1
|
Datta SP, Dey CS. Evolutionary duplication of the leishmanial adaptor protein α-SNAP plays a role in its pathogenicity. J Biol Chem 2025; 301:108427. [PMID: 40118450 PMCID: PMC12019078 DOI: 10.1016/j.jbc.2025.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025] Open
Abstract
Essential-gene duplication during evolution promotes specialized functions beyond the typical role. Our in silico study unveiled two α-SNAP paralogs in Leishmania, a crucial component that, along with NSF, triggers disassembly of the cis-SNARE complex, formed during vesicle fusion with target membranes. While multiple α-SNAPs are common in many flagellated protists, including the trypanosomatids, they are unusual among other eukaryotes. This study explores the evolutionary and functional relevance of α-SNAP gene duplication in Leishmania donovani, emphasizing both subfunctionalization and neofunctionalization. We discovered that L. donovani α-SNAP (Ldα-SNAP) genes are transcribed in promastigote and amastigote stages, indicating they are not pseudogenes. Although the two paralogs share essential residues and structural features, only Ldα-SNAP1660 (Ldα-SNAP1) can effectively substitute the function of its yeast counterpart, while Ldα-SNAP3040 (Ldα-SNAP2) cannot. This functional difference is attributed to a replacement of alanine with phosphorylatable-serine in Ldα-SNAP1 during evolution from the most common ancestral ortholog. This modification is rarely observed in corresponding orthologs of other trypanosomatids. Incidentally, Ldα-SNAP paralogs exhibit differential localization in the ER and flagellar pocket. However, both paralogs, either actively or passively, regulate the secretion of exosomes and PM blebs, containing the virulence protein GP63. This indicates functional division and their indirect participation in the host's macrophage inactivation. Moreover, a small fraction of Ldα-SNAP1's presence in the flagellum hints at a potential role in sensing environmental cues and aiding the parasite's attachment to the sandfly's hindgut. Our findings underscore that duplicated Ldα-SNAPs have retained ancestral functions through subfunctionalization, and subsequently, they acquired parasite-specific neofunction(s) through the accumulation of natural mutation(s).
Collapse
Affiliation(s)
- Shankari Prasad Datta
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
2
|
Cerone M, Smith TK. Exploring the activity of the putative Δ6-desaturase and its role in bloodstream form life-cycle transitions in Trypanosoma brucei. PLoS Pathog 2025; 21:e1012691. [PMID: 39965027 PMCID: PMC11867338 DOI: 10.1371/journal.ppat.1012691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/27/2025] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
Trypanosomatids have been shown to possess an exclusive and finely regulated biosynthetic pathway for de novo synthesis of fatty acids (FAs) and particularly of polyunsaturated fatty acids (PUFAs). The key enzymes for the process of unsaturation are known as desaturases. In this work, we explored the biocatalytic activity of the putative Δ6-desaturase (Tb11.v5.0580) in the native organism T. brucei, whose expression level varies dramatically between life cycle stages. Utilising FA analysis via GC-MS, we were able to elucidate i) via genetic manipulation of the level of expression of Δ6-desaturases in both procyclic (PCF) and bloodstream (BSF) forms of T. brucei and ii) via supplementation of the media with various levels of FA sources, that docosahexaenoic acid (22:6) and/or docosapentaenoic acid (22:5) are the products, while arachidonic acid (20:4) and/or docosatetraenoic acid (22:4) are the substrates of this Δ6-desaturase. Surprisingly, we were able to observe, via lipidomic analysis with ESI-MS/MS, an increase in inositol-phosphoryl ceramide (IPC) in response to the overexpression of Δ6-desaturase in low-fat media in BSF. The formation of IPC is normally only observed in the stumpy and procyclic forms of T. brucei. Therefore, the expression levels of Δ6-desaturases, which increases between BSF, stumpy and PCF, might be involved in the cascade(s) of metabolic events that contributes to these remodelling of the lipid pools and ultimately morphological changes, which are key to the transition between these life-cycle stages. We were in fact able to show that the overexpression of Δ6-desaturase is indeed linked to the expression of protein associated with differentiation (PAD1) in stumpy, and of the upregulation of some proteins and metabolites which are normally upregulated in stumpy and PCF.
Collapse
Affiliation(s)
- Michela Cerone
- Schools of Chemistry and Biology, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, Scotland
| | - Terry K. Smith
- Schools of Chemistry and Biology, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, Scotland
| |
Collapse
|
3
|
Araujo LH, Bueno Chagas TA, Reis T, de Morais Borba JRB, Trujilho MNR, Dalzoto LDAM, Marcondes MF, Juliano MA, Júdice WADS, Veloso MP, Machado MFM. Oximic compounds as potential inhibitors of metacaspase-2 (TbMCA2) of Trypanosoma brucei. Biochem Biophys Res Commun 2024; 735:150657. [PMID: 39265363 DOI: 10.1016/j.bbrc.2024.150657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Metacaspases are a distinct class of cysteine proteases predominantly found in plants, fungi, and protozoa, crucial for regulating programmed cell death (PCD). They possess unique structural features and differ markedly from caspases in their activation mechanisms and substrate specificities, with a notable preference for binding basic residues in substrates. In this study, we introduced vanillin-derived oximic compounds to explore their pharmaceutical potential. We evaluated these compounds for their inhibitory effects on TbMCA2, a metacaspase in Trypanosoma brucei, identifying AO-7, AO-12, and EO-20 as promising inhibitors. AO-12 showed significant potential as a non-competitive inhibitor with notable IC50 values. Molecular docking studies were also conducted to evaluate the binding affinity of these compounds for TbMCA2. This research is particularly relevant given the urgent need for more effective and less toxic treatments for trypanosomiasis, a parasitic disease caused by trypanosomes. The absence of available vaccines and the limitations imposed by drug toxicity underscore the importance of these findings. Our study represents a significant advancement in developing therapeutic agents targeting metacaspases in trypanosomatids and highlights the necessity of understanding metacaspase regulation across various species. It provides valuable insights into inhibitor sensitivity and potential species-specific therapeutic strategies. In conclusion, this research opens promising avenues for novel therapeutic agents targeting metacaspases in trypanosomatids, addressing a critical gap in combating neglected diseases associated with these pathogens. Further research is essential to refine the efficacy and safety profiles of these compounds, aiming to deliver more accessible and effective therapeutic solutions to populations afflicted by these debilitating diseases.
Collapse
Affiliation(s)
- Laura Helena Araujo
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Thaynan Aparecida Bueno Chagas
- Pharmaceutical Science Department, Alfenas Federal University, Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Brazil
| | - Taiz Reis
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | | | - Mariana Nascimento Romero Trujilho
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Laura de Azevedo Maffeis Dalzoto
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Marcelo Ferreira Marcondes
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Wagner Alves de Souza Júdice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Márcia Paranho Veloso
- Pharmaceutical Science Department, Alfenas Federal University, Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Brazil
| | - Maurício Ferreira Marcondes Machado
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil.
| |
Collapse
|
4
|
Yang N, Matthew MA, Yao C. Roles of Cysteine Proteases in Biology and Pathogenesis of Parasites. Microorganisms 2023; 11:1397. [PMID: 37374899 DOI: 10.3390/microorganisms11061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Cysteine proteases, also known as thiol proteases, are a class of nucleophilic proteolytic enzymes containing cysteine residues in the enzymatic domain. These proteases generally play a pivotal role in many biological reactions, such as catabolic functions and protein processing, in all living organisms. They specifically take part in many important biological processes, especially in the absorption of nutrients, invasion, virulence, and immune evasion of parasitic organisms from unicellular protozoa to multicellular helminths. They can also be used as parasite diagnostic antigens and targets for gene modification and chemotherapy, as well as vaccine candidates, due to their species and even life-cycle stage specificity. This article highlights current knowledge on parasitic cysteine protease types, biological functions, and their applications in immunodiagnosis and chemotherapy.
