
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Charlotte Butterworth
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Alexandra Saint-Charles
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Angela Bellini
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Jaydutt Bhalshankar
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Valéry Attignon
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Nicolas André
- Marseille-La Timone University Hospital, Oncologie Pédiatrique, Marseille, France.
- CRCM INSERM U1068 REMAP4KIDS, Aix Marseille University, Marseille, France.
| | - Nadège Corradini
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Benoit Dumont
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Ludovic Mansuy
- Service d’oncologie Pédiatrique du CHRU de Nancy, Hôpital d’enfants, Vandoeuvre, France.
| | - Camille Khanfar
- Department of Pediatric Oncology, CHU Amiens Picardie, Amiens, France.
| | - Sebastien Klein
- Pediatric Oncology and Hematology, CHU Jean-Minjoz, Besançon, France.
| | | | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, Grenoble Alpes University Hospital, Grenoble, France.
| | - Frederic Millot
- Department of Paediatric Haematology and Oncology, Centre Hospitalo-Universitaire de Poitiers, Poitiers, France.
| | - Sandrine Thouvenin
- Department of Pediatric Hematology-Oncology, University Hospital St Etienne, St Etienne, France.
| | - Isabelle Aerts
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| | - Lee Aymar Ndounga-Diakou
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Salim Laghouati
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Hubert Tissot
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, Inserm CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France.
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Laurence Bozec
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France.
| | - Ivan Bieche
- Pharmacogenomics Unit, Institut Curie, Paris, France.
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- Somatic Genetics Unit, Institut Curie, Paris, France.
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| |
Collapse
|
15
|
Fredlund E, Andersson S, Hilgert E, Monferrer E, Álvarez-Hernán G, Karakaya S, Loontiens S, Bek JW, Gregor T, Lecomte E, Magnusson E, Miltenyte E, Cabirol M, Kyknas M, Engström N, Henriksson MA, Hammarlund E, Rosenblum JS, Noguera R, Speleman F, van Nes J, Mohlin S. MOXD1 is a lineage-specific gene and a tumor suppressor in neuroblastoma. SCIENCE ADVANCES 2024; 10:eado1583. [PMID: 38905335 PMCID: PMC11192077 DOI: 10.1126/sciadv.ado1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Elina Fredlund
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stina Andersson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Elien Hilgert
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Álvarez-Hernán
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sinan Karakaya
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Siebe Loontiens
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jan Willem Bek
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Tomas Gregor
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Estelle Lecomte
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emma Magnusson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Enrika Miltenyte
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie Cabirol
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Michail Kyknas
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niklas Engström
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emma Hammarlund
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jared S. Rosenblum
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Johan van Nes
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sofie Mohlin
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Gains JE, Patel A, Chang YC, Mandeville HC, Smyth G, Stacey C, Talbot J, Wheatley K, Gaze MN. A Randomised Phase II Trial to Evaluate the Feasibility of Radiotherapy Dose Escalation, Facilitated by Intensity-Modulated Arc Radiotherapy Techniques, in High-Risk Neuroblastoma. Clin Oncol (R Coll Radiol) 2024; 36:e154-e162. [PMID: 38553363 DOI: 10.1016/j.clon.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND PURPOSE For high-risk neuroblastoma, planning target volume coverage is often compromised to respect adjacent kidney tolerance. This trial investigated whether intensity-modulated arc radiotherapy techniques (IMAT) could facilitate dose escalation better than conventional techniques. MATERIALS AND METHODS Children with high-risk abdominal neuroblastoma referred for radiotherapy to the primary tumour site and involved regional lymph nodes were randomised to receive either standard dose (21 Gy in 14 fractions) or escalated dose (36 Gy in 24 fractions) radiotherapy. Dual planning with both a conventional anterior-posterior parallel opposed pair radiotherapy technique and an IMAT technique was performed. The quality of target volume and organ-at-risk delineation, and dosimetric plans, were externally reviewed. Dosimetric parameters were used to judge the superior technique for treatment. This feasibility trial was not powered to detect improvement in outcome with dose escalation. RESULTS Between 2017 and 2020, 50 patients were randomised and dual-planned. The IMAT technique was judged more favourable in 48 patients. In all patients randomised to receive 36 Gy, IMAT would have permitted delivery of the full dose (median D50% 36.0 Gy, inter-quartile range 36.0-36.1 Gy) to the target volume, whereas dose compromise would have been required with conventional planning (median D50% 35.6 Gy, inter-quartile range 28.7-35.9 Gy). CONCLUSION IMAT facilitates safe dose escalation to 36 Gy in patients receiving radiotherapy for neuroblastoma. The value of dose escalation is now being evaluated in a current prospective phase III randomised trial.
Collapse
Affiliation(s)
- J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - A Patel
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Yen-Ch'ing Chang
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - H C Mandeville
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - G Smyth
- National Radiotherapy Trials Quality Assurance Group, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - C Stacey
- Radiotherapy Physics Group, University College London Hospitals NHS Foundation Trust, London, UK
| | - J Talbot
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - K Wheatley
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - M N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK. https://twitter.com/@MarkGaze
| |
Collapse
|
17
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
Affiliation(s)
- Panagiotis Alkinoos Polychronopoulos
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| | - Oscar C. Bedoya-Reina
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| |
Collapse
|
18
|
Saldana-Guerrero IM, Montano-Gutierrez LF, Boswell K, Hafemeister C, Poon E, Shaw LE, Stavish D, Lea RA, Wernig-Zorc S, Bozsaky E, Fetahu IS, Zoescher P, Pötschger U, Bernkopf M, Wenninger-Weinzierl A, Sturtzel C, Souilhol C, Tarelli S, Shoeb MR, Bozatzi P, Rados M, Guarini M, Buri MC, Weninger W, Putz EM, Huang M, Ladenstein R, Andrews PW, Barbaric I, Cresswell GD, Bryant HE, Distel M, Chesler L, Taschner-Mandl S, Farlik M, Tsakiridis A, Halbritter F. A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations. Nat Commun 2024; 15:3745. [PMID: 38702304 PMCID: PMC11068915 DOI: 10.1038/s41467-024-47945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.
Collapse
Affiliation(s)
- Ingrid M Saldana-Guerrero
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | | | - Katy Boswell
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Rebecca A Lea
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Sara Wernig-Zorc
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Irfete S Fetahu
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Medical University of Vienna, Department of Neurology, Division of Neuropathology and Neurochemistry, Vienna, Austria
| | - Peter Zoescher
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ulrike Pötschger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik GmbH, Vienna, Austria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Celine Souilhol
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Sophia Tarelli
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Polyxeni Bozatzi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Maria Guarini
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Miller Huang
- Children's Hospital Los Angeles, Cancer and Blood Disease Institutes, and The Saban Research Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Ladenstein
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter W Andrews
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Helen E Bryant
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | | | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK.
- Neuroscience Institute, The University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
19
|
Gabre JL, Merseburger P, Claeys A, Siaw J, Bekaert SL, Speleman F, Hallberg B, Palmer RH, Van den Eynden J. Preclinical exploration of the DNA damage response pathway using the interactive neuroblastoma cell line explorer CLEAN. NAR Cancer 2024; 6:zcad062. [PMID: 38213997 PMCID: PMC10782898 DOI: 10.1093/narcan/zcad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of novel (combinatorial) treatment strategies relies on extensive explorations of signaling perturbations in neuroblastoma cell lines, using RNA-Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not always available. Additionally, while data from published studies are highly valuable and raw data (e.g. fastq files) are nowadays released in public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user-friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this possible, we developed an interactive data centralization and visualization web application, called CLEAN (the Cell Line Explorer web Application of Neuroblastoma data; https://ccgg.ugent.be/shiny/clean/). By focusing on the regulation of the DNA damage response, a therapeutic target of major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain novel mechanistic insights and identify putative drug targets in neuroblastoma.
Collapse
Affiliation(s)
- Jonatan L Gabre
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Merseburger
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Joachim Siaw
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah-Lee Bekaert
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
20
|
Żebrowska U, Balwierz W, Wechowski J, Wieczorek A. Survival Benefit of Myeloablative Therapy with Autologous Stem Cell Transplantation in High-Risk Neuroblastoma: A Systematic Literature Review. Target Oncol 2024; 19:143-159. [PMID: 38401028 DOI: 10.1007/s11523-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Multimodal treatment of newly diagnosed high-risk neuroblastoma (HRNB) includes induction chemotherapy, consolidation with myeloablative therapy (MAT) and autologous stem cell transplantation (ASCT), followed by anti-disialoganglioside 2 (GD2) immunotherapy, as recommended by the Children's Oncology Group (COG) and the Society of Paediatric Oncology European Neuroblastoma (SIOPEN). Some centres proposed an alternative approach with induction chemotherapy followed by anti-GD2 immunotherapy, without MAT+ASCT. OBJECTIVE The aim of this systematic literature review was to compare survival outcomes in patients with HRNB treated with or without MAT+ASCT and with or without subsequent anti-GD2 immunotherapy. PATIENTS AND METHODS The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MEDLINE via PubMed and EMBASE databases were systematically searched for randomised controlled trials (RCT) and observational comparative studies in patients with HRNB using search terms for 'neuroblastoma' and ('myeloablative therapy' OR 'stem cell transplantation'). Reporting of at least one survival outcome [event-free survival (EFS), progression-free survival, relapse-free survival and/or overall survival (OS)] was required for inclusion. Outcomes from RCTs were synthesized in meta-analysis, while meta-analysis of non-RCTs was not planned owing to expected heterogeneity. RESULTS Literature searches produced 2587 results with 41 publications reporting 34 comparative studies included in the review. Of these, 7 publications reported 4 RCTs, and 34 publications reported 30 non-RCT studies. Studies differed with respect to included populations, induction regimen, response to induction, additional treatments and transplantation procedures. Subsequent treatments of relapse were rarely reported and could not be compared. In the meta-analysis, EFS was in favour of MAT+ASCT over conventional chemotherapy or no further treatment [hazard ratio (HR) = 0.78, 95% confidence interval (CI) 0.67-0.91, p = 0.001] with a trend favouring MAT+ASCT for OS (HR = 0.86, 95% CI 0.73-1.00, p = 0.05). Tandem MAT+ASCT was found to improve EFS compared with the single procedure, with improvement in both EFS and OS in patients treated with anti-GD2 therapy. Non-RCT comparative studies were broadly consistent with evidence from the RCTs; however, not all reported survival benefits of MAT+ASCT (single or tandem). Limited comparative evidence on treatment without MAT+ASCT in patients treated with anti-GD2 immunotherapy suggests an increased risk of relapse. In relapsed patients, MAT+ASCT appears to improve OS, but evidence remains scarce. CONCLUSIONS Survival benefits in patients treated with MAT+ASCT confirm that the procedure should remain an integral part of multimodal therapy. In patients treated with anti-GD2 immunotherapy, limited evidence suggests that omitting MAT+ASCT is associated with an increased risk of relapse, and therefore, a change in clinical practice can currently not be recommended. Evidence suggests the use of tandem MAT+ASCT compared with the single procedure, with greater benefits observed in patients treated with anti-GD2 immunotherapy. Limited evidence also suggests improved survival following MAT+ASCT in relapsed patients, which needs to be viewed in light of emerging chemoimmunotherapy in this setting.
