1
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Garcia-Rodriguez KM, Goenka A, Thomson DD, Bahri R, Tontini C, Salcman B, Hernandez-Pando R, Bulfone-Paus S. Bacillus Calmette-Guérin-Induced Human Mast Cell Activation Relies on IL-33 Priming. Int J Mol Sci 2022; 23:7549. [PMID: 35886897 PMCID: PMC9320129 DOI: 10.3390/ijms23147549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is an attenuated strain of Mycobacterium bovis that provides weak protection against tuberculosis (TB). Mast cells (MCs) are tissue-resident immune cells strategically that serve as the first line of defence against pathogenic threats. In this study, we investigated the response of human MCs (hMCs) to BCG. We found that naïve hMCs exposed to BCG did not secrete cytokines, degranulate, or support the uptake and intracellular growth of bacteria. Since we could show that in hMCs IL-33 promotes the transcription of host-pathogen interaction, cell adhesion and activation genes, we used IL-33 for cell priming. The treatment of hMCs with IL-33, but not IFN-γ, before BCG stimulation increased IL-8, MCP-1 and IL-13 secretion, and induced an enhanced expression of the mycobacteria-binding receptor CD48. These effects were comparable to those caused by the recombinant Mycobacterium tuberculosis (Mtb) 19-KDa lipoprotein. Finally, stimulation of hMCs with IL-33 incremented MC-BCG interactions. Thus, we propose that IL-33 may improve the immunogenicity of BCG vaccine by sensitising hMCs.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
- School of Materials, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
| | - Darren D. Thomson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4PY, UK
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Mexico City 14080, Mexico;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| |
Collapse
|
3
|
Torres-Atencio I, Campble A, Goodridge A, Martin M. Uncovering the Mast Cell Response to Mycobacterium tuberculosis. Front Immunol 2022; 13:886044. [PMID: 35720353 PMCID: PMC9201906 DOI: 10.3389/fimmu.2022.886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immunologic mechanisms that contribute to the response to Mycobacterium tuberculosis infection still represent a challenge in the clinical management and scientific understanding of tuberculosis disease. In this scenario, the role of the different cells involved in the host response, either in terms of innate or adaptive immunity, remains key for defeating this disease. Among this coordinated cell response, mast cells remain key for defeating tuberculosis infection and disease. Together with its effector’s molecules, membrane receptors as well as its anatomical locations, mast cells play a crucial role in the establishment and perpetuation of the inflammatory response that leads to the generation of the granuloma during tuberculosis. This review highlights the current evidences that support the notion of mast cells as key link to reinforce the advancements in tuberculosis diagnosis, disease progression, and novel therapeutic strategies. Special focus on mast cells capacity for the modulation of the inflammatory response among patients suffering multidrug resistant tuberculosis or in co-infections such as current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ivonne Torres-Atencio
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama, Panama.,Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Ariadne Campble
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Laboratory of Clinical and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Grigorev I, Korzhevskii D. Modern Imaging Technologies of Mast Cells for Biology and Medicine (Review). Sovrem Tekhnologii Med 2021; 13:93-107. [PMID: 34603768 PMCID: PMC8482833 DOI: 10.17691/stm2021.13.4.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Mast cells play an important role in the body defense against allergens, pathogens, and parasites by participating in inflammation development. However, there is evidence for their contributing to the pathogenesis of a number of atopic, autoimmune, as well as cardiovascular, oncologic, neurologic, and other diseases (allergy, asthma, eczema, rhinitis, anaphylaxis, mastocytosis, multiple sclerosis, rheumatoid arthritis, inflammatory gastrointestinal and pulmonary diseases, migraine, etc.). The diagnosis of many diseases and the study of mast cell functions in health and disease require their identification; so, the knowledge on adequate imaging techniques for mast cells in humans and different species of animals is of particular importance. The present review summarizes the data on major methods of mast cell imaging: enzyme histochemistry, immunohistochemistry, as well as histochemistry using histological stains. The main histological stains bind to heparin and other acidic mucopolysaccharides contained in mast cells and stain them metachromatically. Among these are toluidine blue, methylene blue (including that contained in May-Grünwald-Giemsa stain), thionin, pinacyanol, and others. Safranin and fluorescent dyes: berberine and avidin - also bind to heparin. Longer staining with histological dyes or alcian blue staining is needed to label mucosal and immature mast cells. Advanced techniques - enzyme histochemistry and especially immunohistochemistry - enable to detect mast cells high-selectively using a reaction to tryptases and chymases (specific proteases of these cells). In the immunohistochemical study of tryptases and chymases, species-specific differences in the distribution of the proteases in mast cells of humans and animals should be taken into account for their adequate detection. The immunohistochemical reaction to immunoglobulin E receptor (FcεRI) and c-kit receptor is not specific to mast cells, although the latter is important to demonstrate their proliferation in normal and malignant growth. Correct fixation of biological material is also discussed in the review as it is of great significance for histochemical and immunohistochemical mast cell detection. Fluorescent methods of immunohistochemistry and a multimarker analysis in combination with confocal microscopy are reported to be new technological approaches currently used to study various mast cell populations.
Collapse
Affiliation(s)
- I.P. Grigorev
- Senior Researcher, Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Specific Morphology; Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - D.E. Korzhevskii
- Professor of the Russian Academy of Sciences, Head of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Specific Morphology; Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| |
Collapse
|
5
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|
6
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
7
|
Acinetobacter baumannii LOS Regulate the Expression of Inflammatory Cytokine Genes and Proteins in Human Mast Cells. Pathogens 2021; 10:pathogens10030290. [PMID: 33802578 PMCID: PMC7998227 DOI: 10.3390/pathogens10030290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/04/2022] Open
Abstract
Herein, we investigated the effect of bacterial lipooligosaccharides (LOS), from Acinetobacter baumannii, on the expression of pro-inflammatory genes that play an essential role in bacterial clearance. LAD2 human mast cells were stimulated with LOS derived from two strains of A. baumannii—ATCC 19606 and MDRA T14. LOS exposure induced the expression of genes for pro-inflammatory mediators, including TNF-α, IL-8, LTC4S, CCL4, and TLR4. The mRNA expression levels of a majority of the pro-inflammatory genes, except TLR4, in A. baumannii-LOS stimulated mast cells were increased. Moreover, co-culture of neutrophils with the supernatant obtained from LOS (ATCC 19606 and MDRA T14)-induced LAD2 cells increased the transmigration of neutrophils, which plays a critical role in the early protection against bacterial infections. The results of the present study suggest that LOS could be involved in the pathogenicity of A. baumannii by inducing inflammatory responses via mast cells and that IL-8 is involved in recruiting neutrophils in response to bacterial invasion.