Collapse
Affiliation(s)
- Nawu Yang
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Maurice A Matthew
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
5
|
Movilla S, Martí S, Roca M, Moliner V. Unrevealing the Proteolytic Activity of RgpB Gingipain from Computational Simulations. J Chem Inf Model 2021; 61:4582-4593. [PMID: 34472342 DOI: 10.1021/acs.jcim.1c00666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease represents one of the greatest medical concerns for today's population and health services. Its multifactorial inherent nature represents a challenge for its treatment and requires the development of a broad spectrum of drugs. Recently, the cysteine protease gingipain RgpB has been related to neurodegenerative diseases, including Alzheimer's disease, and its inhibition appears to be a promising neuroprotective strategy. Given these features, a computational study that integrates molecular dynamics (MD) simulations with classical and hybrid quantum mechanics/molecular mechanics (QM/MM) potentials was carried out to unravel the atomistic details of RgpB activity. First, a preliminary study based on principal component analysis (PCA), determined the protonation state of the Cys/His catalytic dyad, as well as the crucial role of a flexible loop that favors reactive interactions of the catalytic residues and the peptide in the precatalytic state in its closed conformation. Then, different mechanisms were explored by means of QM/MM MD simulations. The most favorable mechanism consists of two stages. First is an acylation stage that takes place in two steps where, initially, the sulfur atom of the C244 residue attacks the carbonylic carbon of the peptide and the proton of the C244 residue is transferred to the amino group of the peptide in a concerted manner. Subsequently, the peptide bond is broken, and a fragment of the peptide is released. After that, the deacylation stage takes place in a single step where a water molecule attacks the carbonylic carbon of the peptide and a proton of the water is transferred to the C244 residue. The free energy barrier of the rate limiting step is in very good agreement with available experimental data. The mechanism exhibits an unusual role of H211 residue compared with other cysteine proteases but a crucial role of the peptide in triggering the catalysis. Notably, the atomic and energetic particularities found represent a significant contribution to the comprehension of the reaction mechanism and a great opportunity for the design of efficient inhibitors of gingipain RgpB.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| |
Collapse
|
6
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
7
|
Screening and Identification of Metacaspase Inhibitors: Evaluation of Inhibition Mechanism and Trypanocidal Activity. Antimicrob Agents Chemother 2021; 65:AAC.01330-20. [PMID: 33318019 DOI: 10.1128/aac.01330-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
A common strategy to identify new antiparasitic agents is the targeting of proteases, due to their essential contributions to parasite growth and development. Metacaspases (MCAs) are cysteine proteases present in fungi, protozoa, and plants. These enzymes, which are associated with crucial cellular events in trypanosomes, are absent in the human host, thus arising as attractive drug targets. To find new MCA inhibitors with trypanocidal activity, we adapted a continuous fluorescence enzymatic assay to a medium-throughput format and carried out screening of different compound collections, followed by the construction of dose-response curves for the most promising hits. We used MCA5 from Trypanosoma brucei (TbMCA5) as a model for the identification of inhibitors from the GlaxoSmithKline HAT and CHAGAS chemical boxes. We also assessed a third collection of nine compounds from the Maybridge database that had been identified by virtual screening as potential inhibitors of the cysteine peptidase falcipain-2 (clan CA) from Plasmodium falciparum Compound HTS01959 (from the Maybridge collection) was the most potent inhibitor, with a 50% inhibitory concentration (IC50) of 14.39 µM; it also inhibited other MCAs from T. brucei and Trypanosoma cruzi (TbMCA2, 4.14 µM; TbMCA3, 5.04 µM; TcMCA5, 151 µM). HTS01959 behaved as a reversible, slow-binding, and noncompetitive inhibitor of TbMCA2, with a mechanism of action that included redox components. Importantly, HTS01959 displayed trypanocidal activity against bloodstream forms of T. brucei and trypomastigote forms of T. cruzi, without cytotoxic effects on Vero cells. Thus, HTS01959 is a promising starting point to develop more specific and potent chemical structures to target MCAs.
Collapse
|
8
|
Update on relevant trypanosome peptidases: Validated targets and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140577. [PMID: 33271348 DOI: 10.1016/j.bbapap.2020.140577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".
Collapse
|
9
|
Intertwined Functions of Separase and Caspase in Cell Division and Programmed Cell Death. Sci Rep 2020; 10:6159. [PMID: 32273538 PMCID: PMC7145830 DOI: 10.1038/s41598-020-63081-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Timely sister chromatid separation, promoted by separase, is essential for faithful chromosome segregation. Separase is a member of the CD clan of cysteine proteases, which also includes the pro-apoptotic enzymes known as caspases. We report a role for the C. elegans separase SEP-1, primarily known for its essential activity in cell division and cortical granule exocytosis, in developmentally programmed cell death when the predominant pro-apoptotic caspase CED-3 is compromised. Loss of SEP-1 results in extra surviving cells in a weak ced-3(-) mutant, and suppresses the embryonic lethality of a mutant defective for the apoptotic suppressor ced-9/Bcl-2 implicating SEP-1 in execution of apoptosis. We also report apparent non-apoptotic roles for CED-3 in promoting germ cell proliferation, meiotic chromosome disjunction, egg shell formation, and the normal rate of embryonic development. Moreover, loss of the soma-specific (CSP-3) and germline-specific (CSP-2) caspase inhibitors result in CED-3-dependent suppression of embryonic lethality and meiotic chromosome non-disjunction respectively, when separase function is compromised. Thus, while caspases and separases have evolved different substrate specificities associated with their specialized functions in apoptosis and cell division respectively, they appear to have retained the residual ability to participate in both processes, supporting the view that co-option of components in cell division may have led to the innovation of programmed cell suicide early in metazoan evolution.
Collapse
|
10
|
Yamada K, Basak AK, Goto-Yamada S, Tarnawska-Glatt K, Hara-Nishimura I. Vacuolar processing enzymes in the plant life cycle. THE NEW PHYTOLOGIST 2020; 226:21-31. [PMID: 31679161 DOI: 10.1111/nph.16306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzyme (VPE) is a cysteine-type endopeptidase that has a substrate-specificity for asparagine or aspartic acid residues and cleaves peptide bonds at their carboxyl-terminal side. Various vacuolar proteins are synthesized as larger proprotein precursors, and VPE is an important initiator of maturation and activation of these proteins. It mediates programmed cell death (PCD) by provoking vacuolar rupture and initiating the proteolytic cascade leading to PCD. Vacuolar processing enzyme also possesses a peptide ligation activity, which is responsible for producing cyclic peptides in several plant species. These unique functions of VPE support developmental and environmental responses in plants. The number of VPE homologues is higher in angiosperm species, indicating that there has been differentiation and specialization of VPE function over the course of evolution. Angiosperm VPEs are separated into two major types: the γ-type VPEs, which are expressed mainly in vegetative organs, and the β-type VPEs, whose expression occurs mainly in storage organs; in eudicots, the δ-type VPEs are further separated within γ-type VPEs. This review also considers the importance of processing and peptide ligation by VPE in vacuolar protein maturation.
