1
|
Chen X, Tian C, He Y, Li Y, Zhou Y, Wang X, Zhou M, Lin J, Lian Z, Deng D. Substrate and inhibitor specificity of Plasmodium nucleoside transporters ENT1 orthologs. J Biol Chem 2025; 301:108115. [PMID: 39725030 PMCID: PMC11787452 DOI: 10.1016/j.jbc.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Malaria caused by Plasmodium infection poses a serious hazard to human health. Plasmodium falciparum equilibrative nucleoside transporter 1 (PfENT1), which mediates nucleoside uptake, is essential for the growth and proliferation of Plasmodium parasites, suggesting that PfENT1 is a potential antimalarial target. The promising compound GSK4 effectively inhibits the transport activity of PfENT1, thereby restraining the growth of Plasmodium parasites. However, it still needs to be clarified whether Plasmodium ENT1 orthologs have different selectivities for nucleosides and inhibitors. Here, we systematically compared the nucleoside selectivity of Plasmodium ENT1 orthologs from P. falciparum (PfENT1), Plasmodium berghei (PbENT1), and Plasmodium vivax (PvENT1), revealing that Plasmodium ENT1 orthologs present a distinct nucleoside recognition pattern. In addition, GSK4 robustly binds to PfENT1 and PvENT1 from two human-hosted Plasmodium parasites but has a weakened binding affinity for PbENT1 from mouse-hosted Plasmodium parasites. We further structurally optimized the inhibitor and generated three GSK4 analogs. One of the GSK4 analogs presented a slightly increased binding affinity for PfENT1. This optimization represents a promising advancement for antimalarial drug development, providing a novel foundation for future endeavors in antimalarial drug design.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chengyu Tian
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yaozong Li
- Department of Chemistry, Umeå University, Umea, Sweden; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yanxia Zhou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mi Zhou
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jingwen Lin
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Kaushal RS, Naik N, Prajapati M, Rane S, Raulji H, Afu NF, Upadhyay TK, Saeed M. Leishmania species: A narrative review on surface proteins with structural aspects involved in host-pathogen interaction. Chem Biol Drug Des 2023; 102:332-356. [PMID: 36872849 DOI: 10.1111/cbdd.14227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
In tropical and subtropical regions of the world, leishmaniasis is endemic and causes a range of clinical symptoms in people, from severe tegumentary forms (such as cutaneous, mucocutaneous, and diffuse leishmaniasis) to lethal visceral forms. The protozoan parasite of the genus Leishmania causes leishmaniasis, which is still a significant public health issue, according to the World Health Organization 2022. The public's worry about the neglected tropical disease is growing as new foci of the illness arise, which are exacerbated by alterations in behavior, changes in the environment, and an enlarged range of sand fly vectors. Leishmania research has advanced significantly during the past three decades in a few different avenues. Despite several studies on Leishmania, many issues, such as illness control, parasite resistance, parasite clearance, etc., remain unresolved. The key virulence variables that play a role in the pathogenicity-host-pathogen relationship of the parasite are comprehensively discussed in this paper. The important Leishmania virulence factors, such as Kinetoplastid Membrane Protein-11 (KMP-11), Leishmanolysin (GP63), Proteophosphoglycan (PPG), Lipophosphoglycan (LPG), Glycosylinositol Phospholipids (GIPL), and others, have an impact on the pathophysiology of the disease and enable the parasite to spread the infection. Leishmania infection may arise from virulence factors; they are treatable with medications or vaccinations more promptly and might greatly shorten the duration of treatment. Additionally, our research sought to present a modeled structure of a few putative virulence factors that might aid in the development of new chemotherapeutic approaches for the treatment of leishmaniasis. The predicted virulence protein's structure is utilized to design novel drugs, therapeutic targets, and immunizations for considerable advantage from a higher understanding of the host immune response.
Collapse
Affiliation(s)
- Radhey Shyam Kaushal
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Nidhi Naik
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Maitri Prajapati
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Shruti Rane
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Himali Raulji
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Ngo Festus Afu
- Department of Biochemistry, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, P.O. Box 2440, Hail, 81411, Saudi Arabia
| |
Collapse
|
3
|
Wang C, Yu L, Zhang J, Zhou Y, Sun B, Xiao Q, Zhang M, Liu H, Li J, Li J, Luo Y, Xu J, Lian Z, Lin J, Wang X, Zhang P, Guo L, Ren R, Deng D. Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1. Nat Commun 2023; 14:1727. [PMID: 36977719 PMCID: PMC10050424 DOI: 10.1038/s41467-023-37411-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
By lacking de novo purine biosynthesis enzymes, Plasmodium falciparum requires purine nucleoside uptake from host cells. The indispensable nucleoside transporter ENT1 of P. falciparum facilitates nucleoside uptake in the asexual blood stage. Specific inhibitors of PfENT1 prevent the proliferation of P. falciparum at submicromolar concentrations. However, the substrate recognition and inhibitory mechanism of PfENT1 are still elusive. Here, we report cryo-EM structures of PfENT1 in apo, inosine-bound, and inhibitor-bound states. Together with in vitro binding and uptake assays, we identify that inosine is the primary substrate of PfENT1 and that the inosine-binding site is located in the central cavity of PfENT1. The endofacial inhibitor GSK4 occupies the orthosteric site of PfENT1 and explores the allosteric site to block the conformational change of PfENT1. Furthermore, we propose a general "rocker switch" alternating access cycle for ENT transporters. Understanding the substrate recognition and inhibitory mechanisms of PfENT1 will greatly facilitate future efforts in the rational design of antimalarial drugs.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Warshal Institute of Computational Biology, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jiying Zhang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanxia Zhou
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qingjie Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huayi Liu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhong Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jie Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhong Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingwen Lin
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Li Guo
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Soni M, Pratap JV. Development of Novel Anti-Leishmanials: The Case for Structure-Based Approaches. Pathogens 2022; 11:pathogens11080950. [PMID: 36015070 PMCID: PMC9414883 DOI: 10.3390/pathogens11080950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The neglected tropical disease (NTD) leishmaniasis is the collective name given to a diverse group of illnesses caused by ~20 species belonging to the genus Leishmania, a majority of which are vector borne and associated with complex life cycles that cause immense health, social, and economic burdens locally, but individually are not a major global health priority. Therapeutic approaches against leishmaniasis have various inadequacies including drug resistance and a lack of effective control and eradication of the disease spread. Therefore, the development of a rationale-driven, target based approaches towards novel therapeutics against leishmaniasis is an emergent need. The utilization of Artificial Intelligence/Machine Learning methods, which have made significant advances in drug discovery applications, would benefit the discovery process. In this review, following a summary of the disease epidemiology and available therapies, we consider three important leishmanial metabolic pathways that can be attractive targets for a structure-based drug discovery approach towards the development of novel anti-leishmanials. The folate biosynthesis pathway is critical, as Leishmania is auxotrophic for folates that are essential in many metabolic pathways. Leishmania can not synthesize purines de novo, and salvage them from the host, making the purine salvage pathway an attractive target for novel therapeutics. Leishmania also possesses an organelle glycosome, evolutionarily related to peroxisomes of higher eukaryotes, which is essential for the survival of the parasite. Research towards therapeutics is underway against enzymes from the first two pathways, while the third is as yet unexplored.
Collapse
Affiliation(s)
- Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J. Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
5
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
6
|
Kushawaha PK, Pati Tripathi CD, Dube A. Leishmania donovani secretory protein nucleoside diphosphate kinase b localizes in its nucleus and prevents ATP mediated cytolysis of macrophages. Microb Pathog 2022; 166:105457. [DOI: 10.1016/j.micpath.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
7
|
Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Negl Trop Dis 2021; 15:e0009377. [PMID: 33905412 PMCID: PMC8104401 DOI: 10.1371/journal.pntd.0009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously. The protozoan parasite Leishmania is auxotroph for folate and unconjugated pterins and salvages both from the mammalian host. Two enzymes of the folate metabolism pathway, namely the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the pteridine reductase 1 (PTR1), are being evaluated for drug discovery and repurposing of existing anti-metabolites. Despite their apparent potential, development of DHFR-TS and PTR1 targeted chemotherapy against Leishmania is still awaiting. Here we revisited folate metabolism at the genomic level and report on the identification of known resistance genes alongside some new ones. Through gene disruption studies we found that L. infantum DHFR-TS null mutants are thymidine auxotroph and that these can be rescued by the bacterial flavin dependent thymidylate synthase ThyX. We also found that PTR1 is essential in the absence of a functional DHFR-TS even in the presence of ThyX or thymidine supplementation, indicating the essential role of reduced pterins or folate beyond thymidine synthesis. This study indicates that simultaneous targeting of DHFR-TS and PTR1 will be required for the development of anti-folate chemotherapy against Leishmania.
