1
|
Wang T, Yang Z, Zhou B, Chen Y. Relationship between NLR and PLR Ratios and the Occurrence and Prognosis of Progressive Hemorrhagic Injury in Patients with Traumatic Brain Injury. J INVEST SURG 2025; 38:2470453. [PMID: 40122073 DOI: 10.1080/08941939.2025.2470453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE This study aimed to evaluate the relationship between neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) ratios and the occurrence and prognosis of progressive hemorrhagic injury (PHI) in patients with traumatic brain injury (TBI). METHODS This retrospective study included 166 TBI patients. Clinical data were collected and NLR and PLR were assessed. Receiver operating characteristic (ROC) curve analysis was conducted to assess the predictive value of NLR and PLR for PHI occurrence in TBI patients. Logistic regression analysis was performed to identify risk factors influencing PHI development and poor neurological prognosis. RESULTS The PHI group (n = 77) exhibited significantly higher NLR and PLR ratios than the non-PHI group (n = 89). Independent risk factors for PHI occurrence included higher Abbreviated Injury Scale scores, absent pupillary reflexes, lower Glasgow Coma Scale (GCS) scores, and elevated NLR and PLR ratios. The combined use of NLR and PLR ratios demonstrated superior predictive performance for PHI occurrence, with a higher area under the curve (AUC: 0.843) and sensitivity (77.9%, cutoff values: 17.19 for NLR and 196.33 for PLR) compared to NLR alone (AUC: 0.794, sensitivity: 53.2%, cutoff value: 21.78) or PLR alone (AUC: 0.665, sensitivity: 53.2%, cutoff value: 235.48). For poor neurological prognosis, higher AIS scores, lower GCS scores, and elevated NLR ratios were identified as independent risk factors. CONCLUSION TBI patients with elevated NLR and PLR ratios are at increased risk of developing PHI. In severe TBI cases, patients with high NLR ratios during the early stages tend to experience poor neurological outcomes.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Neurosurgery, The First People's Hospital of Jiashan County, Jiashan, Zhejiang Province, China
| | - Zheng Yang
- Department of Neurosurgery, The First People's Hospital of Jiashan County, Jiashan, Zhejiang Province, China
| | - Bin Zhou
- Department of Neurosurgery, The First People's Hospital of Jiashan County, Jiashan, Zhejiang Province, China
| | - Yanfei Chen
- Department of Neurosurgery, The First People's Hospital of Jiashan County, Jiashan, Zhejiang Province, China
| |
Collapse
|
2
|
Zeng J, Liu J, Lu Y, Fu J, Han D, Chen J, Zou Z, Li Q, Zhang K, Tan H, Yu W, Wei X, Gu Z, Li L. C-reactive protein to albumin ratio and Glasgow Coma Scale score as the predictors for weaning outcomes in traumatic brain injury. Ann Med 2025; 57:2472866. [PMID: 40034061 PMCID: PMC11881653 DOI: 10.1080/07853890.2025.2472866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/04/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE To identify the prognostic value of C-reactive protein to albumin ratio (CRP/ALB, CAR) and Glasgow Coma Scale (GCS) score in the weaning outcomes of mechanical ventilation (MV) in patients with traumatic brain injury (TBI). METHODS Medical records of patients with TBI who were hospitalized at The Third Affiliated Hospital of Southern Medical University between January 2018 and September 2023 were collected and analysed. The patients were divided into the weaning success group and the weaning failure group. Data from the two groups were analysed to assess the predictive value of CAR and GCS score on weaning outcomes. RESULTS CAR was an independent risk factor for weaning failure (p = .001, adjusted OR = 1.878, 95% CI: 1.283-2.750), while GCS score was a protective factor for weaning success (p = .006, adjusted OR = 0.629, 95% CI: 0.452-0.873). In the receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of CAR predicted the weaning failure was 0.780 (p < .001), and predicted the weaning success by GCS score was 0.727 (p = .003). Moreover, the combination of the two predicted better with an AUC of 0.849 (p < .001). CONCLUSIONS TBI patients with higher CAR and lower GCS score were more likely to experience weaning failure, which can provide reliable guidance for patients with TBI to leave the ventilator.
