1
|
Shafiei G, Talaei SA, Enderami SE, Mahabady MK, Mahabadi JA. Pluripotent stem cell-derived gametes: A gap for infertility treatment and reproductive medicine in the future. Tissue Cell 2025; 95:102904. [PMID: 40203683 DOI: 10.1016/j.tice.2025.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Infertility affects 10-15 % of reproductive-age couples worldwide, with male infertility linked to sperm dysfunction and female infertility caused by ovulation disorders and reproductive abnormalities. Stem cell research presents a promising avenue for infertility treatment through germ cell differentiation. However, standardizing differentiation protocols and ensuring the functionality of in vitro-derived gametes remain significant challenges before clinical application becomes feasible.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.
| |
Collapse
|
2
|
Li Y, Wu Y, Luo Q, Ye X, Chen J, Su Y, Zhao K, Li X, Lin J, Tong Z, Wang Q, Xu D. Neuropsychiatric Behavioral Assessments in Mice After Acute and Long-Term Treatments of Low-Intensity Pulsed Ultrasound. Am J Alzheimers Dis Other Demen 2024; 39:15333175231222695. [PMID: 38183177 PMCID: PMC10771054 DOI: 10.1177/15333175231222695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Introduction: To evaluate whether both acute and chronic low-intensity pulsed ultrasound (LIPUS) affect brain functions of healthy male and female mice. Methods: Ultrasound (frequency: 1.5 MHz; pulse: 1.0 kHz; spatial average temporal average (SATA) intensity: 25 mW/cm2; and pulse duty cycle: 20%) was applied at mouse head in acute test for 20 minutes, and in chronic experiment for consecutive 10 days, respectively. Behaviors were then evaluated. Results: Both acute and chronic LIPUS at 25 mW/cm2 exposure did not affect the abilities of movements, mating, social interaction, and anxiety-like behaviors in the male and female mice. However, physical restraint caused struggle-like behaviors and short-time memory deficits in chronic LIPUS groups in the male mice. Conclusion: LIPUS at 25 mW/cm2 itself does not affect brain functions, while physical restraint for LIPUS therapy elicits struggle-like behaviors in the male mice. An unbound helmet targeted with ultrasound intensity at 25-50 mW/cm2 is proposed for clinical brain disease therapy.
Collapse
Affiliation(s)
- Ye Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Qi Luo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xuanjie Ye
- Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Academy for Engineering & Technology, Fudan University, Shanghai, China
| | - Yuanlin Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Ke Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xinmin Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Qi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Dongwu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Shoda H, Natsumoto B, Fujio K. Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflamm Regen 2023; 43:51. [PMID: 37876023 PMCID: PMC10594759 DOI: 10.1186/s41232-023-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The precise pathogenesis of immune-related diseases remains unclear, and new effective therapeutic choices are required for the induction of remission or cure in these diseases. Basic research utilizing immune-related disease patient-derived induced pluripotent stem (iPS) cells is expected to be a promising platform for elucidating the pathogenesis of the diseases and for drug discovery. Since autoinflammatory diseases are usually monogenic, genetic mutations affect the cell function and patient-derived iPS cells tend to exhibit disease-specific phenotypes. In particular, iPS cell-derived monocytic cells and macrophages can be used for functional experiments, such as inflammatory cytokine production, and are often employed in research on patients with autoinflammatory diseases.On the other hand, the utilization of disease-specific iPS cells is less successful for research on autoimmune diseases. One reason for this is that autoimmune diseases are usually polygenic, which makes it challenging to determine which factors cause the phenotypes of patient-derived iPS cells are caused by. Another reason is that protocols for differentiating some lymphocytes associated with autoimmunity, such as CD4+T cells or B cells, from iPS cells have not been well established. Nevertheless, several groups have reported studies utilizing autoimmune disease patient-derived iPS cells, including patients with rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis. Particularly, non-hematopoietic cells, such as fibroblasts and cardiomyocytes, differentiated from autoimmune patient-derived iPS cells have shown promising results for further research into the pathogenesis. Recently, our groups established a method for differentiating dendritic cells that produce interferon-alpha, which can be applied as an SLE pathological model. In summary, patient-derived iPS cells can provide a promising platform for pathological research and new drug discovery in the field of immune-related diseases.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Bunki Natsumoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Ito D, Morimoto S, Takahashi S, Okada K, Nakahara J, Okano H. Maiden voyage: induced pluripotent stem cell-based drug screening for amyotrophic lateral sclerosis. Brain 2023; 146:13-19. [PMID: 36004509 DOI: 10.1093/brain/awac306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023] Open
Abstract
Using patient-derived induced pluripotent stem cells, neurodegenerative disease phenotypes have been recapitulated and their pathogenesis analysed leading to significant progress in drug screening. In amyotrophic lateral sclerosis, high-throughput screening using induced pluripotent stem cells-derived motor neurons has identified candidate drugs. Owing to induced pluripotent stem cell-based drug evaluation/screening, three compounds, retigabine, ropinirole and bosutinib, have progressed to clinical trials. Retigabine blocks hyperexcitability and improves survival in amyotrophic lateral sclerosis patient-derived motor neurons. In a randomized clinical trial (n = 65), treatment with retigabine reduced neuronal excitability after 8 weeks. Ropinirole, identified in a high-throughput screening, attenuates pathological phenotypes in patient-derived motor neurons. In a trial limited by a small sample size (n = 20), ropinirole was tolerable and had clinical benefits on function and survival. A phase 1 study of bosutinib has reported safety and tolerability for 12 weeks. Thus, these clinical trials show safety and positive effects and confirm the reliability of stem cell-based drug discovery. This novel strategy leads to reduced costs and time when compared to animal testing and opens new avenues for therapy in intractable diseases.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Neurology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Gaggi G, Di Credico A, Guarnieri S, Mariggiò MA, Di Baldassarre A, Ghinassi B. Human mesenchymal amniotic fluid stem cells reveal an unexpected neuronal potential differentiating into functional spinal motor neurons. Front Cell Dev Biol 2022; 10:936990. [PMID: 35938174 PMCID: PMC9354810 DOI: 10.3389/fcell.2022.936990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Human amniotic fluids stem cells (hAFSCs) can be easily isolated from the amniotic fluid during routinely scheduled amniocentesis. Unlike hiPSCs or hESC, they are neither tumorigenic nor immunogenic and their use does not rise ethical or safety issues: for these reasons they may represent a good candidate for the regenerative medicine. hAFSCs are generally considered multipotent and committed towards the mesodermal lineages; however, they express many pluripotent markers and share some epigenetic features with hiPSCs. Hence, we hypothesized that hAFSCs may overcome their mesodermal commitment differentiating into to ectodermal lineages. Here we demonstrated that by the sequential exposure to specific factors, hAFSCs can give rise to spinal motor neurons (MNs), as evidenced by the gradual gene and protein upregulation of early and late MN markers (PAX6, ISL1, HB9, NF-L, vAChT). When co-cultured with myotubes, hAFSCs-derived MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle contractions. These data demonstrated the hAFSCs are not restricted to mesodermal commitment and can generate functional MNs thus outlining an ethically acceptable strategy for the study and treatment of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
