1
|
Yang R, Ma X, Peng F, Wen J, Allahou LW, Williams GR, Knowles JC, Poma A. Advances in antimicrobial peptides: From mechanistic insights to chemical modifications. Biotechnol Adv 2025; 81:108570. [PMID: 40154761 DOI: 10.1016/j.biotechadv.2025.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
This review provides a comprehensive analysis of antimicrobial peptides (AMPs), exploring their diverse sources, secondary structures, and unique characteristics. The review explores into the mechanisms underlying the antibacterial, immunomodulatory effects, antiviral, antiparasitic and antitumour of AMPs. Furthermore, it discusses the three principal synthesis pathways for AMPs and assesses their current clinical applications and preclinical research status. The paper also addresses the limitations of AMPs, including issues related to stability, resistance, and toxicity, while offering insights into strategies for their enhancement. Recent advancements in AMP research, such as chemical modifications (including amino acid sequence optimisation, terminal and side-chain modifications, PEGylation, conjugation with small molecules, conjugation with photosensitisers, metal ligands, polymerisation, cyclisation and specifically targeted antimicrobial peptides) are highlighted. The goal is to provide a foundation for the future design and optimisation of AMPs.
Collapse
Affiliation(s)
- Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
2
|
Karlsen EA, Berglin M, Hansson A, Lundgren AO, Svendsen JSM. Antifouling Efficacy on S. epidermidis of Nano-Au Surfaces Functionalized with Polyethylene Glycol (PEG)-Tethered Antimicrobial Peptides. ACS APPLIED BIO MATERIALS 2025. [PMID: 40373222 DOI: 10.1021/acsabm.5c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Cationic antimicrobial peptides (cAMPs) kill bacteria in solution by membrane lysis; however, translating cAMPs into a covalently attached antibacterial coating is challenging since it remains unclear how the specifics of the conjugation impact the antifouling efficacy. Furthermore, studies have typically assessed cAMP coatings with a high and homogeneous surface coverage, although this may be difficult to implement in practice of the materials commonly used in medicine. Herein, we investigate the antifouling efficacy of fractional surface coatings made from poly(ethylene glycol) (PEG)-tethered cAMPs presented on gold nanoparticles (AuNPs) deposited onto surfaces. For all tested cAMPs, the antifouling efficacy increases exponentially with the 2D surface coverage of the coating. However, although the cAMPs have a similar primary sequence and display similar potency against Staphylococcus epidermidis in solution, the cyclic peptide is much more potent after tethering to the AuNPs than the linear counterparts. The attachment of the cyclic cAMPs also led to an unexpected shrinkage of the modified PEG-brush by more than 50%, indicating a restricted mobility of the tethering PEG chains. The shrinkage increased the closeness of the peptide on the AuNP and may thus enable cooperative actions of the grafted cAMPs such as the formation of nanosized peptide clusters that were previously found to enhance cAMP potency in solution. These findings pave the way for antibacterial coatings that cover only a subfraction of a material while remaining active in a clinical setting.
Collapse
Affiliation(s)
- Eskil André Karlsen
- Amicoat AS, Sykehusvegen 23, Tromsø 9019, Norway
- Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Mattias Berglin
- RISE Research Institutes of Sweden, Brinellgatan 4, Boras 504 62, Sweden
| | - Adam Hansson
- RISE Research Institutes of Sweden, Brinellgatan 4, Boras 504 62, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg 41346, Sweden
| | - Anders Oskar Lundgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg 41346, Sweden
| | - John S M Svendsen
- Amicoat AS, Sykehusvegen 23, Tromsø 9019, Norway
- Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| |
Collapse
|
3
|
Goulart MO, Paulino JM, Silveira NN, Bertonha AF, Berlinck RGS, Santos RA. Isolation and comparative genotoxicity screening of trichokonins VI and VIII on CHO-K1 cells. Drug Chem Toxicol 2025; 48:521-529. [PMID: 39262131 DOI: 10.1080/01480545.2024.2389977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
Peptaibols are fungal peptides that exhibit efficacy against pathogen microorganisms. Trichokonin VI (TK-VI) and trichokonin VIII (TK-VIII) are known peptaibols isolated from the endolichenic fungi Hypocrea sp. Previous investigations reported that trichokonin VI presents antiproliferative effects on tumor cells. This study is pioneering in elucidating the genotoxic effects of TK-VI and TK-VIII, contributing to the thorough assessment of their safety as potential therapeutic agents. The present investigation aimed to evaluate the genotoxicity of TK-VI and TK-VIII on CHO-K1 cells. Cytotoxicity was evaluated using the XTT assay and clonogenic survival assays, followed by evaluation of DNA damage using the comet assay and micronucleus test conducted in vitro. The XTT assay results indicated IC50 values of 10.30 µM and 9.89 µM for TK-VI and TK-VIII, respectively. The clonogenic survival assay indicated that concentrations of 10 µM or higher completely inhibited the cell colony formation. In the comet assay, both TK-VI and TK-VIII increased the DNA damage score and the frequency of comet nuclei in all tested concentrations. In the micronucleus assay, TK-VI and TK-VIII at 10 µM increased the frequency of MN in CHO-K1 cells. Both TK-VI and TK-VIII exhibited genotoxic effects. Our findings underscore the importance of considering the genotoxicological safety of peptaibols, particularly when assessing their potential for other biological activities.
Collapse
Affiliation(s)
| | | | | | - Ariane F Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | |
Collapse
|
4
|
Lin S, Cui T, Jiang Y, Xie J, Zhong D, Jiang J, Deng D, Zhao M, Xue C, Gan S, Qiu J, Wang X. Microenvironment-responsive NIR-IIb multifunctional nanozyme platform for bacterial imaging and specialized anti-anaerobic bacteria periodontal therapy. J Nanobiotechnology 2025; 23:189. [PMID: 40055819 PMCID: PMC11889803 DOI: 10.1186/s12951-025-03270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque. In order to remove pathogens and promote tissue repair, the following steps need to be taken simultaneously: localizing the diseased area, improving the anaerobic microenvironment, as well as addressing the anti-inflammatory and osteogenic needs. This study aims to address these issues by developing a responsive near-infrared-IIb nanozyme system (DMUP), assembled from lanthanide-doped down-converted nanoparticles and multi-enzymatically active nanozyme. DMUP binds to bacterial membranes via the bacterial targeting peptide ubiquicidin29-41 (UBI29-41). Upon responding to the inflammatory microenvironment, it releases manganese (Mn) nanozyme and paeonol (Pae), and localized infected areas by fluorescent bacterial imaging in the near-infrared IIb (NIR-IIb) region. In particular, the released Mn nanozyme reacts with hydrogen peroxide in the inflammatory microenvironment to generate oxygen (O2) in situ, thereby improving the anoxic environment to inhibit anaerobic bacteria. On the other hand, as a metal oxide nanozyme, Mn nanozyme scavenges reactive oxygen species (ROS) by mimicking the cascade process of superoxide dismutase and catalase. The phenolic antioxidant Pae shifts macrophages from pro-inflammatory (M1-type) to anti-inflammatory (M2-type) through the Akt/mTOR pathway. It can synergize with Mn nanozyme to regulate the inflammatory microenvironment, thereby reducing inflammation, promoting osteogenic genes expression, and accelerating periodontal tissues regeneration.
Collapse
Affiliation(s)
- Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yuxin Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Jialiang Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Da Zhong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Junkai Jiang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Dan Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Mengzhen Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Chengzhou Xue
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Shiyu Gan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China.
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China.
| |
Collapse
|
5
|
Teulé-Trull M, Altuna P, Arregui M, Rodriguez-Ciurana X, Aparicio C. Antibacterial coatings for dental implants: A systematic review. Dent Mater 2025; 41:229-247. [PMID: 39658405 DOI: 10.1016/j.dental.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES Despite the high survival rates of dental implants, peri-implantitis is a prevalent complication. Peri-implantitis is related to biofilm that adheres to the surface of implants and causes peri-implant chronic inflammation and bone destruction. Different surface treatments have been proposed to prevent biofilm formation. The objective of this systematic review was analyzing different types of antimicrobial coatings and identifying the most effective one(s) to control bacterial colonization over extended periods of analysis. DATA, SOURCES AND STUDY SELECTION We performed a bibliographic search in Pubmed and Cochrane base of articles published after 2010 to answer, according to the PICO system, the following question: What is the most effective antibacterial surface coating for dental implants? Only papers including a minimum follow-up bacteria growth analysis for at least 48 h were selected. After selection, the studies were classified using the PRISMA system. A total of 40 studies were included. CONCLUSIONS Three main categories of coatings were identified: Antibacterial peptides, synthetic antimicrobial molecules (polymers, antibiotics, …), and metallic nanoparticles (silver). Antibacterial peptide coatings to modify dental implant surfaces have been the most studied and effective surface modification to control bacterial colonization over extended periods of incubation as they are highly potent, durable and biocompatible. However, more in vitro and pre-clinical studies are needed to assess their true potential as a technology for preventing peri-implant infections.