Collapse
Affiliation(s)
- Kenji Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Arpan Kumar Basak
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | | |
Collapse
|
11
|
Eyssen LEA, Coetzer TH. Validation of ligands targeting metacaspase-2 (MCA2) from Trypanosoma brucei brucei and their application to MCA5 from T. congolense as possible trypanocides. J Mol Graph Model 2020; 97:107579. [PMID: 32197135 DOI: 10.1016/j.jmgm.2020.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022]
Abstract
Metacaspases (MCAs) are ideal drug and diagnostic targets for animal and human African trypanosomiasis, as these cysteine peptidases are absent from the metazoan kingdom and have been implicated in the parasite cell cycle and cell death. Tsetse fly-transmitted trypanosomes that live free in the bloodstream and/or cerebrospinal fluid of the mammalian host cause animal and human African trypanosomiasis (nagana or sleeping sickness respectively). Chemotherapy and chemoprophylaxis are the main forms of control, but in contrast to human trypanocides, the veterinary drugs are old and drug resistance is on the increase. A peptidomimetic library targeting the MCA2 from Trypanosoma brucei brucei has ligands with low IC50 values, some of which were antiparasitic. This study validates the inhibitory activity of these ligands using the protein structure solved by X-ray diffraction after the ligand library was published. Water molecules were shown to be important in substrate binding and strategies to improve the efficacy of these ligands are highlighted. These ligands appear to be pan-specific as they were docked into the active site of the homology modelled MCA5 of animal infective Trypanosoma congolense with similar binding energies and conformations.
Collapse
Affiliation(s)
- L E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa Ht Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
12
|
Kumar B, Mohammad T, Amaduddin, Hussain A, Islam A, Ahmad F, Alajmi MF, Singh S, Pandey KC, Hassan MI, Abid M. Targeting metacaspase-3 from Plasmodium falciparum towards antimalarial therapy: A combined approach of in-silico and in-vitro investigation. J Biomol Struct Dyn 2020; 39:421-430. [PMID: 31900062 DOI: 10.1080/07391102.2019.1711194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Malaria is a global challenge, and its infection is propagated through Plasmodium falciparum, an obligate human parasite. The genome of P. falciparum encodes many proteases that play significant roles in their survival and pathogenesis thus being considered as attractive drug targets. P. falciparum metacaspase-3 (PfMCA3) is one such protease and a validated drug target to control malarial infection. First, we modeled the three-dimensional structure of PfMCA3 and predicted its ligand-binding pocket. The structural features of PfMCA3 were used for virtual screening followed by docking and molecular dynamics (MD) simulation studies to identify potent inhibitors. We used an in-house library of 513 compounds for screening to identify lead molecule fits well in the active site pocket of PfMCA3. The binding affinity and mechanism were investigated by combined docking and MD simulation studies. Docking studies reveal that the selected compounds are forming enough number of non-covalent interactions to the PfMCA3. In the enzyme inhibition assay, one of the selected compounds, H6 was found with appreciable inhibitory potential. MD simulation studies further support the binding of compound H6 with PfMCA3 and formation of a stable complex throughout the simulation trajectory. Taken together, we proposed that compound H6 is a promising lead scaffold that can be further exploited as a potential inhibitor of PfMCA3 for therapeutic management of malarial infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India.,Protein Biochemistry and Engineering Lab, ICMR-National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amaduddin
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kailash C Pandey
- Protein Biochemistry and Engineering Lab, ICMR-National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Kumar B, Verma S, Kashif M, Sharma R, Atul, Dixit R, Singh AP, Pande V, Saxena AK, Abid M, Pandey KC. Metacaspase-3 of Plasmodium falciparum: An atypical trypsin-like serine protease. Int J Biol Macromol 2019; 138:309-320. [PMID: 31301397 DOI: 10.1016/j.ijbiomac.2019.07.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 02/05/2023]
Abstract
Metacaspases are clan CD cysteine peptidases found in plants, fungi and protozoa that possess a conserved Peptidase_C14 domain, homologous to the human caspases and a catalytic His/Cys dyad. Earlier reports have indicated the role of metacaspases in cell death; however, metacaspases of human malaria parasite remains poorly understood. In this study, we aimed to functionally characterize a novel malarial protease, P. falciparum metacaspase-3 (PfMCA3). Unlike other clan CD peptidases, PfMCA3 has an atypical active site serine (Ser1865) residue in place of canonical cysteine and it phylogenetically forms a distinct branch across the species. To investigate whether this domain retains catalytic activity, we expressed, purified and refolded the Peptidase_C14 domain of PfMCA3 which was found to express in all asexual stages. PfMCA3 exhibited trypsin-like serine protease activity with ser1865 acting as catalytic residue to cleave trypsin oligopeptide substrate. PfMCA3 is inhibited by trypsin-like serine protease inhibitors. Our study found that PfMCA3 enzymatic activity was abrogated when catalytic serine1865 (S1865A) was mutated. Moreover, PfMCA3 was found to be inactive against caspase substrate. Overall, our study characterizes a novel metacaspase of P. falciparum, different from human caspases and not responsible for the caspase-like activity, therefore, could be considered as a potential chemotherapeutic target.
Collapse
Affiliation(s)
- Bhumika Kumar
- National Institute of Malaria Research, New Delhi, 110077, India; Department of Bioscience, Jamia Millia Islamia, New Delhi 110025, India
| | - Sonia Verma
- National Institute of Malaria Research, New Delhi, 110077, India
| | | | - Ruby Sharma
- Jawaharlal Nehru University, New Delhi 110067, India
| | - Atul
- Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, New Delhi, 110077, India
| | - Agam P Singh
- National Institute of Immunology, New Delhi, 110067, India
| | - Veena Pande
- Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Ajay K Saxena
- Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Abid
- Department of Bioscience, Jamia Millia Islamia, New Delhi 110025, India
| | - Kailash C Pandey
- National Institute of Malaria Research, New Delhi, 110077, India; National Institute for Research in Environmental Health, Bhopal, 462001, India.
| |
Collapse
|
14
|
Eyssen LEA, Coetzer THT. Expression, purification and characterisation of Trypanosoma congolense metacaspase 5 (TcoMCA5) - a potential drug target for animal African trypanosomiasis. Protein Expr Purif 2019; 164:105465. [PMID: 31377239 DOI: 10.1016/j.pep.2019.105465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
The metacaspases (MCAs) are attractive drug targets for the treatment of African trypanosomiasis as they are not found in the metazoan kingdom and their action has been implicated in cell cycle and cell death pathways in kinetoplastid parasites. Here we report the biochemical characterisation of MCA5 from T. congolense. Upon recombinant expression in E. coli, autoprocessing is evident, and MCA5 further autoprocesses when purified using nickel affinity chromatography, which we term nickel-induced over autoprocessing. When both the catalytic His and Cys residues were mutated (TcoMCA5H147A/C202G), no nickel-induced over autoprocessing was observed and was enzymatically active, suggesting the existence of a secondary catalytic Cys residue, Cys81. Immunoaffinity purification of native TcoMCA5 from the total parasite proteins was achieved using chicken anti-TcoMCA5 IgY antibodies. The full length native TcoMCA5 and the autoprocessed products of recombinant TcoMCA5H147A/C202G were shown to possess gelatinolytic activity, the first report for that of a MCA. Both the native and recombinant enzyme were calcium independent, had a preference for Arg over Lys at the P1 site and were active over a pH range between 6.5 and 9. Partial inhibition (23%) of enzymatic activity was only achieved with leupeptin and antipain. These findings are the first step in the biochemical characterisation of the single copy MCAs from animal infective trypanosomes towards the design of novel trypanocides.
