1
|
Balasenthilkumaran NV, Whitesell JC, Pyle L, Friedman RS, Kravets V. Network approach reveals preferential T-cell and macrophage association with α-linked β-cells in early stage of insulitis in NOD mice. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1393397. [PMID: 38979061 PMCID: PMC11228247 DOI: 10.3389/fnetp.2024.1393397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
One of the challenges in studying islet inflammation-insulitis-is that it is a transient phenomenon. Traditional reporting of the insulitis progression is based on cumulative, donor-averaged values of leucocyte density in the vicinity of pancreatic islets, that hinder intra- and inter-islet heterogeneity of disease progression. Here, we aimed to understand why insulitis is non-uniform, often with peri-insulitis lesions formed on one side of an islet. To achieve this, we demonstrated the applicability of network theory in detangling intra-islet multi-cellular interactions during insulitis. Specifically, we asked the question "What is unique about regions of the islet that interact with immune cells first". This study utilized the non-obese diabetic mouse model of type one diabetes and examined the interplay among α-, β-, T-cells, myeloid cells, and macrophages in pancreatic islets during the progression of insulitis. Disease evolution was tracked based on the T/β cell ratio in individual islets. In the early stage, we found that immune cells are preferentially interacting with α-cell-rich regions of an islet. At the islet periphery α-linked β-cells were found to be targeted significantly more compared to those without α-cell neighbors. Additionally, network analysis revealed increased T-myeloid, and T-macrophage interactions with all β-cells.
Collapse
Affiliation(s)
- Nirmala V. Balasenthilkumaran
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, CA, United States
| | - Jennifer C. Whitesell
- Department of Immunology and Microbiology, School of Medicine, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura Pyle
- Department of Pediatrics, University of Colorado School of Medicine, Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, School of Medicine, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vira Kravets
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, CA, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
2
|
Rodríguez-González J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Human Dendritic Cell Maturation Is Modulated by Leishmania mexicana through Akt Signaling Pathway. Trop Med Infect Dis 2024; 9:118. [PMID: 38787051 PMCID: PMC11126033 DOI: 10.3390/tropicalmed9050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through the secretion of cytokines. Several studies have demonstrated that Leishmania inhibits DC maturation. Nevertheless, when cells are subjected to a second stimulus such as LPS/IFN-γ, they manage to mature. In the maturation process of DC, several signaling pathways have been implicated, importantly MAPK. On the other hand, Akt is a signaling pathway deeply involved in cell survival. Some Leishmania species have shown to activate MAPK and Akt in different cells. The aim of this work was to investigate the role of ERK and Akt in the maturation of monocyte-derived DC (moDC) infected with L. mexicana. moDC were infected with L. mexicana metacyclic promastigotes, and the phosphorylation of ERK and Akt, the expression of MHCII and CD86 and IL-12 transcript, and secretion were determined in the presence or absence of an Akt inhibitor. We showed that L. mexicana induces a sustained Akt and ERK phosphorylation, while the Akt inhibitor inhibits it. Moreover, the infection of moDC downregulates CD86 expression but not MHCII, and the Akt inhibitor reestablishes CD86 expression and 12p40 production. Thus, L. mexicana can modulate DC maturation though Akt signaling.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez, Oaxaca C.P. 68120, Mexico;
| | - Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| |
Collapse
|
3
|
Zhang Q, Zhang Y, Wu L, Wang D, Zhuo Y, Lu Y, Liu Y, Wang Z, Qiu L, Tan W. DNA Reaction Circuits to Establish Designated Biological Functions in Multicellular Community. NANO LETTERS 2024; 24:5808-5815. [PMID: 38710049 DOI: 10.1021/acs.nanolett.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.
Collapse
Affiliation(s)
- Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao Lu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Balasenthilkumaran NV, Whitesell JC, Pyle L, Friedman R, Kravets V. Network approach reveals preferential T-cell and macrophage association with α-linked β-cells in early stage of insulitis in NOD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592831. [PMID: 38766090 PMCID: PMC11100702 DOI: 10.1101/2024.05.06.592831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
One of the challenges in studying islet inflammation - insulitis - is that it is a transient phenomenon. Traditional reporting of the insulitis progression is based on cumulative, donor-averaged values of leucocyte density in the vicinity of pancreatic islets, that hinders intra- and inter-islet heterogeneity of disease progression. Here, we aimed to understand why insulitis is non-uniform, often with peri-insulitis lesions formed on one side of an islet. To achieve this, we demonstrated applicability of network theory in detangling intra-islet multi-cellular interactions during insulitis. Specifically, we asked the question "what is unique about regions of the islet which interact with immune cells first". This study utilized the non-obese diabetic mouse model of type one diabetes and examined the interplay among α-, β-, T-cells, myeloid cells, and macrophages in pancreatic islets during the progression of insulitis. Disease evolution was tracked based on T/β cell ratio in individual islets. In the early stage, we found that immune cells are preferentially interacting with α-cell-rich regions of an islet. At the islet periphery α-linked β-cells were found to be targeted significantly more compared to those without α-cell neighbors. Additionally, network analysis revealed increased T-myeloid, and T-macrophage interactions with all β-cells.
Collapse
|
5
|
Jiang F, Wang J, Ren Z, Hu Y, Wang B, Li M, Yu J, Tang J, Guo G, Cheng Y, Han P, Shen H. Targeted Light-Induced Immunomodulatory Strategy for Implant-Associated Infections via Reversing Biofilm-Mediated Immunosuppression. ACS NANO 2024; 18:6990-7010. [PMID: 38385433 DOI: 10.1021/acsnano.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Wang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
6
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
7
|
Han SC, Kang JI, Choi YK, Boo HJ, Yoon WJ, Kang HK, Yoo ES. Intermittent Fasting Modulates Immune Response by Generating Tregs via TGF-β Dependent Mechanisms in Obese Mice with Allergic Contact Dermatitis. Biomol Ther (Seoul) 2024; 32:136-145. [PMID: 37424516 PMCID: PMC10762271 DOI: 10.4062/biomolther.2023.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-β-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-β-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-β and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-β-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.