Collapse
Affiliation(s)
- Marta Teulé-Trull
- SCOI-Study and Control of Oral Infections Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Pablo Altuna
- Treatment and Rehabilitation of the Oral and Maxillofacial Patient Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - María Arregui
- SCOI-Study and Control of Oral Infections Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Xavier Rodriguez-Ciurana
- Treatment and Rehabilitation of the Oral and Maxillofacial Patient Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Conrado Aparicio
- SCOI-Study and Control of Oral Infections Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010 Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain; BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona 08019, Spain.
| |
Collapse
|
6
|
Lei R, Yang C, Zhu T, Zhu X, Zhu Z, Cui H, Pei H, Li J, Mao Y, Lan C. Multifunctional cyclic biomimetic peptides: Self-assembling nanotubes for effective treatment of sepsis. Int J Biol Macromol 2025; 288:138522. [PMID: 39672431 DOI: 10.1016/j.ijbiomac.2024.138522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Antibiotic abuse has led to an increasingly serious risk of antimicrobial resistance, developing alternative antimicrobials to combat this alarming issue is urgently needed. Rhesus theta defensin-1 (RTD-1) is a theta-defensin contributing to broad-spectrum bactericidal activity via the mechanisms of membrane perturbation. Intriguingly, human defensin-6 (HD6), an enteric defensin secreted by Paneth cells without direct bactericidal effect, could self-assembled into fibrous networks to trap enteric pathogens for assistance of innate immunity. The direct bactericidal action of RTD-1 and the bacterial trapping of HD6 inspire a promising antimicrobial paradigm for unique antibacterial strategies. In this study, we utilized the principle of alternating arrangement of D- and L-amino acids in cyclic peptides, which endows them with the potential to self-assemble into nanotubes, mimic the antimicrobial processes of RTD-1 and HD6. We designed and synthesized five cyclic biomimetic peptides (CBPs), among these biomimetics, CBP-4, which possessed a nanotube-like structure, demonstrated the ability to directly and rapidly disrupt the cell membranes of Gram-positive S. aureus and MRSA, while also targeting the surfaces of Gram-negative E. coil using its nanofibrous network to capture bacteria, preventing invasion and migration, and indirectly killing the bacteria. Moreover, CBP-4 eliminated pathogens, inhibited excessive inflammatory responses caused by infections, and maintained immune system homeostasis in septic mice. By fully emulating the antimicrobial mechanisms of both RTD-1 and HD6, CBP-4 showed promising potential for anti-infectious therapies.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chujun Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xingqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Cui
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiye Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujing Mao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
7
|
Firdous S, Sarkar AR, Manhas R, Chowdhary R, Rathore A, Kumari J, Rai R, Mahapa A. Synthesis, Characterization, and Antimicrobial Activity of Urea-Containing α/β Hybrid Peptides against Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus. ACS OMEGA 2025; 10:2102-2115. [PMID: 39866621 PMCID: PMC11755142 DOI: 10.1021/acsomega.4c08680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 01/28/2025]
Abstract
The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LAU-Orn-β3,3Ac6c-PEA, DY-01; LAU-Lys-β3,3Ac6c-PEA, DY-02; and LAU-Arg-β3,3Ac6c-PEA, DY-03 in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) and their multidrug resistant (MDR) clinical isolates. All of the peptides exhibited significant bactericidal efficacy with minimal inhibitory concentration (MIC) values ranging from 2.5 to 6.25 μM (1.4 to 3.9 μg/mL) against P. aeruginosa and its MDR clinical isolates, whereas the MIC values ranging from 0.78 to 6.25 μM (0.45 to 3.9 μg/mL) against MRSA and MDR clinical isolates of S. aureus. To understand the potency and mechanism of action of DY-01 to DY-03, time-kill kinetics, biofilm inhibition and disruption, synergistic interactions with standard antibiotics, swarming motility, scanning electron microscopy (SEM) analyses, and ex vivo infection assay were performed. The SEM images revealed that all of the peptides exert antibacterial activity through a membrane disruption mechanism. Additionally, negligible cytotoxicity was observed against mammalian cell lines RAW 264.7 and J774A.1, with mild hemolysis at higher concentrations. The comprehensive antimicrobial assessments of DY-01 to DY-03 against P. aeruginosa and MRSA highlight their potential for clinical applications in combating resistant microbial infections.
Collapse
Affiliation(s)
- Shifa Firdous
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu, Jammu
and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aminur Rahman Sarkar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshit Manhas
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu, Jammu
and Kashmir 180001, India
| | - Rubina Chowdhary
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arti Rathore
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu, Jammu
and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Kumari
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu, Jammu
and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajkishor Rai
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avisek Mahapa
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu, Jammu
and Kashmir 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Vasquez-Moscoso CA, Merlano JAR, Olivera Gálvez A, Volcan Almeida D. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. Prep Biochem Biotechnol 2025; 55:26-35. [PMID: 38970798 DOI: 10.1080/10826068.2024.2365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.
Collapse
Affiliation(s)
- Camila A Vasquez-Moscoso
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Juan Antonio Ramírez Merlano
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | |
Collapse
|
9
|
Zeng ZY, Ding ZL, Zhou AN, Zhu CB, Yang S, Fei H. Bacterial diseases in Siniperca chuatsi: status and therapeutic strategies. Vet Res Commun 2024; 48:3579-3592. [PMID: 39373785 DOI: 10.1007/s11259-024-10538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Mandarin fish (Siniperca chuatsi) is a prominent freshwater species with significant economic value in China, while disease poses a major hindrance to the advancement of mandarin fish aquaculture. To date, the understanding of the prevention and management of bacterial disease in mandarin fish remains incomplete. Therefore, there is a need for more comprehensive insights into the preventive and curative strategies to address these bacterial infections. In this review, we summarize the information pertaining to the predominant bacterial pathogens such as Aeromonas spp., Flavobacterium columnare, Edwardsiella tarda, Streptococcus uberis and Vibrio cholerae in the mandarin fish aquaculture, and point out the current strategies for diagnosis and combating these bacterial pathogens, as well as deliberate on the prospective alternative treatments such as vaccines, herbal remedies, and phage therapy for the prevention and control of these bacterial diseases. Furthermore, we also highlights the importance to implement an integrated bacterial disease management (IBDM) approach for the prevention and control of these pathogenic bacteria in aquaculture.
Collapse
Affiliation(s)
- Zi Ying Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi Li Ding
- College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Ai Ni Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chen Bin Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Tanrıverdi O E, Ayaz D, Terzi Y. Comparative analysis of protein profiles in skin secretions of some Rana species: Preliminary insights into antimicrobial activity. Toxicon 2024; 250:108110. [PMID: 39343149 DOI: 10.1016/j.toxicon.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Protein profiles of skin secretions of Rana dalmatina (Agile Frog), Rana macrocnemis (Uludağ Frog), Rana tavasensis (Tavas Frog) and Rana holtzi (Taurus Frog) frog species belonging to the Rana genus distributed in the Anatolian region of Türkiye were determined for the first time using the Tricine-SDS-PAGE Electrophoresis method and Coomassie Brilliant Blue (CBB) staining. By the results, some peptides with mass ≤5 kDa were detected. Just one peptide with mass ≤5 kDa was found in the secretion of each R. dalmatina, R. macrocnemis, and R. tavasensis while there was two in R. holtzi secretion. The antibacterial activity of secretions was determined using plate well diffusion assay on E. coli, S. typhimurium, S. aureus, B. cereus and L. monocytogenes bacteria. R. dalmatina created the inhibition zone for S. typhimurium, S. aureus, B. cereus, and L. monocytogenes. The zones of inhibition by R. tavasensis and R. macrocnemis species secretions were observed on S. aureus, B. cereus, and L. monocytogenes. It was found that R. holtzi creates an inhibition zone only on B. cereus. The results showed that the secretion of none of the species doesn't have antibacterial activity on E. coli. The skin secretion of R. dalmatina showed the most activity against bacteria, while R. holtzi had the least.
Collapse
Affiliation(s)
- Ebru Tanrıverdi O
- Ege University, Faculty of Science, Department of Biology, Izmir, 35000, Turkiye.