- Functional Biotechnologies Lab, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
- Functional Biotechnologies Lab, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
- *Correspondence: Angela Di Baldassarre,
| | - Barbara Ghinassi
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| |
Collapse
|
6
|
Milicevic K, Rankovic B, Andjus PR, Bataveljic D, Milovanovic D. Emerging Roles for Phase Separation of RNA-Binding Proteins in Cellular Pathology of ALS. Front Cell Dev Biol 2022; 10:840256. [PMID: 35372329 PMCID: PMC8965147 DOI: 10.3389/fcell.2022.840256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a major principle for the mesoscale organization of proteins, RNAs, and membrane-bound organelles into biomolecular condensates. These condensates allow for rapid cellular responses to changes in metabolic activities and signaling. Nowhere is this regulation more important than in neurons and glia, where cellular physiology occurs simultaneously on a range of time- and length-scales. In a number of neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), misregulation of biomolecular condensates leads to the formation of insoluble aggregates-a pathological hallmark of both sporadic and familial ALS. Here, we summarize how the emerging knowledge about the LLPS of ALS-related proteins corroborates with their aggregation. Understanding the mechanisms that lead to protein aggregation in ALS and how cells respond to these aggregates promises to open new directions for drug development.
Collapse
Affiliation(s)
- Katarina Milicevic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Danijela Bataveljic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
7
|
Pervaiz I, Al-Ahmad AJ. In Vitro Models of the Human Blood-Brain Barrier Utilising Human Induced Pluripotent Stem Cells: Opportunities and Challenges. Methods Mol Biol 2022; 2492:53-72. [PMID: 35733038 DOI: 10.1007/978-1-0716-2289-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) is a component of the neurovascular unit formed by specialized brain microvascular endothelial cells surrounded by astrocytes end-feet processes, pericytes, and a basement membrane. The BBB plays an important role in the maintenance of brain homeostasis and has seen a growing involvement in the pathophysiology of various neurological diseases. On the other hand, the presence of such a barrier remains an important challenge for drug delivery to treat such illnesses.Since the pioneering work describing the isolation and cultivation of primary brain microvascular cells about 50 years ago until now, the development of an in vitro model of the BBB that is scalable, capable to form tight monolayers, and predictive of drug permeability in vivo remained extremely challenging.The recent description of the use of induced pluripotent stem cells (iPSCs) as a modeling tool for neurological diseases raised momentum into the use of such cells to develop new in vitro models of the BBB. This chapter will provide an exhaustive description of the use of iPSCs as a source of cells for modeling the BBB in vitro, describe the advantages and limitations of such model, as well as describe their prospective use for disease modeling and drug permeability screening platforms.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
8
|
Iacovitti L. On the Road from Phenotypic Plasticity to Stem Cell Therapy. J Neurosci 2021; 41:5331-5337. [PMID: 33958488 PMCID: PMC8221603 DOI: 10.1523/jneurosci.0340-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of The Journal of Neuroscience with my postdoctoral mentor, Richard Bunge. At that time, the long-standing belief that each neuron expressed only one neurotransmitter, known as Dale's Principle (Dale, 1935), was being hotly debated following a report by French embryologist Nicole Le Douarin showing that neural crest cells destined for one transmitter phenotype could express characteristics of another if transplanted to alternate sites in the developing embryo (Le Douarin, 1980). In the Bunge laboratory, we were able to more directly test the question of phenotypic plasticity in the controlled environment of the tissue culture dish. Thus, in our paper, we grew autonomic catecholaminergic neurons in culture under conditions which promoted the acquisition of cholinergic traits and showed that cells did not abandon their inherited phenotype to adopt a new one but instead were capable of dual transmitter expression. In this Progressions article, I detail the path that led to these findings and how this study impacted the direction I followed for the next 40 years. This is my journey from phenotypic plasticity to the promise of a stem cell therapy.
Collapse
Affiliation(s)
- Lorraine Iacovitti
- Department of Neuroscience, Director, Jefferson Stem Cell and Regenerative Neuroscience Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
9
|
Charvériat M, Lafon V, Mouthon F, Zimmer L. Innovative approaches in CNS drug discovery. Therapie 2021; 76:101-109. [DOI: 10.1016/j.therap.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
10
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
11
|
Sato T, Imaizumi K, Watanabe H, Ishikawa M, Okano H. Generation of region-specific and high-purity neurons from human feeder-free iPSCs. Neurosci Lett 2021; 746:135676. [PMID: 33516803 DOI: 10.1016/j.neulet.2021.135676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/01/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) have great potential to elucidate the molecular pathogenesis of neurological/psychiatric diseases. In particular, neurological/psychiatric diseases often display brain region-specific symptoms, and the technology for generating region-specific neural cells from iPSCs has been established for detailed modeling of neurological/psychiatric disease phenotypes in vitro. On the other hand, recent advances in culturing human iPSCs without feeder cells have enabled highly efficient and reproducible neural induction. However, conventional regional control technologies have mainly been developed based on on-feeder iPSCs, and these methods are difficult to apply to feeder-free (ff) iPSC cultures. In this study, we established a novel culture system to generate region-specific neural cells from human ff-iPSCs. This system is the best optimized approach for feeder-free iPSC culture and generates specific neuronal subtypes with high purity and functionality, including forebrain cortical neurons, forebrain interneurons, midbrain dopaminergic neurons, and spinal motor neurons. In addition, the temporal patterning of cortical neuron layer specification in the forebrain was reproduced in our culture system, which enables the generation of layer-specific cortical neurons. Neuronal activity was demonstrated in the present culture system by using multiple electrode array and calcium imaging. Collectively, our ff-iPSC-based culture system would provide a desirable platform for modeling various types of neurological/psychiatric disease phenotypes.