Collapse
Affiliation(s)
- Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Il Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Youn Kyung Choi
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye-Jin Boo
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 63208, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Sook Yoo
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
8
|
Wu T, Womersley HJ, Wang JR, Scolnick J, Cheow LF. Time-resolved assessment of single-cell protein secretion by sequencing. Nat Methods 2023; 20:723-734. [PMID: 37037998 DOI: 10.1038/s41592-023-01841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Secreted proteins play critical roles in cellular communication. Methods enabling concurrent measurement of cellular protein secretion, phenotypes and transcriptomes are still unavailable. Here we describe time-resolved assessment of protein secretion from single cells by sequencing (TRAPS-seq). Released proteins are trapped onto the cell surface and probed by oligonucleotide-barcoded antibodies before being simultaneously sequenced with transcriptomes in single cells. We demonstrate that TRAPS-seq helps unravel the phenotypic and transcriptional determinants of the secretion of pleiotropic TH1 cytokines (IFNγ, IL-2 and TNF) in activated T cells. In addition, we show that TRAPS-seq can be used to track the secretion of multiple cytokines over time, uncovering unique molecular signatures that govern the dynamics of single-cell cytokine secretions. Our results revealed that early central memory T cells with CD45RA expression (TCMRA) are important in both the production and maintenance of polyfunctional cytokines. TRAPS-seq presents a unique tool for seamless integration of secretomics measurements with multi-omics profiling in single cells.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Howard John Womersley
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | | | - Jonathan Scolnick
- Singleron Biotechnologies Pte. Ltd., Singapore, Singapore
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Gao X, He J, Sun X, Li F. Dynamically modeling the effective range of IL-2 dosage in the treatment of systemic lupus erythematosus. iScience 2022; 25:104911. [PMID: 36060072 PMCID: PMC9429801 DOI: 10.1016/j.isci.2022.104911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease characterized by an overactive immune response to self-antigen. The overactivation of CD4+ Foxp3- conventional T cells (Tcons) and the inactivation of CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) play important roles in the progression of SLE. Clinical trials showed that low-dose interleukin-2 (IL-2) is effective in treating SLE. Here, we developed a mathematical model involving Tcons, Tregs, natural killer (NK) cells, and IL-2 to simulate the dynamic processes involved in the treatment of SLE. We found an effective range of IL-2 dosage defined by the Tcon/Treg ratio in SLE treatment, termed the IL-2 dosage therapeutic window (IDTW). Our results showed that high levels of self-antigen result in a narrow IDTW and high post-treatment Tcon/Treg ratio. Furthermore, we proposed a classification method based on the ratio of pre-treatment Treg to CD4+ T cells to predict the treatment outcome of SLE patients.
Collapse
Affiliation(s)
- Xin Gao
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| | - Jing He
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, 100044, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, 100044, China
| | - Fangting Li
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Analysis of melanoma tumor antigens and immune subtypes for the development of mRNA vaccine. Invest New Drugs 2022; 40:1173-1184. [PMID: 35962880 PMCID: PMC9375085 DOI: 10.1007/s10637-022-01290-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 10/27/2022]
Abstract
Melanoma has a high degree of malignancy and mortality. While there are some hopeful clinical trials for melanoma treatment in progress, they have not yet to yield significant long-term cure rates. Cancer vaccines including mRNA are currently one of the most promising strategy for tumor immunotherapy. The aim of this study was to analyze the potential tumor antigens in melanoma that could be used to develop mRNA vaccines and identify suitable vaccine populations. The gene expression data and complete clinical information of 471 melanoma samples and 1 normal tissue were retrieved from TCGA. Then, 812 samples of normal skin and their corresponding gene expression data were obtained from GTEx. Overexpressed genes, mutated genes and IRDEGs are used to identify potential tumor antigens. The relationship between the expression level of potential antigen and prognosis was analyzed in GEPIA, and then the immune cell infiltration was estimated based on TIMER algorithm. The expression profiles of IRDEGs were used to identify consensus clusters and immune subtypes of melanoma. Finally, mutational status and immune microenvironment characterization in immune subtypes were analyzed. Five tumor antigens (PTPRC, SIGLEC10, CARD11, LILRB1, ADAMDEC1) were identified as potential tumor antigens according to overexpressed genes, mutated genes and immune-related genes. They were all associated with OS, DFS and APCs. We identified two immune subtypes of melanoma, named IS1 and IS2, which exhibit different clinical features and immune landscapes. Based on the different immune landscape, we may conclude that IS1 is immunophenotypically "cold", while IS2 is "hot". The present research implicates that PTPRC, SIGLEC10, CARD11, LILRB1 and ADAMDEC1 may be the antigenic targets for melanoma mRNA vaccines and IS2 patients may be more effective to these vaccines.
Collapse
|
11
|
Said EA, Al-Dughaishi S, Al-Hatmi W, Al-Reesi I, Al-Riyami M, Al-Balushi MS, Al-Bimani A, Al-Busaidi JZ, Al-Khabori M, Al-Kindi S, Procopio FA, Al-Rashdi A, Al-Ansari A, Babiker H, Koh CY, Al-Naamani K, Pantaleo G, Al-Jabri AA. Human macrophages and monocyte-derived dendritic cells stimulate the proliferation of endothelial cells through midkine production. PLoS One 2022; 17:e0267662. [PMID: 35476724 PMCID: PMC9045650 DOI: 10.1371/journal.pone.0267662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
The cytokine midkine (MK) is a growth factor that is involved in different physiological processes including tissue repair, inflammation, the development of different types of cancer and the proliferation of endothelial cells. The production of MK by primary human macrophages and monocyte-derived dendritic cells (MDDCs) was never described. We investigated whether MK is produced by primary human monocytes, macrophages and MDDCs and the capacity of macrophages and MDDCs to modulate the proliferation of endothelial cells through MK production. The TLR stimulation of human monocytes, macrophages and MDDCs induced an average of ≈200-fold increase in MK mRNA and the production of an average of 78.2, 62, 179 pg/ml MK by monocytes, macrophages and MDDCs respectively (p < 0.05). MK production was supported by its detection in CD11c+ cells, CLEC4C+ cells and CD68+ cells in biopsies of human tonsils showing reactive lymphoid follicular hyperplasia. JSH-23, which selectively inhibits NF-κB activity, decreased the TLR-induced production of MK in PMBCs, macrophages and MDDCs compared to the control (p < 0.05). The inhibition of MK production by macrophages and MDDCs using anti-MK siRNA decreased the capacity of their supernatants to stimulate the proliferation of endothelial cells (p = 0.01 and 0.04 respectively). This is the first study demonstrating that the cytokine MK is produced by primary human macrophages and MDDCs upon TLR triggering, and that these cells can stimulate endothelial cell proliferation through MK production. Our results also suggest that NF-κB plays a potential role in the production of MK in macrophages and MDDCs upon TLR stimulation. The production of MK by macrophages and MDDCs and the fact that these cells can enhance the proliferation of endothelial cells by producing MK are novel immunological phenomena that have potentially important therapeutic implications.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| | - Sumaya Al-Dughaishi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Wadha Al-Hatmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Iman Al-Reesi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Marwa Al-Riyami
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Atika Al-Bimani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Juma Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Murtadha Al-Khabori
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salam Al-Kindi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Francesco A. Procopio
- Laboratory of AIDS Immunopathogenesis, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University of Lausanne, Lauzane, Switzerland
| | - Afrah Al-Rashdi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aliyaa Al-Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Hamza Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Giuseppe Pantaleo
- Laboratory of AIDS Immunopathogenesis, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University of Lausanne, Lauzane, Switzerland
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
12
|
Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343:564-583. [DOI: 10.1016/j.jconrel.2022.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
|
13
|
Weiss M, Anderluh M, Gobec M. Inhibition of O-GlcNAc Transferase Alters the Differentiation and Maturation Process of Human Monocyte Derived Dendritic Cells. Cells 2021; 10:cells10123312. [PMID: 34943826 PMCID: PMC8699345 DOI: 10.3390/cells10123312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.
