1
|
de Souza WM, Lecuit M, Weaver SC. Chikungunya virus and other emerging arthritogenic alphaviruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01177-8. [PMID: 40335675 DOI: 10.1038/s41579-025-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 05/09/2025]
Abstract
Arthritogenic alphaviruses are arboviruses (arthropod-borne viruses) that are genetically and serologically related positive-strand RNA viruses and cause epidemics on a global scale. They are transmitted by mosquitoes and cause diseases in humans that are mainly characterized by fever and often debilitating, sometimes chronic polyarthralgia. At present, approved treatments or vaccines are not available for most arthritogenic alphaviruses, and recently licensed vaccines against chikungunya virus are awaiting implementation in endemic areas. Most arthritogenic alphaviruses are currently limited to specific geographic areas due to vector distributions and availability of amplifying hosts, but they pose a substantial risk of emergence in other regions. The exception is chikungunya virus, which has emerged repeatedly from Africa, established sustained and efficient transmission in urban areas (including in temperate climates) and has caused major epidemics across the world. In this Review, we highlight recent advances in our understanding of the transmission cycles of arthritogenic alphaviruses, their vectors, epidemiology, transmission dynamics, evolution, pathophysiology and immune responses. We also outline strategies and countermeasures to anticipate and mitigate the impact of arthritogenic alphaviruses on human health.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Gérardin P, Medina-Santos R, Le Clerc S, Bruneau L, Maillot A, Labib T, Rahmouni M, Spadoni JL, Meyniel JP, Cornet C, Lefebvre C, El Jahrani N, Savara J, Mathew MJ, Fontaine C, Payet C, Ah-You N, Chabert C, Mussard C, Porcherat S, Medjane S, Noirel J, Marimoutou C, Hocini H, Zagury JF. Transcriptomic analysis of chronic chikungunya in the Reunionese CHIKGene cohort uncovers a shift in gene expression more than 10 years after infection. Travel Med Infect Dis 2025; 65:102825. [PMID: 39999933 DOI: 10.1016/j.tmaid.2025.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
AIM In 2005-2006, a chikungunya epidemic of unprecedented magnitude hit Reunion Island, which raised a public health concern through the substantial proportions of long-lasting manifestations. To understand the pathophysiology underlying chronic chikungunya (CC), we designed the CHIKGene cohort study and collected blood samples from 133 subjects diagnosed with CC and from 86 control individuals that had recovered within 3 months, 12-to-15 years after exposure. METHODS We conducted bulk RNAseq analysis on peripheral blood mononuclear cells to find differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) and gene ontologies to uncover top-level enriched terms associated with DEGs, and weighted gene correlation network analysis (WGCNA) to elucidate underlying cellular processes. RESULTS Among 1549 DEGs, gene expression analysis identified 10 top genes including NR4A2 and TRIM58 (upregulated in CC), IGHG3 and IGHV3-49 (downregulated in CC) linked to immune regulation, OSBP2 (upregulated in CC) and SEMA6B (downregulated in CC) linked to neuronal homeostasis and axon guidance, respectively. GSEA and WGCNA unveiled cellular processes such as "Metabolism of RNA" and "Cell Cycle". CONCLUSIONS This study uncovers a shift in gene expression of CC subjects. IGHG3 and IGHV3-49 gene shut-offs spotlight the importance of neutralizing antibodies against chikungunya virus in the progression to chronic disease. Human diseases associations highlight connections to rheumatoid arthritis, nervous and cardiac systems. GSEA and WGCNA bounce the hypotheses of a persistent viral reservoir or an increased susceptibility to RNA viral pathogens with new onset infections. Together, our findings might offer potential targets for therapeutic options aimed at alleviating chronic chikungunya.
Collapse
Affiliation(s)
- Patrick Gérardin
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France.