Collapse
|
8
|
de Lima HG, Pinke KH, Lopes MMR, Buzalaf CP, Campanelli AP, Lara VS. Mast cells exhibit intracellular microbicidal activity against Aggregatibacter actinomycetemcomitans. J Periodontal Res 2020; 55:744-752. [PMID: 32725826 DOI: 10.1111/jre.12763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have demonstrated that mast cells are equipped with versatile tools to combat and kill bacteria. Additionally, mast cells produce and secrete a variety of mediators, which either regulate the host's immune system or directly attack bacteria. In this study, the intracellular microbicidal capacity of mast cells against Aggregatibacter actinomycetemcomitans was evaluated. METHODS Murine mast cells were challenged in vitro with A actinomycetemcomitans for 3, 5, 10, and 24 hours. Subsequently, the colony-forming units were counted. Additionally, the production and release of nitric oxide and hydrogen peroxide were analyzed by DAF-FM diacetate, the Griess reaction, and the Amplex Red kit, respectively. Cell death was evaluated using FITC Annexin V and propidium iodide staining. RESULTS Mast cells are able to efficiently eliminate periodontopathogen, with best results after 10 hours of intracellular challenge. The production/release of nitric oxide-and to a lesser extent of hydrogen peroxide-by mast cells was in agreement with its microbicidal capacity. Ninety percent of the mast cells maintained their cellular viability even after 24 hours of bacterial challenge. CONCLUSIONS This is-to the best of our knowledge-the first report to describe the intracellular microbicidal activity of mast cells against A actinomycetemcomitans, concerning the production and release of potentially bactericidal substances. Further, the low number of cell deaths confirms that the decreased number of colony-forming units was due to the higher antimicrobial activity of mast cells. The results highlight the importance of these cells in the defense mechanisms of biofilm-induced periodontal disease.
Collapse
Affiliation(s)
- Heliton G de Lima
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Karen H Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Marcelo M R Lopes
- Integrated Research Center, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Camila P Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Vanessa S Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
9
|
Casaroto AR, da Silva RA, Salmeron S, Rezende MLRD, Dionísio TJ, Santos CFD, Pinke KH, Klingbeil MFG, Salomão PA, Lopes MMR, Lara VS. Candida albicans-Cell Interactions Activate Innate Immune Defense in Human Palate Epithelial Primary Cells via Nitric Oxide (NO) and β-Defensin 2 (hBD-2). Cells 2019; 8:cells8070707. [PMID: 31336838 PMCID: PMC6678605 DOI: 10.3390/cells8070707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The presence of Candida albicans in the biofilm underlying the dental prosthesis is related to denture stomatitis (DS), an inflammatory reaction of the oral mucosa. The oral epithelium, a component of the innate immune response, has the ability to react to fungal invasion. In this study, we evaluated the in vitro effect of viable C. albicans on the apoptosis, nitric oxide (NO) production, and β-defensin 2 (hBD-2) expression and production of human palate epithelial cells (HPECs). We further determined whether or not these effects were correlated with fungal invasion of epithelial cells. Interaction between HPEC primary culture and C. albicans was obtained through either direct or indirect cell–cell contact with a supernatant from a hyphal fungus. We found that the hyphae supernatants were sufficient to induce slight HPEC apoptosis, which occurred prior to the activation of the specific mechanisms of epithelial defense. The epithelial defense responses were found to occur via NO and antimicrobial peptide hBD-2 production only during direct contact between C. albicans and HPECs and coincided with the fungus’s intraepithelial invasion. However, although the hBD-2 levels remained constant in the HPEC supernatants over time, the NO release and hBD-2 gene expression were reduced at a later time (10 h), indicating that the epithelial defense capacity against the fungal invasion was not maintained in later phases. This aspect of the immune response was associated with increased epithelial invasion and apoptosis maintenance.
Collapse
Affiliation(s)
- Ana Regina Casaroto
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil.
| | - Rafaela Alves da Silva
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Samira Salmeron
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Maria Lúcia Rubo de Rezende
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Carlos Ferreira Dos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Karen Henriette Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | | | - Priscila Aranda Salomão
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Marcelo Milanda Ribeiro Lopes
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| |
Collapse
|
10
|
Li M, Mittal SK, Foulsham W, Amouzegar A, Sahu SK, Chauhan SK. Mast cells contribute to the induction of ocular mucosal alloimmunity. Am J Transplant 2019; 19:662-673. [PMID: 30129280 PMCID: PMC7941346 DOI: 10.1111/ajt.15084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 01/25/2023]
Abstract
Beyond their historical role as the effector cells in allergic disorders, mast cells have been implicated in regulating both innate and adaptive immune responses. Possessing considerable functional plasticity, mast cells are abundant at mucosal surfaces, where the host and external environments interface. The purpose of this study was to evaluate the contribution of mast cells to allograft rejection at the ocular surface. Using a well-characterized murine model of corneal transplantation, we report that mast cells promote allosensitization. Our data show mast cell frequencies and activation are increased following transplantation. We demonstrate that mast cell inhibition (a) limits the infiltration of inflammatory cells and APC maturation at the graft site; (b) reduces allosensitization and the generation of Th1 cells in draining lymphoid tissues; (c) decreases graft infiltration of alloimmune-inflammatory cells; and (d) prolongs allograft survival. Our data demonstrate a novel function of mast cells in promoting allosensitization at the ocular surface.
Collapse
Affiliation(s)
- Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA,Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Sharad K. Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Srikant K. Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA,L.V. Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Sunil K. Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
12
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
13
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
14
|
Lu L, Arizmendi N, Kulka M, Unsworth LD. The Spontaneous Adhesion of BMMC onto Self-Assembled Peptide Nanoscaffold without Activation Inhibits Its IgE-Mediated Degranulation. Adv Healthc Mater 2017; 6. [PMID: 28665558 DOI: 10.1002/adhm.201700334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/18/2017] [Indexed: 11/11/2022]
Abstract
Mast cells play a distinct role in the innate immune response. Engineered microenvironments for the express purpose of influencing mast cell activity will provide a novel means of designing biomaterials, as well as a means to systematically investigate mast cell biology in a 3D setting. Here, the effect of nanoscaffolds composed of self-assembling peptides, namely (RADA)4 , on bone-marrow-derived murine mast cell (BMMC) activity is reported. Unlike most studies that stimulate mast cells to induce adhesion, this results show that BMMCs spontaneously adhere to the artificial nanoscaffold without initiating their activation. It is observed that the classical immunoglobulin (IgE) antigen-mediated degranulation of adhered BMMC is inhibited by the nanoscaffold, while non-IgE (A23187)-induced degranulation is unaffected. The inhibition of IgE-antigen-mediated degranulation is likely a result of inhibited molecular diffusion within the matrix; antigen diffusion, IgE-FcεRI complex shuttling, and/or formation of multiple IgE-FcεRI clusters may be physically hindered in the presence of the polyvalent nanofiber network. Moreover, the IgE/antigen-induced inflammatory cytokine tumor necrosis factor α release from adherent BMMCs is significantly reduced likely due to interaction with the nanofiber matrix. This work is considered the first step in quantifying mast cell activity in artificial matrices composed of self-assembling peptides.