Collapse
Affiliation(s)
- Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Martina Gobec
- The Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4769-636
| |
Collapse
|
14
|
Prins MMC, van Roest M, Vermeulen JLM, Tjabringa GS, van de Graaf SFJ, Koelink PJ, Wildenberg ME. Applicability of different cell line-derived dendritic cell-like cells in autophagy research. J Immunol Methods 2021; 497:113106. [PMID: 34324891 DOI: 10.1016/j.jim.2021.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Immortalized cell lines have been long used as substitute for ex vivo murine and human material, but exhibit features that are not found in healthy tissue. True human dendritic cells (DC) cannot be cultured or passaged as opposed to immortalized cell lines. Research in the fields of immunogenic responses and immunotolerance in DCs has increased over the last decade. Autophagy has gained interest in these fields as well, and has been researched extensively in many other cell types as well. Here we have studied the applicability of cell line-derived dendritic cell-like cells of six myeloid cell lines aimed at research focussed on autophagy. METHODS Six myeloid leukaemia cell lines were differentiated towards cell line-derived dendritic cell-like cells (cd-DC) using GM-CSF, IL-4, Ionomycine and PMA: HL60, KG1, MM6, MV-4-11, THP1 and U937. Autophagy was modulated using Rapamycin, Bafilomycin A1 and 3MA. Cell lines were genotyped for autophagy-related SNPs using RFLP. Marker expression was determined with FACS analysis and cytokine profiles were determined using Human Cytometric Bead Assay. Antigen uptake was assessed using Fluoresbrite microspheres. RESULTS AND DISCUSSION All researched cell lines harboured SNPs in the autophagy pathways. MM6 and THP1 derived cd-DCs resembled monocyte-derived DCs (moDC) most closely in marker expression, cytokine profiles and autophagy response. The HL60 and U937 cell lines proved least suitable for autophagy-related dendritic cell research. CONCLUSION The genetic background of cell lines should be taken into account upon studying (the effects of) autophagy in any cell line. Although none of the studied cell lines recapitulate the full spectrum of DC characteristics, MM6 and THP1 derived cd-DCs are most suitable for autophagy-related research in dendritic cells.
Collapse
Affiliation(s)
- Marileen M C Prins
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon van Roest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jacqueline L M Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - G Sandra Tjabringa
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Pradhan K, Geng S, Zhang Y, Lin RC, Li L. TRAM-Related TLR4 Pathway Antagonized by IRAK-M Mediates the Expression of Adhesion/Coactivating Molecules on Low-Grade Inflammatory Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2980-2988. [PMID: 34031144 PMCID: PMC8278277 DOI: 10.4049/jimmunol.2000978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
Low-grade inflammatory monocytes critically contribute to the pathogenesis of chronic inflammatory diseases such as atherosclerosis. The elevated expression of coactivating molecule CD40 as well as key adhesion molecule CD11a is a critical signature of inflammatory monocytes from both human patients with coronary artery diseases as well as in animal models of atherosclerosis. In this study, we report that subclinical superlow-dose LPS, a key risk factor for low-grade inflammation and atherosclerosis, can potently trigger the induction of CD40 and CD11a on low-grade inflammatory monocytes. Subclinical endotoxin-derived monocytes demonstrate immune-enhancing effects and suppress the generation of regulatory CD8+CD122+ T cells, which further exacerbate the inflammatory environment conducive for chronic diseases. Mechanistically, subclinical endotoxemia activates TRAM-mediated signaling processes, leading to the activation of MAPK and STAT5, which is responsible for the expression of CD40 and CD11a. We also demonstrate that TRAM-mediated monocyte polarization can be suppressed by IRAK-M. IRAK-M-deficient monocytes have increased expression of TRAM, elevated induction of CD40 and CD11a by subclinical-dose endotoxin, and are more potent in suppressing the CD8 regulatory T cells. Mice with IRAK-M deficiency generate an increased population of inflammatory monocytes and a reduced population of CD8 T regulatory cells. In contrast, mice with TRAM deficiency exhibit a significantly reduced inflammatory monocyte population and an elevated CD8 T regulatory cell population. Together, our data reveal a competing intracellular circuitry involving TRAM and IRAK-M that modulate the polarization of low-grade inflammatory monocytes with an immune-enhancing function.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Rui-Ci Lin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
16
|
Sapudom J, Alatoom A, Mohamed WKE, Garcia-Sabaté A, McBain I, Nasser RA, Teo JCM. Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater Sci 2021; 8:5106-5120. [PMID: 32812979 DOI: 10.1039/d0bm01141j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. Understanding how biophysical properties affect DC behaviors will provide insight into the biology of a DC and its applications. In this work, we studied how cell culture dimensionality (two-dimensional (2D) and three-dimensional (3D)), and matrix density of 3D collagen matrices modulate differentiation and functions of DCs. Besides, we aimed to point out the different conceptual perspectives in modern immunological research, namely tissue-centric and cell-centric perspectives. The tissue-centric perspective intends to reveal how specific microenvironments dictate DC differentiation and in turn modulate DC functionalities, while the cell-centric perspective aims to demonstrate how pre-differentiated DCs behave in specific microenvironments. DC plasticity was characterized in terms of cell surface markers and cytokine secretion profiles. Subsequently, antigen internalization and T cell activation were quantified to demonstrate the cellular functions of immature DCs (iDCs) and mature DCs (mDCs), respectively. In the tissue-centric perspective, we found that expressed surface markers and secreted cytokines of both iDCs and mDCs are generally higher in 2D culture, while they are regulated by matrix density in 3D culture. In contrast, in the cell-centric perspective, we found enhanced expression of cell surface markers as well as distinct cytokine secretion profiles in both iDCs and mDCs. By analyzing cellular functions of cells in the tissue-centric perspective, we found matrix density dependence in antigen uptake by iDCs, as well as on mDC-mediated T cell proliferation in 3D cell culture. On the other hand, in the cell-centric perspective, both iDCs and mDCs appeared to lose their functional potentials to internalization antigen and T cell stimulation. Additionally, mDCs from tissue- and cell-centric perspectives modulated T cell differentiation by their distinct cytokine secretion profiles towards Th1 and Th17, respectively. In sum, our work emphasizes the importance of dimensionality, as well as collagen fibrillar density in the regulation of the immune response of DCs. Besides this, we demonstrated that the conceptual perspective of the experimental design could be an essential key point in research in immune cell-material interactions and biomaterial-based disease models of immunity.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Walaa K E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Ian McBain
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Rasha A Nasser
- Department of Microbiology Immunology, College of Medicine, United Arab Emirates University, United Arab Emirates
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| |
Collapse
|
17
|
IRAP-dependent endosomal T cell receptor signalling is essential for T cell responses. Nat Commun 2020; 11:2779. [PMID: 32487999 PMCID: PMC7265453 DOI: 10.1038/s41467-020-16471-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/03/2020] [Indexed: 11/09/2022] Open
Abstract
T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation. T cell receptors (TCR) are internalized when activated by their ligands. Here the authors show that the internalized TCRs are localized to endosomes expressing IRAP and Syntaxin 6 to maintain intracellular signalling capacity, whose importance is shown by the absence of efficient polyclonal anti-tumour response in mice with T-specific conditional deletion of IRAP.