Collapse
Affiliation(s)
- Urszula Żebrowska
- Department of Paediatric Oncology and Haematology, University Children's Hospital of Krakow, 265 Wielicka str, 30-663, Krakow, Poland
| | - Walentyna Balwierz
- Department of Paediatric Oncology and Haematology, University Children's Hospital of Krakow, 265 Wielicka str, 30-663, Krakow, Poland
- Department of Paediatric Oncology and Haematology, Jagiellonian University Medical College, 265 Wielicka str, 30-663, Krakow, Poland
| | - Jarosław Wechowski
- EUSA Pharma, Breakspear Park, Breakspear Way, Hemel Hempstead, HP2 4TZ, UK
| | - Aleksandra Wieczorek
- Department of Paediatric Oncology and Haematology, University Children's Hospital of Krakow, 265 Wielicka str, 30-663, Krakow, Poland.
- Department of Paediatric Oncology and Haematology, Jagiellonian University Medical College, 265 Wielicka str, 30-663, Krakow, Poland.
| |
Collapse
|
21
|
Liu Y, Jiang N, Chen W, Zhang W, Shen X, Jia B, Chen G. TRIM59-mediated ferroptosis enhances neuroblastoma development and chemosensitivity through p53 ubiquitination and degradation. Heliyon 2024; 10:e26014. [PMID: 38434050 PMCID: PMC10906161 DOI: 10.1016/j.heliyon.2024.e26014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Neuroblastoma, predominantly afflicting young individuals, is characterized as an embryonal tumor, with poor prognosis primarily attributed to chemoresistance. This study delved into the impact of tripartite motif (TRIM) 59, an E3 ligase, on neuroblastoma development and chemosensitivity through mediating ferroptosis and the involvement of the tumor suppressor p53. Clinical samples were assessed for TRIM59 and p53 levels to explore their correlation with neuroblastoma differentiation. In neuroblastoma cells, modulation of TRIM59 expression, either through overexpression or knockdown, was coupled with doxorubicin hydrochloride (DOX) or ferrostatin-1 (Fer-1) therapy. In vivo assessments examined the influence of TRIM59 knockdown on neuroblastoma chemosensitivity to DOX. Co-immunoprecipitation and ubiquitination assays investigated the association between TRIM59 and p53. Proliferation was gauged with Cell Counting Kit-8, lipid reactive oxygen species (ROS) were assessed via flow cytometry, and protein levels were determined by Western blotting. TRIM59 expression was inversely correlated with neuroblastoma differentiation and positively linked to cell proliferation in response to DOX. Moreover, TRIM59 impeded lipid ROS generation and ferroptosis by directly interacting with p53, promoting its ubiquitination and degradation in DOX-exposed neuroblastoma cells. Fer-1 countered the impact of TRIM59 knockdown on neuroblastoma, while TRIM59 knockdown enhanced the therapeutic efficacy of DOX in xenograph mice. This study underscores TRIM59 as an oncogene in neuroblastoma, fostering growth and chemoresistance by suppressing ferroptosis through p53 ubiquitination and degradation. TRIM59 emerges as a potential strategy for neuroblastoma therapy.
Collapse
Affiliation(s)
| | | | - Weicheng Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Wenbo Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Xiao Shen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Bing Jia
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Gang Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| |
Collapse
|
22
|
Hammad R, Selim M, Eldosoky MA, Elmadbouly AA, Abd El Hakam FEZ, Elshafei A, Fawzy M, Hammad M. Contribution of plasma MicroRNA-21, MicroRNA-155 and circulating monocytes plasticity to childhood neuroblastoma development and induction treatment outcome. Pathol Res Pract 2024; 254:155060. [PMID: 38194805 DOI: 10.1016/j.prp.2023.155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Neuroblastoma (NB) accounts for 15% of all pediatric cancer fatalities (NB). Biomarkers that facilitate early NB detection are needed because by the time of diagnosis, over half of NBs had spread. MicroRNA-21(miR-21) and miR-155 are involved in cancer biology due to their immune modulation functions. Altered monocyte subset distribution is thought to be involved in a number of solid tumors due to its immunological role. We aimed to investigate the expression levels of miR-21 and miR-155 and their association with circulating monocytes subsets in NB and to evaluate if they correlate to the disease pathogenesis and outcome. PATIENTS AND METHODS This case control study involved 79 children classified into 39 newly diagnosed NB children and 40 age and sex matched healthy children. Real-time PCR was used to assess the expression of plasma miR-21 and miR-155. The frequency of circulating monocytes subsets was assessed by flow cytometry. RESULTS NB group showed significant up-regulation in expression of miR-21(20.9 folds) and miR-155 (1.8 folds) when compared to the control group (p < 0.001) and (p = 0.02) respectively. Also, frequency of circulating intermediate monocytes revealed significant up regulation in children with NB. In NB patients, there was a positive correlation between miR-21 and frequency of total and intermediate monocytes (r = 0.5 p < 0.001 and r = 0.7, p < 0.001, respectively). We found no discernible differences when we compared study markers between the high risk and intermediate risk groups. In addition, no significant difference was seen in study markers when patients were sub-grouped according to their induction treatment response. ROC curve analysis revealed that miR-21 up-regulation distinguished NB in childhood at an AUC of 0.94 (82% sensitivity and 100% specificity) while miR-155 up-regulation had less capacity to distinguish NB in childhood at an AUC of 0.65 (38% sensitivity and 93% specificity). CONCLUSION miR-21 can be utilized as a sensitive biomarker for childhood NB development. In pediatric NB, miR-21 was linked to intermediate monocyte plasticity. Both, miR-21 and miR-155 had no impact on NB outcome.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mustafa Selim
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | | | - Ahmed Elshafei
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Fawzy
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
23
|
Randall MP, Egolf LE, Vaksman Z, Samanta M, Tsang M, Groff D, Evans JP, Rokita JL, Layeghifard M, Shlien A, Maris JM, Diskin SJ, Bosse KR. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. J Natl Cancer Inst 2024; 116:138-148. [PMID: 37688570 PMCID: PMC10777668 DOI: 10.1093/jnci/djad182] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND High-risk neuroblastoma is a complex genetic disease that is lethal in more than 50% of patients despite intense multimodal therapy. Through genome-wide association studies (GWAS) and next-generation sequencing, we have identified common single nucleotide polymorphisms and rare, pathogenic or likely pathogenic germline loss-of-function variants in BARD1 enriched in neuroblastoma patients. The functional implications of these findings remain poorly understood. METHODS We correlated BARD1 genotype with expression in normal tissues and neuroblastomas, along with the burden of DNA damage in tumors. To validate the functional consequences of germline pathogenic or likely pathogenic BARD1 variants, we used CRISPR-Cas9 to generate isogenic neuroblastoma (IMR-5) and control (RPE1) cellular models harboring heterozygous BARD1 loss-of-function variants (R112*, R150*, E287fs, and Q564*) and quantified genomic instability in these cells via next-generation sequencing and with functional assays measuring the efficiency of DNA repair. RESULTS Both common and rare neuroblastoma-associated BARD1 germline variants were associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using isogenic heterozygous BARD1 loss-of-function variant cellular models, we functionally validated this association with inefficient DNA repair. BARD1 loss-of-function variant isogenic cells exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA double-strand break sites, and enhanced sensitivity to cisplatin and poly (ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. CONCLUSIONS Taken together, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications.