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Department of Biology, Izmir, 35000, Turkiye
| | - Yiğit Terzi
- Ege University, Faculty of Science, Department of Biology, Izmir, 35000, Turkiye
| |
Collapse
|
11
|
Mitra S, Chen MT, Stedman F, Hernandez J, Kumble G, Kang X, Zhang C, Tang G, Daugherty I, Liu W, Ocloo J, Klucznik KR, Li AA, Heinrich F, Deslouches B, Tristram-Nagle S. How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes. J Phys Chem B 2024; 128:9772-9784. [PMID: 39328031 PMCID: PMC11472314 DOI: 10.1021/acs.jpcb.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(-) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(-), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides' interfacial location in G(-) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mei-Tung Chen
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francisca Stedman
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jedidiah Hernandez
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Kumble
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Kang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Churan Zhang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Tang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ian Daugherty
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wanqing Liu
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeremy Ocloo
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin Raphael Klucznik
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Anzhi Li
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Berthony Deslouches
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Wang F, Xiong NX, Ou J, Zhong ZR, Xie Q, Huang JF, Li KX, Huang MZ, Fang ZX, Kuang XY, Qin ZL, Luo SW. Immunometabolic interplay in Edwardsiella tarda-infected crucian carp (Carassius auratus) and in vitro identification of the antimicrobial activity of apolipoprotein D (ApoD) by utilization of multiomics analyses. Int J Biol Macromol 2024; 278:134898. [PMID: 39173793 DOI: 10.1016/j.ijbiomac.2024.134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Edwardsiella tarda is an intracellular pathogenic bacteria that can imperil the health of farmed fish. However, the interactive networks of immune regulation and metabolic response in E. tarda-infected fish are still unclear. In this investigation, we aimed to explore immunometabolic interplay in crucian carp after E. tarda infection by utilizing multiomics analyses. Crucian carp (Carassius auratus) receiving E. tarda infection showed increased levels of tissue damage and oxidative injury in liver. Multiomics analyses suggested that carbon and amino acid metabolism may be considered as crucial metabolic pathways in liver of crucian carp following E. tarda infection, while spaglumic acid, isocitric acid and tetrahydrocortisone were the crucial liver biomarkers. After that, a potential antimicrobial peptide (AMP) sequence called apolipoprotein D (ApoD) was identified from omics study. Then, tissue-specific analysis indicated that liver CaApoD showed the highest expression among isolated tissues. After Aeromonas hydrophila stimulated, CaApoD expressions increased sharply in immune-related tissues. Moreover, CaApoD fusion protein could mediate the in vitro binding to A. hydrophila and E. tarda, attenuate bacterial growth as well as diminish bacterial biofilm forming activity. These findings may have a comprehensive implication for understanding immunometabolic response in crucian carp upon infection.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ning-Xia Xiong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Zi-Rou Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Qing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ming-Zhu Huang
- National R&D Center for freshwater fish processing, Jiangxi Normal University, Nanchang 330022, PR China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Zi-Le Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
13
|
Liu J, Wu Q, Malakar PK, Zhu Y, Zhao Y, Zhang Z. Mining and multifaceted applications of phage lysin for combatting Vibrio parahaemolyticus. Food Res Int 2024; 192:114819. [PMID: 39147512 DOI: 10.1016/j.foodres.2024.114819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Vibrio parahaemolyticus, a prevalent foodborne pathogen found in both water and seafood, poses substantial risks to public health. The conventional countermeasure, antibiotics, has exacerbated the issue of antibiotic resistance, increasing the difficulty of controlling this bacterium. Phage lysins, as naturally occurring active proteins, offer a safe and reliable strategy to mitigate the impact of V. parahaemolyticus on public health. However, there is currently a research gap concerning bacteriophage lysins specific to Vibrio species. To address this, our study innovatively and systematically evaluates 37 phage lysins sourced from the NCBI database, revealing a diverse array of conserved domains and notable variations in similarity among Vibrio phage lysins. Three lysins, including Lyz_V_pgrp, Lyz_V_prgp60, and Lyz_V_zlis, were successfully expressed and purified. Optimal enzymatic activity was observed at 45℃, 800 mM NaCl, and pH 8-10, with significant enhancements noted in the presence of 1 mM membrane permeabilizers such as EDTA or organic acids. These lysins demonstrated effective inhibition against 63 V. parahaemolyticus isolates from clinical, food, and environmental sources, including the reversal of partial resistance, synergistic interactions with antibiotics, and disruption of biofilms. Flow cytometry analyses revealed that the combination of Lyz_V_pgp60 and gentamicin markedly increased bacterial killing rates. Notably, Lyz_V_pgrp, Lyz_V_pgp60, and Lyz_V_zlis exhibited highly efficient biofilm hydrolysis, clearing over 90 % of preformed V. parahaemolyticus biofilms within 48 h. Moreover, these lysins significantly reduced bacterial loads in various food samples and environmental sources, with reductions averaging between 1.06 and 1.29 Log CFU/cm2 on surfaces such as stainless-steel and bamboo cutting boards and approximately 0.87 CFU/mL in lake water and sediment samples. These findings underscore the exceptional efficacy and versatile application potential of phage lysins, offering a promising avenue for controlling V. parahaemolyticus contamination in both food and environmental contexts.
Collapse
Affiliation(s)
- Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Eleftherakos K, Polymeni RM, Mikropoulou EV, Vougogiannopoulou K, Georgiadis C, Petrakis EA, Skaltsounis LA, Halabalaki M. A skin secretion metabolome analysis of the Greek Dodecanese Lycian salamanders: Preliminary evidence of dietary alkaloid sequestration in urodeles. PLoS One 2024; 19:e0300278. [PMID: 39208286 PMCID: PMC11361651 DOI: 10.1371/journal.pone.0300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/25/2024] [Indexed: 09/04/2024] Open
Abstract
Lyciasalamandra species, like most amphibians, secrete a wide array of compounds from their granular and mucous skin glands, including the internally synthesized samandarine alkaloids, making their skin a complex organ performing a variety of functions. Lyciasalamandra helverseni and L. luschani basoglui are insular endemics of the Dodecanese islands of SE Greece, bearing distinct isolated populations, with well-documented phylogenetic profiles. Here, we employ a metabolomics approach, utilizing UPLC-ESI-HRMS/MS data of the skin secretions sampled from a number of specimens found in the islands of Karpathos, Kasos and Kastellorizo, in an effort to reveal aspects of their chemistry and diversity across populations. The results indicated statistically significant variation between all taxa examined, based on various secreted compounds. The underlying factors of variation highlighted by the multivariate analysis were differences in samandarine and other alkaloid content as well as in animal size. Metabolite annotation, based on dereplication tools and most importantly HRMS and HRMS/MS spectra, yielded a number of known samandarine alkaloids, reported for the first time in the currently studied Lyciasalamandra species. We also present documentation for novel members of the samandarine alkaloid family, as well as preliminary evidence for a possible dietary alkaloid sequestration. This work can set the basis for further research of this often-neglected endemic species of the Salamandridae, as well as the structural investigation of the samandarine alkaloid group.
Collapse
Affiliation(s)
- Karolos Eleftherakos
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Roza Maria Polymeni
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Georgiadis
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios A. Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Ye Z, Fu L, Li S, Chen Z, Ouyang J, Shang X, Liu Y, Gao L, Wang Y. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Nat Commun 2024; 15:7319. [PMID: 39183339 PMCID: PMC11345435 DOI: 10.1038/s41467-024-51730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Non-direct antimicrobial cationic peptides (NDACPs) are components of the animal innate immune system. But their functions and association with antimicrobial peptides (AMPs) are incompletely understood. Here, we reveal a synergistic interaction between the AMP AW1 and the NDACP AW2, which are co-expressed in the frog Amolops wuyiensis. AW2 enhances the antibacterial activity of AW1 both in vitro and in vivo, while mitigating the development of bacterial resistance and eradicating biofilms. AW1 and AW2 synergistically damage bacterial membranes, facilitating cellular uptake and interaction of AW2 with the intracellular target bacterial genomic DNA. Simultaneously, they trigger the generation of ROS in bacteria, contributing to cell death upon reaching a threshold level. Moreover, we demonstrate that this synergistic antibacterial effect between AMPs and NDACPs is prevalent across diverse animal species. These findings unveil a robust and previously unknown correlation between AMPs and NDACPs as a widespread antibacterial immune defense strategy in animals.
Collapse
Affiliation(s)
- Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuangyu Li
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinci Shang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yanli Liu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
16
|
Bicho GFH, Nunes LOC, Fiametti LO, Argentin MN, Candido VT, Camargo ILBC, Cilli EM, Santos-Filho NA. Synthesis, Characterization, and Study of the Antimicrobial Potential of Dimeric Peptides Derived from the C-Terminal Region of Lys 49 Phospholipase A 2 Homologs. Toxins (Basel) 2024; 16:308. [PMID: 39057948 PMCID: PMC11281518 DOI: 10.3390/toxins16070308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the search for new alternatives to conventional antibiotics to combat bacterial resistance is an urgent task, as many microorganisms threaten human health due to increasing bacterial resistance to traditional medicines. Thus, new molecules such as antimicrobial peptides have emerged as promising alternatives because of their low induction of resistance and broad spectrum of action. In this context, in the past few years, our research group has synthesized and characterized a peptide derived from the C-terminal region of the Lys49 PLA2-like BthTX-I, named p-BthTX-I. After several studies, the peptide (p-BthTX-I)2K was proposed as the molecule with the most considerable biotechnological potential. As such, the present work aimed to evaluate whether the modifications made on the peptide (p-BthTX-I)2K can be applied to other molecules originating from the C-terminal region of PLA2-like Lys49 from snake venoms. The peptides were obtained through the solid-phase peptide synthesis technique, and biochemical and functional characterization was carried out using dichroism techniques, mass spectrometry, antimicrobial activity against ESKAPE strains, hemolytic activity, and permeabilization of lipid vesicles. The antimicrobial activity of the peptides was promising, especially for the peptides (p-AppK)2K and (p-ACL)2K, which demonstrated activity against all strains that were tested, surpassing the model molecule (p-BthTX-I)2K in most cases and maintaining low hemolytic activity. The modifications initially proposed for the (p-BthTX-I)2K peptide were shown to apply to other peptides derived from Lys49 PLA2-like from snake venoms, showing promising results for antimicrobial activity. Future assays comparing the activity of the dimers obtained through this strategy with the monomers of these peptides should be carried out.
Collapse
Affiliation(s)
- Gabriel F. H. Bicho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Letícia O. C. Nunes
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Louise Oliveira Fiametti
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Marcela N. Argentin
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Vitória T. Candido
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Ilana L. B. C. Camargo
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Eduardo M. Cilli
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Norival A. Santos-Filho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| |
Collapse
|
17
|
Antunes B, Zanchi C, Johnston PR, Maron B, Witzany C, Regoes RR, Hayouka Z, Rolff J. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is severely constrained by random peptide mixtures. PLoS Biol 2024; 22:e3002692. [PMID: 38954678 PMCID: PMC11218975 DOI: 10.1371/journal.pbio.3002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.
Collapse
Affiliation(s)
- Bernardo Antunes
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
| | - Paul R. Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
- University of St. Andrews, School of Medicine, North Haugh, St Andrews, Fife, United Kingdom
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
18
|
Dong J, Chen F, Yao Y, Wu C, Ye S, Ma Z, Yuan H, Shao D, Wang L, Wang Y. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials 2024; 305:122465. [PMID: 38190768 DOI: 10.1016/j.biomaterials.2023.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Bacterial infection and delayed osseointegration are two major challenges for titanium-based orthopedic implants. In the present study, we developed a functionalized titanium implant Ti-M@A by immobilizing antimicrobial peptide (AMP) HHC36-loaded diselenide-bridged mesoporous silica nanoparticles (MSNs) on the surface, which showed good long-term and mechanical stability. The functionalized implants can realize the sustained release of AMP over 30 days and exhibit over 95.71 % antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and MRSA), which arose from the capability to destroy the bacterial membranes. Moreover, Ti-M@A can efficiently inhibit the biofilm formation of the bacteria. The functionalized implants can also significantly promote the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) because of the Se in MSNs. Notably, it can trigger macrophages toward M2 polarization in vitro by scavenging ROS in LPS-activated macrophages. Consequently, in vivo assays with infection and non-infection bone defect models demonstrated that such bioactive implants can not only kill over 98.82 % of S. aureus, but also promote osseointegration. Hence, this study provides a combined strategy to resolve bacterial infection and delayed osseointegration for titanium implants.