Collapse
|
8
|
Arora K, Rai AK. Dependence of Leishmania parasite on host derived ATP: an overview of extracellular nucleotide metabolism in parasite. J Parasit Dis 2019; 43:1-13. [PMID: 30956439 PMCID: PMC6423245 DOI: 10.1007/s12639-018-1061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kashika Arora
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Allahabad, 211004 U.P. India
- Present Address: Biomedical Research Center, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Allahabad, 211004 U.P. India
| |
Collapse
|
9
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
11
|
Alzahrani KJH, Ali JAM, Eze AA, Looi WL, Tagoe DNA, Creek DJ, Barrett MP, de Koning HP. Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. Int J Parasitol Drugs Drug Resist 2017; 7:206-226. [PMID: 28453984 PMCID: PMC5407577 DOI: 10.1016/j.ijpddr.2017.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/28/2022]
Abstract
Leishmania pyrimidine salvage is replete with opportunities for therapeutic intervention with enzyme inhibitors or antimetabolites. Their uptake into cells depends upon specific transporters; therefore it is essential to establish whether various Leishmania species possess similar pyrimidine transporters capable of drug uptake. Here, we report a comprehensive characterization of pyrimidine transport in L. major and L. mexicana. In both species, two transporters for uridine/adenosine were detected, one of which also transported uracil and the antimetabolites 5-fluoruracil (5-FU) and 5F,2'deoxyuridine (5F,2'dUrd), and was designated uridine-uracil transporter 1 (UUT1); the other transporter mediated uptake of adenosine, uridine, 5F,2'dUrd and thymidine and was designated Nucleoside Transporter 1 (NT1). To verify the reported L. donovani model of two NT1-like genes encoding uridine/adenosine transporters, and an NT2 gene encoding an inosine transporter, we cloned the corresponding L. major and L. mexicana genes, expressing each in T. brucei. Consistent with the L. donovani reports, the NT1-like genes of either species mediated the adenosine-sensitive uptake of [3H]-uridine but not of [3H]-inosine. Conversely, the NT2-like genes mediated uptake of [3H]-inosine but not [3H]-uridine. Among pyrimidine antimetabolites tested, 5-FU and 5F,2'dUrd were the most effective antileishmanials; resistance to both analogs was induced in L. major and L. mexicana. In each case it was found that the resistant cells had lost the transport capacity for the inducing drug. Metabolomics analysis found that the mechanism of action of 5-FU and 5F-2'dUrd was similar in both Leishmania species, with major changes in deoxynucleotide metabolism. We conclude that the pyrimidine salvage system is highly conserved in Leishmania species - essential information for the development of pyrimidine-based chemotherapy.
Collapse
Affiliation(s)
- Khalid J H Alzahrani
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Clinical Laboratory, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Juma A M Ali
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Al Jabal Al Gharbi University, Gharyan, Libya
| | - Anthonius A Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Medical Biochemistry, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Wan Limm Looi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel N A Tagoe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren J Creek
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
12
|
The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey. Biochem Soc Trans 2017; 44:869-76. [PMID: 27284054 DOI: 10.1042/bst20160038] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/18/2023]
Abstract
Specialized nucleoside transporter (NT) proteins are required for passage of nucleosides and hydrophilic nucleoside analogues across biological membranes. Physiologic nucleosides serve as central salvage metabolites in nucleotide biosynthesis, and nucleoside analogues are used as chemotherapeutic agents in the treatment of cancer and antiviral diseases. The nucleoside adenosine modulates numerous cellular events via purino-receptor cell signalling pathways. Human NTs are divided into two structurally unrelated protein families: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family. Human CNTs are inwardly directed Na(+)-dependent nucleoside transporters found predominantly in intestinal and renal epithelial and other specialized cell types. Human ENTs mediate bidirectional fluxes of purine and pyrimidine nucleosides down their concentration gradients and are ubiquitously found in most, possibly all, cell types. Both protein families are evolutionarily old: CNTs are present in both eukaryotes and prokaryotes; ENTs are widely distributed in mammalian, lower vertebrate and other eukaryote species. This mini-review describes a 30-year collaboration with Professor Stephen Baldwin to identify and understand the structures and functions of these physiologically and clinically important transport proteins.
Collapse
|
13
|
Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 6:1-11. [PMID: 26862473 PMCID: PMC4706624 DOI: 10.1016/j.ijpddr.2015.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 11/26/2022]
Abstract
Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine) and pyrimidines ([3H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs that target both falciparum and vivax ENT1 may be feasible. PvENT1 can be functionally expressed in Saccharomyces cerevisiae. PvENT1 transports purine and pyrimidine nucleosides and nucleobases but does not transport nucleotides. PvENT1 is inhibited by recently described PfENT1 inhibitors with similar potency. Identified PvENT1 non-synonymous SNPs do not change PfENT1 inhibitor potency. Plasmodium ENTs may be feasible target for development of novel antimalarial drugs.
Collapse
Key Words
- ACT, Artemisinin-based Combination Therapies
- CQ, chloroquine
- Drug development
- EC50, concentration causing 50% of maximal effect
- ENT, equilibrative nucleoside transporter
- EV, empty vector
- HTS, high throughput screen
- IC50, concentration causing 50% inhibition
- Malaria
- NBMPR, 4-nitrobenzylthioinosine
- Nucleoside/nucleobase transport
- Parasite
- PfENT1, P. falciparum ENT type 1
- Plasmodium vivax
- Purines
- PvENT1, P. vivax ENT type 1
- SDM, synthetic defined media
- SNP, single nucleotide polymorphism
- Single-nucleotide polymorphism (SNP)
- Transporter
- WHO, World Health Organization
- WT, wild type
- hENT1, human ENT type 1
Collapse
|
14
|
High yield expression and purification of equilibrative nucleoside transporter 7 (ENT7) from Arabidopsis thaliana. Biochim Biophys Acta Gen Subj 2015; 1850:1921-9. [PMID: 26080001 DOI: 10.1016/j.bbagen.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/31/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. METHODS The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). RESULTS AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. SIGNIFICANCE The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family.