Collapse
Affiliation(s)
- Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Imaizumi K, Okano H. Modeling neurodevelopment in a dish with pluripotent stem cells. Dev Growth Differ 2021; 63:18-25. [PMID: 33141454 PMCID: PMC7984205 DOI: 10.1111/dgd.12699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Pluripotent stem cells (PSCs) can differentiate into all cell types in the body, and their differentiation procedures recapitulate the developmental processes of embryogenesis. Focusing on neurodevelopment, we describe here the application of knowledge gained from embryology to the neural induction of PSCs. Furthermore, PSC-based neural modeling provides novel insights into neurodevelopmental processes. In particular, human PSC cultures are a powerful tool for the study of human-specific neurodevelopmental processes and could even enable the elucidation of the mechanisms of human brain evolution. We also discuss challenges and potential future directions in further improving PSC-based neural modeling.
Collapse
Affiliation(s)
- Kent Imaizumi
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
13
|
Arioka Y, Shishido E, Kushima I, Suzuki T, Saito R, Aiba A, Mori D, Ozaki N. Chromosome 22q11.2 deletion causes PERK-dependent vulnerability in dopaminergic neurons. EBioMedicine 2020; 63:103138. [PMID: 33341442 PMCID: PMC7753137 DOI: 10.1016/j.ebiom.2020.103138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background The chromosome 22q11.2 deletion is an extremely high risk genetic factor for various neuropsychiatric disorders; however, the 22q11.2 deletion-related brain pathology in humans at the cellular and molecular levels remains unclear. Methods We generated iPS cells from healthy controls (control group) and patients with 22q11.2 deletion (22DS group), and differentiated them into dopaminergic neurons. Semiquantitative proteomic analysis was performed to compare the two groups. Next, we conducted molecular, cell biological and pharmacological assays. Findings Semiquantitative proteomic analysis identified ‘protein processing in the endoplasmic reticulum (ER)’ as the most altered pathway in the 22DS group. In particular, we found a severe defect in protein kinase R-like endoplasmic reticulum kinase (PERK) expression and its activity in the 22DS group. The decreased PERK expression was also shown in the midbrain of a 22q11.2 deletion mouse model. The 22DS group showed characteristic phenotypes, including poor tolerance to ER stress, abnormal F-actin dynamics, and decrease in protein synthesis. Some of phenotypes were rescued by the pharmacological manipulation of PERK activity and phenocopied in PERK-deficient dopaminergic neurons. We lastly showed that DGCR14 was associated with reduction in PERK expression. Interpretation Our findings led us to conclude that the 22q11.2 deletion causes various vulnerabilities in dopaminergic neurons, dependent on PERK dysfunction. Funding This study was supported by the 10.13039/100010463AMED under grant nos JP20dm0107087, JP20dm0207075, JP20ak0101113, JP20dk0307081, and JP18dm0207004h0005; the MEXT KAKENHI under grant nos. 16K19760, 19K08015, 18H04040, and 18K19511; the 10.13039/100008732Uehara Memorial Foundation under grant no. 201810122; and 2019 iPS Academia Japan Grant.
Collapse
Affiliation(s)
- Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Emiko Shishido
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; National Institute for Physiological Sciences, Okazaki, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Toshiaki Suzuki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Saito
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
14
|
BrainPhys neuronal medium optimized for imaging and optogenetics in vitro. Nat Commun 2020; 11:5550. [PMID: 33144563 PMCID: PMC7642238 DOI: 10.1038/s41467-020-19275-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function. Current media for neuronal cell and organoid cultures are suboptimal for functional imaging and optogenetics experiments, owing to phototoxicity and unphysiological performance. Here the authors formulate an optimised neuronal medium to support live cell imaging and electrophysiological activity.
Collapse
|
15
|
Tomaskovic-Crook E, Gu Q, Rahim SNA, Wallace GG, Crook JM. Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. Cells 2020; 9:cells9030658. [PMID: 32182797 PMCID: PMC7140718 DOI: 10.3390/cells9030658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Electrical stimulation is increasingly being used to modulate human cell behaviour for biotechnological research and therapeutics. Electrically conductive polymers (CPs) such as polypyrrole (PPy) are amenable to in vitro and in vivo cell stimulation, being easy to synthesise with different counter ions (dopants) to augment biocompatibility and cell-effects. Extending our earlier work, which showed that CP-mediated electrical stimulation promotes human neural stem cell differentiation, here we report using electroactive PPy containing the anionic dopant dodecylbenzenesulfonate (DBS) to modulate the fate determination of human induced pluripotent stem cells (iPSCs). Remarkably, the stimulation without conventional chemical inducers resulted in the iPSCs differentiating to cells of the three germ lineages-endoderm, ectoderm, and mesoderm. The unstimulated iPSC controls remained undifferentiated. Phenotypic characterisation further showed a robust induction to neuronal fate with electrical stimulation, again without customary chemical inducers. Our findings add to the growing body of evidence supporting the use of electrical stimulation to augment stem cell differentiation, more specifically, pluripotent stem cell differentiation, and especially neuronal induction. Moreover, we have shown the versatility of electroactive PPy as a cell-compatible platform for advanced stem cell research and translation, including identifying novel mechanisms of fate regulation, tissue development, electroceuticals, and regenerative medicine.
Collapse
Affiliation(s)
- Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, Australia
| | - Qi Gu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100000 Beijing, China
| | - Siti N Abdul Rahim
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- Correspondence: (G.G.W.); (J.M.C.); Tel.: +61-2-4221-3127 (G.G.W.); +61-2-4221-3011 (J.M.C.)
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500 Wollongong, Australia; (E.T.-C.); (Q.G.); (S.N.A.R.)
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, 3065 Fitzroy, Australia
- Correspondence: (G.G.W.); (J.M.C.); Tel.: +61-2-4221-3127 (G.G.W.); +61-2-4221-3011 (J.M.C.)
| |
Collapse
|
16
|
Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. J Neuroimmunol 2018; 331:36-45. [PMID: 30195439 DOI: 10.1016/j.jneuroim.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease, where neural progenitor cell (NPC) transplantation has been suggested as a potential neuroprotective therapeutic strategy. Since the effect of inflammation on NPCs is poorly known, their effect on the survival and functionality of human NPCs were studied. Treatment with interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ did not induced cytotoxicity, but IFN-γ treatment showed decreased proliferation and neuronal migration. By contrast, increased proliferation and inhibition of electrical activity were detected after TNF-α treatment. Treatments induced secretion of inflammatory factors. Inflammatory cytokines appear to modulate proliferation as well as the cellular and functional properties of human NPCs.