Collapse
Affiliation(s)
- Jiaxuan Zeng
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiazhuo Liu
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yin Lu
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiahui Fu
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Han
- Department of Quality Control and Evaluation, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Chen
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhimin Zou
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qin Li
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kun Zhang
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongping Tan
- The Eighth Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Wenzhong Yu
- Department of Emergency Medicine, Yunan People’s Hospital, Yunfu, China
| | - Xiucai Wei
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhengtao Gu
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Li Li
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Guo LS, An Y, Zhang ZY, Ma CB, Li JQ, Dong Z, Tian J, Liu ZY, Liu JG. Exploring the diagnostic potential: magnetic particle imaging for brain diseases. Mil Med Res 2025; 12:18. [PMID: 40287777 PMCID: PMC12034128 DOI: 10.1186/s40779-025-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/07/2025] [Indexed: 04/29/2025] Open
Abstract
Brain diseases are characterized by high incidence, disability, and mortality rates. Their elusive nature poses a significant challenge for early diagnosis. Magnetic particle imaging (MPI) is a novel imaging technique with high sensitivity, high temporal resolution, and no ionizing radiation. It relies on the nonlinear magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs), allowing visualization of the spatial concentration distribution of SPIONs in biological tissues. MPI is expected to become a mainstream technology for the early diagnosis of brain diseases, such as cancerous, cerebrovascular, neurodegenerative, and inflammatory diseases. This review provides an overview of the principles of MPI, explores its potential applications in brain diseases, and discusses the prospects for the diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Li-Shuang Guo
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu An
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Ze-Yu Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Chen-Bin Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jia-Qian Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhen Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100191, China.
| | - Zhen-Yu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100191, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Jian-Gang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
| |
Collapse
|
4
|
Wang L, Guo H, Zhao W, Wang J, Cao X. Oxiracetam ameliorates neurological function after traumatic brain injury through competing endogenous RNA regulatory network. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06797-9. [PMID: 40272502 DOI: 10.1007/s00213-025-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
RATIONALE Oxiracetam (ORC) has been demonstrated to improve neurological function resulting from traumatic brain injury (TBI). OBJECTIVES This study aims to explore the precise molecular mechanism of ORC in the treatment of TBI. METHODS TBI rat model was established and treated with ORC. Modified Garcia score, rotarod test and HE staining were employed to evaluate the neuroprotective effects of ORC. Subsequently, RNA-seq was conducted on the hippocampus of sham, TBI and ORC rats to identify differential expression (DE) lncRNAs and mRNAs. Functional analysis of DE lncRNAs and mRNAs was performed. The real-time quantitative polymerase chain reaction (qRT-PCR) was used to determine the expression of DE lncRNAs and DE mRNAs. Western blot was performed to explore important pathway in ceRNA networks. RESULTS ORC has been demonstrated to effectively improve neurological function in TBI rats. A total of 10 ORC-treated DE lncRNAs and 61 DE mRNAs were obtained. A co-expression network comprising 79 lncRNA-mRNA pairs associated with the treatment of ORC was constructed. Furthermore, an lncRNA-miRNA-mRNA regulated ceRNA network was constructed, comprising 15 mRNAs, 41 miRNAs and 10 lncRNAs. Functional enrichment, qRT-PCR, and Western blot analysis showed that ORC improve neurological function of TBI rats by regulating multiple signaling pathways, including the JAK-STAT/PI3K-Akt pathway, as well as affecting the expression of key genes Prlr, Cdkn1a, and Cldn1. CONCLUSION Our study reveals the mechanism of ORC therapy in TBI rats, which mainly relies on the regulation of the JAK-STAT/PI3K-Akt pathway and the influence on the expression of key genes Prlr, Cdkn1a, and Cldn1.