Collapse
|
18
|
Piretto E, Delitala M, Kim PS, Frascoli F. Effects of mutations and immunogenicity on outcomes of anti-cancer therapies for secondary lesions. Math Biosci 2019; 315:108238. [PMID: 31401294 DOI: 10.1016/j.mbs.2019.108238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
Cancer development is driven by mutations and selective forces, including the action of the immune system and interspecific competition. When administered to patients, anti-cancer therapies affect the development and dynamics of tumours, possibly with various degrees of resistance due to immunoediting and microenvironment. Tumours are able to express a variety of competing phenotypes with different attributes and thus respond differently to various anti-cancer therapies. In this paper, a mathematical framework incorporating a system of delay differential equations for the immune system activation cycle and an agent-based approach for tumour-immune interaction is presented. The focus is on those metastatic, secondary solid lesions that are still undetected and non-vascularised. By using available experimental data, we analyse the effects of combination therapies on these lesions and investigate the role of mutations on the rates of success of common treatments. Findings show that mutations, growth properties and immunoediting influence therapies' outcomes in nonlinear and complex ways, affecting cancer lesion morphologies, phenotypical compositions and overall proliferation patterns. Cascade effects on final outcomes for secondary lesions are also investigated, showing that actions on primary lesions could sometimes result in unexpected clearances of secondary tumours. This outcome is strongly dependent on the clonal composition of the primary and secondary masses and is shown to allow, in some cases, the control of the disease for years.
Collapse
Affiliation(s)
- Elena Piretto
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy; Department of Mathematics, Universitá di Torino, Turin, Italy; Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Marcello Delitala
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Peter S Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Federico Frascoli
- Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
19
|
Saveanu L, Zucchetti AE, Evnouchidou I, Ardouin L, Hivroz C. Is there a place and role for endocyticTCRsignaling? Immunol Rev 2019; 291:57-74. [DOI: 10.1111/imr.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Loredana Saveanu
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
| | - Andres E. Zucchetti
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Irini Evnouchidou
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
- Inovarion Paris France
| | - Laurence Ardouin
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Claire Hivroz
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| |
Collapse
|
20
|
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 2019; 9:3176. [PMID: 30719026 PMCID: PMC6348254 DOI: 10.3389/fimmu.2018.03176] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naïve T cell activation and effector differentiation. They are, likewise, involved in the induction and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and functional heterogeneity points to their great plasticity and ability to modulate, according to their microenvironment, the acquired immune response and, at the same time, makes their precise classification complex and frequently subject to reviews and improvement. This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools. New combination treatments with the participation of DC will be also discussed.
Collapse
Affiliation(s)
- Thiago A Patente
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana P Pinho
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline A Oliveira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela C M Evangelista
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Discipline of Molecular Medicine, Department of Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Stewart-Hutchinson PJ, Szasz TP, Jaeger ER, Onken MD, Cooper JA, Morley SC. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate. J Leukoc Biol 2017. [PMID: 28637896 DOI: 10.1189/jlb.1ta0117-008r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL-/-) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL-/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration.
Collapse
Affiliation(s)
- Phillip J Stewart-Hutchinson
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor P Szasz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily R Jaeger
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael D Onken
- Departments of Biochemistry and Molecular Biophysics and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA; and
| | - John A Cooper
- Departments of Biochemistry and Molecular Biophysics and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA; and
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Hwang I, Kim K, Choi S, Lomunova M. Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex. Mol Cells 2017; 40:24-36. [PMID: 28152301 PMCID: PMC5303886 DOI: 10.14348/molcells.2017.2218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022] Open
Abstract
The stability of peptide-MHC complex (pMHC) is an important factor to shape the fate of peptide-specific T cell immune response, but how it influences on T cell activation process is poorly understood. To better understand that, we investigated various T cell activation events driven by Ld MHCI loaded with graded concentrations of P2Ca and QL9 peptides, respectively, with 2C TCR Tg T cells; the binding strength of P2Ca for Ld is measurably weaker than that of QL9, but either peptides in the context of Ld interact with 2C TCR with a similar strength. When their concentrations required for early T cell activation events, which occur within several minutes to an hour, were concerned, EC50s of QL9 were about 100 folds lower than those of P2Ca, which was expected from their association constants for Ld. When EC50s for late activation events, which takes over several hours to occur, were concerned, the differences grew even larger (> 300 folds), suggesting that, due to weak binding, Ld/P2Ca dissociate from each other more easily to lose its antigenicity in a short time. Accordingly, fixation of Ld/P2Ca with paraformaldehyde resulted in a significant improvement in its immunogenicity. These results imply that binding strength of a peptide for a MHC is a critical factor to determine the duration of pMHC-mediated T cell activation and thus the attainment of productive T cell activation. It is also suggested that paraformaldehyde fixation should be an effective tool to ameliorate the immunogenicity of pMHC with a poor stability.
Collapse
Affiliation(s)
- Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California,
USA
- College of Pharmacy, Chungnam National University, Daejeon 34134,
Korea
| | - Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California,
USA
- College of Pharmacy, Dankook University, Yongin 16890,
Korea
| | - Sojin Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134,
Korea
| | - Maria Lomunova
- College of Pharmacy, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
23
|
Abstract
T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation-exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues.
Collapse
|
24
|
Sarkar S, Motwani V, Sabhachandani P, Cohen N, Konry T. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray. ACTA ACUST UNITED AC 2015; 6. [PMID: 26613065 PMCID: PMC4657871 DOI: 10.4172/2155-9899.1000334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. Methods The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Results Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Conclusions Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA
| | - Vinny Motwani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA
| | - Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA
| | - Noa Cohen
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA
| |
Collapse
|
25
|
León B, Ballesteros-Tato A, Lund FE. Dendritic cells and B cells: unexpected partners in Th2 development. THE JOURNAL OF IMMUNOLOGY 2014; 193:1531-7. [PMID: 25086176 DOI: 10.4049/jimmunol.1400149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although we have known for decades that B cells contribute to immune responses by secreting Ab, it is now clear that they are more than simply factories for Ig production, and they also play key roles as modulators of T cell-dependent immunity. Indeed, the evidence showing that Ag-presenting and cytokine-producing B cells can alter the magnitude and quality of CD4 T cell responses continues to grow. In this article, we review the data showing that B cells, working in partnership with dendritic cells, regulate the development of Th2 cells and the subsequent allergic response.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
26
|
A sharp T-cell antigen receptor signaling threshold for T-cell proliferation. Proc Natl Acad Sci U S A 2014; 111:E3679-88. [PMID: 25136127 DOI: 10.1073/pnas.1413726111] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77-eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery.