Collapse
Affiliation(s)
- Michael P Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Current affiliation: New York Genome Center, New York, NY
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Current affiliation: Genomics and Data Sciences, Spark Therapeutics, Philadelphia, PA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Borenäs M, Umapathy G, Lind DE, Lai WY, Guan J, Johansson J, Jennische E, Schmidt A, Kurhe Y, Gabre JL, Aniszewska A, Strömberg A, Bemark M, Hall MN, den Eynden JV, Hallberg B, Palmer RH. ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proc Natl Acad Sci U S A 2024; 121:e2315242121. [PMID: 38154064 PMCID: PMC10769851 DOI: 10.1073/pnas.2315242121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
High-risk neuroblastoma (NB) is a significant clinical challenge. MYCN and Anaplastic Lymphoma Kinase (ALK), which are often involved in high-risk NB, lead to increased replication stress in cancer cells, suggesting therapeutic strategies. We previously identified an ATR (ataxia telangiectasia and Rad3-related)/ALK inhibitor (ATRi/ALKi) combination as such a strategy in two independent genetically modified mouse NB models. Here, we identify an underlying molecular mechanism, in which ALK signaling leads to phosphorylation of ATR and CHK1, supporting an effective DNA damage response. The importance of ALK inhibition is supported by mouse data, in which ATRi monotreatment resulted in a robust initial response, but subsequent relapse, in contrast to a 14-d ALKi/ATRi combination treatment that resulted in a robust and sustained response. Finally, we show that the remarkable response to the 14-d combined ATR/ALK inhibition protocol reflects a robust differentiation response, reprogramming tumor cells to a neuronal/Schwann cell lineage identity. Our results identify an ability of ATR inhibition to promote NB differentiation and underscore the importance of further exploring combined ALK/ATR inhibition in NB, particularly in high-risk patient groups with oncogene-induced replication stress.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Dan E. Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Joel Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, Basel University, Basel4056, Switzerland
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Agata Aniszewska
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg SE-405 30, Sweden
| | | | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| |
Collapse
|
25
|
Park HJ, Choi JY, Kim BK, Hong KT, Kim HY, Kim IH, Cheon GJ, Cheon JE, Park SH, Kang HJ. The Impact of 131I-Metaiodobenzylguanidine as a Conditioning Regimen of Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for High-Risk Neuroblastoma. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1936. [PMID: 38136138 PMCID: PMC10742322 DOI: 10.3390/children10121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The optimal conditioning regimen of tandem high-dose chemotherapy (HDC) and autologous stem cell transplantation (ASCT) for high-risk neuroblastoma (HR-NBL) has not been established. The efficacy of 131I-MIBG therapy is under exploration in newly diagnosed HR-NBL patients. Here, we compared the outcomes of tandem HDC/ASCT between the 131I-MIBG combination and non-MIBG groups. METHODS We retrospectively analyzed the clinical data of 33 HR-NBL patients who underwent tandem HDC/ASCT between 2007 and 2021 at the Seoul National University Children's Hospital. RESULTS The median age at diagnosis was 3.6 years. 131I-MIBG was administered to 13 (39.4%) of the patients. Thirty patients (90.9%) received maintenance therapy after tandem HDC/ASCT, twenty-two were treated with isotretinoin ± interleukin-2, and eight received salvage chemotherapy. The five-year overall survival (OS) and event-free survival (EFS) rates of all patients were 80.4% and 69.4%, respectively. Comparing the 131I-MIBG combined group and other groups, the five-year OS rates were 82.1% and 79.7% (p = 0.655), and the five-year EFS rates were 69.2% and 69.6% (p = 0.922), respectively. Among the adverse effects of grade 3 or 4, the incidence of liver enzyme elevation was significantly higher in the non-131I-MIBG group. CONCLUSIONS Although tandem HDC/ASCT showed promising outcomes, the 131I-MIBG combination did not improve survival rates.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Bo Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Il Han Kim
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi Jeong Cheon
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
- Wide River Institute of Immunology, Hongcheon 25159, Republic of Korea
| |
Collapse
|
26
|
Kushner BH, LaQuaglia MP, Cardenas FI, Basu EM, Gerstle JT, Kramer K, Roberts SS, Wolden SL, Cheung NKV, Modak S. Stage 4N neuroblastoma before and during the era of anti-G D2 immunotherapy. Int J Cancer 2023; 153:2019-2031. [PMID: 37602920 PMCID: PMC11925214 DOI: 10.1002/ijc.34693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Patients with stage 4N neuroblastoma (distant metastases limited to lymph nodes) stand out as virtually the only survivors of high-risk neuroblastoma (HR-NB) before myeloablative therapy (MAT) and immunotherapy with anti-GD2 monoclonal antibodies (mAbs) became standard. Because no report presents more recent results with 4N, we analyzed our large 4N experience. All 51 pediatric 4N patients (<18 years old) diagnosed 1985 to 2021 were reviewed. HR-NB included MYCN-nonamplified 4N diagnosed at age ≥18 months and MYCN-amplified 4N. Among 34 MYCN-nonamplified high-risk patients, 20 are relapse-free 1.5+ to 37.5+ (median 12.5+) years post-diagnosis, including 13 without prior MAT and 5 treated with little (1 cycle; n = 2) or no mAb (n = 3), while 14 patients (7 post-MAT, 8 post-mAbs) relapsed (all soft tissue). Of 15 MYCN-amplified 4N patients, 7 are relapse-free 2.1+ to 26.4+ (median 11.6+) years from the start of chemotherapy (all received mAbs; 3 underwent MAT) and 4 are in second remission 4.2+ to 21.8+ years postrelapse (all soft tissue). Statistical analyses showed no significant association of survival with either MAT or mAbs for MYCN-nonamplified HR-NB; small numbers prevented these analyses for MYCN-amplified patients. The two patients with intermediate-risk 4N (14-months-old) are relapse-free 7+ years postresection of primary tumors; distant disease spontaneously regressed. The natural history of 4N is marked by NB confined to soft tissue without early relapse in bones or bone marrow, where mAbs have proven efficacy. These findings plus curability without MAT, as seen elsewhere and at our center, support consideration of treatment reduction for MYCN-nonamplified 4N.
Collapse
Affiliation(s)
- Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael P LaQuaglia
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Justin T Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
27
|
Chennakesavalu M, Pudela C, Applebaum MA, Lee SM, Che Y, Naranjo A, Park JR, Volchenboum SL, Henderson TO, Cohn SL, Desai AV. Persistence of Racial and Ethnic Disparities in Risk and Survival for Patients with Neuroblastoma over Two Decades. EJC PAEDIATRIC ONCOLOGY 2023; 2:100022. [PMID: 38213818 PMCID: PMC10783478 DOI: 10.1016/j.ejcped.2023.100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND Racial/ethnic survival disparities in neuroblastoma were first reported more than a decade ago. We sought to investigate if these disparities have persisted with current era therapy. METHODS Two patient cohorts were identified in the International Neuroblastoma Risk Group Data Commons (INRGdc) (Cohort 1: diagnosed 2001-2009, n=4359; Cohort 2: diagnosed 2010-2019, n=4891). Chi-squared tests were used to assess the relationship between race/ethnicity and clinical and biologic features. Survival was estimated by the Kaplan-Meier method. Cox proportional hazards regression analyses were performed to investigate the association between racial/ethnic groups and prognostic markers. RESULTS Significantly higher 5-year event-free survival (EFS) and overall survival (OS) were observed for Cohort 2 compared to Cohort 1 (P<0.001 and P<0.001, respectively). Compared to White patients, Black patients in both cohorts had a higher proportion of high-risk disease (Cohort 1: P<0.001; Cohort 2: P<0.001) and worse EFS (Cohort 1: P<0.001; Cohort 2 P<0.001) and OS (Cohort 1: P<0.001; Cohort 2: P<0.001). In Cohort 1, Native Americans also had a higher proportion of high-risk disease (P=0.03) and inferior EFS/OS. No significant survival disparities were observed for low- or intermediate-risk patients in either cohort or high-risk patients in Cohort 1. Hispanic patients with high-risk disease in Cohort 2 had significantly inferior OS (P=0.047). Significantly worse OS, but not EFS, (P=0.006 and P=0.02, respectively) was also observed among Black and Hispanic patients assigned to receive post-Consolidation dinutuximab on clinical trials (n=885). CONCLUSION Racial/ethnic survival disparities have persisted over time and were observed among high-risk patients assigned to receive post-Consolidation dinutuximab.
Collapse
Affiliation(s)
| | - Caileigh Pudela
- MedStar Georgetown University Hospital, Washington, D.C., USA
| | | | - Sang Mee Lee
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Yan Che
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Arlene Naranjo
- Children’s Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Julie R. Park
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Arendt AM, Heubach F, Maier CP, Giardino S, Jung G, Kowalewski E, Rabsteyn A, Amorelli G, Seitz C, Schlegel P, Handgretinger R, Lang P. Targeting GD2 after allogeneic SCT: effector cell composition defines the optimal use of ch14.18 and the bispecific antibody construct NG-CU (GD2-CD3). Cancer Immunol Immunother 2023; 72:3813-3824. [PMID: 37742286 PMCID: PMC10576705 DOI: 10.1007/s00262-023-03536-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
We investigated whether T cell-recruiting bispecific anti-CD3/GD2 antibody NG-CU might be an alternative to therapeutic anti-GD2 monoclonal antibody (mAb) ch14.18, mediating complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) through natural killer (NK) cells for immunotherapy in high-risk/relapsed neuroblastoma after autologous/allogeneic stem cell transplantation (auto/alloSCT). Different antibody concentrations and effector-to-target ratios (E:T) were evaluated using xCELLigence RTCA system, peripheral blood mononuclear cells (PBMCs) (healthy donors and patients after alloSCT), and neuroblastoma cell lines (LS/LAN-1). Mean specific lysis of LS cells utilizing PBMCs from healthy donors and ch14.18 (1 µg/ml) was 40/66/75% after 12/24/48 h compared to 66/93/100% in the presence of NG-CU (100 ng/ml). NG-CU showed enhanced cytotoxicity compared to ch14.18, even at lower concentrations and E:T ratios, and completely eradicated LS cells after 72 h. To decipher the influence of effector cell subsets on lysis, different ratios of T and NK cells were tested. At a ratio of 1:1, ch14.18 was more effective than NG-CU. Using patient PBMCs taken at different time points posttransplant, significant lysis with both constructs was detectable depending on percentages and total numbers of T and NK cells; in the early posttransplant phase, NK cells were predominant and ch14.18 was superior, whereas later on, T cells represented the majority of immune cells and NG-CU was more effective. Our study highlights the importance of analyzing effector cell subsets in patients before initiating antibody-based therapy. Consequently, we propose an adjusted administration of both antibody constructs, considering the state of posttransplant immune recovery, to optimize anti-tumor activity.