Collapse
Affiliation(s)
- Lei Lu
- DICE 13‐390 Department of Chemical and Materials Engineering University of Alberta 9211‐116 Street NW Edmonton AB T6G 1H9 Canada
- National Institute for Nanotechnology 11421 Saskatchewan Dr NW Edmonton AB T6G 2M93 Canada
| | - Narcy Arizmendi
- National Institute for Nanotechnology 11421 Saskatchewan Dr NW Edmonton AB T6G 2M93 Canada
| | - Marianna Kulka
- National Institute for Nanotechnology 11421 Saskatchewan Dr NW Edmonton AB T6G 2M93 Canada
- Department of Medical Microbiology and Immunology University of Alberta Edmonton AB T6G 2E1 Canada
| | - Larry D. Unsworth
- DICE 13‐390 Department of Chemical and Materials Engineering University of Alberta 9211‐116 Street NW Edmonton AB T6G 1H9 Canada
- National Institute for Nanotechnology 11421 Saskatchewan Dr NW Edmonton AB T6G 2M93 Canada
| |
Collapse
|
15
|
Igawa S, Di Nardo A. Skin microbiome and mast cells. Transl Res 2017; 184:68-76. [PMID: 28390799 PMCID: PMC5538027 DOI: 10.1016/j.trsl.2017.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
Microbiotas in the skin have high levels of diversity at the species level, but low phylum-level diversity. The human skin microbiota is composed predominantly of Gram-positive bacteria especially Actinobacteria, which are the dominant bacterial phylum on the skin. Lipoteichoic acid (LTA) is a major constituent of the cell wall of Gram-positive bacteria and is therefore abundant in the skin microbiome. Recent studies have shown that LTA, and other bacterial products, permeates the whole skin and comes into contact with epidermal and dermal cells, including mast cells (MCs), with the potential of stimulating MC toll-like receptors (TLRs). MCs express a variety of pattern recognition receptors, including TLRs, on their cell surface in order to detect bacteria. Recent publications suggest that the skin microbiome has influence on MC migration, localization and maturation in the skin. Germ free (no microbiome) animals possess an underdeveloped immune system and immature MCs. Despite much research done on skin microbiota and many papers describing skin interaction with "the good microbiota", there is still controversy regarding how mast cells, communicate with surface bacteria. The present review intends to quell the controversy by illuminating the communication mechanism between bacteria and MCs.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan; Department of Dermatology, University of California, San Diego, La Jolla, Calif
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
16
|
Kikuchi-Ueda T, Kamoshida G, Ubagai T, Nakano R, Nakano A, Akuta T, Hikosaka K, Tansho-Nagakawa S, Kikuchi H, Ono Y. The TNF-α of mast cells induces pro-inflammatory responses during infection with Acinetobacter baumannii. Immunobiology 2017; 222:1025-1034. [PMID: 28595750 DOI: 10.1016/j.imbio.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 01/12/2023]
Abstract
Mast cells serve important roles as sentinels against bacterial infection by secreting mediators stored in granules. Much of their effectiveness depends upon recruiting and/or modulating other immune cells. The location of mast cells implies that they recognize pathogens invading tissues or mucosal tissues. Acinetobacter baumannii is a gram-negative bacterium that is considered an emerging nosocomial pathogen and causes a wide range of infections associated with high morbidity and mortality. To date, the interaction of A. baumannii with mast cells remains unclear. In this study, we demonstrated an interaction between human LAD2 mast cells and A. baumannii in vitro. When LAD2 cells were co-cultured with live A. baumannii or Pseudomonas aeruginosa PAO1 in vitro for 4h, TNF-α and IL-8 were produced in the culture supernatant. These inflammatory cytokines were not detected in the supernatant after the cells were treated with live bacteria without serum. Gene expression analysis showed that TNF-α and IL-8 mRNA expression increased in A. baumannii- and P. aeruginosa-infected LAD2 cells. Scanning electron microscopy showed that A. baumannii was tightly attached to the surface of LAD2 cells and suggested that A. baumannii may bind to FcγRII (CD32) on LAD2 cells. TNF-α in the culture supernatant from A. baumannii-infected LAD2 cells, showed that PMN activation and migration increased in Boyden chamber assays. These results suggest that mast cells recognize and initiate immune responses toward A. baumannii by releasing the preformed mediator TNF-α to activate effector neutrophils.
Collapse
Affiliation(s)
- Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Go Kamoshida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan.
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan.
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Hirotoshi Kikuchi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
17
|
Möllerherm H, Branitzki-Heinemann K, Brogden G, Elamin AA, Oehlmann W, Fuhrmann H, Singh M, Naim HY, von Köckritz-Blickwede M. Hypoxia Modulates the Response of Mast Cells to Staphylococcus aureus Infection. Front Immunol 2017; 8:541. [PMID: 28553287 PMCID: PMC5425595 DOI: 10.3389/fimmu.2017.00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
To study the antimicrobial function of immune cells ex vivo, cells are commonly cultivated under atmospheric oxygen concentrations (20–21%; normoxia), although the physiological oxygen conditions in vivo are significantly lower in most tissues. Especially during an acute infection, oxygen concentration locally decreases to hypoxic levels around or below 1%. The goal of this study was to investigate the effect of hypoxia on the activity of mast cells (MCs). MCs were cultivated for 3 or 24 h at 1% O2 in a hypoxia glove box and co-incubated with heat-inactivated Staphylococcus aureus. When incubating the cells for 24 h under hypoxia, the transcriptional regulator hypoxia-inducible factor 1α (HIF-1α) was stabilized and resulted in increased extracellular trap formation and decreased phagocytosis. Interestingly, while phagocytosis of fluorescent S. aureus bioparticles as well as the release of extracellular traps remained unaffected at 3 h hypoxia, the secretion of the prestored mediator histamine was increased under hypoxia alone. In contrast, the release of TNF-α was generally reduced at 3 h hypoxia. Microarray transcriptome analysis revealed 13 genes that were significantly downregulated in MCs comparing 3 h hypoxia versus normoxia. One interesting candidate is sec24, a member of the pre-budding complex of coat protein complex II (COPII), which is responsible for the anterograde transport of proteins from the ER to the Golgi apparatus. These data lead to the suggestion that de novo synthesized proteins including crucial factors, which are involved in the response to an acute infection like TNF-α, may eventually be retained in the ER under hypoxia. Importantly, the expression of HIF-1α was not altered at 3 h. Thus, our data exhibit a HIF-1α-independent reaction of MCs to short-term hypoxia. We hypothesize that MCs respond to short-term low oxygen levels in a HIF-1α-independent manner by downregulating the release of proinflammatory cytokines like TNF-α, thereby avoiding uncontrolled degranulation, which could lead to excessive inflammation and severe tissue damage.