Collapse
Affiliation(s)
- Jiyu Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuying Yao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Congcong Wu
- Jinan Center for Disease Control and Prevention, Jinan 250001, China
| | - Silin Ye
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Haipeng Yuan
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
19
|
Feizi H, Alizadeh M, Azimi H, Khodadadi E, Kamounah FS, Ganbarov K, Ghotaslou R, Rezaee MA, Kafil HS. Induction of proteome changes involved in the cloning of mcr-1 and mcr-2 genes in Escherichia coli DH5-α strain to evaluate colistin resistance. J Glob Antimicrob Resist 2024; 36:151-159. [PMID: 38154746 DOI: 10.1016/j.jgar.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES Plasmid genes, termed mobile colistin resistance-1 (mcr-1) and mobile colistin resistance-2 (mcr-2), are associated with resistance to colistin in Escherichia coli (E. coli). These mcr genes result in a range of protein modifications contributing to colistin resistance. This study aims to discern the proteomic characteristics of E. coli-carrying mcr-1 and mcr-2 genes. Furthermore, it evaluates the expression levels of various proteins under different conditions (with and without colistin). METHODS Plasmid extraction was performed using an alkaline lysis-based plasmid extraction kit, whereas polymerase chain reaction was used to detect the presence of mcr-1 and mcr-2 plasmids. The E. coli DH5α strain served as the competent cell for accepting and transforming mcr-1 and mcr-2 plasmids. We assessed proteomic alterations in the E. coli DH5α strain both with and without colistin in the growth medium. Proteomic data were analysed using mass spectrometry. RESULTS The findings revealed significant protein changes in the E. coli DH5α strain following cloning of mcr-1 and mcr-2 plasmids. Of the 20 proteins in the DH5α strain, expression in 8 was suppressed following transformation. In the presence of colistin in the culture medium, 39 new proteins were expressed following transformation with mcr-1 and mcr-2 plasmids. The proteins with altered expression play various roles. CONCLUSION The results of this study highlight numerous protein alterations in E. coli resulting from mcr-1 and mcr-2-mediated resistance to colistin. This understanding can shed light on the resistance mechanism. Additionally, the proteomic variations observed in the presence and absence of colistin might indicate potential adverse effects of indiscriminate antibiotic exposure on treatment efficacy and heightened pathogenicity of microorganisms.
Collapse
Affiliation(s)
- Hadi Feizi
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Alizadeh
- Pharmaceutical Nanotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Azimi
- Department of Microbiology, Islamic Azad University of Zanjan, Zanjan, Iran
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Reza Ghotaslou
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Purohit K, Reddy N, Sunna A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int J Mol Sci 2024; 25:1391. [PMID: 38338676 PMCID: PMC10855437 DOI: 10.3390/ijms25031391] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Bioactive peptides, specific protein fragments with positive health effects, are gaining traction in drug development for advantages like enhanced penetration, low toxicity, and rapid clearance. This comprehensive review navigates the intricate landscape of peptide science, covering discovery to functional characterization. Beginning with a peptidomic exploration of natural sources, the review emphasizes the search for novel peptides. Extraction approaches, including enzymatic hydrolysis, microbial fermentation, and specialized methods for disulfide-linked peptides, are extensively covered. Mass spectrometric analysis techniques for data acquisition and identification, such as liquid chromatography, capillary electrophoresis, untargeted peptide analysis, and bioinformatics, are thoroughly outlined. The exploration of peptide bioactivity incorporates various methodologies, from in vitro assays to in silico techniques, including advanced approaches like phage display and cell-based assays. The review also discusses the structure-activity relationship in the context of antimicrobial peptides (AMPs), ACE-inhibitory peptides (ACEs), and antioxidative peptides (AOPs). Concluding with key findings and future research directions, this interdisciplinary review serves as a comprehensive reference, offering a holistic understanding of peptides and their potential therapeutic applications.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
| | - Narsimha Reddy
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- School of Science, Parramatta Campus, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
21
|
Gong Y, Gao J, Li M, Zhang XL, Liao YH, Bao YB. URP20 improves corneal injury caused by alkali burns combined with pathogenic bacterial infection in rats. Exp Eye Res 2024; 238:109739. [PMID: 38042515 DOI: 10.1016/j.exer.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 μM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.
Collapse
Affiliation(s)
- Yan Gong
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo 315042, China.
| | - Jian Gao
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo 315042, China
| | - Meng Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiao-Lin Zhang
- Ningbo Aier Guangming Eye Hospital, Ningbo 315016, China
| | - Yan-Hong Liao
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo 315042, China
| | - Yong-Bo Bao
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
22
|
Gao JH, Zhao JL, Yao XL, Tola T, Zheng J, Xue WB, Wang DW, Xing Y. Identification of antimicrobial peptide genes from transcriptomes in Mandarin fish (Siniperca chuatsi) and their response to infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109247. [PMID: 38006905 DOI: 10.1016/j.fsi.2023.109247] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin β12, hepcidin, leap 2, β-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.
Collapse
Affiliation(s)
- Jin-Hua Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jin-Liang Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Xiao-Li Yao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Temesgen Tola
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jia Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Wen-Bo Xue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Da-Wei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Ying Xing
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
23
|
Ibrahim MK, Haria A, Mehta NV, Degani MS. Antimicrobial potential of quaternary phosphonium salt compounds: a review. Future Med Chem 2023; 15:2113-2141. [PMID: 37929337 DOI: 10.4155/fmc-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.
Collapse
Affiliation(s)
- Mahin K Ibrahim
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Namrashee V Mehta
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
24
|
Kannoth S, Ali N, Prasanth GK, Arvind K, Mohany M, Hembrom PS, Sadanandan S, Vasu DA, Grace T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci Rep 2023; 13:18728. [PMID: 37907616 PMCID: PMC10618271 DOI: 10.1038/s41598-023-45875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Multidrug resistance has become a global health problem associated with high morbidity and mortality. Antimicrobial peptides have been acknowledged as potential leads for prospective anti-infectives. Owing to their scavenging lifestyle, Corvus splendens is thought to have developed robust immunity to pathogens found in their diet, implying that they have evolved mechanisms to resist infection. In the current study, the transcriptome of C. splendens was sequenced, and de novo assembled to identify the presence of antimicrobial peptide genes. 72.09 million high-quality clean reads were obtained which were then de novo assembled into 3,43,503 transcripts and 74,958 unigenes. About 37,559 unigenes were successfully annotated using SwissProt, Pfam, GO, and KEGG databases. A search against APD3, CAMPR3 and LAMP databases identified 63 AMP candidates belonging to more than 20 diverse families and functional classes. mRNA of AvBD-2, AvBD-13 and CATH-2 were found to be differentially expressed between the three tested crows as well as among the tissues. We also characterized Corvus Cathelicidin 2 (CATH-2) to gain knowledge of its antimicrobial mechanisms. The CD spectroscopy of synthesized mature Corvus CATH-2 peptide displayed an amphipathic α-helical structure. Though the synthetic CATH-2 caused hemolysis of human RBC, it also exhibited antimicrobial activity against E. coli, S. aureus, and B. cereus. Docking simulation results revealed that this peptide could bind to the LPS binding site of MD-2, which may prevent LPS from entering the MD-2 binding pocket, and trigger TLR4 signaling pathway. The Corvus CATH-2 characterized in this study could aid in the development of novel therapeutics.
Collapse
Affiliation(s)
- Shalini Kannoth
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ganesh K Prasanth
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Kumar Arvind
- Neurogenetics Branch, National Institute of Neurological Disorder and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Shemmy Sadanandan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
25
|
Dabbiru VAS, Müller L, Schönborn L, Greinacher A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)-Insights from Clinical Cases, In Vitro Studies and Murine Models. J Clin Med 2023; 12:6126. [PMID: 37834770 PMCID: PMC10573542 DOI: 10.3390/jcm12196126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
An effective worldwide vaccination campaign started and is still being carried out in the face of the coronavirus disease 2019 (COVID-19) pandemic. While vaccines are great tools to confront the pandemic, predominantly adenoviral vector-based vaccines can cause a rare severe adverse effect, termed vaccine-induced immune thrombocytopenia and thrombosis (VITT), in about 1 in 100,000 vaccinated individuals. VITT is diagnosed 5-30 days post-vaccination and clinically characterized by thrombocytopenia, strongly elevated D-dimer levels, platelet-activating anti-platelet factor 4 (PF4) antibodies and thrombosis, especially at atypical sites such as the cerebral venous sinus and/or splanchnic veins. There are striking similarities between heparin-induced thrombocytopenia (HIT) and VITT. Both are caused by anti-PF4 antibodies, causing platelet and leukocyte activation which results in massive thrombo-inflammation. However, it is still to be determined why PF4 becomes immunogenic in VITT and which constituent of the vaccine triggers the immune response. As VITT-like syndromes are increasingly reported in patients shortly after viral infections, direct virus-PF4 interactions might be most relevant. Here we summarize the current information and hypotheses on the pathogenesis of VITT and address in vivo models, especially murine models for further studies on VITT.