Collapse
Affiliation(s)
- A-M Arendt
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany.
| | - F Heubach
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - C P Maier
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
- Department of Hematology/Oncology, Center for Internal Medicine, University Hospital, Tübingen, Germany
| | - S Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology and Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - G Jung
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - E Kowalewski
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - A Rabsteyn
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - G Amorelli
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - C Seitz
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - P Schlegel
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - R Handgretinger
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - P Lang
- Department of General Pediatrics, Oncology/Hematology, Children's University Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| |
Collapse
|
29
|
Sevrin F, Kolesnikov-Gauthier H, Cougnenc O, Bogart E, Schleiermacher G, Courbon F, Gambart M, Giraudet AL, Corradini N, Badel JN, Rault E, Oudoux A, Deley MCL, Valteau-Couanet D, Defachelles AS. Phase II study of 131 I-metaiodobenzylguanidine with 5 days of topotecan for refractory or relapsed neuroblastoma: Results of the French study MIITOP. Pediatr Blood Cancer 2023; 70:e30615. [PMID: 37574821 DOI: 10.1002/pbc.30615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE We report the results of the French multicentric phase II study MIITOP (NCT00960739), which evaluated tandem infusions of 131 I-metaiodobenzylguanidine (mIBG) and topotecan in children with relapsed/refractory metastatic neuroblastoma (NBL). METHODS Patients received 131 I-mIBG on day 1, with intravenous topotecan daily on days 1-5. A second activity of 131 I-mIBG was given on day 21 to deliver a whole-body radiation dose of 4 Gy, combined with a second course of topotecan on days 21-25. Peripheral blood stem cells were infused on day 31. RESULTS Thirty patients were enrolled from November 2008 to June 2015. Median age at diagnosis was 5.5 years (2-20). Twenty-one had very high-risk NBL (VHR-NBL), that is, stage 4 NBL at diagnosis or at relapse, with insufficient response (i.e., less than a partial response of metastases and more than three mIBG spots) after induction chemotherapy; nine had progressive metastatic relapse. Median Curie score at inclusion was 6 (1-26). Median number of prior lines of treatment was 3 (1-7). Objective response rate was 13% (95% confidence interval [CI]: 4-31) for the whole population, 19% for VHR-NBL, and 0% for progressive relapses. Immediate tolerance was good, with nonhematologic toxicity limited to grade-2 nausea/vomiting in eight patients. Two-year event-free survival was 17% (95% CI: 6-32). Among the 16 patients with VHR-NBL who had not received prior myeloablative busulfan-melphalan consolidation, 13 had at least stable disease after MIITOP; 11 subsequently received busulfan-melphalan; four of them were alive (median follow-up: 7 years). CONCLUSION MIITOP showed acceptable tolerability in this heavily pretreated population and encouraging survival rates in VHR-NBL when followed by busulfan-melphalan.
Collapse
Affiliation(s)
- François Sevrin
- Department of Pediatric Oncology, Oscar Lambret Center, Lille, France
| | | | - Olivier Cougnenc
- Department of Clinical Pharmacy, Oscar Lambret Center, Lille, France
| | - Emilie Bogart
- Department of Methodology and Biostatistics, Oscar Lambret Center, Lille, France
| | | | - Frederic Courbon
- Service de Médecine Nucléaire, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Marion Gambart
- Hematology and Oncology Unit, Children's Hospital, CHU Toulouse, Toulouse, France
| | | | - Nadège Corradini
- Institute of Pediatric Hematology and Oncology, Léon Bérard Center, Lyon, France
| | - Jean-Noël Badel
- Department of Nuclear Medicine, Léon Bérard Center, Lyon, France
| | - Erwann Rault
- Department of Medical Physics, Oscar Lambret Center, Lille, France
| | - Aurore Oudoux
- Department of Nuclear Medicine, Oscar Lambret Center, Lille, France
| | | | | | | |
Collapse
|
30
|
Jia Y, Yang J, Chen Y, Liu Y, Jin Y, Wang C, Gong B, Zhao Q. Identification of NCAPG as an Essential Gene for Neuroblastoma Employing CRISPR-Cas9 Screening Database and Experimental Verification. Int J Mol Sci 2023; 24:14946. [PMID: 37834394 PMCID: PMC10573393 DOI: 10.3390/ijms241914946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. Patients with neuroblastoma have a poor prognosis. The development of therapy targets and the ability to predict prognosis will be enhanced through further exploration of the genetically related genes of neuroblastoma. The present investigation utilized CRISPR-Cas9 genome-wide screening based on the DepMap database to determine essential genes for neuroblastoma cells' continued survival. WGCNA analysis was used to determine the progression-related genes, and a prognostic signature was constructed. The signature gene, NCAPG, was downregulated in neuroblastoma cells to explore its impact on various cellular processes. This research used DepMap and WGCNA to pinpoint 45 progression-related essential genes for neuroblastoma. A risk signature comprising NCAPG and MAD2L1 was established. The suppression of NCAPG prevented neuroblastoma cells from proliferating, migrating, and invading. The results of flow cytometric analysis demonstrated that NCAPG inhibition caused cell cycle arrest during the G2 and S phases and the activation of apoptosis. Additionally, NCAPG downregulation activated the p53-mediated apoptotic pathway, inducing cell apoptosis. The present work showed that NCAPG knockdown reduced neuroblastoma cell progression and may serve as a basis for further investigation into diagnostic indicators and therapy targets for neuroblastoma.
Collapse
Affiliation(s)
- Yubin Jia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jiaxing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yankun Chen
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chaoyu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Baocheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
31
|
Mastrangelo S, Romano A, Attinà G, Maurizi P, Ruggiero A. Timing and chemotherapy association for 131-I-MIBG treatment in high-risk neuroblastoma. Biochem Pharmacol 2023; 216:115802. [PMID: 37696454 DOI: 10.1016/j.bcp.2023.115802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Prognosis of high-risk neuroblastoma is dismal, despite intensive induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance. Patients who do not achieve a complete metastatic response, with clearance of bone marrow and skeletal NB infiltration, after induction have a significantly lowersurvival rate. Thus, it's necessary to further intensifytreatment during this phase. 131-I-metaiodobenzylguanidine (131-I-MIBG) is a radioactive compound highly effective against neuroblastoma, with32% response rate in relapsed/resistant cases, and only hematological toxicity. 131-I-MIBG wasutilized at different doses in single or multiple administrations, before autologous transplant or combinedwith high-dose chemotherapy. Subsequently, it was added to consolidationin patients with advanced NB after induction, but an independent contribution against neuroblastoma and for myelotoxicity is difficult to determine. Despiteresults of a 2008 paper demonstratedefficacy and mild hematological toxicity of 131-I-MIBG at diagnosis, no center had included it with intensive chemotherapy in first-line treatment protocols. In our institution, at diagnosis, 131-I-MIBG was included in a 5-chemotherapy drug combination and administered on day-10, at doses up to 18.3 mCi/kg. Almost 87% of objective responses were observed 50 days from start with acceptable hematological toxicity. In this paper, we review the literature data regarding 131-I-MIBG treatment for neuroblastoma, and report on doses and combinations used, tumor responses and toxicity. 131-I-MIBG is very effective against neuroblastoma, in particular if given to patients at diagnosis and in combination with chemotherapy, and it should be included in all induction regimens to improve early responses rates and consequently long-term survival.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy.
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
32
|
Cupit-Link M, Federico SM. Treatment of High-Risk Neuroblastoma with Dinutuximab and Chemotherapy Administered in all Cycles of Induction. Cancers (Basel) 2023; 15:4609. [PMID: 37760578 PMCID: PMC10527563 DOI: 10.3390/cancers15184609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Administration of chemoimmunotherapy using concurrent chemotherapy and an anti-GD2 monoclonal antibody (mAb), dinutuximab (DIN), demonstrated efficacy for the treatment of relapsed and refractory neuroblastoma. Chemoimmunotherapy, using a humanized anti-GD2 mAb, demonstrated a signal of activity in a phase 2 study for the treatment of patients with newly diagnosed high-risk neuroblastoma (HRNBL). In this single-institution retrospective study, patients with HRNBL received an Induction chemotherapy regimen plus DIN in all Induction cycles. Toxicity and response data were abstracted from the electronic medical record. Toxicities were graded by CTCAE v.5.0. The end of Induction (EOI) objective response rate was determined using the Revised International Neuroblastoma Response Criteria. Twenty-seven patients with HRNBL (23 newly diagnosed, 16 females, median age 3.9 years) started Induction chemoimmunotherapy from 27 January 2017 to 28 December 2022. All patients received DIN with all cycles of Induction therapy, and all but one patient completed Induction therapy. The most common non-hematologic grade ≥ 3 toxicities included fever (44%), hypoxemia (20%), and hypoalbuminemia (11%). End of Induction responses included eighteen with a complete response (CR), seven with a partial response (PR), one with progressive disease (PD), and zero with a minor response or stable disease. Twenty-six of twenty-seven patients (96%) completed all Induction cycles and were evaluable for a response. The EOI response of PR or better in the evaluable cohort was 96%. Dinutuximab was well tolerated with all Induction cycles, demonstrated an encouraging EOI response rate, and should be evaluated in a randomized study.