Collapse
|
17
|
Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 2018; 24:1579-1589. [PMID: 30127392 DOI: 10.1038/s41591-018-0140-5] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease for which no effective treatment is available, despite decades of research into SOD1-mutant familial ALS (FALS). The majority of ALS patients have no familial history, making the modeling of sporadic ALS (SALS) essential to the development of ALS therapeutics. However, as mutations underlying ALS pathogenesis have not yet been identified, it remains difficult to establish useful models of SALS. Using induced pluripotent stem cell (iPSC) technology to generate stem and differentiated cells retaining the patients' full genetic information, we have established a large number of in vitro cellular models of SALS. These models showed phenotypic differences in their pattern of neuronal degeneration, types of abnormal protein aggregates, cell death mechanisms, and onset and progression of these phenotypes in vitro among cases. We therefore developed a system for case clustering capable of subdividing these heterogeneous SALS models by their in vitro characteristics. We further evaluated multiple-phenotype rescue of these subclassified SALS models using agents selected from non-SOD1 FALS models, and identified ropinirole as a potential therapeutic candidate. Integration of the datasets acquired in this study permitted the visualization of molecular pathologies shared across a wide range of SALS models.
Collapse
|
18
|
Rostrocaudal Areal Patterning of Human PSC-Derived Cortical Neurons by FGF8 Signaling. eNeuro 2018; 5:eN-NWR-0368-17. [PMID: 29707616 PMCID: PMC5917473 DOI: 10.1523/eneuro.0368-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
The cerebral cortex is subdivided into distinct areas that have particular functions. The rostrocaudal (R-C) gradient of fibroblast growth factor 8 (FGF8) signaling defines this areal identity during neural development. In this study, we recapitulated cortical R-C patterning in human pluripotent stem cell (PSC) cultures. Modulation of FGF8 signaling appropriately regulated the R-C markers, and the patterns of global gene expression resembled those of the corresponding areas of human fetal brains. Furthermore, we demonstrated the utility of this culture system in modeling the area-specific forebrain phenotypes [presumptive upper motor neuron (UMN) phenotypes] of amyotrophic lateral sclerosis (ALS). We anticipate that our culture system will contribute to studies of human neurodevelopment and neurological disease modeling.
Collapse
|
19
|
Hoashi Y, Okamoto S, Abe Y, Matsumoto T, Tanaka J, Yoshida Y, Imaizumi K, Mishima K, Akamatsu W, Okano H, Baba K. Generation of neural cells using iPSCs from sleep bruxism patients with 5-HT2A polymorphism. J Prosthodont Res 2017; 61:242-250. [PMID: 27916472 DOI: 10.1016/j.jpor.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Sleep bruxism (SB) is classified as a sleep-related movement disorder characterized by grinding and clenching of the teeth during sleep, which is responsible for a variety of clinical problems such as abnormal tooth attrition and fracture of teeth or roots. Little is known about the etiology of SB. Our previous study identified a genomic association of the serotonin 2A receptor (5-HT2A) single nucleotide polymorphism (SNP), rs6313 C>T, with SB, where the C allele carrier is associated with a 4.25-fold increased risk of SB. Based on this finding, the aim of this study was to generate of neural cells using SB patient-specific induced pluripotent stem cells (iPSCs). METHODS Two SB patients with C/C genotype of rs6313 and two controls with T/T genotype were screened by laboratory-based polysomnographic recordings and the TaqMan genotyping assay. Four lines of iPSCs, two from SB patients and two from controls, were established from peripheral blood mononuclear cells by introduction of reprogramming factors. We performed quality control assays on iPSCs using expression of markers for undifferentiated pluripotent cells, immunostaining for pluripotency markers, a three-germ layer assay, and karyotype analysis. The established iPSCs were differentiated into neurons using the neurosphere culture system. 5-HT2A gene expression in these neurons was evaluated by quantitative real-time PCR. RESULTS Patient-specific iPSCs were successfully differentiated into neurons expressing 5-HT2A. CONCLUSIONS This report is the first successful generation of neural cells using iPSCs from sleep bruxism patients with 5-HT2A polymorphism, which has the potential to elucidate the etiology and underlying mechanism of SB.
Collapse
Affiliation(s)
- Yurie Hoashi
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuka Abe
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Takashi Matsumoto
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo, Japan
| | - Yuya Yoshida
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuyoshi Baba
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
20
|
An inner nuclear membrane protein induces rapid differentiation of human induced pluripotent stem cells. Stem Cell Res 2017; 23:33-38. [DOI: 10.1016/j.scr.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
|
21
|
Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, Garcia VJ, Ho R, Yucer N, Qian T, Lim RG, Wu J, Thompson LM, Spivia WR, Chen Z, Van Eyk J, Palecek SP, Refetoff S, Shusta EV, Svendsen CN. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell 2017; 20:831-843.e5. [PMID: 28526555 PMCID: PMC6659720 DOI: 10.1016/j.stem.2017.04.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/29/2016] [Accepted: 04/07/2017] [Indexed: 12/27/2022]
Abstract
Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gad D Vatine
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Abraham Al-Ahmad
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bianca K Barriga
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Soshana Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ariel Salim
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leslie Garcia
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Veronica J Garcia
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nur Yucer
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI), Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine (UCI), Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Weston R Spivia
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
22
|
Abstract
Diseases of glia, including astrocytes and oligodendrocytes, are among the most prevalent and disabling, yet least appreciated, conditions in neurology. In recent years, it has become clear that besides the overtly glial disorders of oligodendrocyte loss and myelin failure, such as the leukodystrophies and inflammatory demyelinations, a number of neurodegenerative and psychiatric disorders may also be causally linked to glial dysfunction and derive from astrocytic as well as oligodendrocytic pathology. The relative contribution of glial dysfunction to many of these disorders may be so great as to allow their treatment by the delivery of allogeneic glial progenitor cells, the precursors to both astroglia and myelin-producing oligodendrocytes. Given the development of new methods for producing and isolating these cells from pluripotent stem cells, both the myelin disorders and appropriate glial-based neurodegenerative conditions may now be compelling targets for cell-based therapy. As such, glial cell-based therapies may offer potential benefit to a broader range of diseases than ever before contemplated, including disorders such as Huntington's disease and the motor neuron degeneration of amyotrophic lateral sclerosis, which have traditionally been considered neuronal in nature.