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Léa Bruneau
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Adrien Maillot
- Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | | | - Clémence Cornet
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; AdvanThink, Saint-Aubin, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Nora El Jahrani
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jakub Savara
- École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France; Department of Immunology, Palacky University and University Hospital Olomouc, Czech Republic; Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Mano Joseph Mathew
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France
| | - Christine Fontaine
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Christine Payet
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Nathalie Ah-You
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Cécile Chabert
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Corinne Mussard
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Sylvaine Porcherat
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Samir Medjane
- Direction of Clinical Research and Innovation (DRCI), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Josselin Noirel
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Catherine Marimoutou
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| |
Collapse
|
3
|
Pérez-Estigarribia PE, Ribeiro Dos Santos G, Cauchemez S, Vazquez C, Ibarrola-Vannucci AK, Sequera G, Villalba S, Ortega MJ, Di Fabio JL, Scarponi D, Mukandavire C, Deol A, Cabello Á, Vargas E, Fernández C, León L, Salje H. Modeling the impact of vaccine campaigns on the epidemic transmission dynamics of chikungunya virus outbreaks. Nat Med 2025:10.1038/s41591-025-03684-w. [PMID: 40312589 DOI: 10.1038/s41591-025-03684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
A licensed chikungunya vaccine now exists; however, it remains unclear whether it could be deployed during outbreaks to reduce the health burden. We used an epidemic in Paraguay as a case study. We conducted a seroprevalence study and used models to reconstruct epidemic transmission dynamics, providing a framework to assess the theoretical impact of a vaccine had it been available. We estimated that 33.0% (95% confidence interval (CI) 30.1-36.0%) of the population became infected during the outbreak. Of these individuals, 6.3% (95% CI 5.8-6.9%) were detected by the surveillance system, with a mean infection fatality ratio of 0.013% (95% CI 0.012-0.014%). A disease-blocking vaccine with 75% efficacy deployed in 40% of individuals aged ≥12 years over a 3-month period would have prevented 34,200 (95% CI 30,900-38,000) cases, representing 23% of all cases, and 73 (95% CI 66-81) deaths. If the vaccine also leads to infection blocking, 88% of cases would have been averted. These findings suggest that the vaccine is an important new tool to control outbreaks.
Collapse
Affiliation(s)
- Pastor E Pérez-Estigarribia
- Laboratorio de Analisis y Modelado Basado en Datos (LAMBDA), Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo, Paraguay
- Facultad de Ciencias de la Salud, Universidad Sudamericana, Pedro Juan Caballero, Paraguay
| | - Gabriel Ribeiro Dos Santos
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR 2000 CNRS, Paris, France
| | - Cynthia Vazquez
- Departamento de Virología, Laboratorio Central de Salud Pública, Asunción, Paraguay
| | - Ana Karina Ibarrola-Vannucci
- Unidad de Proyectos, Convenios e Investigación, SENEPA-Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | - Guillermo Sequera
- Cátedra de Salud Pública, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Shirley Villalba
- Departamento de Virología, Laboratorio Central de Salud Pública, Asunción, Paraguay
| | - María José Ortega
- Departamento de Virología, Laboratorio Central de Salud Pública, Asunción, Paraguay
| | | | - Danny Scarponi
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Arminder Deol
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | - Águeda Cabello
- Dirección General de Vigilancia de la Salud, Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | - Elsi Vargas
- Centro Nacional de Servicios de Sangre (CENSSA), Asunción, Paraguay
| | - Cyntia Fernández
- Centro Nacional de Servicios de Sangre (CENSSA), Asunción, Paraguay
| | - Liz León
- Centro Nacional de Servicios de Sangre (CENSSA), Asunción, Paraguay
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Jacob-Nascimento LC, Anjos RO, Portilho MM, Cavalcanti VM, Paz AS, Santos LG, Sousa MS, Costa JG, Silva MR, Moreira PSS, Kitron U, Weaver SC, Santiago MB, Reis MG, Ribeiro GS. Long-term persistence of serum IgM antibodies against chikungunya virus in patients with chronic arthralgia. Virol J 2025; 22:115. [PMID: 40275382 PMCID: PMC12020198 DOI: 10.1186/s12985-025-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Anti-Chikungunya virus (CHIKV) IgM antibodies may persist for months after infection in some individuals, but the evidence is limited, and their exact duration remains unknown. OBJECTIVE This study aimed to determine the duration for which anti-CHIKV IgM antibodies remain detectable following acute infection. METHODS A commercial ELISA was used to assess the frequency of anti-CHIKV IgM antibody detection over time in 145 longitudinal serum samples obtained from 45 laboratory-confirmed chikungunya patients in Brazil (two to six samples per patient). RESULTS Among samples obtained within seven days post-symptom onset (DPSO), 13% (6/45) were IgM-positive. Between 10 and 120 DPSO, 100% (62/62) of samples were positive. Positivity rates for samples collected between 121 - 720, 721-900, 901-1,080, 1,081-1,260, and > 1,260 DPSO were 62% (5/8), 35% (6/17), 12% (1/8), 33% (1/3) and 50% (1/2), respectively. Notably, among 21 patients who developed chronic arthralgia and had at least one sample collected > 720 DPSO, 7 (33%) still had detectable anti-CHIKV IgM. This suggests that approximately one-third of chikungunya patients with chronic arthralgia may maintain anti-CHIKV IgM for over two years following acute disease. CONCLUSIONS Our findings indicate that anti-CHIKV IgM antibodies can persist substantially longer than typically observed for acute RNA virus infections. This has significant implications for chikungunya diagnosis and surveillance. Further research is needed to determine whether long-term IgM persistence also occurs in patients without chronic chikungunya symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Adriane S Paz
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | | | | | | | | | | | | | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, USA
| | | | - Mitermayer G Reis
- Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Yale University, New Haven, USA
| | - Guilherme S Ribeiro
- Fundação Oswaldo Cruz, Salvador, Brazil.