Collapse
|
33
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
34
|
Wieczorek A, Żebrowska U, Ussowicz M, Sokół A, Stypińska M, Dembowska-Bagińska B, Pawińska-Wąsikowska K, Balwierz W. Dinutuximab Beta Maintenance Therapy in Patients with High-Risk Neuroblastoma in First-Line and Refractory/Relapsed Settings-Real-World Data. J Clin Med 2023; 12:5252. [PMID: 37629294 PMCID: PMC10455178 DOI: 10.3390/jcm12165252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Dinutuximab beta is approved for the maintenance treatment of patients with high-risk neuroblastoma (HR-NB), including patients with relapsed/refractory (R/R) disease. However, the data on its use in real-world clinical practice is limited. We retrospectively reviewed the clinical records of 54 patients with HR-NB who received maintenance therapy with dinutuximab beta in first-line (37 patients) or R/R settings (17 patients) at three centers in Poland. Of the 37 patients who received first-line treatment, twenty-eight had a complete response, two had a partial response, three had progressive disease, and four relapsed at the end of treatment. The median overall survival (OS) was 24.37 months, and the three-year progression-free survival (PFS) and OS were 0.63 and 0.80, respectively. Of the 17 patients in the R/R group, 11 had a complete response, two had a partial response, one had stable disease, and three had progressive disease or relapsed at the end of treatment. The median OS was 33.1 months and the three-year PFS and OS were 0.75 and 0.86, respectively. Treatment was generally well tolerated, including in patients with co-morbidities and those who had experienced toxicities with previous therapies. These findings demonstrate that the use of dinutuximab beta is feasible and beneficial as a first-line or R/R treatment in routine clinical practice in Poland.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| | - Urszula Żebrowska
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agnieszka Sokół
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marzena Stypińska
- Department of Oncology, Children Memorial Health Institute, 04-730 Warsaw, Poland
| | | | - Katarzyna Pawińska-Wąsikowska
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| |
Collapse
|
35
|
Krystal J, Foster JH. Treatment of High-Risk Neuroblastoma. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1302. [PMID: 37628301 PMCID: PMC10453838 DOI: 10.3390/children10081302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
High-risk neuroblastoma is a highly aggressive solid tumor that most commonly presents in early childhood. Advances in treatment through decades of clinical trials and research have led to improved outcomes. This review provides an overview of the current state of treatment for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Julie Krystal
- Zucker Hofstra School of Medicine, Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040, USA
| | - Jennifer H. Foster
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
36
|
Bruchelt G, Klose C, Lischka M, Brandes M, Handgretinger R, Brueckner R. Hybrid Molecules of Benzylguanidine and the Alkylating Group of Melphalan: Synthesis and Effects on Neuroblastoma Cells. J Clin Med 2023; 12:4469. [PMID: 37445504 DOI: 10.3390/jcm12134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The therapy of neuroblastoma relies, amongst other things, on administering chemotherapeutics and radioactive compounds, e.g., the (meta-iodobenzyl)guanidine [131I]mIBG. For special applications (conditioning before stem cell transplantation), busulfan and melphalan (M) proved to be effective. However, both drugs are not used for normal chemotherapy in neuroblastoma because of their side effects. The alkylating drug melphalan contains a (Cl-CH2-CH2-)2N- group in the para-position of the phenyl moiety of the essential amino acid phenylalanine (Phe) and can, therefore, be taken up by virtually all kinds of cells by amino acid transporters. In contrast, mIBG isotopologs are taken up more selectively by neuroblastoma cells via the noradrenaline transporter (NAT). The present study aimed at synthesising and studying hybrid molecules of benzylguanidine (BG) and the alkylating motif of M. Such hybrids should combine the preferential uptake of BGs into neuroblastoma cells with the cytotoxicity of M. Besides the hybrid of BG with the dialkylating group (Cl-CH2-CH2-)2N- bound in the para-position as in M (pMBG), we also synthesised mMBG, which is BG meta-substituted by a (Cl-CH2-CH2-)2N- group. Furthermore, two monoalkylating hybrid molecules were synthesised: the BG para-substituted by a (Cl-CH2-CH2-)NH- group (pM*BG) and the BG meta-substituted by a (Cl-CH2-CH2-)NH- group (mM*BG). The effects of the four new compounds were studied with human neuroblastoma cell lines (SK-N-SH, Kelly, and LS) with regard to uptake, viability, and proliferation by standard test systems. The dialkylating hybrid molecules pMBG and mMBG were at least as effective as M, whereas the monoalkylating hybrid molecules pM*BG and mM*BG were more effective than M. Considering the preferred uptake via the noradrenaline transporter by neuroblastoma cells, we conclude that they might be well suited for therapy.
Collapse
Affiliation(s)
- Gernot Bruchelt
- Children's University Hospital, Hoppe-Seyler-Str. 1, D-72076 Tuebingen, Germany
| | - Chihab Klose
- Children's University Hospital, Hoppe-Seyler-Str. 1, D-72076 Tuebingen, Germany
| | - Matthias Lischka
- Institute of Organic Chemistry, Albert-Ludwigs-University, Albertstr. 21, D-79104 Freiburg, Germany
| | - Marietta Brandes
- Children's University Hospital, Hoppe-Seyler-Str. 1, D-72076 Tuebingen, Germany
| | | | - Reinhard Brueckner
- Institute of Organic Chemistry, Albert-Ludwigs-University, Albertstr. 21, D-79104 Freiburg, Germany
| |
Collapse
|
37
|
Taylor S, Lim P, Cantwell J, D’Souza D, Moinuddin S, Chang YC, Gaze MN, Gains J, Veiga C. Image guidance and interfractional anatomical variation in paediatric abdominal radiotherapy. Br J Radiol 2023; 96:20230058. [PMID: 37102707 PMCID: PMC10230397 DOI: 10.1259/bjr.20230058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To identify variables predicting interfractional anatomical variations measured with cone-beam CT (CBCT) throughout abdominal paediatric radiotherapy, and to assess the potential of surface-guided radiotherapy (SGRT) to monitor these changes. METHODS Metrics of variation in gastrointestinal (GI) gas volume and separation of the body contour and abdominal wall were calculated from 21 planning CTs and 77 weekly CBCTs for 21 abdominal neuroblastoma patients (median 4 years, range: 2 - 19 years). Age, sex, feeding tubes, and general anaesthesia (GA) were explored as predictive variables for anatomical variation. Furthermore, GI gas variation was correlated with changes in body and abdominal wall separation, as well as simulated SGRT metrics of translational and rotational corrections between CT/CBCT. RESULTS GI gas volumes varied 74 ± 54 ml across all scans, while body and abdominal wall separation varied 2.0 ± 0.7 mm and 4.1 ± 1.5 mm from planning, respectively. Patients < 3.5 years (p = 0.04) and treated under GA (p < 0.01) experienced greater GI gas variation; GA was the strongest predictor in multivariate analysis (p < 0.01). Absence of feeding tubes was linked to greater body contour variation (p = 0.03). GI gas variation correlated with body (R = 0.53) and abdominal wall (R = 0.63) changes. The strongest correlations with SGRT metrics were found for anterior-posterior translation (R = 0.65) and rotation of the left-right axis (R = -0.36). CONCLUSIONS Young age, GA, and absence of feeding tubes were linked to stronger interfractional anatomical variation and are likely indicative of patients benefiting from adaptive/robust planning pathways. Our data suggest a role for SGRT to inform the need for CBCT at each treatment fraction in this patient group. ADVANCES IN KNOWLEDGE This is the first study to suggest the potential role of SGRT for the management of internal interfractional anatomical variation in paediatric abdominal radiotherapy.
Collapse
Affiliation(s)
- Sabrina Taylor
- University College London, Centre for Medical Image Computing, London, United Kingdom
| | - Pei Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jessica Cantwell
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Derek D’Souza
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Syed Moinuddin
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Yen-Ching Chang
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jennifer Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catarina Veiga
- University College London, Centre for Medical Image Computing, London, United Kingdom
| |
Collapse
|
38
|
王 李, 陈 凯, 张 娜, 杨 静, 张 婷, 邵 静. [Effectiveness of autologous hematopoietic stem cell transplantation in the treatment of high-risk neuroblastoma in children: a single-center clinical study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:476-482. [PMID: 37272173 PMCID: PMC10247195 DOI: 10.7499/j.issn.1008-8830.2301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To investigate the effectiveness of high-dose chemotherapy combined with autologous hematopoietic stem cell transplantation (ASCT) in the treatment of children with high-risk neuroblastoma (NB). METHODS A retrospective analysis was performed on 29 children with high-risk NB who were admitted to Shanghai Children's Hospital and were treated with high-dose chemotherapy combined with ASCT from January 2013 to December 2021, and their clinical features and prognosis were analyzed. RESULTS Among the 29 children treated by high-dose chemotherapy combined with ASCT, there were 18 boys (62%) and 11 girls (38%), with a median age of onset of 36 (27, 59) months. According to the International Neuroblastoma Staging System, 6 children (21%) had stage III NB and 23 children (79%) had stage IV NB, and the common metastatic sites at initial diagnosis were bone in 22 children (76%), bone marrow in 21 children (72%), and intracalvarium in 4 children (14%). All 29 children achieved reconstruction of hematopoietic function after ASCT. After being followed up for a median time of 25 (17, 45) months, 21 children (72%) had continuous complete remission and 8 (28%) experienced recurrence. The 3-year overall survival rate and event-free survival rate were 68.9%±16.1% and 61.4%±14.4%, respectively. Presence of bone marrow metastasis, neuron-specific enolase ≥370 ng/mL and positive bone marrow immunophenotyping might reduce the 3-year event-free survival rate (P<0.05). CONCLUSIONS Children with high-risk NB who have bone marrow metastasis at initial diagnosis tend to have a poor prognosis. ASCT combined with high-dose chemotherapy can effectively improve the prognosis of children with NB with a favorable safety profile.