Collapse
Affiliation(s)
- Lauren E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
15
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
16
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C. Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
17
|
Reyes-Espinosa F, Juárez-Saldivar A, Palos I, Herrera-Mayorga V, García-Pérez C, Rivera G. In Silico Analysis of Homologous Heterodimers of Cruzipain-Chagasin from Structural Models Built by Homology. Int J Mol Sci 2019; 20:ijms20061320. [PMID: 30875920 PMCID: PMC6470822 DOI: 10.3390/ijms20061320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/04/2022] Open
Abstract
The present study gives an overview of the binding energetics of the homologous heterodimers of cruzipain−chagasin based on the binding energy (ΔGb) prediction obtained with FoldX. This analysis involves a total of 70 homologous models of the cruzipain−chagasin complex which were constructed by homology from the combinatory variation of nine papain-like cysteine peptidase structures and seven cysteine protease inhibitor structures (as chagasin-like and cystatin-like inhibitors). Only 32 systems have been evaluated experimentally, ΔGbexperimental values previously reported. Therefore, the result of the multiple analysis in terms of the thermodynamic parameters, are shown as relative energy |ΔΔG| = |ΔGbfromFoldX − ΔGbexperimental|. Nine models were identified that recorded |ΔΔG| < 1.3, five models to 2.8 > |ΔΔG| > 1.3 and the other 18 models, values of |ΔΔG| > 2.8. The energetic analysis of the contribution of ΔH and ΔS to ΔGb to the 14-molecular model presents a ΔGb mostly ΔH-driven at neutral pH and at an ionic strength (I) of 0.15 M. The dependence of ΔGb(I,pH) at 298 K to the cruzipain−chagasin complex predicts a linear dependence of ΔGb(I). The computational protocol allowed the identification and prediction of thermodynamics binding energy parameters for cruzipain−chagasin-like heterodimers.
Collapse
Affiliation(s)
- Francisco Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
| | - Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma Tamaulipas, Carr. Reynosa-San Fernando, Reynosa 88779, Mexico.
| | - Verónica Herrera-Mayorga
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
- Departamento de Ingeniería Bioquímica, Unidad Académica Multidisciplinaria Mante, Universidad Autónoma Tamaulipas, Blvd. Enrique Cárdenas González 1201, Mante 89840, Mexico.
| | - Carlos García-Pérez
- Scientific Computing Research Unit, Helmholtz Zentrum München, 85764 Munich, Germany.
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
| |
Collapse
|
18
|
Fitness Loss under Amino Acid Starvation in Artemisinin-Resistant Plasmodium falciparum Isolates from Cambodia. Sci Rep 2018; 8:12622. [PMID: 30135481 PMCID: PMC6105667 DOI: 10.1038/s41598-018-30593-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites.
Collapse
|
19
|
Vandana, Singh AP, Singh J, Sharma R, Akhter M, Mishra PK, Saxena AK, Dixit R, Rathi B, Katyal A, Pandey KC. Biochemical characterization of unusual cysteine protease of P. falciparum, metacaspase-2 (MCA-2). Mol Biochem Parasitol 2018; 220:28-41. [PMID: 29317266 DOI: 10.1016/j.molbiopara.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/05/2023]
Abstract
Earlier studies on Plasmodium apoptosis revealed the presence of proteases with caspases like- activity, which are known as "metacaspases". Although this family of cysteine proteases is structurally similar to caspases with Cys-His dyad but their evolutionary significance and functional relevance remains largely unknown. These proteases are considered to be an important target against malaria due to their absence in humans. In this report, we have biochemically characterized metacaspase-2 (PfMCA-2) of P.falciparum. Enzymatic assay showed that PfMCA-2 efficiently cleaved arginine/lysine specific peptide, but not caspase-specific substrate. Consistently, PfMCA-2 activity was sensitive to effector caspases inhibitor, Z-FA-FMK, and mildly inhibited by aprotinin and E-64. However, general caspase inhibitors such as Z-VAD-FMK and Z-DEVD-FMK had no effect on PfMCA-2 activity. Z-FA-FMK inhibits parasite growth with an IC50 value of 2.7 μM along with the notable morphological changes. PfMCA-2 specifically expressed in schizonts and gametocyte stages and there was a notable depletion of PfMCA-2 expression in Z-FA-FMK treated schizonts and gametocytes stages of parasite. Notably, PfMCA-2 cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease) and the proteolysis of PfTSN did not occur after treatment with the Z-FA-FMK. The production of large amount of reactive oxygen species in presence of Z-FA-FMK caused oxidative stress which in turn leads to loss of cell viability. The oxidative stress further generates positive feedback for the occurrence of cell death in term of phosphatidylserine externalization and DNA fragmentation in vitro.
Collapse
Affiliation(s)
- Vandana
- National Institute of Malaria Research, New Delhi, 110077, India; Dr B. R. Ambedkar Centre for Biomedical Research, Delhi University, New Delhi, 110007, India
| | - Agam P Singh
- National Institute of Immunology, New Delhi, 110067, India
| | - Jitendra Singh
- Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062, India
| | - Ruby Sharma
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mymoona Akhter
- Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062, India
| | - Pradyumna K Mishra
- National Institute for Research in Environmental Health, Bhopal 462001, India
| | - Ajay K Saxena
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, New Delhi, 110077, India
| | - Brijesh Rathi
- Dept of Chemistry, Hans Raj College, Delhi University, India
| | - Anju Katyal
- Dr B. R. Ambedkar Centre for Biomedical Research, Delhi University, New Delhi, 110007, India
| | - Kailash C Pandey
- National Institute for Research in Environmental Health, Bhopal 462001, India.
| |
Collapse
|
20
|
Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, Flores-Sánchez F, Navarro-Garcia F, Serrano-Luna J, Shibayama M. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol 2017; 12:781-799. [PMID: 28608712 PMCID: PMC5619013 DOI: 10.2217/fmb-2016-0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
AIM The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. MATERIALS & METHODS Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. RESULTS A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. CONCLUSION Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Anjan Debnath
- Center for Discovery & Innovation in Parasitic Diseases, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mario Alberto Rodríguez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Myrna Sabanero
- Department of Biology, University of Guanajuato, Noria Alta S/N, Noria Alta, Guanajuato 36050, Mexico
| | - Fernando Flores-Sánchez
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
21
|
Reséndiz-Cardiel G, Arroyo R, Ortega-López J. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris. Protein Expr Purif 2017; 134:104-113. [DOI: 10.1016/j.pep.2017.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 01/11/2023]
|
22
|
Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:388-394. [DOI: 10.1016/j.bbapap.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022]
|
23
|
Sow F, Bonnot G, Ahmed BR, Diagana SM, Kebe H, Koita M, Samba BM, Al-Mukhaini SK, Al-Zadjali M, Al-Abri SS, Ali OAM, Samy AM, Hamid MMA, Ali Albsheer MM, Simon B, Bienvenu AL, Petersen E, Picot S. Genetic diversity of Plasmodium vivax metacaspase 1 and Plasmodium vivax multi-drug resistance 1 genes of field isolates from Mauritania, Sudan and Oman. Malar J 2017; 16:61. [PMID: 28153009 PMCID: PMC5288979 DOI: 10.1186/s12936-017-1687-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important human malaria parasite, widely spread across the world. This parasite is associated with important issues in the process toward malaria elimination, including potential for relapse and increased resistance to chloroquine. Plasmodium vivax multi-drug resistant (pvmdr1) is suspected to be a marker of resistance although definitive evidence is lacking. Progress has been made in knowledge of biological factors affecting parasite growth, including mechanisms of regulated cell death and the suspected role of metacaspase. Plasmodium vivax metacaspase1 (PvMCA1-cd) has been described with a catalytic domain composed of histidine (H372) and cysteine (C428) residues. The aim of this study was to test for a link between the conserved histidine and cysteine residues in PvMCA1-cd, and the polymorphism of the P. vivax multi-drug resistant gene (pvmdr1). RESULTS Thirty P. vivax isolates were collected from Mauritania, Sudan, and Oman. Among the 28 P. vivax isolates successfully sequenced, only 4 samples showed the conserved His (372)-Cys (428) residues in PvMCA1-cd. Single nucleotide polymorphisms observed were H372T (46.4%), H372D (39.3%), and C428R (85.7%). A new polymorphic catalytic domain was observed at His (282)-Cys (305) residues. Sequences alignment analysis of pvmdr1 showed SNP in the three codons 958, 976 and 1076. A single SNP was identified at the codon M958Y (60%), 2 SNPs were found at the position 976: Y976F (13%) and Y976V (57%), and 3 SNPs were identified at the position 1076: F1076L (40%), F1076T (53%) and F1076I (3%). Only one isolate was wildtype in all three codons (MYF), 27% were single MYL mutants, and 10% were double MFL mutants. Three new haplotypes were also identified: the triple mutant YVT was most prevalent (53.3%) distributed in the three countries, while triple YFL and YVI mutants (3%), were only found in samples from Sudan and Mauritania. CONCLUSIONS Triple or quadruple mutants for metacaspase genes and double or triple mutants for Pvmdr1 were observed in 24/28 and 19/28 samples. There was no difference in the frequency of mutations between PvMCA1-cd and Pvmdr1 (P > 0.2). Histidine and cysteine residues in PvMCA1-cd are highly polymorphic and linkage disequilibrium with SNPs of Pvmdr1 gene may be expected from these three areas with different patterns of P. vivax transmission.