Collapse
|
27
|
Castro M, van Santen HM, Férez M, Alarcón B, Lythe G, Molina-París C. Receptor Pre-Clustering and T cell Responses: Insights into Molecular Mechanisms. Front Immunol 2014; 5:132. [PMID: 24817867 PMCID: PMC4012210 DOI: 10.3389/fimmu.2014.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
T cell activation, initiated by T cell receptor (TCR) mediated recognition of pathogen-derived peptides presented by major histocompatibility complex class I or II molecules (pMHC), shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering, an open question. We formulate a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the surface of T cells, motivated by the experimentally observed distribution of TCR clusters on the surface of naive and memory T cells. We extend a recently introduced stochastic criterion to compute the timescales of T cell responses, assuming that ligand-induced cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favoring the existence of clusters are required to explain the difference between naive and memory T cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models.
Collapse
Affiliation(s)
- Mario Castro
- Grupo de Dinámica No-Lineal and Grupo Interdisciplinar de Sistemas Complejos (GISC), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas , Madrid , Spain
| | - Hisse M van Santen
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - María Férez
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Balbino Alarcón
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| |
Collapse
|
28
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
29
|
Bains I, van Santen HM, Seddon B, Yates AJ. Models of self-peptide sampling by developing T cells identify candidate mechanisms of thymic selection. PLoS Comput Biol 2013; 9:e1003102. [PMID: 23935465 PMCID: PMC3723501 DOI: 10.1371/journal.pcbi.1003102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Conventional and regulatory T cells develop in the thymus where they are exposed to samples of self-peptide MHC (pMHC) ligands. This probabilistic process selects for cells within a range of responsiveness that allows the detection of foreign antigen without excessive responses to self. Regulatory T cells are thought to lie at the higher end of the spectrum of acceptable self-reactivity and play a crucial role in the control of autoimmunity and tolerance to innocuous antigens. While many studies have elucidated key elements influencing lineage commitment, we still lack a full understanding of how thymocytes integrate signals obtained by sampling self-peptides to make fate decisions. To address this problem, we apply stochastic models of signal integration by T cells to data from a study quantifying the development of the two lineages using controllable levels of agonist peptide in the thymus. We find two models are able to explain the observations; one in which T cells continually re-assess fate decisions on the basis of multiple summed proximal signals from TCR-pMHC interactions; and another in which TCR sensitivity is modulated over time, such that contact with the same pMHC ligand may lead to divergent outcomes at different stages of development. Neither model requires that T(conv) and T(reg) are differentially susceptible to deletion or that the two lineages need qualitatively different signals for development, as have been proposed. We find additional support for the variable-sensitivity model, which is able to explain apparently paradoxical observations regarding the effect of partial and strong agonists on T(conv) and T(reg) development.
Collapse
Affiliation(s)
- Iren Bains
- Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Hisse M. van Santen
- Centro Biologia Molecular Severo Ochoa, CSIC/Universidad Autonoma de Madrid, Madrid, Spain
| | - Benedict Seddon
- Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Andrew J. Yates
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| |
Collapse
|
30
|
Kim HR, Na BR, Kwon MS, Ko YS, Han WC, Jun CD. Dynamic motile T cells highly respond to the T cell stimulation via PI3K-Akt and NF-κB pathways. PLoS One 2013; 8:e59793. [PMID: 23555783 PMCID: PMC3608537 DOI: 10.1371/journal.pone.0059793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/19/2013] [Indexed: 01/14/2023] Open
Abstract
T lymphocytes (T cells) circulate from the blood into secondary lymphoid organs for immune surveillance. In this study, we hypothesized that circulating T cells are heterogeneous and can be grouped according to their differential migratory capacity in response to chemoattractants, rather than expressions of certain receptors or cytokines. We further hypothesized that, at least in part, this intrinsic difference in motility may be related to the T cell function. We established motile (m-T) and non-motile T (nm-T) cell lines based on their response to the chemokine SDF-1α. m-T cells showed more irregular and polarized morphologies than nm-T cells did. Interestingly, m-T cells produced higher levels of IL-2, a marker for T cell activation, than nm-T cells did after stimulation; however, no differences were observed in terms of surface expression of T cell receptors (TCR), adhesion molecules LFA-1 and ICAM-1, and chemokine receptor CXCR4. Both cell lines also showed similar membrane events (i.e., T cell-APC conjugation, LFA-1 accumulation at the immunological synapse, and TCR internalization). In contrast, PKC-θ, a downstream of PI3K-Akt pathway was constitutively activated in m-T cells and the activation was more prominent during T cell stimulation. Consequently, NF-κB activity was selectively upregulated in m-T cells. This study is the first, to our knowledge, to demonstrate that T cells can be subcategorized on the basis of their intrinsic migratory capacity in relation to T cell activation.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Min-Sung Kwon
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yoo-Seung Ko
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Weon-Cheol Han
- Department of Pathology, Wonkwang University School of Medicine, Iksan, Chonbuk, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
31
|
Steponavicius-Cruz K, Freitas VM, Barbuto JAM. Dendritic Cells and T Lymphocytes Interactions in a Novel 3D System. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proeng.2013.05.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Yissachar N, Sharar Fischler T, Cohen AA, Reich-Zeliger S, Russ D, Shifrut E, Porat Z, Friedman N. Dynamic response diversity of NFAT isoforms in individual living cells. Mol Cell 2012; 49:322-30. [PMID: 23219532 DOI: 10.1016/j.molcel.2012.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/10/2012] [Accepted: 11/02/2012] [Indexed: 01/10/2023]
Abstract
Processing of external information by mammalian cells often involves seemingly redundant isoforms of signaling molecules and transcription factors. Understanding the functional relevance of coexpressed isoforms that respond to the same signal and control a shared set of genes is still limited. Here we show, using imaging of individual living mammalian cells, that the closely related transcription factors NFAT1 and NFAT4 possess distinct nuclear localization dynamics in response to cell stimulation. NFAT4 shows a fast response, with rapid stochastic bursts of nuclear localization. Burst frequency grows with signal level, while response amplitude is fixed. In contrast, NFAT1 has a slow, continuous response, and its amplitude increases with signal level. These diverse dynamical features observed for single cells are translated into different impulse response strategies at the cell population level. We suggest that dynamic response diversity of seemingly redundant genes can provide cells with enhanced capabilities of temporal information processing.