Collapse
|
15
|
Pereira CA, Reigada C, Sayé M, Digirolamo FA, Miranda MR. Cytosolic Trypanosoma cruzi nucleoside diphosphate kinase generates large granules that depend on its quaternary structure. Exp Parasitol 2014; 142:43-50. [PMID: 24768953 DOI: 10.1016/j.exppara.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a key enzyme in the control of cellular concentrations of nucleoside triphosphates, and has been shown to play important roles in many cellular processes. In this work we investigated the subcellular localization of the canonical NDPK1 from Trypanosoma cruzi (TcNDPK1), the etiological agent Chagas's Disease, and evaluated the effect of adding an additional weak protein-protein interaction domain from the green fluorescent protein (GFP). Immunofluorescence microscopy revealed that the enzyme from wild-type and TcNDPK1 overexpressing parasites has a cytosolic distribution, being the signal more intense around the nucleus. However, when TcNDPK1 was fused with dimeric GFP it relocalizes in non-membrane bounded granules also located adjacent to the nucleus. In addition, these granular structures were dependent on the quaternary structure of TcNDPK1 and GFP since mutations in residues involved in their oligomerization dramatically decrease the amount of granules. This phenomenon seems to be specific for TcNDPK1 since other cytosolic hexameric enzyme from T. cruzi, such as the NADP(+)-linked glutamate dehydrogenase, was not affected by the fusion with GFP. In addition, in parasites without GFP fusions granules could be observed in a subpopulation of epimastigotes under metacyclogenesis and metacyclic trypomastigotes. Organization into higher protein arrangements appears to be a singular feature of canonical NDPKs; however the physiological function of such structures requires further investigation.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Chantal Reigada
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Melisa Sayé
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 2014; 10:e1003938. [PMID: 24586154 PMCID: PMC3937319 DOI: 10.1371/journal.ppat.1003938] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/06/2014] [Indexed: 01/18/2023] Open
Abstract
The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms. Leishmania, the cause of a deadly spectrum of diseases in humans, surmounts a number of environmental challenges, including changes in the availability of salvageable nutrients, to successfully colonize its host. Adaptation to environmental stress is clearly of significance in parasite biology, but the underlying mechanisms are not well understood. To simulate the response to periodic nutrient scarcity in vivo, we have induced purine starvation in vitro. Purines are essential for growth and viability, and serve as the major energy currency of cells. Leishmania cannot synthesize purines and must salvage them from the surroundings. Extracellular purine depletion in culture induces a robust survival response in Leishmania, whereby growth arrests, but parasites persist for months. To profile the events that enable endurance of purine starvation, we used shotgun proteomics. Our data suggest that purine starvation induces extensive proteome remodeling, tailored to enhance purine capture and recycling, reduce energy expenditures, and maintain viability of the metabolically active, non-dividing population. Through global and targeted approaches, we reveal that proteome remodeling is multifaceted, and occurs through an array of responses at the mRNA, translational, and post-translational level. Our data provide one of the most inclusive views of adaptation to microenvironmental stress in Leishmania.
Collapse
|
17
|
Dean P, Major P, Nakjang S, Hirt RP, Embley TM. Transport proteins of parasitic protists and their role in nutrient salvage. FRONTIERS IN PLANT SCIENCE 2014; 5:153. [PMID: 24808897 PMCID: PMC4010794 DOI: 10.3389/fpls.2014.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/01/2014] [Indexed: 05/02/2023]
Abstract
The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.
Collapse
Affiliation(s)
- Paul Dean
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| | | | | | | | - T. Martin Embley
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| |
Collapse
|
18
|
Arendt CS. Crithidia fasciculata adenosine transporter 1 (CfAT1), a novel high-affinity equilibrative nucleoside transporter specific for adenosine. Mol Biochem Parasitol 2013; 191:75-9. [PMID: 24120444 DOI: 10.1016/j.molbiopara.2013.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/26/2022]
Abstract
Most eukaryotic organisms including protozoans like Crithidia, Leishmania, and Plasmodium encode a repertoire of equilibrative nucleoside transporters (ENTs). Using genomic sequencing data from Crithidia fasciculata, we discovered that this organism contains multiple ENT genes of highly similar sequence to the previously cloned and characterized adenosine transporter CfNT1: CfAT1 and CfNT3, and an allele of CfAT1, named CfAT1.2. Characterization of CfAT1 shows that it is an adenosine-only transporter, 87% identical to CfNT1 in protein sequence, with a 50-fold lower Km for adenosine. Site directed mutation of a key residue in transmembrane domain 4 (TM4) in both CfNT1 and CfAT1 shows that lysine at this position results in a high affinity phenotype, while threonine decreases adenosine affinity in both transporters. These results show that C. fasciculata has at least two adenosine transporters, and that as in other protozoan ENTs, a lysine residue in TM4 plays a key role in ligand affinity.
Collapse
Affiliation(s)
- Cassandra S Arendt
- Pacific University School of Pharmacy, 222 SE 8th Avenue, Suite 451, Hillsboro, OR 97123, USA.
| |
Collapse
|
19
|
Boitz JM, Ullman B, Jardim A, Carter NS. Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 2012; 28:345-52. [PMID: 22726696 DOI: 10.1016/j.pt.2012.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
Abstract
Purine nucleotides function in a variety of vital cellular and metabolic processes including energy production, cell signaling, synthesis of vitamin-derived cofactors and nucleic acids, and as determinants of cell fate. Unlike their mammalian and insect hosts, Leishmania cannot synthesize the purine ring de novo and are absolutely dependent upon them to meet their purine requirements. The obligatory nature of purine salvage in these parasites, therefore, offers an attractive paradigm for drug targeting and, consequently, the delineation of the pathway has been under scientific investigation for over 30 years. Here, we review recent developments that reveal how purines flux in Leishmania and offer a potential 'Achilles' heel' for future validation.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
20
|
Carter NS, Yates PA, Gessford SK, Galagan SR, Landfear SM, Ullman B. Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol 2011; 78:92-107. [PMID: 20923417 DOI: 10.1111/j.1365-2958.2010.07327.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starvation of Leishmania donovani parasites for purines leads to a rapid amplification in purine nucleobase and nucleoside transport. Studies with nucleoside transport-deficient L. donovani indicate that this phenomenon is mediated by the nucleoside transporters LdNT1 and LdNT2, as well as by the purine nucleobase transporter LdNT3. The escalation in nucleoside transport cannot be ascribed to an increase in either LdNT1 or LdNT2 mRNA. However, Western analyses on parasites expressing epitope-tagged LdNT2 revealed a marked upregulation in transporter protein at the cell surface. Kinetic investigations of LdNT1 and LdNT2 activities from purine-replete and purine-starved cells indicated that both transporters exhibited significant increases in V(max) for their ligands under conditions of purine-depletion, although neither transporter displayed an altered affinity for its respective ligands. Concomitant with the increase in purine nucleoside and nucleobase transport, the purine salvage enzymes HGPRT, XPRT and APRT were also upregulated, suggesting that under conditions where purines are limiting, Leishmania parasites remodel their purine metabolic pathway to maximize salvage. Moreover, qRT-PCR analyses coupled with cycloheximide inhibition studies suggest that the underlying molecular mechanism for this augmentation in purine salvage occurs post-transcriptionally and is reliant on de novo protein synthesis.
Collapse
Affiliation(s)
- Nicola S Carter
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Möhlmann T, Bernard C, Hach S, Ekkehard Neuhaus H. Nucleoside transport and associated metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:26-34. [PMID: 20712618 DOI: 10.1111/j.1438-8677.2010.00351.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleosides are intermediates of nucleotide metabolism. Nucleotide de novo synthesis generates the nucleoside monophosphates AMP and UMP, which are further processed to all purine and pyrimidine nucleotides involved in multiple cellular reactions, including the synthesis of nucleic acids. Catabolism of these substances results in the formation of nucleosides, which are further degraded by nucleoside hydrolase to nucleobases. Both nucleosides and nucleobases can be exchanged between cells and tissues through multiple isoforms of corresponding transport proteins. After uptake into a cell, nucleosides and nucleobases can undergo salvage reactions or catabolism. Whereas energy is preserved by salvage pathway reactions, catabolism liberates ammonia, which is then incorporated into amino acids. Keeping the balance between nitrogen consumption during nucleotide de novo synthesis and ammonia liberation by nucleotide catabolism is essential for correct plant development. Senescence and seed germination represent situations in plant development where marked fluctuations in nucleotide pools occur. Furthermore, extracellular nucleotide metabolism has become an immensely interesting research topic. In addition, selected aspects of nucleoside transport in yeast, protists and humans are discussed.