Collapse
|
23
|
Murakami N, Imamura K, Izumi Y, Egawa N, Tsukita K, Enami T, Yamamoto T, Kawarai T, Kaji R, Inoue H. Proteasome impairment in neural cells derived from HMSN-P patient iPSCs. Mol Brain 2017; 10:7. [PMID: 28196470 PMCID: PMC5310050 DOI: 10.1186/s13041-017-0286-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/21/2017] [Indexed: 01/01/2023] Open
Abstract
Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a heterozygous mutation (P285L) in Tropomyosin-receptor kinase Fused Gene (TFG), histopathologically characterized by progressive spinal motor neuron loss with TFG cytosolic aggregates. Although the TFG protein, found as a type of fusion oncoprotein, is known to facilitate vesicle transport from endoplasmic reticulum (ER) to Golgi apparatus at ER exit site, it is unclear how mutant TFG causes motor neuron degeneration. Here we generated induced pluripotent stem cells (iPSCs) from HMSN-P patients, and differentiated the iPSCs into neural cells with spinal motor neurons (iPS-MNs). We found that HMSN-P patient iPS-MNs exhibited ubiquitin proteasome system (UPS) impairment, and HMSN-P patient iPS-MNs were vulnerable to UPS inhibitory stress. Gene correction of the mutation in TFG using the CRISPR-Cas9 system reverted the cellular phenotypes of HMSN-P patient iPS-MNs. Collectively, these results suggest that our cellular model with defects in cellular integrity including UPS impairments may lead to identification of pathomechanisms and a therapeutic target for HMSN-P.
Collapse
Affiliation(s)
- Nagahisa Murakami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Naohiro Egawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
24
|
Pen AE, Jensen UB. Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurol Scand 2017; 135:57-72. [PMID: 26748435 DOI: 10.1111/ane.12545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- A. E. Pen
- Department of Molecular Biology and Genetics; Aarhus University; Tjele Denmark
| | - U. B. Jensen
- Department of Clinical Genetics; Aarhus University Hospital; Skejby Denmark
| |
Collapse
|
25
|
Fujimori K, Tezuka T, Ishiura H, Mitsui J, Doi K, Yoshimura J, Tada H, Matsumoto T, Isoda M, Hashimoto R, Hattori N, Takahashi T, Morishita S, Tsuji S, Akamatsu W, Okano H. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Mol Brain 2016; 9:88. [PMID: 27716287 PMCID: PMC5046991 DOI: 10.1186/s13041-016-0267-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) facilitate understanding of the etiology of diseases, discovery of new drugs and development of novel therapeutic interventions. A frequently used starting source of cells for generating iPSCs has been dermal fibroblasts (DFs) isolated from skin biopsies. However, there are also numerous repositories containing lymphoblastoid B-cell lines (LCLs) generated from a variety of patients. To date, this rich bioresource of LCLs has been underused for generating iPSCs, and its use would greatly expand the range of targeted diseases that could be studied by using patient-specific iPSCs. However, it remains unclear whether patient’s LCL-derived iPSCs (LiPSCs) can function as a disease model. Therefore, we generated Parkinson’s disease patient-specific LiPSCs and evaluated their utility as tools for modeling neurological diseases. We established iPSCs from two LCL clones, which were derived from a healthy donor and a patient carrying PARK2 mutations, by using existing non-integrating episomal protocols. Whole genome sequencing (WGS) and comparative genomic hybridization (CGH) analyses showed that the appearance of somatic variations in the genomes of the iPSCs did not vary substantially according to the original cell types (LCLs, T-cells and fibroblasts). Furthermore, LiPSCs could be differentiated into functional neurons by using the direct neurosphere conversion method (dNS method), and they showed several Parkinson’s disease phenotypes that were similar to those of DF-iPSCs. These data indicate that the global LCL repositories can be used as a resource for generating iPSCs and disease models. Thus, LCLs are the powerful tools for generating iPSCs and modeling neurological diseases.
Collapse
Affiliation(s)
- Koki Fujimori
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiki Tezuka
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0882, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0882, Japan
| | - Hirobumi Tada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Kanagawa, 236-0027, Japan.,Department of Integrative Aging Neuroscience, Section of Neuroendocrinology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Kanagawa, 210-8681, Japan
| | - Miho Isoda
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita-shi, Osaka, 565-0871, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita-shi, Osaka, 565-0871, Japan
| | - Nubutaka Hattori
- Department of Neurology, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Kanagawa, 236-0027, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0882, Japan.,Medical Genome Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Medical Genome Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Wado Akamatsu
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Center for Genomic and Regenerative Medicine, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
26
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
27
|
Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:496-510. [PMID: 26997647 PMCID: PMC4834049 DOI: 10.1016/j.stemcr.2016.02.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
Collapse
Affiliation(s)
- Naoki Ichiyanagi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koki Fujimori
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan.
| | - Chikako Ishihara-Fujisaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yohei Okada
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi 480-1195, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduated School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Matsumoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshinori Nishimoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
28
|
Mahairaki V, Ryu J, Peters A, Chang Q, Li T, Park TS, Burridge PW, Talbot CC, Asnaghi L, Martin LJ, Zambidis ET, Koliatsos VE. Induced pluripotent stem cells from familial Alzheimer's disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev 2015; 23:2996-3010. [PMID: 25027006 DOI: 10.1089/scd.2013.0511] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although the majority of Alzheimer's disease (AD) cases are sporadic, about 5% of cases are inherited in an autosomal dominant pattern as familial AD (FAD) and manifest at an early age. Mutations in the presenilin 1 (PSEN1) gene account for the majority of early-onset FAD. Here, we describe the generation of virus-free human induced pluripotent stem cells (hiPSCs) derived from fibroblasts of patients harboring the FAD PSEN1 mutation A246E and fibroblasts from healthy age-matched controls using nonintegrating episomal vectors. We have differentiated these hiPSC lines to the neuronal lineage and demonstrated that hiPSC-derived neurons have mature phenotypic and physiological properties. Neurons from mutant hiPSC lines express PSEN1-A246E mutations themselves and show AD-like biochemical features, that is, amyloidogenic processing of amyloid precursor protein (APP) indicated by an increase in β-amyloid (Aβ)42/Aβ40 ratio. FAD hiPSCs harboring disease properties can be used as humanized models to test novel diagnostic methods and therapies and explore novel hypotheses for AD pathogenesis.