Collapse
Affiliation(s)
- Helene Möllerherm
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Katja Branitzki-Heinemann
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | | | - Wulf Oehlmann
- LIONEX Diagnostics & Therapeutics, Braunschweig, Germany
| | - Herbert Fuhrmann
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Mahavir Singh
- LIONEX Diagnostics & Therapeutics, Braunschweig, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
18
|
Faustino-Rocha AI, Ferreira R, Gama A, Oliveira PA, Ginja M. Antihistamines as promising drugs in cancer therapy. Life Sci 2017; 172:27-41. [DOI: 10.1016/j.lfs.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
|
19
|
Möllerherm H, von Köckritz-Blickwede M, Branitzki-Heinemann K. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps. Front Immunol 2016; 7:265. [PMID: 27486458 PMCID: PMC4947581 DOI: 10.3389/fimmu.2016.00265] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023] Open
Abstract
Mast cells (MCs) have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs) comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, which leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators, such as TNF-α. Moreover, various studies demonstrate that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms, including MCET formation similar to that of professional phagocytes. Recent literature leads to the suggestion that MCET formation is not the result of a passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation, which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with a special focus on MCETs, and their role and relevance during infection and inflammation.
Collapse
Affiliation(s)
- Helene Möllerherm
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover , Hanover , Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Hanover, Germany
| | - Katja Branitzki-Heinemann
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover , Hanover , Germany
| |
Collapse
|
20
|
Cardamone C, Parente R, Feo GD, Triggiani M. Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol Lett 2016; 178:10-4. [PMID: 27393494 DOI: 10.1016/j.imlet.2016.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
Abstract
Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules that can finely tune activities of T cells, B cells and regulatory cells by cognate interactions within lymphoid organs. The multivalent capacity to recognize and to react to internal and external dangers together with their ability to cross-talk with other immunocompetent cells make mast cells a unique effector cell of innate responses and a main bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Chiara Cardamone
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Giulia De Feo
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy.
| |
Collapse
|
21
|
NOD1 and NOD2 Interact with the Phagosome Cargo in Mast Cells: A Detailed Morphological Evidence. Inflammation 2016; 38:1113-25. [PMID: 25502289 DOI: 10.1007/s10753-014-0077-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mast cells (MC) play a key role in triggering the inflammatory process and share some functions with professional phagocytes. It is not clear whether or not the phagocytic process in MC follows the same route and has the same meaning of that of professional phagocytes. Herein we analyze in detail the structure of the phagosome in rat peritoneal mast cells (RPMC). The ultrastructural analysis of the phagosome, containing either model particles or bacteria, reveals that these vacuoles are very tight, and in several areas, their membrane seems to have dissolved. RPMC express NOD1 and NOD2 proteins whose role is to recognize intracellular foreign components and induce the production of pro-inflammatory mediators. Following Escherichia coli ingestion, both these molecules are found on the phagosome membrane and on ingested pathogens, together with phagosome maturation markers. These findings suggest that in RPMC the ingested cargo can, through interruptions of the phagosome membrane, interact directly with NODs, which act as switches in the process of cytokine production.
Collapse
|
22
|
Pinke KH, Lima HGD, Cunha FQ, Lara VS. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology 2016; 221:220-7. [DOI: 10.1016/j.imbio.2015.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
23
|
Goldmann O, Tuchscherr L, Rohde M, Medina E. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin. Cell Microbiol 2016; 18:807-19. [PMID: 26595647 DOI: 10.1111/cmi.12550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up-regulating the expression of α-hemolysin (Hla), fibronectin-binding protein A and several regulatory systems. We also found that S. aureus induced the up-regulation of β1 integrin expression on MCs and that this effect was mediated by Hla-ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla-ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up-regulation of β1 integrin expression in MCs in a dose-dependent manner. Our data support a model in which S. aureus counter-reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin-binding proteins and by inducing Hla-ADAM10-mediated up-regulation of β1 integrin in MCs. The up-regulation of bacterial fibronectin-binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin-binding proteins to integrin β1 via fibronectin.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| |
Collapse
|
24
|
Abstract
Leishmania spp. are parasitic protozoa endemic in tropical and subtropical regions and the causative agent of leishmaniasis, a collection of syndromes whose clinical manifestations vary according to host and pathogen factors. Leishmania spp. are inoculated into the mammalian host by the bite of an infected sand fly, whereupon they are taken up by phagocytosis, convert into the replicative amastigote stage within macrophages, reproduce, spread to new macrophages and cause disease manifestations. A curative response against leishmaniasis depends in the classical activation of macrophages and the IL-12-dependent onset of an adaptive type 1 response characterized by the production of IFN-γ. Emerging evidence suggests that neutrophils, dendritic cells and other immune cells can serve as either temporary or stable hosts for Leishmania spp. Furthermore, it is becoming apparent that the initial interactions of the parasite with resident or early recruited immune cells can shape both the macrophage response and the type of adaptive immune response being induced. In this review, we compile a growing number of studies demonstrating how the earliest interactions of Leishmania spp. with eosinophils and mast cells influence the macrophage response to infection and the development of the adaptive immune response, hence, determining the ultimate outcome of infection.