Collapse
Affiliation(s)
- T Möhlmann
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
22
|
Riegelhaupt PM, Cassera MB, Fröhlich RFG, Hazleton KZ, Hefter JJ, Schramm VL, Akabas MH. Transport of purines and purine salvage pathway inhibitors by the Plasmodium falciparum equilibrative nucleoside transporter PfENT1. Mol Biochem Parasitol 2009; 169:40-9. [PMID: 19818813 DOI: 10.1016/j.molbiopara.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/24/2009] [Accepted: 10/04/2009] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum is a purine auxotroph. The transport of purine nucleosides and nucleobases from the host erythrocyte to the parasite cytoplasm is essential to support parasite growth. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a major route for purine transport across the parasite plasma membrane. Malarial parasites are sensitive to inhibitors of purine salvage pathway enzymes. The immucillin class of purine nucleoside phosphorylase inhibitors and the adenosine analog, tubercidin, block growth of P. falciparum under in vitro culture conditions. We sought to determine whether these inhibitors utilize PfENT1 to gain access to the parasite cytosol. There is considerable controversy in the literature regarding the K(m) and/or K(i) for purine transport by PfENT1 in the Xenopus oocyte expression system. We show that oocytes metabolize adenosine but not hypoxanthine. For adenosine, metabolism is the rate limiting step in oocyte uptake assays, making hypoxanthine the preferred substrate for PfENT1 transport studies in oocytes. We demonstrate that the K(i) for PfENT1 transport of hypoxanthine and adenosine is in the 300-700microM range. Effects of substrate metabolism on uptake studies may explain conflicting results in the literature regarding the PfENT1 adenosine transport K(m). PfENT1 transports the tubercidin class of compounds. None of the immucillin compounds tested inhibited PfENT1 transport of [(3)H]hypoxanthine or [(3)H]adenosine. Although nucleobases are transported, modifications of the ribose ring in corresponding nucleoside analogs affect substrate recognition by PfENT1. These results provide new insights into PfENT1 and the mechanism by which purine salvage pathway inhibitors are transported into the parasite cytoplasm.
Collapse
Affiliation(s)
- Paul M Riegelhaupt
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Appleford PJ, Griffiths M, Yao SYM, Ng AML, Chomey EG, Isaac RE, Coates D, Hope IA, Cass CE, Young JD, Baldwin SA. Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development ofCaenorhabditis elegans. Mol Membr Biol 2009; 21:247-59. [PMID: 15371014 DOI: 10.1080/09687680410001712550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genome of Caenorhabditis elegans encodes multiple homologues of the two major families of mammalian equilibrative and concentrative nucleoside transporters. As part of a programme aimed at understanding the biological rationale underlying the multiplicity of eukaryote nucleoside transporters, we have now demonstrated that the nematode genes ZK809.4 (ent-1) and K09A9.3 (ent-2) encode equilibrative transporters, which we designate CeENT1 and CeENT2 respectively. These transporters resemble their human counterparts hENT1 and hENT2 in exhibiting similar broad permeant specificities for nucleosides, while differing in their permeant selectivities for nucleobases. They are insensitive to the classic inhibitors of mammalian nucleoside transport, nitrobenzylthioinosine, dilazep and draflazine, but are inhibited by the vasoactive drug dipyridamole. Use of green fluorescent protein reporter constructs indicated that the transporters are present in a limited number of locations in the adult, including intestine and pharynx. Their potential roles in these tissues were explored by using RNA interference to disrupt gene expression. Although disruption of ent-1 or ent-2 expression alone had no effect, simultaneous disruption of both genes yielded pronounced developmental defects involving the intestine and vulva.
Collapse
Affiliation(s)
- Peter J Appleford
- School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carter NS, Yates P, Arendt CS, Boitz JM, Ullman B. Purine and pyrimidine metabolism in Leishmania. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:141-54. [PMID: 18365665 DOI: 10.1007/978-0-387-77570-8_12] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Purines and pyrimidines are indispensable to all life, performing many vital functions for cells: ATP serves as the universal currency of cellular energy, cAMP and cGMP are key second messenger molecules, purine and pyrimidine nucleotides are precursors for activated forms of both carbohydrates and lipids, nucleotide derivatives of vitamins are essential cofactors in metabolic processes, and nucleoside triphosphates are the immediate precursors for DNA and RNA synthesis. Unlike their mammalian and insect hosts, Leishmania lack the metabolic machinery to make purine nucleotides de novo and must rely on their host for preformed purines. The obligatory nature of purine salvage offers, therefore, a plethora of potential targets for drug targeting, and the pathway has consequently been the focus of considerable scientific investigation. In contrast, Leishmania are prototrophic for pyrimidines and also express a small complement of pyrimidine salvage enzymes. Because the pyrimidine nucleotide biosynthetic pathways of Leishmania and humans are similar, pyrimidine metabolism in Leishmania has generally been considered less amenable to therapeutic manipulation than the purine salvage pathway. However, evidence garnered from a variety of parasitic protozoa suggests that the selective inhibition of pyrimidine biosynthetic enzymes offers a rational therapeutic paradigm. In this chapter, we present an overview of the purine and pyrimidine pathways in Leishmania, make comparisons to the equivalent pathways in their mammalian host, and explore how these pathways might be amenable to selective therapeutic targeting.
Collapse
Affiliation(s)
- Nicola S Carter
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
25
|
Lehane MJ, Gibson W, Lehane SM. Differential expression of fat body genes in Glossina morsitans morsitans following infection with Trypanosoma brucei brucei. Int J Parasitol 2008; 38:93-101. [PMID: 17697681 DOI: 10.1016/j.ijpara.2007.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/16/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
To determine which fat body genes were differentially expressed following infection of Glossina morsitans morsitans with Trypanosoma brucei brucei we generated four suppression subtractive hybridisation (SSH) libraries. We obtained 52 unique gene fragments (SSH clones) of which 30 had a known orthologue at E-05 or less. Overall the characteristics of the orthologues suggest: (i) that trypanosome infection has a considerable effect on metabolism in the tsetse fly; (ii) that self-cured flies are mounting an oxidative stress response; and (iii) that self-cured flies are displaying increased energy usage. The three most consistently differentially expressed genes were further analysed by gene knockdown (RNAi). Knockdown of Glossina transferrin transcripts, which are upregulated in self-cured flies compared with flies infected with trypanosomes, results in a significant increase in the number of trypanosome infections establishing in the fly midgut, suggesting transferrin plays a role in the protection of tsetse flies from trypanosome infection.
Collapse
Affiliation(s)
- M J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
26
|
Lin W, Buolamwini JK. Synthesis, flow cytometric evaluation, and identification of highly potent dipyridamole analogues as equilibrative nucleoside transporter 1 inhibitors. J Med Chem 2007; 50:3906-20. [PMID: 17636949 PMCID: PMC2536492 DOI: 10.1021/jm070311l] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dipyridamole (Persantine) is a clinically used vasodilator with equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2) inhibitory activity albeit less potent than the prototype ENT1 inhibitor nitrobenzylmercaptopurine riboside (NBMPR). Dipyridamole is a good candidate for further exploration because it is a non-nucleoside and has a proven record of safe use in humans. A series of dipyridamole analogues were synthesized with systematic modification and evaluated as ENT1 inhibitors by flow cytometry. Compounds with much higher potency were identified, the best being 2,6-bis(diethanolamino)-4,8-diheptamethyleneiminopyrimido[5,4-d]pyrimidine (13) with a K(i) of 0.49 nM compared to a K(i) of 308 nM for dipyridamole. Compound 13 is similar in potency to the prototype potent ENT1 inhibitor NBMPR (0.43 nM). For the first time, a dipyridamole analogue has been identified that is equipotent with NBMPR. The SAR indicated that diethanolamine substituted analogues were more active than monoethanolamine compounds. Also, free hydroxyl groups are not essential for activity.
Collapse
Affiliation(s)
| | - John K. Buolamwini
- To whom correspondence should be addressed at: Department Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, Suite 327, Memphis, TN 38163, Phone: 901-448-7533, Fax: 901-448-6828, E-mail:
| |
Collapse
|
27
|
Joshi MB, Dwyer DM. Molecular and functional analyses of a novel class I secretory nuclease from the human pathogen, Leishmania donovani. J Biol Chem 2007; 282:10079-10095. [PMID: 17276983 DOI: 10.1074/jbc.m610770200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primitive protozoan pathogen of humans, Leishmania donovani, resides and multiplies in highly restricted micro-environments within their hosts (i.e. as promastigotes in the gut lumen of their sandfly vectors and as amastigotes in the phagolysosomal compartments of infected mammalian macrophages). Like other trypanosomatid parasites, they are purine auxotrophs (i.e. lack the ability to synthesize purines de novo) and therefore are totally dependent upon salvaging these essential nutrients from their hosts. In that context, in this study we identified a unique 35-kDa, dithiothreitol-sensitive nuclease and showed that it was constitutively released/secreted by both promastigote and amastigote developmental forms of this parasite. By using several different molecular approaches, we identified and characterized the structure of LdNuc(s), a gene that encodes this new 35-kDa class I nuclease family member in these organisms. Homologous episomal expression of an epitope-tagged LdNuc(s) chimeric construct was used in conjunction with an anti-LdNuc(s) peptide antibody to delineate the functional and biochemical properties of this unique 35-kDa parasite released/secreted enzyme. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that this "secretory" enzyme could hydrolyze a variety of synthetic polynucleotides as well as several natural nucleic acid substrates, including RNA and single- and double-stranded DNA. Based on these cumulative observations, we hypothesize that within the micro-environments of its host, this leishmanial "secretory" nuclease could function at a distance away from the parasite to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine requirements of these organisms. Thus, this enzyme might play an important role(s) in facilitating the survival, growth, and development of this important human pathogen.