Collapse
Affiliation(s)
- Nissan Yissachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim PS, Lee PP. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput Biol 2012; 8:e1002742. [PMID: 23133347 PMCID: PMC3486888 DOI: 10.1371/journal.pcbi.1002742] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022] Open
Abstract
A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry. An innovative approach to treating cancer envisions developing preventative anti-cancer vaccines to train a person's immune cells to eliminate early-stage tumors close to genesis. The design of such a treatment strategy requires an understanding of the tumor and immune interactions leading to a successful anti-cancer immune response. To engage this problem, we formulate a mathematical model of the immune response against incipient tumours consisting of as low as hundreds to thousands of cancer cells, which is far below the clinical detection threshold of over 100,000 cells. The model considers the initial stimulation of the immune response and the resulting immune attack on the tumor mass and is formulated as a hybrid agent-based and delay differential equation model. We apply the model to test dynamics over a wide range of dynamic parameters, including immune and tumor cell growth rates and the size of the initial anti-cancer immune population. Our results show that an anti-cancer memory immune cell population of 3% or less can successfully eradicate an incipient tumor population over a wide range of dynamic parameters, indicating that a vaccination approach is feasible.
Collapse
Affiliation(s)
- Peter S. Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter P. Lee
- Cancer Immunotherapeutics and Tumor Immunology, City of Hope and Beckman Research Institute, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zarnitsyna V, Zhu C. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Phys Biol 2012; 9:045005. [PMID: 22871794 DOI: 10.1088/1478-3975/9/4/045005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interaction of the T cell receptor (TCR) with pathogen-derived peptide presented by the major histocompatibility complex (pMHC) molecule is central to adaptive immunity as it initiates intracellular signaling to trigger T cell response to infection. Kinetic parameters of this interaction have been under intensive investigation for more than two decades using soluble pMHCs and/or TCRs with at least one of them in the solution (three-dimensional (3D) methods). Recently, several techniques have been developed to enable kinetic analysis on live T cells with pMHCs presented by surrogate antigen presenting cells (APCs) or supported planar lipid bilayers (two-dimensional (2D) methods). Comparison of 2D versus 3D parameters reveals drastic differences with broader ranges of 2D affinities and on-rates and orders of magnitude faster 2D off-rates for functionally distinct pMHCs. Here we review new 2D data and discuss how it may impact previously developed models of T cell discrimination between pMHCs of different potencies.
Collapse
Affiliation(s)
- Veronika Zarnitsyna
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | |
Collapse
|
35
|
CD81 is essential for the formation of membrane protrusions and regulates Rac1-activation in adhesion-dependent immune cell migration. Blood 2011; 118:1818-27. [PMID: 21677313 DOI: 10.1182/blood-2010-12-326595] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CD81 (TAPA-1) is a member of the widely expressed and evolutionary conserved tetraspanin family that forms complexes with a variety of other cell surface receptors and facilitates hepatitis C virus entry. Here, we show that CD81 is specifically required for the formation of lamellipodia in migrating dendritic cells (DCs). Mouse CD81(-/-) DCs, or murine and human CD81 RNA interference knockdown DCs lacked the ability to form actin protrusions, thereby impairing their motility dramatically. Moreover, we observed a selective loss of Rac1 activity in the absence of CD81, the latter of which is exclusively required for integrin-dependent migration on 2-dimensional substrates. Neither integrin affinity for substrate nor the size of basal integrin clusters was affected by CD81 deficiency in adherent DCs. However, the use of total internal reflection fluorescence microscopy revealed an accumulation of integrin clusters above the basal layer in CD81 knockdown cells. Furthermore, β1- or β2-integrins, actin, and Rac are strongly colocalized at the leading edge of DCs, but the very fronts of these cells protrude CD81-containing membranes that project outward from the actin-integrin area. Taken together, these data suggest a thus far unappreciated role for CD81 in the mobilization of preformed integrin clusters into the leading edge of migratory DCs on 2-dimensional surfaces.
Collapse
|
36
|
Rincón E, de Guinoa JS, Gharbi SI, Sorzano COS, Carrasco YR, Mérida I. Translocation dynamics of sorting nexin 27 in activated T cells. J Cell Sci 2011; 124:776-88. [DOI: 10.1242/jcs.072447] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sorting nexin 27 (SNX27) belongs to the sorting nexin family of proteins, which participate in vesicular and protein trafficking. Similarly to all sorting nexin proteins, SNX27 has a functional PX domain that is important for endosome binding, but it is the only sorting nexin with a PDZ domain. We identified SNX27 as a partner of diacylglycerol kinase ζ (DGKζ), a negative regulator of T cell function that metabolises diacylglycerol to yield phosphatidic acid. SNX27 interacts with the DGKζ PDZ-binding motif in early/recycling endosomes in resting T cells; however, the dynamics and mechanisms underlying SNX27 subcellular localisation during T cell activation are unknown. We demonstrate that in T cells that encounter pulsed antigen-presenting cells, SNX27 in transit on early/recycling endosomes polarise to the immunological synapse. A fraction of SNX27 accumulates at the mature immunological synapse in a process that is dependent on vesicular trafficking, binding of the PX domain to phosphatidylinositol 3-phosphate and the presence of the PDZ region. Downmodulation of expression of either SNX27 or DGKζ results in enhanced basal and antigen-triggered ERK phosphorylation. These results identify SNX27 as a PDZ-containing component of the T cell immunological synapse, and demonstrate a role for this protein in the regulation of the Ras–ERK pathway, suggesting a functional relationship between SNX27 and DGKζ.
Collapse
Affiliation(s)
- Esther Rincón
- Lipid signalling Laboratory, Centro Nacional de Biotecnología (CNB)/CSIC, E-28049 Madrid, Spain
| | - Julia Sáez de Guinoa
- B cell Dynamics Laboratory, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, E-28049 Madrid, Spain
| | - Severine I. Gharbi
- Lipid signalling Laboratory, Centro Nacional de Biotecnología (CNB)/CSIC, E-28049 Madrid, Spain
| | - Carlos O. S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB)/CSIC, E-28049 Madrid, Spain
| | - Yolanda R. Carrasco
- B cell Dynamics Laboratory, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, E-28049 Madrid, Spain
| | - Isabel Mérida
- Lipid signalling Laboratory, Centro Nacional de Biotecnología (CNB)/CSIC, E-28049 Madrid, Spain
| |
Collapse
|
37
|
Bogle G, Dunbar PR. T cell responses in lymph nodes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:107-116. [PMID: 20836014 DOI: 10.1002/wsbm.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activation of T cells by antigen-presenting cells (APCs) in lymph nodes (LNs) is a key initiating event in many immune responses. Our understanding of this process has been both improved and complicated in recent years by evidence from techniques such as intravital microscopy that has revealed new levels of dynamism in the interaction of T cells and APCs. In particular, the complex motility of T cells within LNs, and their serial interactions with many APCs, imply that earlier static models of T cell activation need to be updated. Here we review the first attempts to model T cell interactions with APCs in LNs that incorporate simulations of T cell motility, based on experimental observations. We show that lattice-based modeling approaches are the dominant trend in these models, and then chart a possible course for development of these models toward spatially-resolved models of immune responses within LNs.