Collapse
|
39
|
Katta SS, Nagati V, Paturi ASV, Murakonda SP, Murakonda AB, Pandey MK, Gupta SC, Pasupulati AK, Challagundla KB. Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets. J Control Release 2023; 357:444-459. [PMID: 37023798 DOI: 10.1016/j.jconrel.2023.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Neuroblastoma (NB) accounts for about 13% of all pediatric cancer mortality and is the leading cause of pediatric cancer death for children aged 1 to 5 years. NB, a developmental malignancy of neural ganglia, originates from neural crest-derived cells, which undergo a defective sympathetic neuronal differentiation due to genomic and epigenetic aberrations. NB is a complex disease with remarkable biological and genetic variation and clinical heterogeneity, such as spontaneous regression, treatment resistance, and poor survival rates. Depending on its severity, NB is categorized as high-risk, intermediate-risk, and low-risk., whereas high-risk NB accounts for a high infant mortality rate. Several studies revealed that NB cells suppress immune cell activity through diverse signaling pathways, including exosome-based signaling pathways. Exosome signaling has been shown to modulate gene expression in the target immune cells and attenuate the signaling events through non-coding RNAs. Since high-risk NB is characterized by a low survival rate and high clinical heterogeneity with current intensive therapies, it is crucial to unravel the molecular events of pathogenesis and develop novel therapeutic targets in high-risk, relapsed, or recurrent tumors in NB to improve patient survival. This article discusses etiology, pathophysiology, risk assessment, molecular cytogenetics, and the contribution of extracellular vesicles, non-coding RNAs, and cancer stem cells in the tumorigenesis of NB. We also detail the latest developments in NB immunotherapy and nanoparticle-mediated drug delivery treatment options.
Collapse
Affiliation(s)
- Santharam S Katta
- REVA University, Rukmini Knowledge Park, Kattigenahalli Yelahanka, Bangalore, Karnataka 560064, India
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Atreya S V Paturi
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Science & Hospital, Bengaluru, Karnataka, 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam 781101, India
| | - Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
40
|
Karalexi MA, Servitzoglou M, Papadakis V, Kachanov D, Česen Mazič M, Baka M, Moschovi M, Kourti M, Polychronopoulou S, Stiakaki E, Hatzipantelis E, Dana H, Stefanaki K, Malama A, Themistocleous MS, Strantzia K, Shamanskaya T, Bouka P, Panagopoulou P, Kantzanou M, Ntzani E, Dessypris N, Petridou ET. Survival patterns of childhood neuroblastoma: an analysis of clinical data from Southern-Eastern European countries. Eur J Cancer Prev 2023; 32:254-263. [PMID: 32925511 DOI: 10.1097/cej.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The prognosis of children with neuroblastoma (NBL) can be dismal with significant variations depending on the stage and biology of the tumor. We assessed the event-free (EFS) and overall (OS) survival using harmonized data from three Southern-Eastern European (SEE) countries. Data for 520 incident NBL cases (2009-2018) were collected from Greece, Slovenia and Russia. Kaplan-Meier curves were fitted, and EFS/OS were derived from Cox proportional models by study variables including the protocol-based risk-group (low/observation, intermediate, high). Over one-third of cases were coded in the high-risk group, of which 23 children (4.4%) received treatment with anti-ganglioside 2 (GD2) mAb. Survival rates were inferior in older (OS 5-year; 1.5-4.9 years: 61%; EFS 5-year; 1.5-4.9 years: 48%) compared to children younger than 1.5 years (OS 5-year; <1.5 years: 91%; EFS 5-year; <1.5 years: 78%). Predictors of poor OS included stage 4 (hazard ratio, HR OS : 18.12, 95% confidence intervals, CI: 3.47-94.54), N-myc amplification (HR OS : 2.16, 95% CI: 1.40-3.34), no surgical excision (HR OS : 3.27, 95% CI: 1.91-5.61) and relapse/progression (HR OS : 5.46, 95% CI: 3.23-9.24). Similar unfavorable EFS was found for the same subsets of patients. By contrast, treatment with anti-GD2 antibody in high-risk patients was associated with decreased risk of death or unfavorable events (HR OS : 0.11, 95% CI: 0.02-0.79; HR EFS : 0.19, 95% CI: 0.07-0.52). Our results confirm the outstanding prognosis of the early NBL stages, especially in children <1.5 years, and the improved outcomes of the anti-GD2 treatment in high-risk patients. Ongoing high-quality clinical cancer registration is needed to ensure comparability of survival across Europe and refine our understanding of the NBL biology.
Collapse
Affiliation(s)
- Maria A Karalexi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens
| | - Marina Servitzoglou
- Department of Pediatric Hematology-Oncology, 'Pan. & Agl. Kyriakou' Children's Hospital
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, 'Agia Sofia' Children's Hospital, Athens, Greece
| | - Denis Kachanov
- Department of Clinical Oncology, Federal Scientific and Clinical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russian Federation
| | - Maja Česen Mazič
- Department for Pediatric Hematology and Oncology, University Children Hospital Ljubljana, Ljubljana, Slovenia
| | - Margaret Baka
- Department of Pediatric Hematology-Oncology, 'Pan. & Agl. Kyriakou' Children's Hospital
| | - Maria Moschovi
- Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, 'Agia Sofia' Children's Hospital, Athens
| | - Maria Kourti
- Department of Pediatric Hematology and Oncology, Hippokration Hospital, Thessaloniki
| | - Sofia Polychronopoulou
- Department of Pediatric Hematology-Oncology, 'Agia Sofia' Children's Hospital, Athens, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University of Crete, Heraklion
| | - Emmanuel Hatzipantelis
- Hematology-Oncology Unit, 2nd Pediatric Department, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki
| | - Helen Dana
- Pediatric Hematology-Oncology Department, 'Mitera' Children's Hospital
| | | | - Astero Malama
- Department of Imaging, National and Kapodistrian University of Athens
| | | | | | - Tatyana Shamanskaya
- Department of Clinical Oncology, Federal Scientific and Clinical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russian Federation
| | - Panagiota Bouka
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens
| | - Paraskevi Panagopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Center for Evidence Synthesis in Health, Brown University School of Public Health, Providence, RI, USA
| | - Nick Dessypris
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens
- Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
41
|
Guan Q, Lin H, Hua W, Lin L, Liu J, Deng L, Zhang J, Cheng J, Yang Z, Li Y, Bian J, Zhou H, Li S, Li L, Miao L, Xia H, He J, Zhuo Z. Variant rs8400 enhances ALKBH5 expression through disrupting miR-186 binding and promotes neuroblastoma progression. Chin J Cancer Res 2023; 35:140-162. [PMID: 37180836 PMCID: PMC10167609 DOI: 10.21147/j.issn.1000-9604.2023.02.05] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVE AlkB homolog 5 (ALKBH5) has been proven to be closely related to tumors. However, the role and molecular mechanism of ALKBH5 in neuroblastomas have rarely been reported. METHODS The potential functional single-nucleotide polymorphisms (SNPs) in ALKBH5 were identified by National Center for Biotechnology Information (NCBI) dbSNP screening and SNPinfo software. TaqMan probes were used for genotyping. A multiple logistic regression model was used to evaluate the effects of different SNP loci on the risk of neuroblastoma. The expression of ALKBH5 in neuroblastoma was evaluated by Western blotting and immunohistochemistry (IHC). Cell counting kit-8 (CCK-8), plate colony formation and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays were used to evaluate cell proliferation. Wound healing and Transwell assays were used to compare cell migration and invasion. Thermodynamic modelling was performed to predict the ability of miRNAs to bind to ALKBH5 with the rs8400 G/A polymorphism. RNA sequencing, N6-methyladenosine (m6A) sequencing, m6A methylated RNA immunoprecipitation (MeRIP) and a luciferase assay were used to identify the targeting effect of ALKBH5 on SPP1. RESULTS ALKBH5 was highly expressed in neuroblastoma. Knocking down ALKBH5 inhibited the proliferation, migration and invasion of cancer cells. miR-186-3p negatively regulates the expression of ALKBH5, and this ability is affected by the rs8400 polymorphism. When the G nucleotide was mutated to A, the ability of miR-186-3p to bind to the 3'-UTR of ALKBH5 decreased, resulting in upregulation of ALKBH5. SPP1 is the downstream target gene of the ALKBH5 oncogene. Knocking down SPP1 partially restored the inhibitory effect of ALKBH5 downregulation on neuroblastoma. Downregulation of ALKBH5 can improve the therapeutic efficacy of carboplatin and etoposide in neuroblastoma. CONCLUSIONS We first found that the rs8400 G>A polymorphism in the m6A demethylase-encoding gene ALKBH5 increases neuroblastoma susceptibility and determines the related mechanisms. The aberrant regulation of ALKBH5 by miR-186-3p caused by this genetic variation in ALKBH5 promotes the occurrence and development of neuroblastoma through the ALKBH5-SPP1 axis.
Collapse
Affiliation(s)
- Qian Guan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenfeng Hua
- Research Institute for Maternal and Child Health, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei Lin
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jiabin Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Linqing Deng
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha 410004, China
| | - Jun Bian
- Department of General Surgery, Xi’an Children’s Hospital, Xi’an Jiaotong University Affiliated Children’s Hospital, Xi’an 710003, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming 650228, China
| | - Lei Miao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Huimin Xia
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jing He
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhenjian Zhuo
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
42
|
Jazmati D, Brualla L, Littooij AS, Webber B, Dieckmann K, Janssens GO, Simon T, Gaze MN, Merta J, Serrano A, Dietzsch S, Kramer PH, Wulff J, Boterberg T, Timmermann B. Overcoming inter-observer planning variability in target volume contouring and dose planning for high-risk neuroblastoma - a European multicenter effort of the SIOPEN radiotherapy committee. Radiother Oncol 2023; 181:109464. [PMID: 36640946 DOI: 10.1016/j.radonc.2023.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE To establish an international quality standard for contouring and planning for high-risk neuroblastoma within the prospective High-Risk Neuroblastoma Study 2 of SIOP-Europe-Neuroblastoma (SIOPEN HR-NBL2), which includes a randomized question on dose escalation for residual disease. MATERIALS AND METHODS Data on four patients with high-risk neuroblastoma were selected and distributed to the radiotherapy committee of the HR-NBL2 study for independent contouring and planning. Differences in contouring were analyzed using apparent and kappa-corrected agreement. Plans were analyzed regarding the dose-volume histogram metrics. Results were discussed among experts and agreement was obtained. RESULTS Substantial agreement was found for contouring of the heart (0.64), liver (0.70), left lung (0.74), and right lung (0.74). For contouring of the gastrointestinal tract (0.54), left kidney (0.60), and right kidney (0.59) moderate agreement was obtained. For target volume delineation, agreement for preoperative tumour extent was moderate (0.42), for CTV fair (0.35) and only low (0.06) for residual tumour, respectively. The dose planning strategies appeared to be relatively homogeneous among all experts. CONCLUSION Considerable variability was found for the delineation of target volumes, particularly the boost volume, whereas the contouring of the organs at risk and the planning strategy were reasonably consistent. In order to obtain reliable results from the randomized HR-NBL2 trial, standardization of target volume delineation based on adequate imaging is crucial.