Collapse
Affiliation(s)
| | | | | | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (V.A.S.D.); (L.M.); (L.S.)
| |
Collapse
|
26
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
27
|
Hilpert K, Munshi T, López-Pérez PM, Sequeira-Garcia J, Hofmann S, Bull TJ. Discovery of Antimicrobial Peptides That Can Accelerate Culture Diagnostics of Slow-Growing Mycobacteria Including Mycobacterium tuberculosis. Microorganisms 2023; 11:2225. [PMID: 37764069 PMCID: PMC10536189 DOI: 10.3390/microorganisms11092225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial peptides (AMPs) can directly kill Gram-positive bacteria, Gram-negative bacteria, mycobacteria, fungi, enveloped viruses, and parasites. At sublethal concentrations, some AMPs and also conventional antibiotics can stimulate bacterial response increasing their resilience, also called the hormetic response. This includes stimulation of growth, mobility, and biofilm production. Here, we describe the discovery of AMPs that stimulate the growth of certain mycobacteria. Peptide 14 showed a growth stimulating effect on Mycobacteria tuberculosis (MTB), M. bovis, M. avium subsp. paratuberculosis (MAP), M. marinum, M. avium-intracellulare, M. celatum, and M. abscessus. The effect was more pronounced at low bacterial inocula. The peptides induce a faster transition from the lag phase to the log phase and keep the bacteria longer in the log phase before entering stationary phase when compared to nontreated controls. In some cases, an increase in the division rate was observed. An initial screen using MAP and a collection of 75 peptides revealed 13 peptides with a hormetic effect. For MTB, a collection of 25 artificial peptides were screened and 13 were found to reduce the time to positivity (TTP) by at least 5%, improving growth. A screen of 43 naturally occurring peptides, 11 fragments of naturally occurring peptides and 5 designed peptides, all taken from the database APD3, identified a further 44 peptides that also lowered TTP by at least 5%. Lasioglossin LL-III (Bee) and Ranacyclin E (Frog) were the most active natural peptides, and the human cathelicidin LL37 fragment GF-17 and a porcine cathelicidin protegrin-1 fragment were the most active fragments of naturally occurring peptides. Peptide 14 showed growth-stimulating activity between 10 ng/mL and 10 µg/mL, whereas the stability-optimised Peptide 14D had a narrow activity range of 0.1-1 µg/mL. Peptides identified in this study are currently in commercial use to improve recovery and culture for the diagnostics of mycobacteria in humans and animals.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| | - Tulika Munshi
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| | | | | | - Sven Hofmann
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| | - Tim J. Bull
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (T.J.B.)
| |
Collapse
|
28
|
Çalışkan E, Kaplan A, Şekerci G, Çapan İ, Tekin S, Erkan S, Koran K, Sandal S, Görgülü AO. Synthesis, docking studies, in vitro cytotoxicity evaluation and DNA damage mechanism of new tyrosine-based tripeptides. J Biochem Mol Toxicol 2023; 37:e23388. [PMID: 37243846 DOI: 10.1002/jbt.23388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Peptides are one of the leading groups of compounds that have been the subject of a great deal of biological research and still continue to attract researchers' attention. In this study, a series of tripeptides based on tyrosine amino acids were synthesized by the triazine method. The cytotoxicity properties of all compounds against human cancer cell lines (MCF-7), ovarian (A2780), prostate (PC-3), and colon cancer cell lines (Caco-2) were determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay method, and % cell viability and logIC50 values of the compounds were calculated. Significant decreases in cell viability were observed in all cells (p < 0.05). The comet assay method was used to understand that the compounds that showed a significant decrease in cell viability had this effect through DNA damage. Most of the compounds exhibited cytotoxicity by DNA damage mechanism. Besides, their interactions between investigated molecule groups with PDB ID: 3VHE, 3C0R, 2ZCL, and 2HQ6 target proteins corresponding to cancer cell lines, respectively, were investigated by docking studies. Finally, molecules with high biological activity against biological receptors were determined by ADME analysis.
Collapse
Affiliation(s)
- Eray Çalışkan
- Department of Chemistry, Faculty of Science and Arts, Bingol University, Bingöl, Türkiye
| | - Alpaslan Kaplan
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | | | - İrfan Çapan
- Department of Material and Material Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Suat Tekin
- Physiology Department, Inonu University, Malatya, Türkiye
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Türkiye
| | - Kenan Koran
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | | | - Ahmet O Görgülü
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| |
Collapse
|
29
|
Naiel MA, Ghazanfar S, Negm SS, Shukry M, Abdel-Latif HM. Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture – A mini-review. ANNALS OF ANIMAL SCIENCE 2023; 23:691-701. [DOI: 10.2478/aoas-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The use of antibiotics for the control of infections has not only been banned by FDA for use in food-producing animals, but also several countries have prohibited their use in aquaculture because of several reasons such as the occurrence of antibiotic-tolerant microorganisms, accumulation of antibiotic residues in fish and shrimp flesh, and aquatic environmental effluence concerns. These issues have led researchers and aquaculture scientists to conduct several studies to find antibiotic alternatives. Numerous substitutes have been evaluated, such as probiotics, synbiotics, prebiotics, postbiotics, phytogenics, essential oils, and several others. Results show that these supplements demonstrate proven efficacy in enhancing immune responses, reducing mortalities resulting from experimental infections, and reducing antibiotic usage in medicated aquafeed. Nonetheless, using antimicrobial peptides (AMPs) to control fish diseases and as antibiotic alternatives is a promising and interesting research topic. AMPs are a vital class of small peptides that could stimulate the innate immune system against challenging pathogens and also possess significant potent defensive responses against a variety of infectious and noninfectious pathogenic agents, including bacteria, parasites, fungi, and viruses. Regarding their source origin, AMPs can be classified into six main types: mammalian-, amphibian-, insect-, aquatic-, plant-, and microorganism-derived AMPs. On account of their unique structure, they can display an essential function in therapeutic strategies against infectious diseases affecting fish and shrimp. Reports showed several kinds of AMPs had a wide spectrum of antimicrobial properties. These effects are besides their prominent immunostimulatory functions. Thus, they may be considered a functional alternative to antibiotics in aquaculture. This article provides information on the current knowledge about the modes of action, sources, classification, functions, and potential applications for the development of aquatic animal health. The information included in this context will be valuable to enhance the sustainability of aquaculture.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Department of Animal Production, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre , Park Road, Islamabad 45500 , Pakistan
| | - Samar S. Negm
- Fish Biology and Ecology Department , Central Lab for Aquaculture Research (CLAR), Abassa, Agriculture Research Center , Giza , Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine , Kafrelsheikh University , Egypt
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine , Alexandria University , Alexandria , Egypt
| |
Collapse
|
30
|
Dong X, Shan H, Wang S, Jiang Z, Wang S, Qin Z. High expression of antimicrobial peptides cathelicidin-BF in Pichia pastoris and verification of its activity. Front Microbiol 2023; 14:1153365. [PMID: 37362941 PMCID: PMC10288212 DOI: 10.3389/fmicb.2023.1153365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antibacterial peptides are endogenous polypeptides produced by multicellular organisms to protect the host against pathogenic microbes, they show broad spectrum antimicrobial activities against various microorganisms and possess low propensity for developing resistance. The purpose of this study is to develop recombinant antibacterial peptide cathelicidin-BF by genetic engineering and protein engineering technology, and study its antibacterial activity in vitro and in vivo, so as to provide reference for the production and application of recombinant antibacterial peptide cathelicidin-BF. In this study, on account of Pichia pastoris eukaryotic expression system, we expressed and prepared antibacterial peptide cathelicidin-BF. Then, the minimum inhibitory concentration of antibacterial peptide cathelicidin-BF and the comparison with the antibacterial activity of antibiotics were determined through the antibacterial experiment in vitro. Chickens as infection model were used to verify the antibacterial peptide activity in vivo. The results show that the bacteriostatic ability of antibacterial peptide cathelicidin-BF is similar to that of antibiotics in certain concentration, and can reach the treatment level of antibiotics. Although the mode of administration of antibacterial peptide is still limited, this study can provide reference for the future research of antibacterial peptide.
Collapse
Affiliation(s)
- Xufeng Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhengjun Jiang
- Shandong Hwatson Biochem Co. Ltd, Weifang, Shandong, China
| | - Shaojuan Wang
- Shandong Hwatson Biochem Co. Ltd, Weifang, Shandong, China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
31
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
32
|
Sani MA, Le Brun AP, Rajput S, Attard T, Separovic F. The membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent. Biophys J 2023; 122:1058-1067. [PMID: 36680343 PMCID: PMC10111263 DOI: 10.1016/j.bpj.2023.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Antimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.1 (Cae-1), from Australian tree frogs, has three histidine residues, and thus we studied the pH dependence of its interactions with model cell membranes. Using NMR spectroscopy and molecular dynamics simulations, we showed that Cae-1 induced greater perturbation of the lipid dynamics and water penetrations within the membrane interior in an acidic environment compared with physiological conditions. Using 31P solid-state NMR, the packing, chemical environment, and dynamics of the lipid headgroup were monitored. 2H solid-state NMR showed that Cae-1 ordered the acyl chains of the hydrophobic core of the bilayer. These results supported the molecular dynamics data, which showed that Cae-1 was mainly inserted within the lipid bilayer for both neutral and negatively charged membranes, with the charged residues pulling the water and phosphate groups inward. This could be an early step in the mechanism of membrane disruption by histidine-rich antimicrobial peptides and indicated that Cae-1 acts via a transmembrane mechanism in bilayers of neutral and anionic phospholipid membranes, especially in acidic conditions.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, Australia
| | - Sunnia Rajput
- Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Troy Attard
- Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Bourhia M, Alyousef AA, Doumane G, Saghrouchni H, Giesy JP, Ouahmane L, Gueddari FE, Al-Sheikh YA, Aboul-Soud MAM. Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens. Molecules 2023; 28:molecules28062839. [PMID: 36985810 PMCID: PMC10056193 DOI: 10.3390/molecules28062839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Withania adpressa Coss. ex is a plant used in traditional medications. Antioxidant, antibacterial, and antifungal properties of the essential oil from leaves of Withania adpressa Coss ex. (EOW) were investigated. EOW was extracted using a Clevenger apparatus, and its volatile compounds were characterized by GC-MS. Antioxidant potency was determined using DPPH, FRAP, and TAC assays. Antibacterial effects were determined vs. Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Streptococcus pneumonia; while its antifungal efficacy was determined vs. Candida albicans, Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum using the disc diffusion and minimum inhibitory concentration bioassays. A chromatographic analysis showed that EOW contained eight phytochemical compounds constituting 99.14% of the total mass of oil. Caryophyllene (24.74%), Longifolene (21.37%), δ-Cadinene (19.08%), and Carene (14.86%) were predominant compounds in EOW. The concentrations required to inhibit 50% of free radical (IC50) values of antioxidant activities of EOW were 0.031 ± 0.006 mg/mL (DPPH), 0.011 ± 0.003 mg/mL (FRAP), and 846.25 ± 1.07 mg AAE/g (TAC). Inhibition zone diameters of EOW vs. bacteria were 18.11 ± 0.5 mm (E. coli), 17.10 ± 0.42 mm (S. aureus), 12.13 ± 0.31 mm (K. pneumoniae), and 11.09 ± 0.47 mm (S. pneumoniae), while MIC values were 51 ± 3, 47 ± 5, 46 ± 3 and 31 ± 1 µg/mL, respectively. Inhibition zone diameters of EOW vs. fungi were 31.32 ± 1.32, 29.00 ± 1.5, 27.63 ± 2.10, and 24.51 ± s1.07 mm for A. flavus, C. albicans, F. oxysporum, and A. niger, respectively. MIC values were 8.41 ± 0.40, 28.04 ± 0.26, 9.05 ± 0.76, and 22.26 ± 0.55 µg/mL, respectively. Importantly, the highest dose of EOW (1 mg/mL) showed negligible (~5%) cytotoxicity against MCF-12, a normal human epithelial cell line derived from the mammary gland, thus underscoring its wide safety and selectivity against tested microbes. To sum it up, EOW has exhibited promising antioxidant and antimicrobial properties, which suggests potential to abrogate antibiotic resistance.