Collapse
|
25
|
Abstract
Mast cells (MCs) are tissue-based immune cells that participate to both innate and adaptive immunities as well as to tissue-remodelling processes. Their evolutionary history appears as a fascinating process, whose outline we can only partly reconstruct according to current remnant evidence. MCs have been identified in all vertebrate classes, and a cell population with the overall characteristics of higher vertebrate MCs is identifiable even in the most evolutionarily advanced fish species. In invertebrates, cells related to vertebrate MCs have been recognized in ascidians, a class of urochordates which appeared approximately 500 million years ago. These comprise the granular hemocyte with intermediate characteristics of basophils and MCs and the "test cell" (see below). Both types of cells contain histamine and heparin, and provide defensive functions. The test cell releases tryptase after stimulation with compound 48/80. A leukocyte ancestor operating in the context of a primitive local innate immunity probably represents the MC phylogenetic progenitor. This cell was likely involved in phagocytic and killing activity against pathogens and operated as a general inducer of inflammation. This early type of defensive cell possibly expressed concomitant tissue-reparative functions. With the advent of recombinase activating gene (RAG)-mediated adaptive immunity in the Cambrian era, some 550 million years ago, and the emergence of early vertebrates, MC progenitors differentiated towards a more complex cellular entity. Early MCs probably appeared in the last common ancestor we shared with hagfish, lamprey, and sharks about 450-500 million years ago.
Collapse
|
26
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
27
|
New insights into the antimicrobial effect of mast cells against Enterococcus faecalis. Infect Immun 2014; 82:4496-507. [PMID: 25114115 DOI: 10.1128/iai.02114-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis has emerged as an important cause of life-threatening multidrug-resistant bacterial infections in the hospital setting. The pathogenesis of enterococcal infections has remained a relatively neglected field despite their obvious clinical relevance. The objective of this study was to characterize the interactions between mast cells (MCs), an innate immune cell population abundant in the intestinal lamina propria, and E. faecalis. This study was conducted with primary bone marrow-derived murine MCs. The results demonstrated that MCs exerted an antimicrobial effect against E. faecalis that was mediated both by degranulation, with the concomitant discharge of the antimicrobial effectors contained in the granules, and by the release of extracellular traps, in which E. faecalis was snared and killed. In particular, the cathelicidin LL-37 released by the MCs had potent antimicrobial effect against E. faecalis. We also investigated the specific receptors involved in the recognition of E. faecalis by MCs. We found that Toll-like receptors (TLRs) are critically involved in the MC recognition of E. faecalis, since MCs deficient in the expression of MyD88, an adaptor molecule required for signaling by most TLRs, were significantly impaired in their capacity to degranulate, to reduce E. faecalis growth as well as to release tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) after encountering this pathogen. Furthermore, TLR2 was identified as the most prominent TLR involved in the recognition of E. faecalis by MCs. The results of this study indicate that MCs may be important contributors to the host innate immune defenses against E. faecalis.
Collapse
|
28
|
Mast Cells Kill Candida albicans in the Extracellular Environment but Spare Ingested Fungi from Death. Inflammation 2014; 37:2174-89. [DOI: 10.1007/s10753-014-9951-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mast cells and basophils are potent effector cells of the innate immune system, and they have both beneficial and detrimental functions for the host. They are mainly implicated in pro-inflammatory responses to allergens but can also contribute to protection against pathogens. Although both cell types were identified more than 130 years ago by Paul Ehrlich, their in vivo functions remain poorly understood. The precursor cell populations that give rise to mast cells and basophils have recently been characterized and isolated. Furthermore, new genetically modified mouse strains have been developed, which enable more specific targeting of mast cells and basophils. Such advances offer new opportunities to uncover the true in vivo activities of these cells and to revisit their previously proposed effector functions.
Collapse
|
31
|
Granzyme D is a novel murine mast cell protease that is highly induced by multiple pathways of mast cell activation. Infect Immun 2013; 81:2085-94. [PMID: 23529614 DOI: 10.1128/iai.00290-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granzymes are serine proteases known mostly for their role in the induction of apoptosis. Granzymes A and B have been extensively studied, but relatively little is known about granzymes C to G and K to M. T cells, lymphohematopoietic stromal cells, and granulated metrial gland cells express granzyme D, but the function of granzyme D is unknown. Here we show that granzyme D is expressed by murine mast cells and that its level of expression correlates positively with the extent of mast cell maturation. Coculture of mast cells with live, Gram-positive bacteria caused a profound, Toll-like receptor 2 (TLR2)-dependent induction of granzyme D expression. Granzyme D expression was also induced by isolated bacterial cell wall components, including lipopolysaccharide (LPS) and peptidoglycan, and by stem cell factor, IgE receptor cross-linking, and calcium ionophore stimulation. Granzyme D was released into the medium in response to mast cell activation. Granzyme D induction was dependent on protein kinase C and nuclear factor of activated T cells (NFAT). Together, these findings identify granzyme D as a novel murine mast cell protease and implicate granzyme D in settings where mast cells are activated, such as bacterial infection and allergy.
Collapse
|
32
|
Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 2013; 3:420. [PMID: 23335924 PMCID: PMC3542634 DOI: 10.3389/fimmu.2012.00420] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
The release of extracellular traps (ETs) is a recently described mechanism of innate immune response to infection. Although ETs have been intensely investigated in the context of neutrophil antimicrobial effector mechanisms, other immune cells such as mast cells, eosinophils, and macrophages can also release these structures. The different ETs have several features in common, regardless of the type of cells from which they originated, including a DNA backbone with embedded antimicrobial peptides, proteases, and histones. However, they also exhibit remarkable individual differences such as the type of sub-cellular compartments from where the DNA backbone originates (e.g., nucleus or mitochondria), the proportion of responding cells within the pool, and/or the molecular mechanism/s underlying the ETs formation. This review summarizes the knowledge accumulated in recent years regarding the complex and expanding world of ETs and their role in immune function with particular emphasis on the role of other immune cells rather than on neutrophils exclusively.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | | |
Collapse
|
33
|
Fuller SJ. New Insights into the Pathogenesis, Diagnosis, and Management of Mastocytosis. Hematol Oncol Clin North Am 2012; 26:1143-68. [DOI: 10.1016/j.hoc.2012.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Lima HG, Pinke KH, Gardizani TP, Souza-Júnior DA, Carlos D, Avila-Campos MJ, Lara VS. Mast cells act as phagocytes against the periodontopathogen Aggregatibacter actinomycetemcomitans. J Periodontol 2012; 84:265-72. [PMID: 22524328 DOI: 10.1902/jop.2012.120087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Evidence to date shows that mast cells play a critical role in immune defenses against infectious agents, but there have been no reports about involvement of these cells in eliminating periodontopathogens. In this study, the phagocytic ability of mast cells against Aggregatibacter actinomycetemcomitans compared with macrophages is evaluated. METHODS In vitro phagocytic assays were conducted using murine mast cells and macrophages, incubated with A. actinomycetemcomitans, either opsonized or not, with different bacterial load ratios. After 1 hour, cells were stained with acridine orange and assessed by confocal laser-scanning electron microscopy. RESULTS Phagocytic ability of murine mast cells against A. actinomycetemcomitans was confirmed. In addition, the percentage of mast cells with internalized bacteria was higher in the absence of opsonization than in the presence of opsonization. Both cell types showed significant phagocytic activity against A. actinomycetemcomitans. However, the percentage of mast cells with non-opsonized bacteria was higher than that of macrophages with opsonized bacteria in one of the ratios (1:10). CONCLUSIONS This is the first report about the participation of murine mast cells as phagocytes against A. actinomycetemcomitans, mainly in the absence of opsonization with human serum. Our results may indicate that mast cells act as professional phagocytes in the pathogenesis of biofilm-associated periodontal disease.