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.
| |
Collapse
|
5
|
Stumpf MM, Brunetti T, Davenport BJ, McCarthy MK, Morrison TE. Deep mutationally scanned CHIKV E3/E2 virus library maps viral amino acid preferences and predicts viral escape mutants of neutralizing CHIKV antibodies. J Virol 2025; 99:e0008125. [PMID: 40145739 PMCID: PMC11998513 DOI: 10.1128/jvi.00081-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
As outbreaks of chikungunya virus (CHIKV), a mosquito-borne alphavirus, continue to present public health challenges, additional research is needed to generate protective and safe vaccines and effective therapeutics. Prior research established a role for antibodies in mediating protection against CHIKV infection, and the early appearance of CHIKV-specific IgG or IgG neutralizing antibodies protects against progression to chronic CHIKV disease in humans. However, the importance of epitope specificity for these protective antibodies and how skewed responses contribute to the development of acute and chronic CHIKV-associated joint disease remains poorly understood. Here, we describe the deep mutational scanning of one of the dominant targets of neutralizing antibodies during CHIKV infection, the E3/E2 (also known as p62) glycoprotein complex, to simultaneously test thousands of p62 mutants against selective pressures of interest in a high throughput manner. Characterization of the virus library revealed achievement of high diversity while also selecting out nonfunctional virus variants. Furthermore, this study provides evidence that this virus library system can comprehensively map sites critical for the neutralization function of antibodies of both known and unknown p62 domain specificities.IMPORTANCEChikungunya virus (CHIKV) is a mosquito-borne alphavirus of global health concern that causes debilitating acute and chronic joint disease. Prior studies established a critical role for antibodies in protection against CHIKV infection. Here, we describe the generation of a high-throughput, functional virus library capable of identifying critical functional sites for anti-viral antibodies. This new tool can be used to better understand antibody responses associated with distinct CHIKV infection outcomes and could contribute to the development of efficacious vaccines and antibody-based therapeutics.
Collapse
Affiliation(s)
- Megan M. Stumpf
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Sharma A, Ravindran V. Current and future advances in practice: arboviral arthritides. Rheumatol Adv Pract 2025; 9:rkaf029. [PMID: 40225230 PMCID: PMC11992517 DOI: 10.1093/rap/rkaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Arboviral arthritides are a group of viral infections affecting the musculoskeletal system. Mosquitoes are vectors for some of the arboviral febrile diseases such as due to chikungunya, dengue and Zika viruses, which constitute a major proportion of arboviral arthritide syndromes in humans. They have gained epidemiological importance as the natural habitats of these mosquitoes are in the vicinity of human dwellings. Chikungunya virus infection frequently leads to post-infectious chronic musculoskeletal syndromes including erosive inflammatory arthritis, which resembles RA. Clinical features of the chronic phase result from the chronic persistence of the virus in certain tissues after the acute infection has resolved. In addition, the triggering of autoimmunity has also been implicated in musculoskeletal syndromes. Due to the diversity of clinical presentations and overlapping features with other viral illnesses and inflammatory arthritides, diagnosis and management are challenging. Poor prognostic factors for predicting evolution to chronic arthritides are not well delineated. There is no universal agreement regarding when to start immunomodulatory agents and the duration of such therapy. The lack of specific antiviral agents adds to the complexity of the situation. A live-attenuated vaccine has been recently approved by the US Food and Drug Administration for the prevention of chikungunya virus infection. This review discusses the musculoskeletal syndromes related to arboviral infections, with a major focus on chikungunya virus-related arthritis to provide practical guidance to clinicians involved in managing patients with chikungunya and its sequelae.