Collapse
Affiliation(s)
- Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Abdullah A Alyousef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Ghizlane Doumane
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, BP 242, Kenitra 14000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 1380 Adana, Turkey
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Fatiha El Gueddari
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Yazeed A Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
34
|
Mehranfar A, Khavani M, Mofrad MRK. Adsorption Process of Various Antimicrobial Peptides on Different Surfaces of Cellulose. ACS APPLIED BIO MATERIALS 2023; 6:1041-1053. [PMID: 36935640 DOI: 10.1021/acsabm.2c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Current antimicrobial challenges in hospitals, pharmaceutical production units, and food packaging have motivated the development of antimicrobial agents, among them the antimicrobial compounds based on cellulose and peptides. Herein, we develop molecular dynamics (MD) models to dissect and characterize the adsorption process of antimicrobial peptides (AMPs) such as protegrin 1, magainin 2, and cyclic indolicidin on various surfaces of cellulose including [-1-10], [1-10], [-100], [100], [-110], and [110]. Our results suggest that the magainin 2 antimicrobial peptide loses most of its initial helix form, spreads on the cellulose surface, and makes the most rigid structure with [110] surface. The cyclic indolicidin peptide has the lowest affinity to adsorb on the cellulose surfaces, and the protegrin 1 peptide successfully adsorbs on all the proposed cellulose surfaces. Our MD simulations confirmed that cellulose can improve the corresponding peptides' structural stability and change their secondary structures during adsorption. The [-1-10] and [100] surfaces of cellulose show considerable affinity against the AMPs, exhibiting greater interactions with and adsorption to the peptides. Our data imply that the stronger adsorptions are caused by a set of H-bonds, van der Waals, and electrostatic interactions, where van der Waals interactions play a prominent role in the stability of the AMP-cellulose structures. Our energy analysis results suggest that glutamic acid and arginine amino acids have key roles in the stability of AMPs on cellulose surfaces due largely to stronger interactions with the cellulose surfaces as compared with other residues. Our results can provide useful insight at the molecular level that can help design better antimicrobial biomaterials based on cellulose.
Collapse
Affiliation(s)
- Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Calderón-Rivera N, Múnera-Jaramillo J, Jaramillo-Berrio S, Suesca E, Manrique-Moreno M, Leidy C. Cardiolipin Strongly Inhibits the Leakage Activity of the Short Antimicrobial Peptide ATRA-1 in Comparison to LL-37, in Model Membranes Mimicking the Lipid Composition of Staphylococcus aureus. MEMBRANES 2023; 13:304. [PMID: 36984691 PMCID: PMC10051595 DOI: 10.3390/membranes13030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cardiolipin is one of the main phospholipid components of Staphylococcus aureus membranes. This lipid is found at varying concentrations in the bilayer, depending on the growth stage of the bacteria, and as a response to environmental stress. Cardiolipin is an anionic phospholipid with four acyl chains, which modulates the bending properties of the membrane due to its inverted conical shape. It has been shown to inhibit the pore forming activity of several antimicrobial peptides, in general doubling the peptide concentration needed to induce leakage. Here we find that the short snake-derived antimicrobial peptide ATRA-1 is inhibited by several orders of magnitude in the presence of cardiolipin in saturated membranes (DMPG) compared to the human cathelicidin LL-37, which is only inhibited two-fold in its leakage-inducing concentration. The ATRA-1 is too short to span the membrane and its leakage activity is likely related to detergent-like alterations of bilayer structure. Fluorescence spectroscopy shows only a minor effect on ATRA-1 binding to DMPG membranes due to the presence of cardiolipin. However, FTIR spectroscopy shows that the acyl chain structure of DMPG membranes, containing cardiolipin, become more organized in the presence of ATRA-1, as reflected by an increase in the gel to liquid-crystalline phase transition temperature. Instead, a depression in the melting temperature is induced by ATRA-1 in DMPG in the absence of cardiolipin. In comparison, LL-37 induces a depression of the main phase transition of DMPG even in the presence of cardiolipin. These data suggest that cardiolipin inhibits the penetration of ATRA-1 into the membrane core, impeding its capacity to disrupt lipid packing.
Collapse
Affiliation(s)
- Nathalia Calderón-Rivera
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Jessica Múnera-Jaramillo
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin 050010, Antioquia, Colombia
| | - Sara Jaramillo-Berrio
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin 050010, Antioquia, Colombia
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| |
Collapse
|
36
|
Lin CH, Shyu CL, Wu ZY, Wang CM, Chiou SH, Chen JY, Tseng SY, Lin TE, Yuan YP, Ho SP, Tung KC, Mao FC, Lee HJ, Tu WC. Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3-11 Amphipathic Helices to Favor Membrane Interaction. MEMBRANES 2023; 13:251. [PMID: 36837754 PMCID: PMC9961542 DOI: 10.3390/membranes13020251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We investigated the antimicrobial activity and membrane disruption modes of the antimicrobial peptide mastoparan-AF against hemolytic Escherichia coli O157:H7. Based on the physicochemical properties, mastoparan-AF may potentially adopt a 3-11 amphipathic helix-type structure, with five to seven nonpolar or hydrophobic amino acid residues forming the hydrophobic face. E. coli O157:H7 and two diarrheagenic E. coli veterinary clinical isolates, which are highly resistant to multiple antibiotics, are sensitive to mastoparan-AF, with minimum inhibitory and bactericidal concentrations (MIC and MBC) ranging from 16 to 32 μg mL-1 for E. coli O157:H7 and four to eight μg mL-1 for the latter two isolates. Mastoparan-AF treatment, which correlates proportionally with membrane permeabilization of the bacteria, may lead to abnormal dents, large perforations or full opening at apical ends (hollow tubes), vesicle budding, and membrane corrugation and invagination forming irregular pits or pores on E. coli O157:H7 surface. In addition, mRNAs of prepromastoparan-AF and prepromastoparan-B share a 5'-poly(A) leader sequence at the 5'-UTR known for the advantage in cap-independent translation. This is the first report about the 3-11 amphipathic helix structure of mastoparans to facilitate membrane interaction. Mastoparan-AF could potentially be employed to combat multiple antibiotic-resistant hemolytic E. coli O157:H7 and other pathogenic E. coli.
Collapse
Affiliation(s)
- Chun-Hsien Lin
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Lin Shyu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zong-Yen Wu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Yeu Chen
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ying Tseng
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Er Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Po Yuan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Peng Ho
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Frank Chiahung Mao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Kaohsiung 801301, Taiwan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
| |
Collapse
|
37
|
Wang F, Li C, Wang H, Yu L, Zhang F, Linhardt RJ. Amphiphilic O(Phe-r-Glu) oligopeptides randomly polymerized via papain exhibiting a pH-insensitive emulsification property. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
38
|
Li M, Xin D, Gao J, Yi Q, Yuan J, Bao Y, Gong Y. The protective effect of URP20 on ocular Staphylococcus aureus and Escherichia coli infection in rats. BMC Ophthalmol 2022; 22:517. [PMID: 36585631 PMCID: PMC9801630 DOI: 10.1186/s12886-022-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Infectious keratitis, a medical emergency with acute and rapid disease progression may lead to severe visual impairment and even blindness. Herein, an antimicrobial polypeptide from Crassostrea hongkongensis, named URP20, was evaluated for its therapeutic efficacy against keratitis caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection in rats, respectively. METHODS A needle was used to scratch the surface of the eyeballs of rats and infect them with S. aureus and E.coli to construct a keratitis model. The two models were treated by giving 100 μL 100 μM URP20 drops. Positive drugs for S. aureus and E. coli infection were cefazolin eye drops and tobramycin eye drops, respectively. For the curative effect, the formation of blood vessels in the fundus was observed by a slit lamp (the third day). At the end of the experiment, the condition of the injured eye was photographed by cobalt blue light using 5 μL of 1% sodium fluorescein. The pathological damage to corneal tissues was assessed using hematoxylin-eosin staining, and the expression level of vascular endothelial growth factor (VEGF) was detected by immunohistochemistry. RESULTS URP20 alleviated the symptoms of corneal neovascularization as observed by slit lamp and cobalt blue lamp. The activity of S. aureus and E.coli is inhibited by URP20 to protect corneal epithelial cells and reduce corneal stromal bacterial invasion. It also prevented corneal thickening and inhibited neovascularization by reducing VEGF expression at the cornea. CONCLUSION URP20 can effectively inhibit keratitis caused by E.coli as well as S. aureus in rats, as reflected by the inhibition of corneal neovascularization and the reduction in bacterial damage to the cornea.