Collapse
Affiliation(s)
- Fatimata Sow
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.
| | - Guillaume Bonnot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France
| | - Bilal Rabah Ahmed
- Laboratoire de Bactériologie et Parasitologie de l'Hôpital Cheikh Zayed, BP-5720, Nouakchott, Mauritania
| | - Sidi Mohamed Diagana
- Laboratoire de Bactériologie et Parasitologie de l'Hôpital Cheikh Zayed, BP-5720, Nouakchott, Mauritania
| | - Hachim Kebe
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier National de Nouakchott, BP-612, Nouakchott, Mauritania
| | - Mohamedou Koita
- Laboratoire de Parasitologie et de Mycologie Médicale Institut National de Recherches en Santé Publique (INRSP), Avenue Jemal AbdeNasser, BP-695, Nouakchott, Mauritania
| | - Ba Malado Samba
- Laboratoire Analyse de Biologie Médicale du Centre hospitalier de Rosso Mauritanie, BP-41, Rosso, Mauritania
| | - Said K Al-Mukhaini
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Majed Al-Zadjali
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Seif S Al-Abri
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Osama A M Ali
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Abdallah M Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.,Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Qassr Street, P.O. BOX 102, Khartoum, Sudan
| | - Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Qassr Street, P.O. BOX 102, Khartoum, Sudan
| | - Bruno Simon
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Anne-Lise Bienvenu
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Eskild Petersen
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman.,Institute of Clinical Medicine, Faculty of Health Science, University of Aarhus, Aarhus, Denmark
| | - Stéphane Picot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
24
|
Bachmann G, Richards MW, Winter A, Beuron F, Morris E, Bayliss R. A closed conformation of the Caenorhabditis elegans separase-securin complex. Open Biol 2016; 6:160032. [PMID: 27249343 PMCID: PMC4852461 DOI: 10.1098/rsob.160032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 11/12/2022] Open
Abstract
The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase-securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21-24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase-securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change.
Collapse
Affiliation(s)
- Gudrun Bachmann
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Mark W Richards
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE2 9HN, UK Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anja Winter
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE2 9HN, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Edward Morris
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard Bayliss
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE2 9HN, UK Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
25
|
Grewal JS, McLuskey K, Das D, Myburgh E, Wilkes J, Brown E, Lemgruber L, Gould MK, Burchmore RJ, Coombs GH, Schnaufer A, Mottram JC. PNT1 Is a C11 Cysteine Peptidase Essential for Replication of the Trypanosome Kinetoplast. J Biol Chem 2016; 291:9492-500. [PMID: 26940875 PMCID: PMC4850289 DOI: 10.1074/jbc.m116.714972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.
Collapse
Affiliation(s)
- Jaspreet S Grewal
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Karen McLuskey
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Debanu Das
- the Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Elmarie Myburgh
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Jonathan Wilkes
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Elaine Brown
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Leandro Lemgruber
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Matthew K Gould
- the Institute of Immunology and Infection Research and Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Richard J Burchmore
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Graham H Coombs
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Achim Schnaufer
- the Institute of Immunology and Infection Research and Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jeremy C Mottram
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom,
| |
Collapse
|
26
|
Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, Fallon PG, McKenzie ANJ. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol 2016; 17:57-64. [PMID: 26523868 PMCID: PMC4685755 DOI: 10.1038/ni.3294] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.
Collapse
Affiliation(s)
- Timotheus YF Halim
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| | - You Yi Hwang
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| | - Seth T Scanlon
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Natalio Garbi
- Department of Molecular Immunology, Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn D-53105, Germany
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew NJ McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| |
Collapse
|
27
|
Winter A, Schmid R, Bayliss R. Structural Insights into Separase Architecture and Substrate Recognition through Computational Modelling of Caspase-Like and Death Domains. PLoS Comput Biol 2015; 11:e1004548. [PMID: 26513470 PMCID: PMC4626109 DOI: 10.1371/journal.pcbi.1004548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Separases are large proteins that mediate sister chromatid disjunction in all eukaryotes. They belong to clan CD of cysteine peptidases and contain a well-conserved C-terminal catalytic protease domain similar to caspases and gingipains. However, unlike other well-characterized groups of clan CD peptidases, there are no high-resolution structures of separases and the details of their regulation and substrate recognition are poorly understood. Here we undertook an in-depth bioinformatical analysis of separases from different species with respect to their similarity in amino acid sequence and protein fold in comparison to caspases, MALT-1 proteins (mucosa-associated lymphoidtissue lymphoma translocation protein 1) and gingipain-R. A comparative model of the single C-terminal caspase-like domain in separase from C. elegans suggests similar binding modes of substrate peptides between these protein subfamilies, and enables differences in substrate specificity of separase proteins to be rationalised. We also modelled a newly identified putative death domain, located N-terminal to the caspase-like domain. The surface features of this domain identify potential sites of protein-protein interactions. Notably, we identified a novel conserved region with the consensus sequence WWxxRxxLD predicted to be exposed on the surface of the death domain, which we termed the WR motif. We envisage that findings from our study will guide structural and functional studies of this important protein family. The separation of sister chromatids is a crucial step in cell division and is triggered by the activation of separase, a protease that cleaves the proteins that maintain the cohesion between sister chromatids. Knowledge of the molecular structure and activation mechanism of separase is limited by the difficulty of obtaining structural information on this large and flexible protein. Sequence conservation between separase homologues from diverse species is limited to the C-terminal region that contains the catalytically active protease domain. We conducted an in-depth bioinformatical analysis of separase and generated structural models of the two conserved domains that comprise the C-terminal region: a caspase-like domain and a putative death domain. This analysis provided insights into substrate recognition and identified potential sites of protein-protein interactions. Both the death domain and caspase-like domain are well-conserved in separases, which suggests an evolutionary pressure to keep these two domains together, perhaps to enable separase activity and/or provide stability. Insights into the molecular structures of separase gained in this study may provide a starting point for experimental structural studies on this protein and may aid therapeutic development against cancers where chromosomes are improperly segregated.