Collapse
Affiliation(s)
- Heliton G Lima
- Department of Stomatology, Bauru School of Dentistry, São Paulo University, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Furuta T, Murao LA, Lan NTP, Huy NT, Huong VTQ, Thuy TT, Tham VD, Nga CTP, Ha TTN, Ohmoto Y, Kikuchi M, Morita K, Yasunami M, Hirayama K, Watanabe N. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome. PLoS Negl Trop Dis 2012; 6:e1505. [PMID: 22363824 PMCID: PMC3283553 DOI: 10.1371/journal.pntd.0001505] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 12/20/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase) and -related cytokines (IL-4, -9, and -17) between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF), Dengue hemorrhagic fever (DHF), and Dengue shock syndrome (DSS), as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.
Collapse
Affiliation(s)
- Takahisa Furuta
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Krishnan S, Mali RS, Koehler KR, Vemula S, Chatterjee A, Ghosh J, Ramdas B, Ma P, Hashino E, Kapur R. Class I(A) PI3Kinase regulatory subunit, p85α, mediates mast cell development through regulation of growth and survival related genes. PLoS One 2012; 7:e28979. [PMID: 22238586 PMCID: PMC3251560 DOI: 10.1371/journal.pone.0028979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/18/2011] [Indexed: 12/04/2022] Open
Abstract
Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1A PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes.
Collapse
Affiliation(s)
- Subha Krishnan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Raghuveer Singh Mali
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl R. Koehler
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sasidhar Vemula
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Anindya Chatterjee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joydeep Ghosh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Baskar Ramdas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peilin Ma
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Eri Hashino
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Inhibitory effects of C4a on chemoattractant and secretagogue functions of the other anaphylatoxins via Gi protein-adenylyl cyclase inhibition pathway in mast cells. Int Immunopharmacol 2011; 12:158-68. [PMID: 22155625 DOI: 10.1016/j.intimp.2011.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 02/07/2023]
Abstract
A recombinant complement anaphylatoxin, C4a, inhibited chemotaxis, respiratory burst and histamine release in mast cell-like HMC-1 cells that were treated with recombinant C5a anaphylatoxin. C4a also inhibited histamine release from HMC-1 cells that were induced by recombinant C3a. The inhibition of C5a- and C3a-induced leukocyte reactions by C4a was recapitulated in peripheral blood CD133(+) cell-derived differentiated mast cells. In HMC-1 cells, C4a inhibited cytoplasmic Ca(2+) influx, an event that precedes anaphylatoxin-induced chemotactic and secretary responses. A conditioned medium of HMC-1 cells after shortly treated with C4a also inhibited the anaphylatoxin-induced Ca(2+) influx even after removal of C4a, indicating that the effect of C4a is to liberate an autocrine inhibitor from the mast cells. The inhibitor secretion by C4a was prevented with pertussis toxin or with a phosphodiesterase inhibitor. Conversely, an adenylyl cyclase inhibitor reproduced the effect of C4a. C4a decreased the intracellular cyclic AMP concentration of HMC-1 cells, indicating that C4a elicited the Gi protein-adenylyl cyclase inhibition pathway. Neither C4a nor the conditioned medium, however, inhibited Ca(2+) influx and respiratory burst in C5a- or C3a-stimulated peripheral neutrophils, suggesting that these cells lack this inhibitory system. Additionally, in HMC-1 cells, C4a did not inhibit Ca(2+)-independent, Leu72Gln-C5a-stimulated chemotactic response. In agreement with this finding, C4a treatment inhibited ERK1/2 phosphorylation in HMC-1 cells stimulated with other anaphylatoxins but did not inhibit p38MAPK phosphorylation in cells stimulated with Leu72Gln-C5a. Taken together, these findings suggest that the autocrine inhibitory effect elicited by C4a is attributed to interruption of Ca(2+)-dependent intracellular signaling pathway.
Collapse
|
38
|
Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ. The significant role of mast cells in cancer. Cancer Metastasis Rev 2011; 30:45-60. [PMID: 21287360 DOI: 10.1007/s10555-011-9286-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mast cells (MC) are a bone marrow-derived, long-lived, heterogeneous cellular population that function both as positive and negative regulators of immune responses. They are arguably the most productive chemical factory in the body and influence other cells through both soluble mediators and cell-to-cell interaction. MC are commonly seen in various tumors and have been attributed alternatively with tumor rejection or tumor promotion. Tumor-infiltrating MC are derived both from sentinel and recruited progenitor cells. MC can directly influence tumor cell proliferation and invasion but also help tumors indirectly by organizing its microenvironment and modulating immune responses to tumor cells. Best known for orchestrating inflammation and angiogenesis, the role of MC in shaping adaptive immune responses has become a focus of recent investigations. MC mobilize T cells and antigen-presenting dendritic cells. They function as intermediaries in regulatory T cells (Treg)-induced tolerance but can also modify or reverse Treg-suppressive properties. The central role of MC in the control of innate and adaptive immunity endows them with the ability to tune the nature of host responses to cancer and ultimately influence the outcome of disease and fate of the cancer patient.
Collapse
Affiliation(s)
- Khashayarsha Khazaie
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 East Superior Street, Lurie 3-250, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bhatty M, Pruett SB, Swiatlo E, Nanduri B. Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol 2011; 45:523-39. [PMID: 21827928 DOI: 10.1016/j.alcohol.2011.02.305] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol consumption have diverse and well-documented effects on the human immune system, leading to increased susceptibility to infections like bacterial pneumonia. Streptococcus pneumoniae is the most common bacterial etiology of community-acquired pneumonia worldwide. The frequency and severity of pneumococcal infections in individuals with a history of alcohol abuse is much higher than the general population. Despite this obvious epidemiological relevance, very few experimental studies have focused on the interaction of pneumococci with the immune system of a host acutely or chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for designing effective prophylactic and therapeutic interventions for such populations. Recent advances in pneumococcal research have greatly improved our understanding of pneumococcal pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the host. The purpose of this review is to integrate the available knowledge in these diverse areas of for a better understanding of the how the compromised immune system derived from alcohol exposure responds to pneumococcal infections.