Collapse
Affiliation(s)
- Meng Li
- grid.203507.30000 0000 8950 5267School of Medicine, Ningbo University, Ningbo, 315042 China ,Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Danli Xin
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Jian Gao
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Quanyong Yi
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Jianshu Yuan
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Yongbo Bao
- grid.413076.70000 0004 1760 3510College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Yan Gong
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China ,grid.203507.30000 0000 8950 5267Department of Ophtalmology, Medical College of Ningbo University, Ningbo Eye Hospital, No. 599, Beiming Cheng Road, Yinzhou District, Ningbo, 315042 China
| |
Collapse
|
39
|
Okella H, Okello E, Mtewa AG, Ikiriza H, Kaggwa B, Aber J, Ndekezi C, Nkamwesiga J, Ajayi CO, Mugeni IM, Ssentamu G, Ochwo S, Odongo S, Tolo CU, Kato CD, Engeu PO. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front Mol Biosci 2022; 9:1039286. [PMID: 36567944 PMCID: PMC9772024 DOI: 10.3389/fmolb.2022.1039286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Amidst rising cases of antimicrobial resistance, antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics. Even so, poor pharmacokinetic profiles of certain AMPs impede their utility necessitating, a careful assessment of potential AMPs' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties during novel lead exploration. Accordingly, the present study utilized ADMET scores to profile seven previously isolated African catfish antimicrobial peptides (ACAPs). After profiling, the peptides were docked against approved bacterial protein targets to gain insight into their possible mode of action. Promising ACAPs were then chemically synthesized, and their antibacterial activity was validated in vitro utilizing the broth dilution method. All seven examined antimicrobial peptides passed the ADMET screening, with two (ACAP-IV and ACAP-V) exhibiting the best ADMET profile scores. The ACAP-V had a higher average binding energy (-8.47 kcal/mol) and average global energy (-70.78 kcal/mol) compared to ACAP-IV (-7.60 kcal/mol and -57.53 kcal/mol), with the potential to penetrate and disrupt bacterial cell membrane (PDB Id: 2w6d). Conversely, ACAP-IV peptide had higher antibacterial activity against E. coli and S. aureus (Minimum Inhibitory Concentration, 520.7 ± 104.3 μg/ml and 1666.7 ± 416.7 μg/ml, respectively) compared to ACAP-V. Collectively, the two antimicrobial peptides (ACAP-IV and ACAP-V) are potential novel leads for the food, cosmetic and pharmaceutical industries. Future research is recommended to optimize the expression of such peptides in biological systems for extended evaluation.
Collapse
Affiliation(s)
- Hedmon Okella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Andrew Glory Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Hilda Ikiriza
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Bruhan Kaggwa
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jacqueline Aber
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Gulu University, Gulu, Uganda
| | | | - Joseph Nkamwesiga
- International Livestock Research Institute, Nairobi, Kenya
- Institut für Virologie, Freie Universität, Berlin, Germany
| | - Clement Olusoji Ajayi
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Mulongo Mugeni
- Medical Entomology Laboratory, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Geofrey Ssentamu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sylvester Ochwo
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, United States
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Casim Umba Tolo
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Patrick Ogwang Engeu
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
40
|
Zhang X, Li S, Luo H, He S, Yang H, Li L, Tian T, Han Q, Ye J, Huang C, Liu A, Jiang Y. Identification of heptapeptides targeting a lethal bacterial strain in septic mice through an integrative approach. Signal Transduct Target Ther 2022; 7:245. [PMID: 35871689 PMCID: PMC9309159 DOI: 10.1038/s41392-022-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
Effectively killing pathogenic bacteria is key for the treatment of sepsis. Although various anti-infective drugs have been used for the treatment of sepsis, the therapeutic effect is largely limited by the lack of a specific bacterium-targeting delivery system. This study aimed to develop antibacterial peptides that specifically target pathogenic bacteria for the treatment of sepsis. The lethal bacterial strain Escherichia coli MSI001 was isolated from mice of a cecal ligation and puncture (CLP) model and was used as a target to screen bacterial binding heptapeptides through an integrative bioinformatics approach based on phage display technology and high-throughput sequencing (HTS). Heptapeptides binding to E. coli MSI001 with high affinity were acquired after normalization by the heptapeptide frequency of the library. A representative heptapeptide VTKLGSL (VTK) was selected for fusion with the antibacterial peptide LL-37 to construct the specific-targeting antibacterial peptide VTK-LL37. We found that, in comparison with LL37, VTK-LL37 showed prominent bacteriostatic activity and an inhibitive effect on biofilm formation in vitro. In vivo experiments demonstrated that VTK-LL37 significantly inhibited bacterial growth, reduced HMGB1 expression, alleviated lesions of vital organs and improved the survival of mice subjected to CLP modeling. Furthermore, membrane DEGP and DEGQ were identified as VTK-binding proteins by proteomic methods. This study provides a novel strategy for targeted pathogen killing, which is helpful for the treatment of sepsis in the era of precise medicine.
Collapse
|
41
|
Naiel MAE, Abd El-Hack ME, Patra AK. The Role of Antimicrobial Peptides (AMPs) in Aquaculture Farming. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:215-234. [DOI: 10.2174/9789815049015122010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the vital constituents that stimulate the
innate immune defense system against pathogens and perform several biological
activities, which provide the first defensive line against infectious diseases. Owing to
their unique structure, they can be utilized as a therapeutic strategy for infectious
diseases in fishes. Several kinds of AMPs are reported in fishes with broad-spectrum
antimicrobial properties. Besides, the bacterial cells cannot develop resistance strains
against these cationic compounds with low molecular weight. Thus, AMPs may be
considered an alternative to antibiotics to prevent or control infectious diseases in
aquaculture. It is essential to provide sufficient knowledge about the mode of action of
AMPs against fish pathogenic agents and their future applications.
Collapse
Affiliation(s)
| | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| |
Collapse
|
42
|
Wang J, Wilson AE, Su B, Dunham RA. Functionality of dietary antimicrobial peptides in aquatic animal health: Multiple meta-analyses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:200-214. [PMID: 36712402 PMCID: PMC9860427 DOI: 10.1016/j.aninu.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/09/2023]
Abstract
Effects of antimicrobial peptides (AMP) added to diets on aquatic animal health and body function are influenced by multiple factors such as animal species, initial body weight, the dosage of AMP and feeding duration. However, there is limited knowledge on the relationship between these factors and the body function of aquatic animals. Here, we aimed to perform multiple meta-analyses to investigate the effects of dietary AMP on growth performance (feed conversion ratio [FCR], specific growth rate [SGR]), enzyme activity (superoxide dismutase activity [SOD], lysozyme activity [LSA]), disease resistance (cumulative survival rate [CSR], the expression of immune-related genes [GENE]) and the abundance of gut microbiota (MICRO) from a pool of empirical studies. Additionally, the dose-effect model was applied to determine the optimal AMP dose, initial body weight and feeding duration to maximize body function. To conduct the meta-analyses, we included 34 publications that estimated 705 effect sizes across 21 fish, 2 shrimp and 2 shellfish species. The results confirmed that the inclusion of AMP in the diet can significantly improve SGR, SOD, LSA, CSR and GENE and decrease FCR for aquatic animals. Interestingly, our findings implied a slight positive effect of AMP on MICRO albeit with a limited number of studies available on fish gut microbial communities. Although no significant linear or quadratic relationship was predicted by meta-regression, the dose-effect indicated that the optimal AMP doses for FCR, SGR, SOD and LSA were 707.5, 750.0, 1,050.0 and 937.5 mg/kg, respectively. Taken together, fish with an initial body weight of 30 g could be fed with a dose of 600 to 800 mg/kg for 2 mo when AMP-supplemented diets were applied in aquaculture, which can effectively improve body function and health while lowering aquafeed costs. In addition, more studies should address fish gut microbiota to delimitate the influence of dietary AMP on MICRO in the future.
Collapse
|
43
|
Dias SA, Pinto SN, Silva-Herdade AS, Cheneval O, Craik DJ, Coutinho A, Castanho MARB, Henriques ST, Veiga AS. A designed cyclic analogue of gomesin has potent activity against Staphylococcus aureus biofilms. J Antimicrob Chemother 2022; 77:3256-3264. [PMID: 36171717 DOI: 10.1093/jac/dkac309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Infections caused by bacterial biofilms are very difficult to treat. The use of currently approved antibiotics even at high dosages often fails, making the treatment of these infections very challenging. Novel antimicrobial agents that use distinct mechanisms of action are urgently needed. OBJECTIVES To explore the use of [G1K,K8R]cGm, a designed cyclic analogue of the antimicrobial peptide gomesin, as an alternative approach to treat biofilm infections. METHODS We studied the activity of [G1K,K8R]cGm against biofilms of Staphylococcus aureus, a pathogen associated with several biofilm-related infections. A combination of atomic force and real-time confocal laser scanning microscopies was used to study the mechanism of action of the peptide. RESULTS The peptide demonstrated potent activity against 24 h-preformed biofilms through a concentration-dependent ability to kill biofilm-embedded cells. Mechanistic studies showed that [G1K,K8R]cGm causes morphological changes on bacterial cells and permeabilizes their membranes across the biofilm with a half-time of 65 min. We also tested an analogue of [G1K,K8R]cGm without disulphide bonds, and a linear unfolded analogue, and found both to be inactive. CONCLUSIONS The results suggest that the 3D structure of [G1K,K8R]cGm and its stabilization by disulphide bonds are essential for its antibacterial and antibiofilm activities. Moreover, our findings support the potential application of this stable cyclic antimicrobial peptide to fight bacterial biofilms.