Collapse
Affiliation(s)
- Anja Winter
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Ralf Schmid
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Ramírez-Rico G, Martínez-Castillo M, de la Garza M, Shibayama M, Serrano-Luna J. Acanthamoeba castellanii Proteases are Capable of Degrading Iron-Binding Proteins as a Possible Mechanism of Pathogenicity. J Eukaryot Microbiol 2015; 62:614-622. [PMID: 25737266 DOI: 10.1111/jeu.12215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/09/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023]
Abstract
Acanthamoeba castellanii, a free-living amoeba, is an amphizoic organism that can behave as an opportunistic pathogen, causing granulomatous amoebic encephalitis in immunocompromised patients or infecting immunocompetent individuals via cutaneous lesions, sinusoidal infections, or amoebic keratitis. Therefore, this amoeba could be in contact with different iron-binding proteins, such as lactoferrin in tears and mucosa and transferrin and hemoglobin in blood. Iron is a vital and necessary element for host metabolism but also for parasite survival. Accordingly, parasites have developed iron uptake mechanisms, one of which is the utilization of proteases to degrade host iron-binding proteins. In this work, we performed a partial biochemical characterization of A. castellanii proteases at different pHs and utilizing protease inhibitors with 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and copolymerized with different iron-binding proteins. We describe for the first time the presence of several cysteine proteases in a total A. castellanii crude extract and in conditioned culture medium precipitated with ethanol. These amoebic peptidases degraded human holo-lactoferrin, holo-transferrin, hemoglobin, and horse spleen ferritin; some of these proteases were substrate specific, and others degraded multiple substrates. These proteases could be considered virulence factors that promote iron acquisition from the host.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360, México, Distrito Federal, México
| | - Moisés Martínez-Castillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360, México, Distrito Federal, México
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360, México, Distrito Federal, México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360, México, Distrito Federal, México
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360, México, Distrito Federal, México
| |
Collapse
|
29
|
Fagundes D, Bohn B, Cabreira C, Leipelt F, Dias N, Bodanese-Zanettini MH, Cagliari A. Caspases in plants: metacaspase gene family in plant stress responses. Funct Integr Genomics 2015; 15:639-49. [PMID: 26277721 DOI: 10.1007/s10142-015-0459-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022]
Abstract
Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.
Collapse
Affiliation(s)
- David Fagundes
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Bianca Bohn
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Caroline Cabreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Fábio Leipelt
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Nathalia Dias
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | | | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| |
Collapse
|
30
|
Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:946787. [PMID: 26090464 PMCID: PMC4450334 DOI: 10.1155/2015/946787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
Collapse
|
31
|
Martínez-Castillo M, Ramírez-Rico G, Serrano-Luna J, Shibayama M. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416712. [PMID: 26090408 PMCID: PMC4450812 DOI: 10.1155/2015/416712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Abstract
Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
| | - Gerardo Ramírez-Rico
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
- Faculty of Professional Studies, Autonomous University of Mexico, Campus Cuautitlán, Km 2.5 Carretera Cuautitlán-Teoloyucan, 54714 Cuautitlán Izcalli, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
| |
Collapse
|
32
|
Abstract
Recent reports suggest that the yeast Saccharomyces cerevisiae caspase‐related metacaspase, Mca1, is required for cell‐autonomous cytoprotective functions that slow cellular aging. Because the Mca1 protease has previously been suggested to be responsible for programmed cell death (PCD) upon stress and aging, these reports raise the question of how the opposing roles of Mca1 as a protector and executioner are regulated. One reconciling perspective could be that executioner activation may be restricted to situations where the death of part of the population would be beneficial, for example during colony growth or adaptation into specialized survival forms. Another possibility is that metacaspases primarily harbor beneficial functions and that the increased survival observed upon metacaspase removal is due to compensatory responses. Herein, we summarize data on the role of Mca1 in cell death and survival and approach the question of how a metacaspase involved in protein quality control may act as killer protein.
Collapse
Affiliation(s)
- Sandra Malmgren Hill
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | |
Collapse
|
33
|
The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis. Int J Biochem Cell Biol 2015; 59:73-83. [DOI: 10.1016/j.biocel.2014.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
|
34
|
Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions? J Biosci 2014; 39:909-16. [DOI: 10.1007/s12038-014-9486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Holden JM, Koreny L, Obado S, Ratushny AV, Chen WM, Chiang JH, Kelly S, Chait BT, Aitchison JD, Rout MP, Field MC. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell 2014; 25:1421-36. [PMID: 24600046 PMCID: PMC4004592 DOI: 10.1091/mbc.e13-12-0750] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear face of the nuclear pore complex (NPC) interfaces with chromatin, transcription, and transport intermediates. A novel architecture for the nuclear face of the trypanosome NPC provides insights into NPC function and evolution. The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.
Collapse
Affiliation(s)
- Jennifer M Holden
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom The Rockefeller University, New York, NY 10021 Seattle Biomedical Research Institute and Institute for Systems Biology, Seattle, WA 98109 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City 701, Taiwan Department of Plant Sciences, University of Oxford, Oxford OX1 4JP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The purpose of this chapter is to give insights into metacaspase of Leishmania protozoan parasites as arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible expression systems, metacaspase-deficient yeast cells (Δyca1) have been instrumental in studying the activity of Leishmania major metacaspase (LmjMCA). Here, we describe techniques for purification of LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA substrates.
Collapse
|
37
|
Cherif MS, Shuaibu MN, Kodama Y, Kurosaki T, Helegbe GK, Kikuchi M, Ichinose A, Yanagi T, Sasaki H, Yui K, Tien NH, Karbwang J, Hirayama K. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model. Vaccine 2014; 32:1998-2006. [PMID: 24440206 DOI: 10.1016/j.vaccine.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/23/2013] [Accepted: 01/02/2014] [Indexed: 11/15/2022]
Abstract
We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production.
Collapse
Affiliation(s)
- Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Global COE Program, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Institut National de Santé Publique, Université de Conakry, Guinea
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Global COE Program, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | | | | | - Gideon Kofi Helegbe
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Akitoyo Ichinose
- Electron Microscopy Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Tetsuo Yanagi
- Animal Research Center for Tropical Medicine, Nagasaki, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University, Japan; Global COE Program, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Nguyen Huy Tien
- Department of Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Juntra Karbwang
- Department of Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Global COE Program, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
38
|
McLuskey K, Moss CX, Mottram JC. Purification, characterization, and crystallization of Trypanosoma metacaspases. Methods Mol Biol 2014; 1133:203-21. [PMID: 24567104 DOI: 10.1007/978-1-4939-0357-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metacaspases are cysteine peptidases found in trypanosomes but absent in mammals, and despite being distantly related to the mammalian caspases they show significant disparity in their cellular and enzymatic functions. The genome of the parasitic protozoa Trypanosoma brucei (the causative agent of African sleeping sickness) encodes five metacaspases: TbMCA1-TbMCA5. Of these TbMCA2, TbMCA3, and TbMCA5 are active cysteine peptidases expressed in the bloodstream form of the parasite. To investigate the structure-function relationship of the trypanosome metacaspases and the structural basis for their divergence from the caspases, paracaspases, and other Clan CD cysteine peptidases (or vice versa), we purified and characterized TbMCA2 and determined the three-dimensional structure of an inactive mutant using X-ray crystallography. The methods presented in this chapter describe the recombinant expression of active TbMCA2 and inactive TbMCA2(C213A). The protocols produce large amounts of recombinant protein for use in structural, biochemical, and kinetic studies and include detailed information on how to produce diffraction quality crystals of TbMCA2(C213A).