Collapse
Affiliation(s)
- Vasiliki Mahairaki
- 1 Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Reports 2015; 5:1010-1022. [PMID: 26549851 PMCID: PMC4682123 DOI: 10.1016/j.stemcr.2015.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
The CNS contains many diverse neuronal subtypes, and most neurological diseases target specific subtypes. However, the mechanism of neuronal subtype specificity of disease phenotypes remains elusive. Although in vitro disease models employing human pluripotent stem cells (PSCs) have great potential to clarify the association of neuronal subtypes with disease, it is currently difficult to compare various PSC-derived subtypes. This is due to the limited number of subtypes whose induction is established, and different cultivation protocols for each subtype. Here, we report a culture system to control the regional identity of PSC-derived neurons along the anteroposterior (A-P) and dorsoventral (D-V) axes. This system was successfully used to obtain various neuronal subtypes based on the same protocol. Furthermore, we reproduced subtype-specific phenotypes of amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) by comparing the obtained subtypes. Therefore, our culture system provides new opportunities for modeling neurological diseases with PSCs. The regional identity of PSC-derived neurons can be controlled precisely Phenotypes between different neuronal subtypes were compared successfully Neuronal subtype-specific phenotypes of ALS and AD were reproduced in vitro A novel tool is offered to study subtype specificity of disease phenotypes
Collapse
|
30
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
31
|
Hew M, O'Connor K, Edel MJ, Lucas M. The Possible Future Roles for iPSC-Derived Therapy for Autoimmune Diseases. J Clin Med 2015; 4:1193-206. [PMID: 26239553 PMCID: PMC4484994 DOI: 10.3390/jcm4061193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
The ability to generate inducible pluripotent stem cells (iPSCs) and the potential for their use in treatment of human disease is of immense interest. Autoimmune diseases, with their limited treatment choices are a potential target for the clinical application of stem cell and iPSC technology. IPSCs provide three potential ways of treating autoimmune disease; (i) providing pure replacement of lost cells (immuno-reconstitution); (ii) through immune-modulation of the disease process in vivo; and (iii) for the purposes of disease modeling in vitro. In this review, we will use examples of systemic, system-specific and organ-specific autoimmunity to explore the potential applications of iPSCs for treatment of autoimmune diseases and review the evidence of iPSC technology in auto-immunity to date.
Collapse
Affiliation(s)
- Meilyn Hew
- Department of Clinical Immunology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth 6009, Western Australia, Australia.
| | - Kevin O'Connor
- Department of Clinical Immunology, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, Barcelona 08036, Spain.
- Victor Chang Cardiac Research Institute, Sydney, 2010, New South Wales, Australia.
- School of Medicine and Pharmacology, Anatomy, Physiology and Human Biology, CCTRM, University of Western Australia, Perth, 6009, Western Australia, Australia.
| | - Michaela Lucas
- Department of Clinical Immunology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth 6009, Western Australia, Australia.
- School of Medicine and Pharmacology and School of Pathology and Laboratory Medicine, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, 6009, Western Australia, Australia.
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, 6150, Western Australia.
| |
Collapse
|
32
|
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, although this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granular neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet, remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this review, we will review the biology of remyelination, including the cells and signals involved; describe when remyelination occurs and when and why it fails and the consequences of its failure; and discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642 University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
33
|
Okano H. Stem cell research and regenerative medicine in 2014: first year of regenerative medicine in Japan. Stem Cells Dev 2015; 23:2127-8. [PMID: 25192239 DOI: 10.1089/scd.2014.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is my great pleasure to announce that we were able to publish the Japan Issue in Stem Cells and Development, especially in this year 2014. This year, 2014, is said to be the First Year of Regenerative Medicine in Japan. This movement is likely to be based on the establishment of a new law system regarding regenerative medicine (an Act for Ensuring the Safety of Regenerative Medicine or the so-called Regenerative Medicine Law) and the partial revision of the Pharmaceutical Affairs Law (PAL). Both laws will come into effect in 2014 in this country. These new law systems are expected to have a great impact on the facilitation of R&D related to regenerative medicine and stem cell biology. In the present Japan Issue, some excellent stem cell research in this country will be introduced to celebrate the First Year of Regenerative Medicine in Japan.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
34
|
Mattis VB, Tom C, Akimov S, Saeedian J, Østergaard ME, Southwell AL, Doty CN, Ornelas L, Sahabian A, Lenaeus L, Mandefro B, Sareen D, Arjomand J, Hayden MR, Ross CA, Svendsen CN. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 2015; 24:3257-71. [PMID: 25740845 DOI: 10.1093/hmg/ddv080] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/02/2015] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics.
Collapse
Affiliation(s)
- Virginia B Mattis
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Colton Tom
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Sergey Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jasmine Saeedian
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | | | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada and
| | - Crystal N Doty
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada and
| | - Loren Ornelas
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Anais Sahabian
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Lindsay Lenaeus
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Berhan Mandefro
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Dhruv Sareen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada and
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| |
Collapse
|
35
|
Sakthiswary R, Raymond AA. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen Res 2015; 7:1822-31. [PMID: 25624807 PMCID: PMC4302533 DOI: 10.3969/j.issn.1673-5374.2012.23.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022] Open
Abstract
The lack of curative therapies for neurodegenerative diseases has high economic impact and places huge burden on the society. The contribution of stem cells to cure neurodegenerative diseases has been unraveled and explored extensively over the past few years. Beyond substitution of the lost neurons, stem cells act as immunomodulators and neuroprotectors. A large number of preclinical and a small number of clinical studies have shown beneficial outcomes in this context. In this review, we have summarized the current concepts of stem cell therapy in neurodegenerative diseases and the recent advances in this field, particularly between 2010 and 2012. Further studies should be encouraged to resolve the clinical issues and vague translational findings for maximum optimization of the efficacy of stem cell therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajalingham Sakthiswary
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Azman Ali Raymond
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Young JS, Kim JW, Ahmed AU, Lesniak MS. Therapeutic cell carriers: a potential road to cure glioma. Expert Rev Neurother 2015; 14:651-60. [PMID: 24852229 DOI: 10.1586/14737175.2014.917964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many different experimental molecular therapeutic approaches have been evaluated in an attempt to treat brain cancer. However, despite the success of these experimental molecular therapies, research has shown that the specific and efficient delivery of therapeutic agents to tumor cells is a limitation. In this regard, cell carrier systems have garnered significant attraction due to their capacity to be loaded with therapeutic agents and carry them specifically to tumor sites. Furthermore, cell carriers can be genetically modified to express therapeutic agents that can directly eradicate cancerous cells or can modulate tumor microenvironments. This review describes the current state of cell carriers, their use as vehicles for the delivery of therapeutic agents to brain tumors, and future directions that will help overcome the present obstacles to cell carrier mediated therapy for brain cancer.