Collapse
Affiliation(s)
- Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
39
|
Agent-based simulation of T-cell activation and proliferation within a lymph node. Immunol Cell Biol 2009; 88:172-9. [PMID: 19884904 DOI: 10.1038/icb.2009.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent intravital microscopy experiments have revealed the complex behavior of T cells within lymph nodes. Modeling T-cell responses in lymph nodes now requires integration of cell trafficking and motility with the molecular processes involved in T-cell activation. We describe an agent-based model that allows such integration, in which T cells undertake a random walk through a three-dimensional representation of the lymph node paracortex, integrating signals from dendritic cells (DCs), and proliferating in response. The model accommodates simulation of a large number of T cells packed at realistic densities, and includes dynamic cell trafficking that allows the lymph nodes to swell and shrink as the immune response progresses. The results from the model, including the kinetics of cognate T-cell proliferation and release, and the changes in their avidity profile, are similar to those observed in vivo. We therefore propose that this modeling framework is capable of successfully simulating T-cell activation while also accounting for new spatiotemporal knowledge of how T cells and DCs interact. Although some of the parameters used to drive the model are not yet experimentally validated, the model is capable of testing the effects of alternative values for any parameter on the T-cell response. We intend to refine each aspect of the model in collaboration with both theoreticians and experimentalists.
Collapse
|
40
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
|
42
|
Abstract
Twenty years after the discovery of chemokines is an appropriate time to review leukocyte traffic and to assess the knowledge and opportunities that have arisen from countless studies of the large and tight-knit family of chemotactic proteins.
Collapse
Affiliation(s)
- Federica Sallusto
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
| | | |
Collapse
|
43
|
Fülöp T, Larbi A, Hirokawa K, Mocchegiani E, Lesourds B, Castle S, Wikby A, Franceschi C, Pawelec G. Immunosupportive therapies in aging. Clin Interv Aging 2008; 2:33-54. [PMID: 18044074 PMCID: PMC2684090 DOI: 10.2147/ciia.2007.2.1.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The primary role of the immune system is to protect the organism against pathogens, but age-associated alterations to immunity increase the susceptibility of the elderly to infectious disease. The exact nature of these changes is still controversial, but the use of screening procedures, such as the SENIEUR protocol to exclude underlying illness, helped to better characterize the changes actually related to physiological aging rather than pathology. It is generally agreed that the most marked changes occur in the cellular immune response reflecting profound alterations in T cells. Much of this is due to thymic involution as well as changes in the proportions of T cell subpopulations resulting from antigen exposure, and altered T cell activation pathways. However, a body of data indicates that innate immune responses, including the critical bridge between innate and adaptive immunity, and antigen presenting capacity are not completely resistant to senescence processes. The consequences of all these alterations are an increased incidence of infections, as well as possibly cancers, autoimmune disorders, and chronic inflammatory diseases. The leading question is what, if anything, can we do to prevent these deleterious changes without dangerously dysregulating the precarious balance of productive immunity versus immunopathology? There are many potential new therapeutic means now available to modulate immunosenescence and many others are expected to be available shortly. One main problem in applying these experimental therapies is ethical: there is a common feeling that as ageing is not a disease; the elderly are not sick and therefore do not require adventurous therapies with unpredictable side-effects in mostly frail individuals. Animal models are not helpful in this context. In this chapter we will first briefly review what we think we know about human immunosenescence and its consequences for the health status of elderly individuals. We will then discuss possible interventions that might one day become applicable in an appropriate ethical environment.
Collapse
Affiliation(s)
- Tamas Fülöp
- Research Center on Aging, Immunology Program, Geriatric Division, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Migration, cell-cell interaction and adhesion in the immune system. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2008:97-137. [PMID: 18510101 DOI: 10.1007/2789_2007_062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Migration is an essential function of immune cells. It is necessary to lead immune cell precursors from their site of generation to the places of maturation or function. Cells of the adaptive immune system also need to interact physically with each other or with specialized antigen presenting cells in lymphatic tissues in order to become activated. Thereby a complex series of controlled migration events, adhesive interactions and signalling responses is induced. Finally cells must be able to leave the activating tissues and re-enter the bloodstream from which they extravasate into inflamed tissue sites. Cells of the innate immune system can function directly without the need for previous activation. However, these cells have to adapt their function to a panoply of pathogens and environmental niches which can be invaded. The current review highlights the central aspects of cellular dynamics underlying adaptive and innate cellular immunity. Thereby a focus will be put on recent results obtained by microscopic observation of live cells in vitro or by intravital 2-photon microscopy in live animals.
Collapse
|
45
|
Fiore F, Von Bergwelt-Baildon MS, Drebber U, Beyer M, Popov A, Manzke O, Wickenhauser C, Baldus SE, Schultze JL. Dendritic cells are significantly reduced in non-Hodgkin's lymphoma and express less CCR7 and CD62L. Leuk Lymphoma 2007; 47:613-22. [PMID: 16690519 DOI: 10.1080/10428190500360971] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite the lack of tumor control, infiltration of immune cells has been demonstrated for several malignancies including non-Hodgkin's lymphoma. Since dendritic cells play a pivotal role in the initiation and control of the immune response, the frequency and phenotype of recently described sub-types of dendritic cells in non-Hodgkin's lymphoma were characterized. Myeloid and plasmacytoid dendritic cells were analysed in 55 non-Hodgkin's lymphoma and 33 reactive lymph nodes by flow cytometry and immunohistochemistry. Overall frequency of dendritic cells in reactive lymph nodes was higher than in non-Hodgkin's lymphoma while the pDC/mDCs ratio was comparable. The low frequency of dendritic cells in infiltrated lymph nodes was confirmed by immunohistochemistry; however, no significant difference in the distribution within lymphoid and tumor tissue was detected. For further characterization of the dendritic cells in non-Hodgkin's lymphoma, the expressions of adhesion molecules, costimulatory molecules, chemokine receptors and activation markers were assessed. Interestingly, a significantly decreased expression of CD62L and CCR7, receptors necessary for homing to lymph nodes, was identified in dendritic cells in non-Hodgkin's lymphoma, potentially explaining the lack of these cells. Taken together, dendritic cells are phenotypically altered and reduced in number in NHL, potentially contributing to the loss of tumor control in these patients.