Collapse
Affiliation(s)
- Karen McLuskey
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
39
|
Ocádiz-Ruiz R, Fonseca W, Martínez MB, Ocádiz-Quintanar R, Orozco E, Rodríguez MA. Effect of the silencing of the Ehcp112 gene on the in vitro virulence of Entamoeba histolytica. Parasit Vectors 2013; 6:248. [PMID: 23981435 PMCID: PMC3765809 DOI: 10.1186/1756-3305-6-248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/24/2013] [Indexed: 11/28/2022] Open
Abstract
Background Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis in humans, affecting up to 50 million people worldwide each year and causing 40,000 to 100,000 deaths annually. EhCP112 is a cysteine proteinase of E. histolytica able to disrupt cell monolayers and digest extracellular matrix proteins, it is secreted by trophozoites and it can be active in a wide range of temperature and pH. These characteristics have encouraged the use of EhCP112 in the design and production of possible vaccines against amoebiasis, obtaining promising results. Nevertheless, we have no conclusive information about the role of EhCP112 in the E. histolytica pathogenesis. Methods A set of three specific siRNA sequences were used to silence the Ehcp112 gene via the soaking system. Silencing was evaluated by Western blot using an antibody against the EhCP112 recombinant protein. Finally, we analyzed the protease activity, the phagocytosis rate and the ability to destroy MDCK cells of the EhCP112-silenced trophozoites. Results The highest silencing effect on EhCP112 was detected at 16 h of treatment; time enough to perform the in vitro virulence assays, which showed that EhCP112 silencing produces a significant reduction in cytolysis and phagocytosis of target cells, indicating the participation of this proteinase in these events. Conclusions EhCP112 is involved in the in vitro virulence of E. histolytica.
Collapse
Affiliation(s)
- Ramón Ocádiz-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, A,P, 14-740, México, D,F,, México.
| | | | | | | | | | | |
Collapse
|
40
|
Kim SM, Bae C, Oh SK, Choi D. A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants. MOLECULAR PLANT PATHOLOGY 2013; 14:557-66. [PMID: 23522353 PMCID: PMC6638822 DOI: 10.1111/mpp.12027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Metacaspases, which belong to the cysteine-type C14 protease family, are most structurally similar to mammalian caspases than any other caspase-like protease in plants. Atmc9 (Arabidopsis thaliana metacaspase 9) has a unique domain structure, and distinct biochemical characteristics, such as Ca²⁺ binding, pH, redox status, S-nitrosylation and specific protease inhibitors. However, the biological roles of Atmc9 in plant-pathogen interactions remain largely unknown. In this study, a metacaspase gene present as a single copy in the pepper genome, and sharing 54% amino acid sequence identity with Atmc9, was isolated and named Capsicum annuum metacaspase 9 (Camc9). Camc9 encodes a 318-amino-acid polypeptide with an estimated molecular weight of 34.6 kDa, and shares approximately 40% amino acid sequence identity with known type II metacaspases in plants. Quantitative reverse transcription-polymerase chain reaction analyses revealed that the expression of Camc9 was induced by infections of Xanthomonas campestris pv. vesicatoria race 1 and race 3 and treatment with methyl jasmonate. Suppression of Camc9 expression using virus-induced gene silencing enhanced disease resistance and suppressed cell death symptom development following infection with virulent bacterial pathogens. By contrast, overexpression of Camc9 by transient or stable transformation enhanced disease susceptibility and pathogen-induced cell death by regulation of reactive oxygen species production and defence-related gene expression. These results suggest that Camc9 is a possible member of the metacaspase gene family and plays a role as a positive regulator of pathogen-induced cell death in the plant kingdom.
Collapse
Affiliation(s)
- Su-Min Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, South Korea
| | | | | | | |
Collapse
|
41
|
Saheb E, Biton I, Maringer K, Bush J. A functional connection of Dictyostelium paracaspase with the contractile vacuole and a possible partner of the vacuolar proton ATPase. J Biosci 2013; 38:509-21. [DOI: 10.1007/s12038-013-9338-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Machado MF, Marcondes MF, Juliano MA, McLuskey K, Mottram JC, Moss CX, Juliano L, Oliveira V. Substrate specificity and the effect of calcium on Trypanosoma brucei metacaspase 2. FEBS J 2013; 280:2608-21. [PMID: 23506317 PMCID: PMC3779824 DOI: 10.1111/febs.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/19/2013] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
Abstract
Metacaspases are cysteine peptidases found only in yeast, plants and lower eukaryotes, including the protozoa. To investigate the extended substrate specificity and effects of Ca(2+) on the activation of these enzymes, detailed kinetic, biochemical and structural analyses were carried out on metacaspase 2 from Trypanosoma brucei (TbMCA2). These results reveal that TbMCA2 has an unambiguous preference for basic amino acids at the P1 position of peptide substrates and that this is most probably a result of hydrogen bonding from the P1 residue to Asp95 and Asp211 in TbMCA2. In addition, TbMCA2 also has a preference for charged residues at the P2 and P3 positions and for small residues at the prime side of a peptide substrate. Studies into the effects of Ca(2+) on the enzyme revealed the presence of two Ca(2+) binding sites and a reversible structural modification of the enzyme upon Ca(2+) binding. In addition, the concentration of Ca(2+) used for activation of TbMCA2 was found to produce a differential effect on the activity of TbMCA2, but only when a series of peptides that differed in P2 were examined, suggesting that Ca(2+) activation of TbMCA2 has a structural effect on the enzyme in the vicinity of the S2 binding pocket. Collectively, these data give new insights into the substrate specificity and Ca(2+) activation of TbMCA2. This provides important functional details and leads to a better understanding of metacaspases, which are known to play an important role in trypanosomes and make attractive drug targets due to their absence in humans.
Collapse
Affiliation(s)
- Maurício F.M. Machado
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 – 7° andar, São Paulo, Brazil
| | - Marcelo F. Marcondes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 – 7° andar, São Paulo, Brazil
| | - Maria A. Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 – 7° andar, São Paulo, Brazil
| | - Karen McLuskey
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Catherine X. Moss
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 – 7° andar, São Paulo, Brazil
| | - Vitor Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 – 7° andar, São Paulo, Brazil
| |
Collapse
|
43
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
44
|
The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in Trichomonas vaginalis cytoadherence. BIOMED RESEARCH INTERNATIONAL 2013; 2013:561979. [PMID: 23509742 PMCID: PMC3581150 DOI: 10.1155/2013/561979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/21/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
Abstract
The goal of this paper was to characterize a Trichomonas vaginalis cysteine proteinase (CP) legumain-1 (TvLEGU-1) and determine its potential role as a virulence factor during T. vaginalis infection. A 30-kDa band, which migrates in three protein spots (pI~6.3, ~6.5, and ~6.7) with a different type and level of phosphorylation, was identified as TvLEGU-1 by one- and two-dimensional Western blot (WB) assays, using a protease-rich trichomonad extract and polyclonal antibodies produced against the recombinant TvLEGU-1 (anti-TvLEGU-1r). Its identification was confirmed by mass spectrometry. Immunofluorescence, cell binding, and WB assays showed that TvLEGU-1 is upregulated by iron at the protein level, localized on the trichomonad surface and in lysosomes and Golgi complex, bound to the surface of HeLa cells, and was found in vaginal secretions. Additionally, the IgG and Fab fractions of the anti-TvLEGU-1r antibody inhibited trichomonal cytoadherence up to 45%. Moreover, the Aza-Peptidyl Michael Acceptor that inhibited legumain proteolytic activity in live parasites also reduced levels of trichomonal cytoadherence up to 80%. In conclusion, our data show that the proteolytic activity of TvLEGU-1 is necessary for trichomonal adherence. Thus, TvLEGU-1 is a novel virulence factor upregulated by iron. This is the first report that a legumain-like CP plays a role in a pathogen cytoadherence.