Collapse
Affiliation(s)
- Ashish Sharma
- Dilshad Garden, Rheumatology Clinic, New Delhi, India
| | - Vinod Ravindran
- Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Brady OJ, Bastos LS, Caldwell JM, Cauchemez S, Clapham HE, Dorigatti I, Gaythorpe KAM, Hu W, Hussain-Alkhateeb L, Johansson MA, Lim A, Lopez VK, Maude RJ, Messina JP, Mordecai EA, Peterson AT, Rodriquez-Barraquer I, Rabe IB, Rojas DP, Ryan SJ, Salje H, Semenza JC, Tran QM. Why the growth of arboviral diseases necessitates a new generation of global risk maps and future projections. PLoS Comput Biol 2025; 21:e1012771. [PMID: 40184562 PMCID: PMC11970912 DOI: 10.1371/journal.pcbi.1012771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025] Open
Abstract
Global risk maps are an important tool for assessing the global threat of mosquito and tick-transmitted arboviral diseases. Public health officials increasingly rely on risk maps to understand the drivers of transmission, forecast spread, identify gaps in surveillance, estimate disease burden, and target and evaluate the impact of interventions. Here, we describe how current approaches to mapping arboviral diseases have become unnecessarily siloed, ignoring the strengths and weaknesses of different data types and methods. This places limits on data and model output comparability, uncertainty estimation and generalisation that limit the answers they can provide to some of the most pressing questions in arbovirus control. We argue for a new generation of risk mapping models that jointly infer risk from multiple data types. We outline how this can be achieved conceptually and show how this new framework creates opportunities to better integrate epidemiological understanding and uncertainty quantification. We advocate for more co-development of risk maps among modellers and end-users to better enable risk maps to inform public health decisions. Prospective validation of risk maps for specific applications can inform further targeted data collection and subsequent model refinement in an iterative manner. If the expanding use of arbovirus risk maps for control is to continue, methods must develop and adapt to changing questions, interventions and data availability.
Collapse
Affiliation(s)
- Oliver J. Brady
- Department of Infectious Disease Epidemiology and Dynamics, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Leonardo S. Bastos
- Scientific Computing Programme, Oswaldo Cruz Foundation: Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jamie M. Caldwell
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000 CNRS, Paris, France
| | - Hannah E. Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Illaria Dorigatti
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Katy A. M. Gaythorpe
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Laith Hussain-Alkhateeb
- Global Health Research Group, School of Public Health and Community Medicine, University of Gothenburg: Goteborgs Universitet, Gothenburg, Sweden
- Population Health Research Section, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Michael A. Johansson
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- Bouvé College of Health Sciences and Network Science Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Ahyoung Lim
- Department of Infectious Disease Epidemiology and Dynamics, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Velma K. Lopez
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
| | - Richard James Maude
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Open University, Milton Keynes, United Kingdom
- School of Public Health, University of Hong Kong, Hong Kong, Hong Kong
| | - Jane P. Messina
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Erin A. Mordecai
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Andrew Townsend Peterson
- Biodiversity Institute, The University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas, United States of America
| | - Isabel Rodriquez-Barraquer
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Ingrid B. Rabe
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Diana P. Rojas
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Sadie J. Ryan
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jan C. Semenza
- Heidelberg Institute of Global Health, University of Heidelberg: Universitat Heidelberg, Heidelberg, Germany
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Quan Minh Tran
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
| |
Collapse
|
8
|