Collapse
Affiliation(s)
- Minny Bhatty
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
40
|
Crivellato E, Nico B, Ribatti D. The history of the controversial relationship between mast cells and basophils. Immunol Lett 2011; 141:10-7. [PMID: 21756940 DOI: 10.1016/j.imlet.2011.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/13/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022]
Abstract
Work on mast cells and basophils began with their identification by Paul Ehrlich at the end of the 19th century. Mast cells and basophils were immediately perceived as closely linked cells and early nomenclature formulated by Ehrlich himself, i.e., tissue "Mastzellen" and blood "Mastzellen", reflected this unifying viewpoint. With time, important functional affinities but also substantial diversities were recognized. This review article focuses on the historical development of the concept of mast cell/basophil specificity, from the initial identification of these cells to current studies.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Udine Medical School, Udine, Italy.
| | | | | |
Collapse
|
41
|
Villaseñor-Cardoso MI, Salaiza N, Delgado J, Gutiérrez-Kobeh L, Pérez-Torres A, Becker I. Mast cells are activated by Leishmania mexicana LPG and regulate the disease outcome depending on the genetic background of the host. Parasite Immunol 2011; 30:425-34. [PMID: 18507782 DOI: 10.1111/j.1365-3024.2008.01042.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulatory effect of mast cells on the pathogenesis of leishmaniasis is unclear. We report a comparative analysis of TLR2 membrane expression, TNF-α, IL-10 and MIP-1α production, and granule release of bone marrow-derived mast cells (BMMCs) from susceptible BALB/c and resistant C57BL/6 mice, stimulated in vitro with Leishmania mexicana lipophosphoglycan (LPG). We studied the kinetics of mast cell degranulation and parasite numbers in lesions of both mouse strains infected with L. mexicana. We found that BMMCs of C57BL/6 mice expressed more TLR2 and produced higher levels of both cytokines and MIP-1α, whereas BALB/c BMMCs significantly augmented their granule release. Lesions of BALB/c mice showed higher levels of degranulated mast cells at 3 h of infection, whereas after 3 days of infection, the number of degranulated mast cells in C57BL/6 was higher than in BALB/c lesions. Throughout infection, BALB/c mice harboured more parasites. The regulatory effect of mast cells seems to depend on the genetic background of the host: mast cells of BALB/c mice facilitate disease progression due to an augmented inflammatory response early in the infection, whereas mast cells of C57BL/6 mice produce cytokines that regulate inflammation and maintain an elevated number of immune cells in the lesions, promoting disease control.
Collapse
Affiliation(s)
- M I Villaseñor-Cardoso
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | | | | | | | | | | |
Collapse
|
42
|
Nishiura H, Zhao R, Yamamoto T. The role of the ribosomal protein S19 C-terminus in altering the chemotaxis of leucocytes by causing functional differences in the C5a receptor response. J Biochem 2011; 150:271-7. [DOI: 10.1093/jb/mvr067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Arock M, Valent P. Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives. Expert Rev Hematol 2011; 3:497-516. [PMID: 21083038 DOI: 10.1586/ehm.10.42] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mastocytosis is a myeloid neoplasm characterized by abnormal accumulation and frequent activation of mast cells (MCs) in various organs. Organ systems typically involved are the bone marrow, skin, liver and gastrointestinal tract. In most adult patients, the systemic form of mastocytosis (SM) is diagnosed, which includes an indolent subvariant, an aggressive subvariant and a leukemic subvariant, also termed MC leukemia. Whereas in pediatric mastocytosis, which is usually confined to the skin, a number of different KIT mutations and other defects may be detected, the KIT mutation D816V is detectable in most (adult) patients with SM. In a subset of these patients, additional oncogenic factors may lead to enhanced survival and growth of MCs and, thus, to advanced SM. Other factors may lead to MC activation, with consecutive anaphylactic reactions that can be severe or even fatal. Treatment of SM usually focuses on symptom relief by histamine receptor antagonists and other supportive therapy. However, in aggressive and leukemic variants, cytoreductive and targeted drugs must be applied. Unfortunately, the prognosis in these patients remains poor, even when treated with novel KIT-targeting agents, polychemotherapy or stem cell transplantation. This article provides a summary of our knowledge on the pathogenesis and on treatment options in SM.
Collapse
Affiliation(s)
- Michel Arock
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR 8113, Ecole Normale Supérieure de Cachan, 61, Ave du Président Wilson, 94235 Cachan Cedex, France.
| | | |
Collapse
|
44
|
Abstract
Vitamin E is the most important chain-breaking, lipid-soluble antioxidant present in body tissues of all cells and is considered the first line of defense against lipid peroxidation and it is important for normal function of the immune cells. However, vitamin E deficiency is rare in well-nourished healthy subjects and is not a problem, even among people living on relatively poor diets, both T- and B-cell functions are impaired by vitamin E deficiency. While immune cells are particularly enriched in vitamin E because of their high polyunsaturated fatty acid content, this point puts them at especially high risk for oxidative damage. Besides its immunomodulatory effects, vitamin E also plays an important role in carcinogenesis with its antioxidant properties against cancer, and ischemic heart disease with limiting the progression of atherosclerosis. Supplementation of vitamin E significantly enhances both cell mediated and humoral immune functions in humans, especially in the elderly and animals.