Collapse
|
45
|
Saheb E, Trzyna W, Bush J. An Acanthamoeba castellanii metacaspase associates with the contractile vacuole and functions in osmoregulation. Exp Parasitol 2012; 133:314-26. [PMID: 23274641 DOI: 10.1016/j.exppara.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/03/2012] [Accepted: 12/08/2012] [Indexed: 01/13/2023]
Abstract
Acanthamoeba castellanii is a free-living protozoan. Some strains are opportunistic pathogens. A type-I metacaspase was identified in A. castellanii (Acmcp) and was shown to be expressed through the encystation process. The model organism, Dictyostelium discoideum, has been used here as a model for studying these caspase-like proteins. Separate cell lines expressing a GFP-tagged version of the full length Acmcp protein, as well as a deletion proline region mutant of Acmcp protein (GFP-Acmcp-dpr), have been introduced into D. discoideum. Both mutants affect the cellular metabolism, characterized by an increase in the growth rate. Microscopic imaging revealed an association between Acmcp and the contractile vacuole system in D. discoideum. The treatment of cells with selected inhibitors in different environments added additional support to these findings. This evidence shows that Acmcp plays an important role in contractile vacuole regulation and mediated membrane trafficking in D. discoideum. Additionally, the severe defect in contractile vacuole function in GFP-Acmcp-dpr mutant cells suggests that the proline-rich region in Acmcp has an essential role in binding this protein with other partners to maintain this process. Furthermore, Yeast two-hybrid system identified there are weak interactions of the Dictyostelium contractile vacuolar proteins, including Calmodulin, RabD, Rab11 and vacuolar proton ATPase, with Acmcp protein. Taken together, our findings suggest that A. castellanii metacaspase associate with the contractile vacuole and have an essential role in cell osmoregulation, which contributes to its attractiveness as a possible target for treatment therapies against A. castellanii infection.
Collapse
Affiliation(s)
- Entsar Saheb
- Biology Department, University of Arkansas at Little Rock, 2801 South University Dr., Little Rock, AR 72204-1099, USA.
| | | | | |
Collapse
|
46
|
Gene duplication in trypanosomatids - two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol Biochem Parasitol 2012; 185:127-36. [PMID: 22910033 DOI: 10.1016/j.molbiopara.2012.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/20/2023]
Abstract
DED1/VAS belong to the DEAD-box family of RNA helicases that are associated with translation initiation in higher eukaryotes. Here we report on two DED1/VAS homologs that were identified in the genome of Leishmania. The two paralogs include all the domains that are typical of DEAD-box proteins and a phylogenetic analysis suggests that their duplication predates the branching of DED1 and VAS, which took place along with the appearance of early metazoans. The two Leishmania DED1 paralogs complement a yeast strain that fails to express the endogenous DED1, suggesting that they are responsible for a similar function. This is also supported by RNAi-mediated silencing experiments performed in Trypanosoma brucei. The two proteins are functionally redundant, since defects in protein synthesis and cell growth arrest were observed only when both paralogs were eliminated. A partial stage-specific specialization is observed, as LeishDED1-2 is more abundant in promastigotes, whereas expression of LeishDED1-1 increases in amastigotes. Duplication of an essential gene usually offers a safety net against mutations but in this case it also generated two proteins with stage specific expression.
Collapse
|
47
|
Leishmania (L.) amazonensis peptidase activities inside the living cells and in their lysates. Mol Biochem Parasitol 2012; 184:82-9. [DOI: 10.1016/j.molbiopara.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/13/2012] [Accepted: 04/27/2012] [Indexed: 11/22/2022]
|
48
|
Shrestha A, Megeney LA. The non-death role of metacaspase proteases. Front Oncol 2012; 2:78. [PMID: 22837984 PMCID: PMC3402860 DOI: 10.3389/fonc.2012.00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/05/2012] [Indexed: 11/24/2022] Open
Abstract
The activation of caspase proteases and the targeting of protein substrates act as key steps in the engagement and conduct of apoptosis/programmed cell death. However, the discovery of caspase involvement in diverse non-apoptotic cellular functions strongly suggests that these proteins may have evolved from a core behavior unrelated to the induction of cell death. The presence of similar proteases, termed metacaspases, in single cell organisms supports the contention that such proteins may have co-evolved or derived from a critical non-death function. Indeed, the benefit(s) for single cell life forms to retain proteins solely dedicated to self destruction would be countered by a strong selection pressure to curb or eliminate such processes. Examination of metacaspase biology provides evidence that these ancient protease forerunners of the caspase family also retain versatility in function, i.e., death and non-death cell functions. Here, we provide a critical review that highlights the non-death roles of metacaspases that have been described thus far, and the impact that these observations have for our understanding of the evolution and cellular utility of this protease family.
Collapse
Affiliation(s)
- Amit Shrestha
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | | |
Collapse
|
49
|
Abstract
Metacaspases are distantly related caspase-family cysteine peptidases implicated in programmed cell death in plants and lower eukaryotes. They differ significantly from caspases because they are calcium-activated, arginine-specific peptidases that do not require processing or dimerization for activity. To elucidate the basis of these differences and to determine the impact they might have on the control of cell death pathways in lower eukaryotes, the previously undescribed crystal structure of a metacaspase, an inactive mutant of metacaspase 2 (MCA2) from Trypanosoma brucei, has been determined to a resolution of 1.4 Å. The structure comprises a core caspase fold, but with an unusual eight-stranded β-sheet that stabilizes the protein as a monomer. Essential aspartic acid residues, in the predicted S1 binding pocket, delineate the arginine-specific substrate specificity. In addition, MCA2 possesses an unusual N terminus, which encircles the protein and traverses the catalytic dyad, with Y31 acting as a gatekeeper residue. The calcium-binding site is defined by samarium coordinated by four aspartic acid residues, whereas calcium binding itself induces an allosteric conformational change that could stabilize the active site in a fashion analogous to subunit processing in caspases. Collectively, these data give insights into the mechanistic basis of substrate specificity and mode of activation of MCA2 and provide a detailed framework for understanding the role of metacaspases in cell death pathways of lower eukaryotes.
Collapse
|
50
|
Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu YC, Diaz N, Rappelli P, Acosta-Serrano A, Fiori PL, Mottram JC. Trichomonas vaginalis pathobiology new insights from the genome sequence. ADVANCES IN PARASITOLOGY 2012; 77:87-140. [PMID: 22137583 DOI: 10.1016/b978-0-12-391429-3.00006-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The draft genome of the common sexually transmitted pathogen Trichomonas vaginalis encodes one of the largest known proteome with 60,000 candidate proteins. This provides parasitologists and molecular cell biologists alike with exciting, yet challenging, opportunities to unravel the molecular features of the parasite's cellular systems and potentially the molecular basis of its pathobiology. Here, recent investigations addressing selected aspects of the parasite's molecular cell biology are discussed, including surface and secreted virulent factors, membrane trafficking, cell signalling, the degradome, and the potential role of RNA interference in the regulation of gene expression.
Collapse
Affiliation(s)
- Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|