Yin P, Sobolik EB, May NA, Wang S, Fayed A, Vyshenska D, Drobish AM, Parks MG, Lello LS, Merits A, Morrison TE, Greninger AL, Kielian M. Mutations in chikungunya virus nsP4 decrease viral fitness and sensitivity to the broad-spectrum antiviral 4'-Fluorouridine. PLoS Pathog 2025; 21:e1012859. [PMID: 39804924 PMCID: PMC11759387 DOI: 10.1371/journal.ppat.1012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase. In mouse models, oral therapy with 4'-FlU diminished viral tissue burdens and virus-induced disease signs. To provide critical evidence for the potential of 4'-FlU as a CHIKV antiviral, here we selected for CHIKV variants with decreased 4'-FlU sensitivity, identifying two pairs of mutations in nsP2 and nsP4. The nsP4 mutations Q192L and C483Y were predominantly responsible for reduced sensitivity. These variants were still inhibited by higher concentrations of 4'-FlU, and the mutations did not change nsP4 fidelity or provide a virus fitness advantage in vitro or in vivo. Pathogenesis studies in mice showed that the nsP4-C483Y variant caused similar disease and viral tissue burden as WT CHIKV, while the nsP4-Q192L variant was strongly attenuated. Together these results support the potential of 4'-FlU to be an important antiviral against CHIKV.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Nicholas A. May
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sainan Wang
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Atef Fayed
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dariia Vyshenska
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Adam M. Drobish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - M. Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | | | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
9
|
Stumpf MM, Brunetti T, Davenport BJ, McCarthy MK, Morrison TE. Deep mutationally scanned (DMS) CHIKV E3/E2 virus library maps viral amino acid preferences and predicts viral escape mutants of neutralizing CHIKV antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626854. [PMID: 39677653 PMCID: PMC11643203 DOI: 10.1101/2024.12.04.626854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
As outbreaks of chikungunya virus (CHIKV), a mosquito-borne alphavirus, continue to present public health challenges, additional research is needed to generate protective and safe vaccines and effective therapeutics. Prior research has established a role for antibodies in mediating protection against CHIKV infection, and the early appearance of CHIKV-specific IgG or IgG neutralizing antibodies protects against progression to chronic CHIKV disease in humans. However, the importance of epitope specificity for these protective antibodies and how skewed responses contribute to development of acute and chronic CHIKV-associated joint disease remains poorly understood. Here, we describe the deep mutational scanning of one of the dominant targets of neutralizing antibodies during CHIKV infection, the E3/E2 (also known as p62) glycoprotein complex, to simultaneously test thousands of p62 mutants against selective pressures of interest in a high throughput manner. Characterization of the virus library revealed achievement of high diversity while also selecting out non-functional virus variants. Furthermore, this study provides evidence that this virus library system can comprehensively map sites critical for the neutralization function of antibodies of both known and unknown p62 domain specificities.
Collapse
Affiliation(s)
- Megan M. Stumpf
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| |
Collapse
|
10
|
de Roo AM, Vondeling GT, Boer M, Murray K, Postma MJ. The global health and economic burden of chikungunya from 2011 to 2020: a model-driven analysis on the impact of an emerging vector-borne disease. BMJ Glob Health 2024; 9:e016648. [PMID: 39627007 PMCID: PMC11624783 DOI: 10.1136/bmjgh-2024-016648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Chikungunya is a mosquito-borne arboviral disease posing an emerging global public health threat. Understanding the global burden of chikungunya is critical for designing effective prevention and control strategies. However, current estimates of the economic and health impact of chikungunya remain limited and are potentially underestimated. This study aims to provide a comprehensive overview of the chikungunya burden worldwide. METHODS We analysed the global burden of chikungunya between 2011 and 2020 and calculated disability-adjusted life years (DALYs) and direct and indirect costs using a data-driven simulation model. The main outcomes were the number of cases, the total DALY burden, and the direct and indirect costs of acute and chronic chikungunya between 2011 and 2020. RESULTS Our study revealed a total of 18.7 million chikungunya cases in 110 countries between 2011 and 2020, causing 1.95 million DALYs. Most of this burden was found in the Latin American and Caribbean region. The total economic burden caused by chikungunya over these 10 years was estimated at $2.8 billion in direct costs and $47.1 billion in indirect costs worldwide. Long-term chronic illness was the source of most costs and DALYs. CONCLUSION Chikungunya has a higher disease burden than was previously estimated and costs related to the disease are substantial. Especially in combination with its unpredictable nature, chikungunya could significantly impact local health systems. Insights from this study could inform decision makers on the impact of chikungunya on population health and help them to appropriately allocate resources to protect vulnerable populations from this debilitating disease.