Collapse
Affiliation(s)
- Manju B Joshi
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425
| | - Dennis M Dwyer
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425.
| |
Collapse
|
28
|
Barrett MP, Gilbert IH. Targeting of toxic compounds to the trypanosome's interior. ADVANCES IN PARASITOLOGY 2006; 63:125-83. [PMID: 17134653 DOI: 10.1016/s0065-308x(06)63002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs can be targeted into African trypanosomes by exploiting carrier proteins at the surface of these parasites. This has been clearly demonstrated in the case of the melamine-based arsenical and the diamidine classes of drug that are already in use in the treatment of human African trypanosomiasis. These drugs can enter via an aminopurine transporter, termed P2, encoded by the TbAT1 gene. Other toxic compounds have also been designed to enter via this transporter. Some of these compounds enter almost exclusively through the P2 transporter, and hence loss of the P2 transporter leads to significant resistance to these particular compounds. It now appears, however, that some diamidines and melaminophenylarsenicals may also be taken up by other routes (of yet unknown function). These too may be exploited to target new drugs into trypanosomes. Additional purine nucleoside and nucleobase transporters have also been subverted to deliver toxic agents to trypanosomes. Glucose and amino acid transporters too have been investigated with a view to manipulating them to carry toxins into Trypanosoma brucei, and recent work has demonstrated that aquaglyceroporins may also have considerable potential for drug-targeting. Transporters, including those that carry lipids and vitamins such as folate and other pterins also deserve more attention in this regard. Some drugs, for example suramin, appear to enter via routes other than plasma-membrane-mediated transport. Receptor-mediated endocytosis has been proposed as a possible way in for suramin. Endocytosis also appears to be crucial in targeting natural trypanocides, such as trypanosome lytic factor (TLF) (apolipoprotein L1), into trypanosomes and this offers an alternative means of selectively targeting toxins to the trypanosome's interior. Other compounds may be induced to enter by increasing their capacity to diffuse over cell membranes; in this case depending exclusively on selective activity within the cell rather than selective uptake to impart selective toxicity. This review outlines studies that have aimed to exploit trypanosome nutrient uptake routes to selectively carry toxins into these parasites.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
29
|
Kelly JX, Winter RW, Braun TP, Osei-Agyemang M, Hinrichs DJ, Riscoe MK. Selective killing of the human malaria parasite Plasmodium falciparum by a benzylthiazolium dye. Exp Parasitol 2006; 116:103-10. [PMID: 17266952 PMCID: PMC1965281 DOI: 10.1016/j.exppara.2006.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 11/25/2022]
Abstract
Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by Plasmodium falciparum which infects hundreds of millions of people and is responsible for the deaths of 1-2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study, we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel.
Collapse
Affiliation(s)
- Jane X. Kelly
- Medical Research Service, RD-33, Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR, USA 97239
- Department of Chemistry, Portland State University, Portland, Oregon, 97207-0751
| | - Rolf W. Winter
- Medical Research Service, RD-33, Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR, USA 97239
- Department of Chemistry, Portland State University, Portland, Oregon, 97207-0751
| | - Theodore P. Braun
- Medical Research Service, RD-33, Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR, USA 97239
| | - Myralyn Osei-Agyemang
- Medical Research Service, RD-33, Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR, USA 97239
| | - David J. Hinrichs
- Medical Research Service, RD-33, Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR, USA 97239
| | - Michael K. Riscoe
- Medical Research Service, RD-33, Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR, USA 97239
- Department of Chemistry, Portland State University, Portland, Oregon, 97207-0751
- Mailing Address: *Michael Riscoe, Ph.D., Medical Research Service, RD-33, Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, Oregon 97239 Phone Number: 503-721-7885/Telefacsimile: 503-402-2817/e-mail:
| |
Collapse
|
30
|
Abstract
Every year, forty percent of the world population is at risk of contracting malaria. Hopes for the erradication of this disease during the 20th century were dashed by the ability of Plasmodium falciparum, its most deadly causative agent, to develop resistance to available drugs. Efforts to produce an effective vaccine have so far been unsuccessful, enhancing the need to develop novel antimalarial drugs. In this review, we summarize our knowledge concerning existing antimalarials, mechanisms of drug-resistance development, the use of drug combination strategies and the quest for novel anti-plasmodial compounds. We emphasize the potential role of host genes and molecules as novel targets for newly developed drugs. Recent results from our laboratory have shown Hepatocyte Growth Factor/MET signaling to be essential for the establishment of infection in hepatocytes. We discuss the potential use of this pathway in the prophylaxis of malaria infection.
Collapse
|
31
|
Downie MJ, Saliba KJ, Howitt SM, Bröer S, Kirk K. Transport of nucleosides across the Plasmodium falciparum parasite plasma membrane has characteristics of PfENT1. Mol Microbiol 2006; 60:738-48. [PMID: 16629674 DOI: 10.1111/j.1365-2958.2006.05125.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Like all parasitic protozoa, the human malaria parasite Plasmodium falciparum lacks the enzymes required for de novo synthesis of purines and it is therefore reliant upon the salvage of these compounds from the external environment. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a nucleoside transporter that has been localized to the plasma membrane of the intraerythrocytic form of the parasite. In this study we have characterized the transport of purine and pyrimidine nucleosides across the plasma membrane of 'isolated' trophozoite-stage P. falciparum parasites and compared the transport characteristics of the parasite with those of PfENT1 expressed in Xenopus oocytes. The transport of nucleosides into the parasite: (i) was, in the case of adenosine, inosine and thymidine, very fast, equilibrating within a few seconds; (ii) was of low affinity [K(m) (adenosine) = 1.45 +/- 0.25 mM; K(m) (thymidine) = 1.11 +/- 0.09 mM]; and (iii) showed 'cross-competition' for adenosine, inosine and thymidine, but not cytidine. The kinetic characteristics of nucleoside transport in intact parasites matched very closely those of PfENT1 expressed in Xenopus oocytes [K(m) (adenosine) = 1.86 +/- 0.28 mM; K(m) (thymidine) = 1.33 +/- 0.17 mM]. Furthermore, PfENT1 transported adenosine, inosine and thymidine, with a cross-competition profile the same as that seen for isolated parasites. The data are consistent with PfENT1 serving as a major route for the uptake of nucleosides across the parasite plasma membrane.
Collapse
Affiliation(s)
- Megan J Downie
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
32
|
Valdés R, Liu W, Ullman B, Landfear SM. Comprehensive examination of charged intramembrane residues in a nucleoside transporter. J Biol Chem 2006; 281:22647-55. [PMID: 16769726 DOI: 10.1074/jbc.m602366200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Permeases of the equilibrative nucleoside transporter family mediate the uptake of nucleosides and/or nucleobases in a diverse array of eukaryotes and transport a host of drugs used for treatment of cancer, heart disease, AIDS, and parasitic infections. To identify residues that play central roles in transport function, we have systematically substituted by site-directed mutagenesis all the charged residues located within predicted transmembrane domains of the Leishmania donovani nucleoside transporter 1.1, LdNT1.1, which transports adenosine and the pyrimidine nucleosides. Substitution of three of these ten residues by uncharged amino acids resulted in loss of >95% transport activity, and we hence designated them "key" residues. These amino acids were Glu94, Lys153, and Arg404 located in transmembrane domains 2, 4, and 9, respectively. In addition, previous studies on the related LdNT2 inosine/guanosine transporter identified the highly conserved Asp389 and Arg393 (equivalent to Asp374 and Arg378 in LdNT1.1) in transmembrane domain 8 as key residues. Among these residues, the mutants in Arg393 (LdNT2) and Arg404 were strongly impaired in trafficking to the plasma membrane, but the other mutants were expressed with high to moderate efficiency at the cell surface, indicating that their mutation impaired transport activity per se. A conservative K153R substitution exhibited a change in substrate specificity, acquiring the ability to transport inosine, a nucleoside that is not a substrate for the wild-type LdNT1.1 permease. These results imply that the Glu94, Lys153, and Asp374 residues may play central roles in the mechanism of substrate translocation in LdNT1.1.