Collapse
Affiliation(s)
- Didem Pekmezci
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Kurupelit, Samsun, Turkey
| |
Collapse
|
45
|
Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta Mol Basis Dis 2010; 1822:2-8. [PMID: 21130163 DOI: 10.1016/j.bbadis.2010.11.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/08/2010] [Accepted: 11/24/2010] [Indexed: 02/07/2023]
Abstract
Accumulation of mast cells (MCs) in tumours was described by Ehrlich in his doctoral thesis. Since this early account, ample evidence has been provided highlighting participation of MCs to the inflammatory reaction that occurs in many clinical and experimental tumour settings. MCs are bone marrow-derived tissue-homing leukocytes that are endowed with a panoply of releasable mediators and surface receptors. These cells actively take part to innate and acquired immune reactions as well as to a series of fundamental functions such as angiogenesis, tissue repair, and tissue remodelling. The involvement of MCs in tumour development is debated. Although some evidence suggests that MCs can promote tumourigenesis and tumour progression, there are some clinical sets as well as experimental tumour models in which MCs seem to have functions that favour the host. One of the major issues linking MCs to cancer is the ability of these cells to release potent pro-angiogenic factors. This review will focus on the most recent acquisitions about this intriguing field of research. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, 70124 Bari, Italy.
| | | |
Collapse
|
46
|
Kunii J, Takahashi K, Kasakura K, Tsuda M, Nakano K, Hosono A, Kaminogawa S. Commensal bacteria promote migration of mast cells into the intestine. Immunobiology 2010; 216:692-7. [PMID: 21281976 DOI: 10.1016/j.imbio.2010.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Mast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice. It was also shown that GF mice had lower mast cell proportion out of lamina propria leukocytes in the small intestine and higher mast cell percentages in the blood than normal mice by flow cytometry. These results indicate that migration of mast cells from the blood to the intestine is promoted by intestinal commensal bacteria. In addition, MyD88⁻/⁻ mice had lower densities of intestinal mast cells than CV mice, suggesting that the promotive effect of commensals is, at least in part, TLR-dependent. The ligands of CXC chemokine receptor 2 (CXCR2), which is critical for homing of mast cells to the intestine, were expressed higher in intestinal tissues and in intestinal epithelial cells (IECs) of normal mice than in those of GF or MyD88⁻/⁻ mice. Collectively, it is suggested that commensals promote migration of mast cells into the intestine through the induction of CXCR2 ligands from IECs in a TLR-dependent manner.
Collapse
Affiliation(s)
- Junichi Kunii
- Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Mast cells: Emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol 2010; 48:14-25. [DOI: 10.1016/j.molimm.2010.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 12/31/2022]
|
48
|
Crivellato E, Nico B, Gallo VP, Ribatti D. Cell secretion mediated by granule-associated vesicle transport: a glimpse at evolution. Anat Rec (Hoboken) 2010; 293:1115-24. [PMID: 20340095 DOI: 10.1002/ar.21146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Regulated secretion allows extrusion of cell products stored in specialized membrane-bound organelles called secretory granules or secretory vesicles. Regulated secretion provides basic functions in living organisms, and in a phylogenetic perspective, it is recognizable in the most primitive eukaryotic forms. This article is an attempt to trace the evolutionary history of a special type of secretory pattern, which has been referred to as vesicle-mediated degranulation or piecemeal degranulation (PMD). First described in the early 70s of the last century in inflammatory cells, such as the basophils, mast cells, and eosinophils, this regulated secretory route has subsequently been recognized in endocrine cells, in particular in the chromaffin cells of the adrenal medulla. This vesicle-mediated degranulation is held to mobilize small and specific aliquots of granule-associated material for selective paracrine or endocrine transport to the cell exterior. PMD has been identified in many vertebrate classes. By contrast, no data are available for invertebrates. We speculate that this pattern of cell secretion emerged early in phylogenesis, when the first metazoans appeared. In this review article, we will first revise the concept of vesicle-mediated degranulation in the light of the most recent experimental discoveries and theoretical implications. Then, the distribution of this secretory mode among vertebrates and its molecular basis will be highlighted. Finally, the potential occurrence of PMD in invertebrates, its biological significance from an evolutionary perspective and the future direction of investigations will be briefly sketched.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Research, Section of Anatomy, University of Udine School of Medicine, Udine, Italy.
| | | | | | | |
Collapse
|
49
|
Cruse G, Fernandes VE, de Salort J, Pankhania D, Marinas MS, Brewin H, Andrew PW, Bradding P, Kadioglu A. Human lung mast cells mediate pneumococcal cell death in response to activation by pneumolysin. THE JOURNAL OF IMMUNOLOGY 2010; 184:7108-15. [PMID: 20483738 DOI: 10.4049/jimmunol.0900802] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mast cells are emerging as contributors to innate immunity. Mouse mast cells have a pivotal role in protection against bacterial infection, and human cord blood-derived mast cells reduce bacterial viability in culture. The objectives of this study were to determine whether human lung mast cells (HLMCs) might be protective against pneumococcal lung infection through direct antimicrobial activity. Tissue-derived HLMCs and the human mast cell lines HMC-1 and LAD2 were cocultured with wild-type and mutant pneumococci, and viability and functional assays were performed. Mast cells were also stimulated with purified pneumolysin. HLMCs killed wild-type serotype-2 (D39) pneumococci in coculture but had no effect on an isogenic pneumolysin-deficient (PLN-A) pneumococcus. D39 wild-type, but not PLN-A pneumococci, induced the release of leukotriene C4 from human mast cells in a dose-dependent manner, which was not accompanied by histamine release. Stimulation of mast cells with sublytic concentrations of purified pneumolysin replicated this effect. Furthermore, pneumolysin induced the release of the cathelicidin LL-37 from HLMCs, purified LL-37 reduced pneumococcal viability, and neutralizing Ab to LL-37 attenuated mast cell-dependent pneumococcal killing. In addition, at high concentrations, all pneumococcal strains tested reduced HLMC viability through a combination of pneumolysin and H2O2-dependent mechanisms. HLMCs exhibit direct antimicrobial activity to pneumococci through their activation by pneumolysin. This antimicrobial activity is mediated, in part, by the release of LL-37 from HLMCs. This suggests that mast cells provide an early warning system and potentially limit pneumococcal dissemination early in the course of invasive pulmonary pneumococcal disease.
Collapse
Affiliation(s)
- Glenn Cruse
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester Medical School, Leicester, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Interaction between the intestinal immune system and commensal bacteria and its effect on the regulation of allergic reactions. Biosci Biotechnol Biochem 2010; 74:691-5. [PMID: 20378987 DOI: 10.1271/bbb.90962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The immune system and the commensal bacteria in the intestine, which together form the intestinal symbiotic system, greatly contribute to regulation of allergy. Of the various types of cells constituting the intestinal immune system, this review focuses on epithelial cells and mast cells and the interaction of these cells with commensals. Mast cells express the high affinity IgE receptor FcepsilonRI which is essential to the induction of allergic inflammatory reactions. The molecular mechanisms of transcriptional regulation of genes encoding FcepsilonRI have been clarified. On the other hand, the expression of the molecules involved in microbe recognition is regulated in a specific manner in intestinal epithelial cells, which are continuously exposed to the commensals inhabiting the intestinal lumen, to prevent excessive inflammatory reactions. Microbial components directly regulate the functions of mast cells through Toll-like receptors. These aspects provide targets for the regulation of allergy based on the maintenance of the intestinal symbiotic system.
Collapse
|