Collapse
Affiliation(s)
- Adrianne Marije de Roo
- Valneva Austria GmbH, Vienna, Austria
- Department of Health Sciences, University of Groningen, Groningen, Netherlands
| | | | - Martijn Boer
- ASC Academics BV, Groningen, Groningen, Netherlands
| | - Kristy Murray
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Maarten Jacobus Postma
- Department of Health Sciences, University of Groningen, Groningen, Groningen, Netherlands
- Department of Economics, Econometrics & Finance, University of Groningen, Groningen, Netherlands
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Badung, Indonesia
- Division of Pharmacology and Therapy, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
11
|
Maure C, Khazhidinov K, Kang H, Auzenbergs M, Moyersoen P, Abbas K, Santos GML, Medina LMH, Wartel TA, Kim JH, Clemens J, Sahastrabuddhe S. Chikungunya vaccine development, challenges, and pathway toward public health impact. Vaccine 2024; 42:126483. [PMID: 39467413 DOI: 10.1016/j.vaccine.2024.126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Chikungunya is a neglected tropical disease of growing public health concern with outbreaks in more than 114 countries in Asia, Africa, Americas, Europe, and Oceania since 2004. There are no specific antiviral treatment options for chikungunya virus infection. This article describes the chikungunya vaccine pipeline and assesses the challenges in the path to licensure, access, and uptake of chikungunya vaccines in populations at risk. Ixchiq (VLA1533/Ixchiq - Valneva) was the first licensed chikungunya vaccine by the US Food and Drug Administration in November 2023, European Medicines Agency in May 2024, and Health Canada in June 2024. Five chikungunya vaccine candidates (BBV87 - BBIL/IVI, MV-CHIK - Themis Bioscience, ChAdOx1 Chik - University of Oxford, PXVX0317 / VRC-CHKVLP059-00-VP - Bavarian Nordic, and mRNA-1388 - Moderna) are in development. Evidence on chikungunya disease burden alongside the public health and economic impact of vaccination are critical for decision-making on chikungunya vaccine introduction in endemic and epidemic settings. Further, global and regional stakeholders need to agree on a sustainable financing mechanism for manufacturing at scale to facilitate fair access and equitable vaccine distribution to at-risk populations in different geographic settings. This could partly be facilitated through obtaining consensus on scientific and regulatory principles for initial vaccine introduction and generating evidence on chikungunya burden and disease awareness among populations at risk. Specifically, this article advocates for the formation of a global chikungunya vaccine consortium that includes regulators, policymakers, sponsors, and manufacturers to assist in overcoming the global and local challenges for chikungunya vaccine licensure, policy, financing, demand generation, and access to at-risk populations.
Collapse
Affiliation(s)
- Clara Maure
- International Vaccine Institute, South Korea
| | | | - Hyolim Kang
- London School of Hygiene & Tropical Medicine, United Kingdom; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Institute of Tropical Medicine, Nagasaki University, Japan.
| | | | | | - Kaja Abbas
- London School of Hygiene & Tropical Medicine, United Kingdom; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Institute of Tropical Medicine, Nagasaki University, Japan
| | | | | | | | - Jerome H Kim
- International Vaccine Institute, South Korea; College of Natural Sciences, Seoul National University, Seoul, South Korea
| | | | - Sushant Sahastrabuddhe
- International Vaccine Institute, South Korea; CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, France.
| |
Collapse
|
12
|
Shankar M, Hartner AM, Arnold CRK, Gayawan E, Kang H, Kim JH, Gilani GN, Cori A, Fu H, Jit M, Muloiwa R, Portnoy A, Trotter C, Gaythorpe KAM. How mathematical modelling can inform outbreak response vaccination. BMC Infect Dis 2024; 24:1371. [PMID: 39617902 PMCID: PMC11608489 DOI: 10.1186/s12879-024-10243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Mathematical models are established tools to assist in outbreak response. They help characterise complex patterns in disease spread, simulate control options to assist public health authorities in decision-making, and longer-term operational and financial planning. In the context of vaccine-preventable diseases (VPDs), vaccines are one of the most-cost effective outbreak response interventions, with the potential to avert significant morbidity and mortality through timely delivery. Models can contribute to the design of vaccine response by investigating the importance of timeliness, identifying high-risk areas, prioritising the use of limited vaccine supply, highlighting surveillance gaps and reporting, and determining the short- and long-term benefits. In this review, we examine how models have been used to inform vaccine response for 10 VPDs, and provide additional insights into the challenges of outbreak response modelling, such as data gaps, key vaccine-specific considerations, and communication between modellers and stakeholders. We illustrate that while models are key to policy-oriented outbreak vaccine response, they can only be as good as the surveillance data that inform them.