Collapse
Affiliation(s)
- Jacob S Young
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
37
|
Datta D, Kim KS. Induced Pluripotent Stem Cells (iPSCs) to Study and Treat Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Rosner M, Hengstschläger M. Intercellular protein expression variability as a feature of stem cell pluripotency. Amino Acids 2014; 45:1315-7. [PMID: 24077670 DOI: 10.1007/s00726-013-1599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/18/2013] [Indexed: 11/28/2022]
Abstract
The expression of pluripotent stem cell protein markers, self-renewal, the potential to differentiate in cell types of all three germlines and teratoma formation in nude mice form the spectrum of the stringent pluripotency criteria for human stem cells. Currently, intercellular variability is discussed as an additional putative defining property of pluripotent stem cells. In future, it will be of relevance to clarify the genesis of intercellular variability for each stem cell line/population before its application in basic science or therapy. Furthermore, for a better understanding of stemness it will be indispensable to separately investigate the issue of intercellular variability for each feature of pluripotency.
Collapse
|
39
|
Pluripotent stem cell-based models of spinal muscular atrophy. Mol Cell Neurosci 2014; 64:44-50. [PMID: 25511182 DOI: 10.1016/j.mcn.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Motor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models. Research on patient-derived disease-specific cells may shed light on the pathological processes behind neuronal dysfunction and death in SMA, thus providing new insights for the development of novel effective therapies.
Collapse
|
40
|
Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases. Mol Neurobiol 2014; 52:244-55. [DOI: 10.1007/s12035-014-8867-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
|
41
|
Ohgidani M, Kato TA, Setoyama D, Sagata N, Hashimoto R, Shigenobu K, Yoshida T, Hayakawa K, Shimokawa N, Miura D, Utsumi H, Kanba S. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci Rep 2014; 4:4957. [PMID: 24825127 PMCID: PMC4019954 DOI: 10.1038/srep04957] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/22/2014] [Indexed: 01/10/2023] Open
Abstract
Microglia have been implicated in various neurological and psychiatric disorders in rodent and human postmortem studies. However, the dynamic actions of microglia in the living human brain have not been clarified due to a lack of studies dealing with in situ microglia. Herein, we present a novel technique for developing induced microglia-like (iMG) cells from human peripheral blood cells. An optimized cocktail of cytokines, GM-CSF and IL-34, converted human monocytes into iMG cells within 14 days. The iMG cells have microglial characterizations; expressing markers, forming a ramified morphology, and phagocytic activity with various cytokine releases. To confirm clinical utilities, we developed iMG cells from a patient of Nasu-Hakola disease (NHD), which is suggested to be directly caused by microglial dysfunction, and observed that these cells from NHD express delayed but stronger inflammatory responses compared with those from the healthy control. Altogether, the iMG-technique promises to elucidate unresolved aspects of human microglia in various brain disorders.
Collapse
Affiliation(s)
- Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| | - Takahiro A Kato
- 1] Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University [2] Innovation Center for Medical Redox Navigation, Kyushu University
| | - Daiki Setoyama
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| | - Ryota Hashimoto
- 1] Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University [2] Department of Psychiatry, Osaka University Graduate School of Medicine
| | | | - Tetsuhiko Yoshida
- Department of Psychiatry, Osaka University Graduate School of Medicine
| | - Kohei Hayakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| | - Norihiro Shimokawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
42
|
Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell Tissue Res 2014; 357:1-13. [DOI: 10.1007/s00441-014-1840-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/31/2014] [Indexed: 01/15/2023]
|
43
|
Compagnucci C, Nizzardo M, Corti S, Zanni G, Bertini E. In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci 2014; 71:1623-39. [PMID: 24252976 PMCID: PMC11113522 DOI: 10.1007/s00018-013-1511-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesù Children's Research Hospital, IRCCS, 0165, Rome, Italy,
| | | | | | | | | |
Collapse
|
44
|
McGivern JV, Ebert AD. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 2014; 69-70:170-8. [PMID: 24309014 DOI: 10.1016/j.addr.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
Collapse
|
45
|
Okano H, Yamanaka S. iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 2014; 7:22. [PMID: 24685317 PMCID: PMC3977688 DOI: 10.1186/1756-6606-7-22] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/26/2014] [Indexed: 02/08/2023] Open
Abstract
In 2006, we demonstrated that mature somatic cells can be reprogrammed to a pluripotent state by gene transfer, generating induced pluripotent stem (iPS) cells. Since that time, there has been an enormous increase in interest regarding the application of iPS cell technologies to medical science, in particular for regenerative medicine and human disease modeling. In this review article, we outline the current status of applications of iPS technology to cell therapies (particularly for spinal cord injury), as well as neurological disease-specific iPS cell research (particularly for Parkinson’s disease and Alzheimer’s disease). Finally, future directions of iPS cell research are discussed including a) development of an accurate assay system for disease-associated phenotypes, b) demonstration of causative relationships between genotypes and phenotypes by genome editing, c) application to sporadic and common diseases, and d) application to preemptive medicine.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | |
Collapse
|
46
|
Nanomedicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine. Int J Mol Sci 2014; 15:3904-25. [PMID: 24599081 PMCID: PMC3975375 DOI: 10.3390/ijms15033904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 01/16/2023] Open
Abstract
In recent decades, nanotechnology has attracted major interests in view of drug delivery systems and therapies against diseases, such as cancer, neurodegenerative diseases, and many others. Nanotechnology provides the opportunity for nanoscale particles or molecules (so called “Nanomedicine”) to be delivered to the targeted sites, thereby, reducing toxicity (or side effects) and improving drug bioavailability. Nowadays, a great deal of nano-structured particles/vehicles has been discovered, including polymeric nanoparticles, lipid-based nanoparticles, and mesoporous silica nanoparticles. Nanomedical utilizations have already been well developed in many different aspects, including disease treatment, diagnostic, medical devices designing, and visualization (i.e., cell trafficking). However, while quite a few successful progressions on chemotherapy using nanotechnology have been developed, the implementations of nanoparticles on stem cell research are still sparsely populated. Stem cell applications and therapies are being considered to offer an outstanding potential in the treatment for numbers of maladies. Human induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem cell-like state. Although the exact mechanisms underlying are still unclear, iPSCs are already being considered as useful tools for drug development/screening and modeling of diseases. Recently, personalized medicines have drawn great attentions in biological and pharmaceutical studies. Generally speaking, personalized medicine is a therapeutic model that offers a customized healthcare/cure being tailored to a specific patient based on his own genetic information. Consequently, the combination of nanomedicine and iPSCs could actually be the potent arms for remedies in transplantation medicine and personalized medicine. This review will focus on current use of nanoparticles on therapeutical applications, nanomedicine-based neuroprotective manipulations in patient specific-iPSCs and personalized medicine.