Collapse
Affiliation(s)
- Danny Jazmati
- Department of Particle Therapy, University Hospital Essen, Germany; West German Proton Therapy Centre Essen (WPE), Germany; West German Cancer Center (WTZ), Germany.
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Germany; West German Cancer Center (WTZ), Germany; Faculty of Medicine, University of Duisburg-Essen, Germany
| | - Annemieke S Littooij
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands., the Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Britta Webber
- Danish Centre of Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Dieckmann
- Department of Radio-Oncology, Medical University of Vienna, Vienna, Austria
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, and Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Thorsten Simon
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Julien Merta
- Department of Particle Therapy, University Hospital Essen, Germany; West German Proton Therapy Centre Essen (WPE), Germany
| | | | - Stefan Dietzsch
- Department of Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Paul-Heinz Kramer
- West German Proton Therapy Centre Essen (WPE), Germany; West German Cancer Center (WTZ), Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Germany; West German Cancer Center (WTZ), Germany
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, Germany; West German Proton Therapy Centre Essen (WPE), Germany; West German Cancer Center (WTZ), Germany; German Cancer Consortium (DKTK), Germany
| |
Collapse
|
43
|
Randall MP, Egolf LE, Vaksman Z, Samanta M, Tsang M, Groff D, Evans JP, Rokita JL, Layeghifard M, Shlien A, Maris JM, Diskin SJ, Bosse KR. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.525066. [PMID: 36778420 PMCID: PMC9915690 DOI: 10.1101/2023.01.31.525066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance High-risk neuroblastoma is a complex genetic disease that is lethal in 50% of patients despite intense multimodal therapy. Our genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) within the BARD1 gene showing the most significant enrichment in neuroblastoma patients, and also discovered pathogenic (P) or likely pathogenic (LP) rare germline loss-of-function variants in this gene. The functional implications of these findings remain poorly understood. Objective To define the functional relevance of BARD1 germline variation in children with neuroblastoma. Design We correlated BARD1 genotype with BARD1 expression in normal and tumor cells and the cellular burden of DNA damage in tumors. To validate the functional consequences of rare germline P-LP BARD1 variants, we generated isogenic cellular models harboring heterozygous BARD1 loss-of-function (LOF) variants and conducted multiple complementary assays to measure the efficiency of DNA repair. Setting (N/A). Participants (N/A). Interventions/Exposures (N/A). Main Outcomes and Measures BARD1 expression, efficiency of DNA repair, and genome-wide burden of DNA damage in neuroblastoma tumors and cellular models harboring disease-associated BARD1 germline variants. Results Both common and rare neuroblastoma associated BARD1 germline variants were significantly associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using neuroblastoma cellular models engineered to harbor disease-associated heterozygous BARD1 LOF variants, we functionally validated this association with inefficient DNA repair. These BARD1 LOF variant isogenic models exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA doublestrand break sites, and enhanced sensitivity to cisplatin and poly-ADP ribose polymerase (PARP) inhibition. Conclusions and Relevance Considering that at least 1 in 10 children diagnosed with cancer carry a predicted pathogenic mutation in a cancer predisposition gene, it is critically important to understand their functional relevance. Here, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications, and these findings may also extend to other cancers harboring germline variants in genes essential for DNA damage repair. Key Points Question: How do neuroblastoma patient BRCA1-associated RING domain 1 ( BARD1 ) germline variants impact DNA repair? Findings: Neuroblastoma-associated germline BARD1 variants disrupt DNA repair fidelity. Common risk variants correlate with decreased BARD1 expression and increased DNA double-strand breaks in neuroblastoma tumors and rare heterozygous loss-of-function variants induce BARD1 haploinsufficiency, resulting in defective DNA repair and genomic instability in neuroblastoma cellular models. Meaning: Germline variation in BARD1 contributes to neuroblastoma pathogenesis via dysregulation of critical cellular DNA repair functions, with implications for neuroblastoma treatment, risk stratification, and cancer predisposition.
Collapse
Affiliation(s)
- Michael P. Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - J. Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, PA 19104, USA
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Wieczorek A, Zaniewska-Tekieli A, Ehlert K, Pawinska-Wasikowska K, Balwierz W, Lode H. Dinutuximab beta combined with chemotherapy in patients with relapsed or refractory neuroblastoma. Front Oncol 2023; 13:1082771. [PMID: 36816982 PMCID: PMC9936065 DOI: 10.3389/fonc.2023.1082771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Prognosis in children with refractory and relapsed high-risk neuroblastoma is poor. Only a minority of patients obtain remission when treated with second-line chemotherapy regimens. Chemotherapy combined with anti-GD2 antibodies has previously been shown to increase response and survival rates. We retrospectively analyzed a cohort of 25 patients with relapsed or refractory high-risk neuroblastoma who were treated with irinotecan/temozolomide chemotherapy in combination with the anti-GD2 antibody dinutuximab beta. The therapy resulted in an objective response rate of 64%, with 32% of patients achieving a complete response. Response to treatment was observed in patients with refractory disease (n=5) and those with first (n=12) or consecutive (n=8) relapses, including patients with progressing disease. In four patients, best response was achieved after more than 5 cycles, suggesting that some patients may benefit from prolonged chemotherapy and dinutuximab beta treatment. Fourteen of our 25 patients had previously received dinutuximab beta, four of whom achieved complete response and six partial response (objective response rate 71%). The therapy was well tolerated, even in heavily pre-treated patients and those who had previously received dinutuximab beta treatment. Toxicities were comparable to those previously reported for the individual therapies, and no discontinuations due to toxicities occurred. Combination of chemotherapy with dinutuximab beta is a promising treatment option for patients with relapsed or refractory high-risk neuroblastoma and should be further explored in clinical studies.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Anna Zaniewska-Tekieli
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Karoline Ehlert
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Katarzyna Pawinska-Wasikowska
- Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Walentyna Balwierz
- Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Holger Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Troschke-Meurer S, Zumpe M, Meißner L, Siebert N, Grabarczyk P, Forkel H, Maletzki C, Bekeschus S, Lode HN. Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models. Cancers (Basel) 2023; 15:cancers15030904. [PMID: 36765861 PMCID: PMC9913527 DOI: 10.3390/cancers15030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Lena Meißner
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Piotr Grabarczyk
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Hannes Forkel
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Holger N. Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-6300; Fax: +49-3834-86-6410
| |
Collapse
|
46
|
Pastorino F, Capasso M, Brignole C, Lasorsa VA, Bensa V, Perri P, Cantalupo S, Giglio S, Provenzi M, Rabusin M, Pota E, Cellini M, Tondo A, De Ioris MA, Sementa AR, Garaventa A, Ponzoni M, Amoroso L. Therapeutic Targeting of ALK in Neuroblastoma: Experience of Italian Precision Medicine in Pediatric Oncology. Cancers (Basel) 2023; 15:cancers15030560. [PMID: 36765519 PMCID: PMC9913103 DOI: 10.3390/cancers15030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Patients with relapsed/refractory disease have a poor prognosis, and additional therapeutic options are needed. Mutations and amplifications in the ALK (Anaplastic Lymphoma Kinase) gene constitute a key target for treatment. Our goal, within the Italian project of PeRsonalizEdMEdicine (PREME), was to evaluate the genomic status of patients with relapsed/refractory NB and to implement targeted therapies in those with targetable mutations. From November 2018 to November 2021, we performed Whole Exome Sequencing or Targeted Gene Panel Sequencing in relapsed/refractory NB patients in order to identify druggable variants. Activating mutations of ALK were identified in 8(28.57%) of 28 relapsed/refractory NB patients. The mutation p.F1174L was found in six patients, whereas p.R1275Q was found in one and the unknown mutation p.S104R in another. Three patients died before treatment could be started, while five patients received crizotinib: two in monotherapy (one with p.F1174L and the other with p.S104R) and three (with p.F1174L variant) in combination with chemotherapy. All treated patients showed a clinical improvement, and one had complete remission after two cycles of combined treatment. The most common treatment-related toxicities were hematological. ALK inhibitors may play an important role in the treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Fabio Pastorino
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Chiara Brignole
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Vito A. Lasorsa
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Veronica Bensa
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Patrizia Perri
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Serena Giglio
- UO Pediatria-Neonatologia/Nido PO A. Ajello ASP Trapani, 91100 Trapani, Italy
| | - Massimo Provenzi
- Pediatric Oncology, Ospedale Papa Giovanni XXIII, Piazza Organizzazione Mondiale Sanità 1, 24127 Bergamo, Italy
| | - Marco Rabusin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Elvira Pota
- UOSD di Ematologia ed Oncologia Pediatrica, Università Degli Studi Della Campania “Luigi Vanvitelli,” Piazza Luigi Miraglia 2, 80138 Napoli, Italy
| | - Monica Cellini
- Division of Paediatric Hemato-Oncology, University Hospital Azienda Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy
| | - Annalisa Tondo
- Department of Hematology-Oncology, Anna Meyer Children’s Hospital, VialePieraccini 24, 50139 Firenze, Italy
| | - Maria A. De Ioris
- Department of Paediatric Haematology/Oncology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela R. Sementa
- Dipartimento di Patologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alberto Garaventa
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Mirco Ponzoni
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363539; Fax: +39-0103779820
| | - Loredana Amoroso
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
47
|