Collapse
Affiliation(s)
- Raquel Valdés
- Department of Molecular Microbiology and Immunology and Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
33
|
El Bissati K, Zufferey R, Witola WH, Carter NS, Ullman B, Ben Mamoun C. The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 2006; 103:9286-91. [PMID: 16751273 PMCID: PMC1482602 DOI: 10.1073/pnas.0602590103] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum relies on the acquisition of host purines for its survival within human erythrocytes. Purine salvage by the parasite requires specialized transporters at the parasite plasma membrane (PPM), but the exact mechanism of purine entry into the infected erythrocyte, and the primary purine source used by the parasite, remain unknown. Here, we report that transgenic parasites lacking the PPM transporter PfNT1 (P. falciparum nucleoside transporter 1) are auxotrophic for hypoxanthine, inosine, and adenosine under physiological conditions and are viable only if these normally essential nutrients are provided at excess concentrations. Transport measurements across the PPM revealed a severe reduction in hypoxanthine uptake in the knockout, whereas adenosine and inosine transport were only partially affected. These data provide compelling evidence for a sequential pathway for exogenous purine conversion into hypoxanthine using host enzymes followed by PfNT1-mediated transport into the parasite. The phenotype of the conditionally lethal mutant establishes PfNT1 as a critical component of purine salvage in P. falciparum and validates PfNT1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Kamal El Bissati
- *Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301; and
| | - Rachel Zufferey
- *Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301; and
| | - William H. Witola
- *Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301; and
| | - Nicola S. Carter
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201
| | - Choukri Ben Mamoun
- *Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
de Oliveira AHC, Ruiz JC, Cruz AK, Greene LJ, Rosa JC, Ward RJ. Expression in E. coli and purification of the nucleoside diphosphate kinase b from Leishmania major. Protein Expr Purif 2006; 49:244-50. [PMID: 16809050 DOI: 10.1016/j.pep.2006.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is considered by the World Health Organization to be the second most important disease caused by a protozoan parasite. Biochemical and molecular biology studies can help in the understanding of the biology of the Leishmania parasite. All protozoan parasites, including Leishmania, are unable to synthesize purines de novo, and nucleoside diphosphate kinases (NDK) are involved in the salvage pathway by which free purines are converted to nucleosides and subsequently to nucleotides. In this report, we describe the cloning of NDK coding-sequence from Leishmania major, the expression of the enzyme containing a His(6)-tag in Escherichia coli, and purification of the catalytically active native protein by affinity chromatography using Ni-NTA resin.
Collapse
Affiliation(s)
- Arthur H C de Oliveira
- Departamento de Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Flörchinger M, Zimmermann M, Traub M, Neuhaus HE, Möhlmann T. Adenosine stimulates anabolic metabolism in developing castor bean (Ricinus communis L.) cotyledons. PLANTA 2006; 223:340-8. [PMID: 16133207 DOI: 10.1007/s00425-005-0091-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 07/14/2005] [Indexed: 05/04/2023]
Abstract
In previous experiments it was shown that Castor-bean (Ricinus communis) endosperm releases carbohydrates, amino acids and nucleoside derivatives, which are subsequently imported into the developing cotyledons (Kombrink and Beevers in Plant Physiol 73:370-376, 1983). To investigate the importance of the most prominent nucleoside adenosine for the metabolism of growing Ricinus seedlings, we supplied adenosine to cotyledons of 5-days-old seedlings after removal of the endosperm. This treatment led to a 16% increase in freshweight of intact seedlings within 16 h, compared to controls. Using detached cotyledons, we followed uptake of radiolabelled adenosine and identified 40% of label in solubles (mostly ATP and ADP), 46% incorporation in RNA and 2.5% in DNA, indicating a highly active salvage pathway. About 7% of freshly imported adenosine entered the phloem, which indicates a major function of adenosine for cotyledon metabolism. Import and conversion of adenosine improved the energy content of cotyledons as revealed by a substantially increased ATP/ADP ratio. This effect was accompanied by slight increases in respiratory activity, decreased levels of hexose phosphates and increased levels of fructose-1,6-bisphosphate and triose phosphates. These alterations indicate a stimulation of glycolytic flux by activation of phosphofructokinase, and accordingly we determined a higher activity of this enzyme. Furthermore the rate of [(14)C]-sucrose driven starch biosynthesis in developing castor-bean is significantly increased by feeding of adenosine. In conclusion, our data indicate that adenosine imported from mobilizing endosperm into developing castor-bean cotyledons fulfils an important function as it promotes anabolic reactions in this rapidly developing tissue.
Collapse
Affiliation(s)
- Martin Flörchinger
- Pflanzenphysiologie, Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
36
|
de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol Rev 2005; 29:987-1020. [PMID: 16040150 DOI: 10.1016/j.femsre.2005.03.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/10/2023] Open
Abstract
Purine salvage is an essential function for all obligate parasitic protozoa studied to date and most are also capable of efficient uptake of preformed pyrimidines. Much progress has been made in the identification and characterisation of protozoan purine and pyrimidine transporters. While the genes encoding protozoan or metazoan pyrimidine transporters have yet to be identified, numerous purine transporters have now been cloned. All protozoan purine transporter-encoding genes characterised to date have been of the Equilibrative Nucleoside Transporter family conserved in a great variety of eukaryote organisms. However, these protozoan transporters have been shown to be sufficiently different from mammalian transporters to mediate selective uptake of therapeutic agents. Recent studies are increasingly addressing the structure and substrate recognition mechanisms of these vital transport proteins.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
37
|
Klotz C, Marhöfer RJ, Selzer PM, Lucius R, Pogonka T. Eimeria tenella: identification of secretory and surface proteins from expressed sequence tags. Exp Parasitol 2005; 111:14-23. [PMID: 15936018 DOI: 10.1016/j.exppara.2005.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 03/29/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
To identify new vaccine candidates, Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx search, which resulted in a significant number of E. tenella contigs with homologies to entries in public databases. Amino acid sequences of appropriate homologous proteins were analysed for the occurrence of an N-terminal signal sequence using the algorithm signalP. The resulting list of 84 entries comprised 51 contigs whose deduced proteins showed homologies to proteins of apicomplexan parasites. Based on function or localisation, we selected candidate proteins classified as (i) secreted proteins of Apicomplexa parasites, (ii) secreted enzymes, and (iii) transport and signalling proteins. To verify our strategy experimentally, we used a functional complementation system in yeast. For five selected candidate proteins we found that these were indeed secreted. Our approach thus represents an efficient method to identify secretory and surface proteins out of EST databases.