Collapse
|
47
|
Chen HM, DeLong CJ, Bame M, Rajapakse I, Herron TJ, McInnis MG, O'Shea KS. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl Psychiatry 2014; 4:e375. [PMID: 25116795 PMCID: PMC3966040 DOI: 10.1038/tp.2014.12] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BP) is a chronic psychiatric condition characterized by dynamic, pathological mood fluctuations from mania to depression. To date, a major challenge in studying human neuropsychiatric conditions such as BP has been limited access to viable central nervous system tissue to examine disease progression. Patient-derived induced pluripotent stem cells (iPSCs) now offer an opportunity to analyze the full compliment of neural tissues and the prospect of identifying novel disease mechanisms. We have examined changes in gene expression as iPSC derived from well-characterized patients differentiate into neurons; there was little difference in the transcriptome of iPSC, but BP neurons were significantly different than controls in their transcriptional profile. Expression of transcripts for membrane bound receptors and ion channels was significantly increased in BP-derived neurons compared with controls, and we found that lithium pretreatment of BP neurons significantly altered their calcium transient and wave amplitude. The expression of transcription factors involved in the specification of telencephalic neuronal identity was also altered. Control neurons expressed transcripts that confer dorsal telencephalic fate, whereas BP neurons expressed genes involved in the differentiation of ventral (medial ganglionic eminence) regions. Cells were responsive to dorsal/ventral patterning cues, as addition of the Hedgehog (ventral) pathway activator purmorphamine or a dorsalizing agent (lithium) stimulated expression of NKX2-1 (ventral identity) or EMX2 (dorsal) in both groups. Cell-based models should have a significant impact on our understanding of the genesis and therefore treatment of BP; the iPSC cell lines themselves provide an important resource for comparison with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- H M Chen
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - C J DeLong
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - I Rajapakse
- Center for Computational Medicine & Bioinformatics, Department of Mathematics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T J Herron
- Department of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M G McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K S O'Shea
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Cell and Developmental Biology, University of Michigan Medical School, 3051 BSRB, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA. E-mail:
| |
Collapse
|
48
|
Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol Biol Rep 2014; 41:1713-21. [DOI: 10.1007/s11033-014-3020-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/02/2014] [Indexed: 12/27/2022]
|
49
|
Mattis VB, Wakeman DR, Tom C, Dodiya HB, Yeung SY, Tran AH, Bernau K, Ornelas L, Sahabian A, Reidling J, Sareen D, Thompson LM, Kordower JH, Svendsen CN. Neonatal immune-tolerance in mice does not prevent xenograft rejection. Exp Neurol 2014; 254:90-8. [PMID: 24440640 DOI: 10.1016/j.expneurol.2014.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/24/2022]
Abstract
Assessing the efficacy of human stem cell transplantation in rodent models is complicated by the significant immune rejection that occurs. Two recent reports have shown conflicting results using neonatal tolerance to xenografts in rats. Here we extend this approach to mice and assess whether neonatal tolerance can prevent the rapid rejection of xenografts. In three strains of neonatal immune-intact mice, using two different brain transplant regimes and three independent stem cell types, we conclusively show that there is rapid rejection of the implanted cells. We also address specific challenges associated with the generation of humanized mouse models of disease.
Collapse
Affiliation(s)
- Virginia B Mattis
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Colton Tom
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | | - Loren Ornelas
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anais Sahabian
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Clive N Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Mertens J, Stüber K, Wunderlich P, Ladewig J, Kesavan J, Vandenberghe R, Vandenbulcke M, van Damme P, Walter J, Brüstle O, Koch P. APP processing in human pluripotent stem cell-derived neurons is resistant to NSAID-based γ-secretase modulation. Stem Cell Reports 2013; 1:491-8. [PMID: 24371804 PMCID: PMC3871388 DOI: 10.1016/j.stemcr.2013.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence suggests that elevated Aβ42 fractions in the brain cause Alzheimer’s disease (AD). Although γ-secretase modulators (GSMs), including a set of nonsteroidal anti-inflammatory drugs (NSAIDs), were found to lower Aβ42 in various model systems, NSAID-based GSMs proved to be surprisingly inefficient in human clinical trials. Reasoning that the nonhuman and nonneuronal cells typically used in pharmaceutical compound validation might not adequately reflect the drug responses of human neurons, we used human pluripotent stem cell-derived neurons from AD patients and unaffected donors to explore the efficacy of NSAID-based γ-secretase modulation. We found that pharmaceutically relevant concentrations of these GSMs that are clearly efficacious in conventional nonneuronal cell models fail to elicit any effect on Aβ42/Aß40 ratios in human neurons. Our work reveals resistance of human neurons to NSAID-based γ-secretase modulation, highlighting the need to validate compound efficacy directly in the human cell type affected by the respective disease. iPSC-derived neurons from Alzheimer patients exhibit elevated Aβ42/Aß40 ratios Human neurons are resistant to NSAID-based γ-secretase modulation
Collapse
Affiliation(s)
- Jerome Mertens
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Kathrin Stüber
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
- Life&Brain GmbH, 53127 Bonn, Germany
| | | | - Julia Ladewig
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Jaideep C. Kesavan
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, 3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Old Age Psychiatry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, 3000 Leuven, Belgium
- Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
- Life&Brain GmbH, 53127 Bonn, Germany
- Corresponding author
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
- Life&Brain GmbH, 53127 Bonn, Germany
- Corresponding author
| |
Collapse
|