Collapse
Affiliation(s)
- Francesca Fiore
- Molecular Tumor Biology and Tumor Immunology, Clinic I for Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Inman C, Bailey J, Cook S, Bailey M. Interactions between immune cells and their microenvironment. Vet Immunol Immunopathol 2007; 120:10-9. [PMID: 17767963 DOI: 10.1016/j.vetimm.2007.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past, studies of the immune system have identified molecules and cell types with immunological function and focussed on interactions between these components. However, it is increasingly apparent that the ability of immune cells to interact with elements from their microenvironment such as extracellular matrix components and stromal cells, that are often considered unlinked to the adaptive immune system, is central to the successful and correct functioning of the immune system. As a consequence, a number of sophisticated techniques have been used to analyse these interactions in vitro and in vivo. Here we describe the interactions involved in immune function and some of the methods used to examine them, focussing particularly on those that use imaging techniques.
Collapse
Affiliation(s)
- Charlotte Inman
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK.
| | | | | | | |
Collapse
|
47
|
Jiaravuthisan MM, Sasseville D, Vender RB, Murphy F, Muhn CY. Psoriasis of the nail: anatomy, pathology, clinical presentation, and a review of the literature on therapy. J Am Acad Dermatol 2007; 57:1-27. [PMID: 17572277 DOI: 10.1016/j.jaad.2005.07.073] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 06/14/2005] [Accepted: 07/23/2005] [Indexed: 10/23/2022]
Abstract
Psoriasis is a chronic skin disease that affects millions of people throughout the world. Even though cutaneous signs and symptoms are the most common clinical manifestations, the nails can be involved in up to 50% of cases, and their involvement remains an important yet often overlooked aspect of the disease. There is a broad spectrum of nail dystrophies associated with psoriasis, ranging from the common pitting and loosening of the nail plate to the less frequent discoloration and splinter hemorrhages seen in the nail bed. This article discusses the normal anatomy and embryology of the nail unit as well as the current understanding of the pathogenesis of the disease. It also provides an extensive review of the existing literature with respect to psoriatic nail therapy. Although there have been many recent advances in the treatment of the cutaneous form of the disease-most notably in the field of immunotherapies-the options for nail psoriasis are far more limited. While a number of treatment alternatives currently exist for nail disease, the general paucity of clear evidence regarding these choices often makes it difficult to select the most efficient, safe, and optimal treatment for the patient. Even though the current literature has shown some support for the use of topical, intralesional, radiation, systemic, and combination therapies for nail psoriasis, the available studies lack sufficient power to extrapolate a standardized therapeutic regimen. Therefore, until better-documented evidence validating the treatment options emerges within the literature, clinicians and patients are left with a vague and relatively unproven approach to psoriatic nail disease.
Collapse
|
48
|
Nicolaou SA, Neumeier L, Peng Y, Devor DC, Conforti L. The Ca(2+)-activated K(+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes. Am J Physiol Cell Physiol 2007; 292:C1431-9. [PMID: 17151145 PMCID: PMC2553516 DOI: 10.1152/ajpcell.00376.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca(2+) influx. KCa3.1 channels modulate Ca(2+) signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3epsilon, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3epsilon to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15-30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca(2+) influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation.
Collapse
Affiliation(s)
- Stella A. Nicolaou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - YouQing Peng
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel C. Devor
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Laura Conforti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
49
|
Perez OD, Mitchell D, Nolan GP. Differential role of ICAM ligands in determination of human memory T cell differentiation. BMC Immunol 2007; 8:2. [PMID: 17233909 PMCID: PMC1784112 DOI: 10.1186/1471-2172-8-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/18/2007] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Leukocyte Function Antigen-1 (LFA-1) is a primary adhesion molecule that plays important roles in T cell activation, leukocyte recirculation, and trans-endothelial migration. By applying a multivariate intracellular phospho-proteomic analysis, we demonstrate that LFA-1 differentially activates signaling molecules. RESULTS Signal intensity was dependent on both ICAM ligand and LFA-1 concentration. In the presence of CD3 and CD28 stimulation, ICAM-2 and ICAM-3 decreased TGFbeta1 production more than ICAM-1. In long-term differentiation experiments, stimulation with ICAM-3, CD3, and CD28 generated IFNgamma producing CD4+CD45RO+CD62L-CD11aBrightCD27- cells that had increased expression of intracellular BCL2, displayed distinct chemokine receptor profiles, and exhibited distinct migratory characteristics. Only CD3/CD28 with ICAM-3 generated CD4+CD45RO+CD62L-CD11aBrightCD27- cells that were functionally responsive to chemotaxis and exhibited higher frequencies of cells that signaled to JNK and ERK1/2 upon stimulation with MIP3alpha. Furthermore, these reports identify that the LFA-1 receptor, when presented with multiple ligands, can result in distinct T cell differentiation states and suggest that the combinatorial integration of ICAM ligand interactions with LFA-1 have functional consequences for T cell biology. CONCLUSION Thus, the ICAM ligands, differentially modulate LFA-1 signaling in T cells and potentiate the development of memory human T cells in vitro. These findings are of importance in a mechanistic understanding of memory cell differentiation and ex vivo generation of memory cell subsets for therapeutic applications.
Collapse
Affiliation(s)
- Omar D Perez
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dennis Mitchell
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Sandilands GP, McCrae J, Hill K, Perry M, Baxter D. Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology 2006; 119:562-71. [PMID: 17034427 PMCID: PMC2265830 DOI: 10.1111/j.1365-2567.2006.02471.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that normal human peripheral blood polymorphonuclear neutrophils (PMNs) contain cytoplasmic 'stores' of three key molecules normally associated with antigen presentation and T-cell costimulation, i.e. major histocompatibility complex class II (DR) antigen, CD80 (B7-1) and CD86 (B7-2). These cytoplasmic molecules were found to translocate to the cell surface within a few minutes following cross-linking (X-L) of Mac-1: an early neutrophil activation signal. In this study we have compared X-L of Mac -1 in parallel with four other well documented in vitro neutrophil activators: phorbol myristate acetate, N-formyl methionyl leucyl phenylalanine, lipopolysaccharide, and phagocytosis of immunoglobulin G-Latex particles. In addition, we have used paired samples of neutrophils obtained from peripheral blood (as a control) and synovial fluid from patients with rheumatoid arthritis as a source of in vivo activated cells. With the exception of phagocytosis, all activators resulted in the rapid (within 30 min) generation of two populations of activated neutrophils (designated P1 and P2) based on flow-cytometry measurements of size, granularity and phenotype. Significant up-regulation of DR and costimulatory molecules was observed, predominantly on P2 cells, with all activators except phagocytosis. CD80 and CD86 were noted to respond to the various activation signals in a different pattern suggesting that their intracellular granule location may be different. Dual-staining confocal laser microscopy studies showed that CD80 is largely confined to secretory vesicles (SVs) while CD86 appears to have a much wider distribution being found in SVs and within secondary (specific) and primary (azurophilic) granules. Increased surface expression of these antigens was also observed on P2 synovial fluid neutrophils appearing as large heterogeneous clusters on the cell surface when visualized by confocal laser microscopy.
Collapse
|