Collapse
Affiliation(s)
- Susana A Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Silva-Herdade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Olivier Cheneval
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Sónia T Henriques
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia.,School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Brisbane, QLD, 4102 Australia
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| |
Collapse
|
44
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
45
|
Antibacterial and Anticancer Activities of Pleurocidin-Amide, a Potent Marine Antimicrobial Peptide Derived from Winter Flounder, Pleuronectes americanus. Mar Drugs 2022; 20:md20080519. [PMID: 36005521 PMCID: PMC9409841 DOI: 10.3390/md20080519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The extensive use of conventional antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence suggests that cationic antimicrobial peptides (AMPs) have the greatest potential to serve as traditional antibiotic substitutes. Recent studies have also reported that certain AMPs have selective toxicity toward various types of cancer cells. The electrostatic attraction between the negatively charged membrane components and AMPs is believed to play a crucial role in the disruption of bacterial and cancer cell membranes. In the current study, we used a potent AMP called Pleurocidin (Ple) derived from winter flounder Pleuronectes americanus and its C-terminal-amidated derivative Pleurocidin-amide (Ple-a), and evaluated their antibacterial and anticancer activities. Our results indicated that both Ple and Ple-a exhibited significant antibacterial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, especially marine pathogens, with MIC values ranging from 0.25 to 32 μg/mL. These peptides are also potent against several multidrug-resistant (MDR) bacterial strains, with MIC values ranging from 2 to 256 μg/mL. When used in combination with certain antibiotics, they exhibited a synergistic effect against MDR E. coli. Ple and Ple-a also showed notable cytotoxicity toward various cancer cell lines, with IC50 values ranging from 11 to 340 μM, while normal mouse fibroblast 3T3 cells were less susceptible to these peptides. Ple-a was then selected to study its anticancer mechanism toward A549 human lung adenocarcinoma cells. Western blot analysis and confocal microscopy showed that Ple-a could inhibit autophagy of A549 cells, and induce apoptosis 48 h after treatment. Our findings provided support for the future application of Ple-a as potential therapeutic agent for bacterial infections and cancer treatment.
Collapse
|
46
|
Liu J, Jiang W, Xu Q, Zheng Y. Progress in Antibacterial Hydrogel Dressing. Gels 2022; 8:503. [PMID: 36005104 PMCID: PMC9407327 DOI: 10.3390/gels8080503] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Antibacterial hydrogel has excellent antibacterial property and good biocompatibility, water absorption and water retention, swelling, high oxygen permeability, etc.; therefore, it widely applied in biomedicine, intelligent textiles, cosmetics, and other fields, especially for medical dressing. As a wound dressing, the antibacterial hydrogel has the characteristics of absorbing wound liquid, controlling drug release, being non-toxic, being without side effects, and not causing secondary injury to the wound. Its preparation method is simple, and can crosslink via covalent or non-covalent bond, such as γ-radiation croFsslinking, free radical polymerization, graft copolymerization, etc. The raw materials are easy to obtain; usually these include chondroitin sulfate, sodium alginate, polyvinyl alcohol, etc., with different raw materials being used for different antibacterial modes. According to the hydrogel matrix and antibacterial mode, the preparation method, performance, antibacterial mechanism, and classification of antibacterial hydrogels are summarized in this paper, and the future development direction of the antibacterial hydrogel as wound dressing is proposed.
Collapse
Affiliation(s)
- Jie Liu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| | - Wenqi Jiang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Qianyue Xu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Yongjie Zheng
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
47
|
Meng Y, Lou L, Shao Z, Chen J, Li Y, Zhang T. Antibacterial Activity and Mechanism of Action of Whey Protein-ε-Polylysine Complexes against Staphylococcus aureus and Bacillus subtilis. Foods 2022; 11:foods11152311. [PMID: 35954078 PMCID: PMC9367709 DOI: 10.3390/foods11152311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022] Open
Abstract
ε-Polylysine (ε-PL) is a cationic antimicrobial peptide, which easily forms complexes with food polyanions to weaken its antibacterial activity. A whey protein-ε-PL complex delivery system was found to be able to solve this problem. This study investigated the antimicrobial activity of the complexes and their mechanism against Gram-positive bacteria. The minimal inhibitory concentration of the complexes with different ε-PL contents against Staphylococcus aureus and Bacillus subtilis were 19.53–31.26 and 3.90–7.81 μg/mL, respectively, which were similar to free ε-PL. Furthermore, the whey protein-ε-PL complexes had a strong bactericidal effect on Bacillus subtilis. The inhibition zone diameters of the complexes against Staphylococcus aureus and Bacillus subtilis containing 5000 μg/mL of ε-PL were 14.14 and 16.69 mm, respectively. The results of scanning electron microscopy showed that the complexes could destroy the cell membrane structure in Bacillussubtilis, resulting in holes on the surface, but not in Staphylococcus aureus. The results of molecular dynamics simulation showed that under electrostatic interaction, the complexes captured the phospholipid molecules of the bacterial membrane through the hydrogen bonds. Parts of the ε-PL molecules of the complexes were embedded in the bilayer membrane, and parts of the ε-PL molecules could penetrate the bilayer membrane and enter the bacterial internal environment, forming holes on the surface of the bacteria. The antibacterial results in fresh meat showed that the whey protein-ε-PL complexes could reduce the total mesophilic and Staphylococcus aureus counts. This study on the antibacterial activity mechanism of whey protein-ε-PL complexes could provide a reference for the application of ε-PL in protein food matrices.
Collapse
Affiliation(s)
- Yuecheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (Y.M.); (L.L.); (J.C.); (T.Z.)
| | - Li Lou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (Y.M.); (L.L.); (J.C.); (T.Z.)
| | - Zhipeng Shao
- Research and Development Center, Wuxi Biortus Biosciences Co., Ltd., Jiangyin 214437, China;
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (Y.M.); (L.L.); (J.C.); (T.Z.)
| | - Yanhua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (Y.M.); (L.L.); (J.C.); (T.Z.)
- Correspondence: ; Tel.: +86-158-6912-2579
| | - Tianqi Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (Y.M.); (L.L.); (J.C.); (T.Z.)
| |
Collapse
|
48
|
Bhat RAH, Thakuria D, Tandel RS, Khangembam VC, Dash P, Tripathi G, Sarma D. Tools and techniques for rational designing of antimicrobial peptides for aquaculture. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1033-1050. [PMID: 35872334 DOI: 10.1016/j.fsi.2022.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Fisheries and aquaculture industries remain essential sources of food and nutrition for millions of people worldwide. Indiscriminate use of antibiotics has led to the emergence of antimicrobial-resistant bacteria and posed a severe threat to public health. Researchers have opined that antimicrobial peptides (AMPs) can be the best possible alternative to curb the rising tide of antimicrobial resistance in aquaculture. AMPs may also help to achieve the objectives of one health approach. The natural AMPs are associated with several shortcomings, like less in vivo stability, toxicity to host cell, high cost of production and low potency in a biological system. In this review, we have provided a comprehensive outline about the strategies for designing synthetic mimics of natural AMPs with high potency. Moreover, the freely available AMP databases and the information about the molecular docking tools are enlisted. We also provided in silico template for rationally designing the AMPs from fish piscidins or other peptides. The rationally designed piscidin (rP1 and rp2) may be used to tackle microbial infections in aquaculture. Further, the protocol can be used to develop the truncated mimics of natural AMPs having more potency and protease stability.
Collapse
Affiliation(s)
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | | | - Victoria C Khangembam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Pragyan Dash
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| |
Collapse
|
49
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
50
|
Salamatullah AM. Antioxidant and antimicrobial properties of polyphenolics from Withania adpressa (Coss.) Batt. against selected drug-resistant bacterial strains. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Withania adpressa (Coss.) Batt. (W. adpressa) is a wild medicinal plant in the family Solanaceae, which is used as an alternative medicine. The present study aims to investigate the chemical composition, antioxidant, and antibacterial potentials of polyphenol-rich fraction from the leaves of W. adpressa. Polyphenol-rich fraction was characterized by use of high-performance liquid chromatography (HPLC). Antioxidant potency was determined by use of 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC) assays. Antibacterial activity was assessed against gram-positive and gram-negative bacteria by use of disc diffusion and microdilution assays. Chromatographic analysis by HPLC showed four compounds in the polyphenol-rich fraction including 1-O-Caffeoyl glucose, Luteolin-7-diglucuronide, Apigenin-O-pentoside, and Quercetin-3-O-glucuronide. Polyphenol-rich fraction exhibited important antioxidant activity as assessed by DPPH and FRAP assays, with IC50 and EC50 values of 14.27 ± 0.43 and 39.48 ± 0.81 µg/mL, respectively, while butylated hydroxytoluene (BHT) and Quercetin exhibited IC50 values of 28.92 ± 0.24 and 22.48 ± 0.54 µg/mL. Results of TAC showed that the polyphenol-rich fraction scored 781.74 ± 2.83 µg AAE/mg. Polyphenol-rich fraction showed an important antibacterial effect vs gram-positive and gram-negative strains recording inhibition zone diameters varying from 19.5 to 29.2 mm, while antibiotics were almost ineffective toward all strains except for E. coli. It can be concluded that W. adpressa polyphenol-rich fraction possesses promising phenols with strong antioxidant and antibacterial properties, which may help fight pathogenic bacteria and free radicals.
Collapse
Affiliation(s)
- Ahmad Mohammed Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University , 11 P.O. Box 2460 , Riyadh 11451 , Saudi Arabia
| |
Collapse
|