Zeng L, Liu XY, Miao L, Chen K, Xu H, Qin LJ, Li M, Liu K, Feng J, Wang HY. Risk model based on minichromosome maintenance 2 using objective assessment for predicting survival of neuroblastoma. iScience 2023; 26:105974. [PMID: 36756367 PMCID: PMC9900501 DOI: 10.1016/j.isci.2023.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Aberrant minichromosome maintenance (MCM) expression is associated with tumorigenesis. Here, we performed immunohistochemistry integrated with digital pathology to identify MCM2/5/6 expression in 130 neuroblastoma patients. A risk score was established using least absolute shrinkage and selection operator that predicts outcomes according to MCM2 expression, age, and the International Neuroblastoma Staging System in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset (n = 150), where the patients with high risk had significantly worse prognosis that was validated in a hospital-based cohort (n = 130). After multivariable adjustment, the risk model remained an independent factor for survival in the TARGET cohort (overall survival [OS]: hazard ratio [HR] 2.3, 95% confidence interval [CI] 1.4-4.0; event-free survival [EFS]: HR 1.8, 95% CI 1.1-3.1) and for OS in the validation cohort (HR 8.3, 95% CI 1.6-44.5). The ESTIMATE indicates that the risk model is negatively correlated with low ESTIMATE and stromal scores. These findings show the additive nature of this score, fostering its future implementation with new prognostic variables.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, No. 9 Jinsui Road, Guangzhou 510623, People’s Republic of China,Corresponding author
| | - Xiao-Yun Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou 510623, People’s Republic of China
| | - Kai Chen
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, No. 9 Jinsui Road, Guangzhou 510623, People’s Republic of China
| | - Hui Xu
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, No. 9 Jinsui Road, Guangzhou 510623, People’s Republic of China
| | - Liang-Jun Qin
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, No. 9 Jinsui Road, Guangzhou 510623, People’s Republic of China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou 510623, People’s Republic of China
| | - Kai Liu
- Cells Vision (Guangzhou) Medical Technology Inc., Guangzhou 510320, People’s Republic of China
| | - Jiahao Feng
- Cells Vision (Guangzhou) Medical Technology Inc., Guangzhou 510320, People’s Republic of China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, No. 9 Jinsui Road, Guangzhou 510623, People’s Republic of China,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou 510623, People’s Republic of China,Corresponding author
| |
Collapse
|
48
|
Yu U, Xu H, Chen S, Yi M, Liu C, Zhang X, Wang C, Song J, Gan Y, Wang J, Wang Y, Zhang Q, Sun J, Xia B, Zhang G, Li C, Wen F, Liu S, Yuan X. A Retrospective Analysis of the Therapeutic Outcomes of 117 Neuroblastoma Patients Treated at a Single Pediatric Oncology Center in China. Cancer Control 2023; 30:10732748231187837. [PMID: 37575028 PMCID: PMC10426302 DOI: 10.1177/10732748231187837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVE Recent therapeutic advances have greatly enhanced the survival rates of patients with neuroblastoma (NB). However, the outcomes of neuroblastoma patients in China, particularly those with high-risk (HR) NB, remain limited. METHOD We retrospectively analyzed the clinical data and outcomes of NB patients who were treated at a tertiary pediatric cancer facility in China between January 2013 and October 2021. RESULTS A total of 117 NB patients were recruited. Patients with very low-risk (VLR), low-risk (LR), intermediate-risk (IR), and HR-NB patients made up 4%, 27%, 15%, and 54% of total patient population, respectively. Patients diagnosed between 2013 and 2018 were treated according to the protocol of Sun Yat-Sen University Cancer Center and those diagnosed between 2019 and 2021 were treated according to the COG ANBL0531 or ANBL0532 protocol with or without autologous stem cell transplantation (ASCT). The 5-year EFS and OS of all risk groups of patients were 67.29% and 77.90%, respectively. EFS and OS were significantly decreased in patients with higher risk classifications (EFS: VLR/LR vs IR vs HR: 97.22% vs 67.28% vs 51.83%; ***P = .001; OS: VLR/LR vs IR vs HR: 97.06% vs 94.12% vs 64.38%; *P = .046). In HR-NB patients treated according to the COG protocol between 2019 and 2021, the 3-year OS of patients who received tandem ASCT was significantly greater than those who did not receive ASCT (93.33% % vs 47.41%; *P = .046; log-rank test). EFS was not significantly different between patients with and without ASCT (72.16% vs 60.32%). CONCLUSION Our findings show that patients with lower risk classification have a positive prognosis for survival. The prognosis of patients with HR-NB remains in need of improvement. ASCT may enhance OS in HR-NB patients; however, protocol adjustment may be necessary to increase EFS in these patients.
Collapse
Affiliation(s)
- Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Huanli Xu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Senmin Chen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Meng Yi
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Chao Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xiaoling Zhang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Chunjing Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jianming Song
- Department of Pathology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuanxiang Wang
- Department of Thoracic Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Qing Zhang
- Department of Thoracic Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Junjie Sun
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Bei Xia
- Department of Ultrasound, Shenzhen Children’s Hospital, Shenzhen, China
| | - Gongwei Zhang
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Changgang Li
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xiuli Yuan
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
49
|
Mu J, Gong J, Lin P, Zhang M, Wu K. Machine learning methods revealed the roles of immune-metabolism related genes in immune infiltration, stemness, and prognosis of neuroblastoma. Cancer Biomark 2023; 38:241-259. [PMID: 37545226 DOI: 10.3233/cbm-230119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Immunometabolism plays an important role in neuroblastoma (NB). However, the mechanism of immune-metabolism related genes (IMRGs) in NB remains unclear. This study aimed to explore the effects of IMRGs on the prognosis, immune infiltration and stemness of patients with NB using machine learning methods. METHODS R software (v4.2.1) was used to identify the differentially expressed IMRGs, and machine learning algorithm was used to screen the prognostic genes from IMRGs. Then we constructed a prognostic model and calculated the risk scores. The NB patients were grouped according to the prognosis scores. In addition, the genes most associated with the immune infiltration and stemness of NB were analyzed by weighted gene co-expression network analysis (WGCNA). RESULTS There were 89 differentially expressed IMRGs between the MYCN amplification and the MYCN non-amplification group, among which CNR1, GNAI1, GLDC and ABCC4 were selected by machine learning algorithm to construct the prognosis model due to their better prediction effect. Both the K-M survival curve and the 5-year Receiver operating characteristic (ROC) curve indicated that the prognosis model could predict the prognosis of NB patients, and there was significant difference in immune infiltration between the two groups according to the median of risk score. CONCLUSIONS We verified the effects of IMRGs on the prognosis, immune infiltration and stemness of NB. These findings could provide help for predicting prognosis and developing immunotherapy in NB.
Collapse
Affiliation(s)
- Jianhua Mu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengzhen Zhang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Olgun N, Cecen E, Ince D, Kizmazoglu D, Baysal B, Onal A, Ozdogan O, Guleryuz H, Cetingoz R, Demiral A, Olguner M, Celik A, Kamer S, Ozer E, Altun Z, Aktas S. Dinutuximab beta plus conventional chemotherapy for relapsed/refractory high-risk neuroblastoma: A single-center experience. Front Oncol 2022; 12:1041443. [PMID: 36620564 PMCID: PMC9816792 DOI: 10.3389/fonc.2022.1041443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Relapsed/refractory high-risk neuroblastoma has a dismal prognosis. Anti-GD2-mediated chemo-immunotherapy has a notable anti-tumor activity in patients with relapsed/refractory high-risk neuroblastoma. The purpose of this study was to analyze the efficacy and safety of the combination of immunotherapy with dinutuximab beta (DB) and chemotherapy in patients with relapsed/refractory high-risk neuroblastoma. Methods All patients received the Turkish Pediatric Oncology Group NB 2009 national protocol for HR-NB treatment at the time of diagnosis. Salvage treatments were administered after progression or relapse. The patients who could not achieve remission in primary or metastatic sites were included in the study. The most common chemotherapy scheme was irinotecan and temozolomide. DB was administered intravenously for 10 days through continuous infusion with 10 mg/m2 per day. The patients received 2 to 14 successive cycles with duration of 28 days each. Disease assessment was performed after cycles 2, 4, and 6 and every 2 to 3 cycles thereafter. Results Between January 2020 and March 2022, nineteen patients received a total of 125 cycles of DB and chemotherapy. Objective responses were achieved in 12/19 (63%) patients, including complete remission in 6/19 and partial response in 6/19. Stable disease was observed in two patients. The remaining five patients developed bone/bone marrow and soft tissue progression after 2-4 cycles of treatment. The most common Grade ≥3 toxicities were leukopenia, thrombocytopenia, hypertransaminasemia, fever, rash/itching and capillary leak syndrome, respectively. Conclusion Our study results suggest that DB-based chemo-immunotherapy seems to be suitable with encouraging response rates in patients with relapsed/refractory high-risk neuroblastoma.
Collapse
Affiliation(s)
- Nur Olgun
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye,*Correspondence: Nur Olgun,
| | - Emre Cecen
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Dilek Ince
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Deniz Kizmazoglu
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Birsen Baysal
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Ayse Onal
- Department of Pediatric Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Ozhan Ozdogan
- Department of Nuclear Medicine, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Handan Guleryuz
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Riza Cetingoz
- Department of Radiation Oncology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Ayse Demiral
- Department of Radiation Oncology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Mustafa Olguner
- Department of Pediatric Surgery, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Ahmet Celik
- Department of Pediatric Surgery, Ege University School of Medicine, Izmir, Türkiye
| | - Serra Kamer
- Department of Radiation Oncology, Ege University School of Medicine, Izmir, Türkiye
| | - Erdener Ozer
- Department of Pathology, Dokuz Eylul University School of Medicine, Izmir, Türkiye
| | - Zekiye Altun
- Department of Basic Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| | - Safiye Aktas
- Department of Basic Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Türkiye
| |
Collapse
|