Collapse
Affiliation(s)
- Christian Klotz
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Liu W, Arendt CS, Gessford SK, Ntaba D, Carter NS, Ullman B. Identification and characterization of purine nucleoside transporters from Crithidia fasciculata. Mol Biochem Parasitol 2005; 140:1-12. [PMID: 15694482 DOI: 10.1016/j.molbiopara.2004.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/19/2004] [Indexed: 11/18/2022]
Abstract
To initiate a molecular dissection into the mechanism by which purine transport is up-regulated in Crithidia, genes encoding nucleoside transporters from Crithidia fasciculata were cloned and functionally characterized. Sequence analysis revealed CfNT1 and CfNT2 to be members of the equilibrative nucleoside transporter family, and the genes isolated encompassed polypeptides of 497 and 502 amino acids, respectively, each with 11 predicted membrane-spanning domains. Heterologous expression of CfNT1 cRNA in Xenopus laevis oocytes or CfNT2 in nucleoside transport-deficient Leishmania donovani demonstrated that CfNT1 is a novel high affinity adenosine transporter that also recognizes inosine, hypoxanthine, and pyrimidine nucleosides, while CfNT2 is a high affinity permease specific for inosine and guanosine. Southern blot analysis revealed that CfNT2 is present as a single copy within the C. fasciculata genome. Starvation of parasites for purines increased CfNT2 transport activity by an order of magnitude, although Northern blot analysis indicated CfNT2 transcript levels increased by <2-fold. These data imply that this metabolic adaptation can mainly be ascribed to post-transcriptional events. Conversely, Southern analysis of CfNT1 suggests that it is a member of a highly homologous multi-copy gene family, indicating that adenosine transport by C. fasciculata is more complex than previously thought.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ting LM, Shi W, Lewandowicz A, Singh V, Mwakingwe A, Birck MR, Ringia EAT, Bench G, Madrid DC, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K. Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J Biol Chem 2004; 280:9547-54. [PMID: 15576366 DOI: 10.1074/jbc.m412693200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of polyamine synthesis are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not been described previously. 5'-Methylthio-immucillin-H, a transition state analogue inhibitor that is selective for malarial relative to human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may also have application as anti-malarials.
Collapse
Affiliation(s)
- Li-Min Ting
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arastu-Kapur S, Arendt CS, Purnat T, Carter NS, Ullman B. Second-site suppression of a nonfunctional mutation within the Leishmania donovani inosine-guanosine transporter. J Biol Chem 2004; 280:2213-9. [PMID: 15501825 DOI: 10.1074/jbc.m408224200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LdNT2 is a member of the equilibrative nucleoside transporter family, which possesses several conserved residues located mainly within transmembrane domains. One of these residues, Asp(389) within LdNT2, was shown previously to be critical for transporter function without affecting ligand affinity or plasma membrane targeting. To further delineate the role of Asp(389) in LdNT2 function, second-site suppressors of the ldnt2-D389N null mutation were selected in yeast deficient in purine nucleoside transport and incapable of purine biosynthesis. A library of random mutants within the ldnt2-D389N background was screened in yeast for restoration of growth on inosine. Twelve different clones were obtained, each containing secondary mutations enabling inosine transport. One mutation, N175I, occurred in four clones and conferred augmented inosine transport capability compared with LdNT2 in yeast. N175I was subsequently introduced into an ldnt2-D389N construct tagged with green fluorescent protein and transfected into a Deltaldnt1/Deltaldnt2 Leishmania donovani knockout. GFP-N175I/D389N significantly suppressed the D389N phenotype and targeted properly to the plasma membrane and flagellum. Most interestingly, N175I increased the inosine K(m) by 10-fold within the D389N background relative to wild type GFP-LdNT2. Additional substitutions introduced at Asn(175) established that only large, nonpolar amino acids suppressed the D389N phenotype, indicating that suppression by Asn(175) has a specific size and charge requirement. Because multiple suppressor mutations alleviate the constraint imparted by the D389N mutation, these data suggest that Asp(389) is a conformationally sensitive residue. To impart spatial information to the clustering of second-site mutations, a three-dimensional model was constructed based upon members of the major facilitator superfamily using threading analysis. The model indicates that Asn(175) and Asp(389) lie in close proximity and that the second-site suppressor mutations cluster to one region of the transporter.
Collapse
Affiliation(s)
- Shirin Arastu-Kapur
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
42
|
Sanchez MA, Tryon R, Pierce S, Vasudevan G, Landfear SM. Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major. Mol Membr Biol 2004; 21:11-8. [PMID: 14668134 DOI: 10.1080/0968768031000140845] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.
Collapse
Affiliation(s)
- Marco A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
43
|
Sanchez MA, Drutman S, van Ampting M, Matthews K, Landfear SM. A novel purine nucleoside transporter whose expression is up-regulated in the short stumpy form of the Trypanosoma brucei life cycle. Mol Biochem Parasitol 2004; 136:265-72. [PMID: 15478805 DOI: 10.1016/j.molbiopara.2004.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purine nucleoside and nucleobase transporters play a vital role in the metabolism and survival of Trypanosoma brucei because this parasitic protozoan is unable to synthesize purines de novo and thus must acquire preformed purines from its hosts. These parasites express a variety of nucleoside and nucleobase permeases with diverse substrate specificities and distinct patterns of expression during the trypanosome life cycle. We report here that expression of the newly characterized T. brucei nucleoside transporter 10 gene (TbNT10) is up-regulated in the short stumpy form of the life cycle, the bloodstream form of the parasite that is pre-adapted for infection of the tsetse fly vector. Functional expression of TbNT10 in Saccharomyces cerevisiae reveals that the TbNT10 gene encodes an adenosine/guanosine/inosine transporter with apparent Km values of approximately 1 microM and hence is a high affinity purine nucleoside transporter. The restricted expression of TbNT10 during the life cycle suggests that the functional properties of this permease may be specialized to support development and growth of the differentiated short stumpy form or to promote the transformation of short stumpy to procyclic forms within the insect vector.
Collapse
Affiliation(s)
- Marco A Sanchez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L220, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
44
|
Lawton P, Hejl C, Mancassola R, Naciri M, Petavy AF. Effects of purine nucleosides on the in vitro growth of Cryptosporidium parvum. FEMS Microbiol Lett 2003; 226:39-43. [PMID: 13129605 DOI: 10.1016/s0378-1097(03)00555-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effect of purine nucleosides on the in vitro growth of Cryptosporidium parvum was studied. Culturing the parasite in THP-1 cells for 72 h in growth medium supplemented with adenosine or inosine improved the parasite yields especially in the first 48 h. Similar results were obtained with parasites cultured in Madin-Darby bovine kidney cells and incubated for 24 h with inosine. The addition of inosine to 72-h cultures enhanced the growth of C. parvum in THP-1 cells, especially the trophic stages, whereas the analogue formycin B was toxic to the parasites and induced a marked decrease in the gamont stages. The monitoring of the added purine nucleosides by high performance liquid chromatography showed that at 37 degrees C in the presence of THP-1 cells, a rapid uptake of inosine occurred with hypoxanthine being the main purine present after 2 h in the medium.
Collapse
Affiliation(s)
- Philippe Lawton
- Département de Parasitologie et Mycologie Médicale, ISPB-Faculté de Pharmacie, 8 avenue Rockefeller, F-69373 Cedex 08, Lyon, France.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Parasites are responsible for a wide variety of infectious diseases in human as well as in domestic and wild animals, causing an enormous health and economical blight. Current containment strategies are not entirely successful and parasitic infections are on the rise. In the absence of availability of antiparasitic vaccines, chemotherapy remains the mainstay for the treatment of most parasitic diseases. However, there is an urgent need for new drugs to prevent or combat some major parasitic infections because of lack of a single effective approach for controlling the parasites (e.g., trypanosomiasis) or because some serious parasitic infections developed resistance to presently available drugs (e.g., malaria). The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Some of the most striking differences between parasites and their mammalian host are found in purine metabolism. Purine nucleotides can be synthesized by the de novo and/or the so-called "salvage" pathways. Unlike their mammalian host, most parasites studied lack the pathways for de novo purine biosynthesis and rely on the salvage pathways to meet their purine demands. Moreover, because of the great phylogenic separation between the host and the parasite, there are in some cases sufficient distinctions between corresponding enzymes of the purine salvage from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Furthermore, the specificities of purine transport, the first step in purine salvage, diverge significantly between parasites and their mammalian host. This review highlights the unique transporters and enzymes responsible for the salvage of purines in parasites that could constitute excellent potential targets for the design of safe and effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mahmoud H el Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Arastu-Kapur S, Ford E, Ullman B, Carter NS. Functional analysis of an inosine-guanosine transporter from Leishmania donovani. The role of conserved residues, aspartate 389 and arginine 393. J Biol Chem 2003; 278:33327-33. [PMID: 12807872 DOI: 10.1074/jbc.m305141200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrative nucleoside transporters encompass two conserved, charged residues that occur within predicted transmembrane domain 8. To assess the role of these "signature" residues in transporter function, the Asp389 and Arg393 residues within the LdNT2 nucleoside transporter from Leishmania donovani were mutated and the resultant phenotypes evaluated after transfection into Delta ldnt2 parasites. Whereas an R393K mutant retained transporter activity similar to that of wild type LdNT2, the R393L, D389E, and D389N mutations resulted in dramatic losses of transport capability. Tagging the wild type and mutant ldnt2 proteins with green fluorescent protein demonstrated that the D389N and D389E mutants targeted properly to the parasite cell surface and flagellum, whereas the expression of R393L at the cell surface was profoundly compromised. To test whether Asp389 and Arg393 interact, a series of mutants was generated, D389R/R393R, D389D/R393D, and D389R/R393D, within the green fluorescent protein-tagged LdNT2 construct. Although all of these ldnt2 mutants were transport-deficient, D389R/R393D localized properly to the plasma membrane, while neither D389R/R393R nor D389D/R393D could be detected. Moreover, a transport-incompetent D389N/R393N double ldnt2 mutant also localized to the parasite membrane, whereas a D389L/R393L ldnt2 mutant did not, suggesting that an interaction between residues 389 and 393 may be involved in LdNT2 membrane targeting. These studies establish genetically that Asp389 is critical for optimal transporter function and that a positively charged or polar residue at Arg393 is essential for proper expression of LdNT2 at the plasma membrane.