Collapse
Affiliation(s)
- Manjari Shankar
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| | - Anna-Maria Hartner
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Wildau, Germany
| | - Callum R K Arnold
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, 16802, PA, USA
| | - Ezra Gayawan
- Department of Statistics, Federal University of Technology, Akure, Nigeria
| | - Hyolim Kang
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Jong-Hoon Kim
- Department of Epidemiology, Public Health, Impact, International Vaccine Institute, Seoul, South Korea
| | - Gemma Nedjati Gilani
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Anne Cori
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Han Fu
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Mark Jit
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- School of Public Health, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rudzani Muloiwa
- Department of Paediatrics & Child Health, Faculty of Health Sciences, University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Allison Portnoy
- Department of Global Health, Boston University School of Public Health, Boston, United States
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Caroline Trotter
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Veterinary Medicine and Pathology, University of Cambridge, Cambridge, UK
| | - Katy A M Gaythorpe
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
13
|
Chen LH, Fritzer A, Hochreiter R, Dubischar K, Meyer S. From bench to clinic: the development of VLA1553/IXCHIQ, a live-attenuated chikungunya vaccine. J Travel Med 2024; 31:taae123. [PMID: 39255380 PMCID: PMC11497415 DOI: 10.1093/jtm/taae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Over the past 20 years, over 5 million cases of chikungunya, a mosquito-transmitted viral disease, have been reported in over 110 countries. Until recently, preventative strategies for chikungunya were largely ineffective, relying on vector control and individual avoidance of mosquito bites. METHODS This review outlines the preclinical and clinical efficacy and safety data that led to the approval of VLA1553 (IXCHIQ®), a live-attenuated vaccine against chikungunya disease. It also describes the innovative development pathway of VLA1553, based on an immunological surrogate of protection, and discusses ongoing and future post-licensure studies. RESULTS In mice and non-human primate models, VLA1553 elicited high titres of neutralizing antibodies, conferred protection against wild-type chikungunya virus challenge and raised no safety concerns. A Phase 1 clinical trial of VLA1553 demonstrated 100% seroconversion among 120 healthy participants, with sustained neutralizing antibody titres after 12 months. These results and determination of a surrogate marker of protection led to advancement of VLA1553 directly into Phase 3 clinical development, as agreed with the US Food and Drug Administration (FDA) and the European Medicines Agency. The pivotal Phase 3 trial met its primary immunogenicity endpoint, achieving seroprotective levels based on immuno-bridging in baseline seronegative participants 28 days post-vaccination. These findings enabled submission of a Biologics Licence Application to the FDA for accelerated approval of VLA1553 in the US for adults aged ≥18 years. Ongoing and planned studies will confirm the clinical efficacy/effectiveness and safety of VLA1553 in adults and younger individuals, and will generate data in chikungunya endemic countries that have the highest unmet need. CONCLUSION VLA1553 is the first vaccine approved for the prevention of chikungunya disease in adults, following accelerated development based on a serological surrogate marker of protection. VLA1553 adds to strategies to reduce the spread and burden of chikungunya in endemic populations and travellers.
Collapse
Affiliation(s)
- Lin H Chen
- Department of Medicine, Division of Infectious Diseases and Travel Medicine, Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, MA 02138, USA
- Faculty of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Andrea Fritzer
- Pre-Clinical Vaccine Development Department, Valneva Austria GmbH, Campus-Vienna-Biocenter 3, 1030 Vienna, Austria
| | - Romana Hochreiter
- Clinical Serology Department, Valneva Austria GmbH, Campus-Vienna-Biocenter 3, 1030 Vienna, Austria
| | - Katrin Dubischar
- R&D Management, Valneva Austria GmbH, Campus-Vienna-Biocenter 3, 1030 Vienna, Austria
| | - Stéphanie Meyer
- Corporate Medical Affairs, Valneva SE, Ilot Saint-Joseph Bureaux Convergence, 12 ter Quai Perrache Bâtiment A, 69002 Lyon, France
| |
Collapse
|
14
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, CLIMADE Consortium, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
15
|
Salje H, Cortés Azuero O. The deadly potential of chikungunya virus. THE LANCET. INFECTIOUS DISEASES 2024; 24:442-444. [PMID: 38342108 DOI: 10.1016/s1473-3099(24)00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/13/2024]
Affiliation(s)
- Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
16
|
Wilder-Smith AB, Wilder-Smith A. Determining force of infection for chikungunya to support vaccine policy development. THE LANCET. INFECTIOUS DISEASES 2024; 24:441-442. [PMID: 38342104 DOI: 10.1016/s1473-3099(24)00062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
|