Collapse
Affiliation(s)
- Shirin Arastu-Kapur
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
47
|
Burchmore RJS, Wallace LJM, Candlish D, Al-Salabi MI, Beal PR, Barrett MP, Baldwin SA, de Koning HP. Cloning, heterologous expression, and in situ characterization of the first high affinity nucleobase transporter from a protozoan. J Biol Chem 2003; 278:23502-7. [PMID: 12707261 DOI: 10.1074/jbc.m301252200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While multiple nucleoside transporters, some of which can also transport nucleobases, have been cloned in recent years from many different organisms, no sequence information is available for the high affinity, nucleobase-selective transporters of metazoa, parazoa, or protozoa. We have identified a gene, TbNBT1, from Trypanosoma brucei brucei that encodes a 435-residue protein of the equilibrative nucleoside transporter superfamily. The gene was expressed in both the procyclic and bloodstream forms of the organism. Expression of TbNBT1 in a Saccharomyces cerevisiae strain lacking an endogenous purine transporter allowed growth on adenine as sole purine source and introduced a high affinity transport activity for adenine and hypoxanthine, with Km values of 2.1 +/- 0.6 and 0.66 +/- 0.22 microm, respectively, as well as high affinity for xanthine, guanine, guanosine, and allopurinol and moderate affinity for inosine. A transporter with an indistinguishable kinetic profile was identified in T. b. brucei procyclics and designated H4. RNA interference of TbNBT1 in procyclics reduced cognate mRNA levels by approximately 80% and H4 transport activity by approximately 90%. Expression of TbNBT1 in Xenopus oocytes further confirmed that this gene encodes the first high affinity nucleobase transporter from protozoa or animals to be identified at the molecular level.
Collapse
Affiliation(s)
- Richard J S Burchmore
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cabrita MA, Baldwin SA, Young JD, Cass CE. Molecular biology and regulation of nucleoside and nucleobase transporter proteins in eukaryotes and prokaryotes. Biochem Cell Biol 2003; 80:623-38. [PMID: 12440702 DOI: 10.1139/o02-153] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular cloning of cDNAs encoding nucleoside transporter proteins has greatly advanced understanding of how nucleoside permeants are translocated across cell membranes. The nucleoside transporter proteins identified thus far have been categorized into five distinct superfamilies. Two of these superfamilies, the equilibrative and concentrative nucleoside transporters, have human members and these will be examined in depth in this review. The human equilibrative nucleoside transporters translocate nucleosides and nucleobases bidirectionally down their concentration gradients and are important in the uptake of anticancer and antiviral nucleoside drugs. The human concentrative nucleoside transporters cotranslocate nucleosides and sodium unidirectionally against the nucleoside concentration gradients and play a vital role in certain tissues. The regulation of nucleoside and nucleobase transporters is being studied more intensely now that more tools are available. This review provides an overview of recent advances in the molecular biology and regulation of the nucleoside and nucleobase transporters.
Collapse
Affiliation(s)
- Miguel A Cabrita
- Department of Biochemistry, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
49
|
Zhang H, Howard EM, Roepe PD. Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast. J Biol Chem 2002; 277:49767-75. [PMID: 12351620 DOI: 10.1074/jbc.m204005200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the novel membrane protein Pfcrt were recently found to be essential for chloroquine resistance (CQR) in Plasmodium falciparum, the parasite responsible for most lethal human malaria (Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekunov, S. M., Ferdig, M. T., Ursos, L. M., Sidhu, A. B., Naude, B., Deitsch, K. W., Su, X. Z., Wootton, J. C., Roepe, P. D., and Wellems, T. E. (2000) Mol. Cell 6, 861-871). Pfcrt is localized to the digestive vacuolar membrane of the intraerythrocytic parasite and may function as a transporter. Study of this putative transport function would be greatly assisted by overexpression in yeast followed by characterization of membrane vesicles. Unfortunately, the very high AT content of malarial genes precludes efficient heterologous expression. Thus, we back-translated Pfcrt to design idealized genes with preferred yeast codons, no long poly(A) sequences, and minimal stem-loop structure. We synthesized a designed gene with a two-step PCR method, fused this to N- and C-terminal sequences to aid membrane insertion and purification, and now report efficient expression of wild type and mutant Pfcrt proteins in the plasma membrane of Saccharomyces cerevisiae and Pichia pastoris yeast. To our knowledge, this is the first successful expression of a full-length malarial parasite integral membrane protein in yeast. Purified membranes and inside-out plasma membrane vesicle preparations were used to analyze wild type versus CQR-conferring mutant Pfcrt function, which may include effects on H(+) transport (Dzekunov, S., Ursos, L. M. B., and Roepe, P. D. (2000) Mol. Biochem. Parasitol. 110, 107-124), and to perfect a rapid purification of biotinylated Pfcrt. These data expand on the role of Pfcrt in conferring CQR and define a productive route for analysis of important P. falciparum transport proteins and membrane associated vaccine candidates.
Collapse
Affiliation(s)
- Hanbang Zhang
- Department of Chemistry, Lombardi Cancer Center, Georgetown University, 37th and O Streets, Washington, D. C. 20057-1227, USA
| | | | | |
Collapse
|
50
|
Acimovic Y, Coe IR. Molecular evolution of the equilibrative nucleoside transporter family: identification of novel family members in prokaryotes and eukaryotes. Mol Biol Evol 2002; 19:2199-210. [PMID: 12446811 DOI: 10.1093/oxfordjournals.molbev.a004044] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins which enable the movement of hydrophilic nucleosides and nucleoside analogs down their concentration gradients across cell membranes. ENTs were only recently characterized at the molecular level, and little is known about the tertiary structure or distribution of these proteins in nonmammalian organisms. To identify conserved regions, residues, and motifs of ENTs that may indicate functionally important parts of the protein and to better understand the evolutionary history of this protein family, we conducted an exhaustive analysis to characterize and compare ENTs in taxonomically diverse organisms. We have identified novel ENT family members in humans, mice, fish, tunicates, slime molds, and bacteria. This greatly extends our knowledge on the distribution of the ENTs in eukaryotes, and we have identified, for the first time, family members in bacteria. The prokaryote ENTs are attractive models for future studies on transporter tertiary structure and mechanism of substrate translocation. Using sequence similarities, we have identified regions, residues, and motifs that are conserved across all family members. These areas are presumably correlated with function and therefore are important targets for future analysis. Finally, we propose an evolutionary history for the ENT family which clarifies the origin(s) of multiple isoforms in different taxa.
Collapse
Affiliation(s)
- Yugo Acimovic
- The Centre for Computational Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|