Collapse
Affiliation(s)
- Liyi Wang
- Hospital Infection-Control Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Han Guo
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Weidong Zhao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Jiahao Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Xuhua Cao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
5
|
Liu T, Qian W, Jiang Y, Yang Y, Ding Y. Clinical study of computerized tomography angiography and computerized tomography perfusion in severe traumatic brain injury by a multicenter retrospective study. Sci Rep 2025; 15:13993. [PMID: 40263403 PMCID: PMC12015582 DOI: 10.1038/s41598-025-99241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Severe traumatic brain injury (sTBI) is a significant public health concern with high disability and mortality rates. No reliable diagnostic tools exist to determine surgical indications or predict prognosis. To assess the clinical value of computed tomography angiography (CTA) and perfusion (CTP) in sTBI, and compare treatment efficacy based on traditional imaging versus CTA/CTP assessment. This retrospective study included 169 patients with sTBI who underwent CTA/CTP at admission and postoperatively to guide treatment decisions. Another 132 patients received treatment based on traditional imaging. Clinical outcomes and complications were compared between the two groups. Baseline characteristics did not differ significantly between groups. Although the 6-month Glasgow outcome scale (GOS) scores were comparable, in-hospital mortality was lower in the CTA/CTP group, and the craniotomy rate was significantly reduced. A higher proportion of patients who underwent the operation in the CTA/CTP group had favorable prognoses. Moreover, the hospitalization duration and costs were substantially lower in the CTA/CTP group. The CTA/CTP imaging provides critical cerebrovascular and perfusion data in sTBI, aiding in surgical decision-making and perioperative management.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Imaging, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Wenxia Qian
- Department of Imaging, Kunshan Traditional Chinese Medicine Hospital, Kunshan, 215300, China
| | - Yan Jiang
- Department of Imaging, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Ying Yang
- Department of Imaging, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yanping Ding
- Department of Imaging, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China.
| |
Collapse
|
6
|
Anash M, Maparu K, Singh S. Unraveling cell death mechanisms in traumatic brain injury: dynamic roles of ferroptosis and necroptosis. Mol Biol Rep 2025; 52:381. [PMID: 40208458 DOI: 10.1007/s11033-025-10489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Traumatic brain injury (TBI) remains a major cause of mortality and long-term disability worldwide, with ferroptosis and necroptosis emerging as key drivers of secondary neuronal damage. Ferroptosis, characterized by iron-dependent lipid peroxidation and mitochondrial dysfunction, exacerbates oxidative stress and neuronal cell death. In parallel, necroptosis, mediated by receptor-interacting protein kinases (RIPK1 and RIPK3), amplifies inflammation through membrane rupture and the release of cellular components. Mitochondrial dynamics, involving fission and fusion processes, play a dual role in regulating these pathways. While mitochondrial fusion preserves cellular integrity and reduces oxidative stress, excessive mitochondrial fission driven by dynamin-related protein 1 (DRP1) accelerates necroptotic signaling and neuronal injury. This intricate interplay between ferroptosis, necroptosis, and mitochondrial dynamics highlights potential therapeutic targets. Modulating these pathways through tailored interventions could reduce neuronal damage, mitigate neuroinflammation, and improve functional outcomes in TBI patients. Advancing our understanding of these mechanisms is essential for developing precision therapies that address the complex pathology of traumatic brain injury.
Collapse
Affiliation(s)
- Mohd Anash
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
7
|
Pan Y, Wei M, Jin M, Liang Y, Yi T, Tu J, Wu S, Hu F, Liang C. An interpretable machine learning model based on optimal feature selection for identifying CT abnormalities in patients with mild traumatic brain injury. EClinicalMedicine 2025; 82:103192. [PMID: 40242564 PMCID: PMC12002887 DOI: 10.1016/j.eclinm.2025.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Background Minor head trauma is a frequent cause of emergency department visits, early identification and prediction of mild traumatic brain injury (mTBI) patients with abnormal brain lesions are vital for minimizing unnecessary computed tomography (CT) scans, reducing radiation exposure, and ensuring timely effective treatment and care. This study aims to develop and validate an interpretable machine learning (ML) prediction model using routine laboratory data for guiding clinical decisions on CT scan use in mTBI patients. Methods We conducted a multicentre study in China including data from January 2019 to July 2024. Our study included three patient cohorts: a retrospective training cohort (654 patients for training and 163 for internal testing) and two prospective validation cohorts (86 internal and 290 external patients). Fifty-one routine clinical laboratory characteristics, readily available from the electronic medical record (EMR) system within the first 24 h of admission, were collected. Seven ML algorithms were trained to develop predictive models, with the random forest (RF) algorithm used to optimize key feature combinations. Model predictive performance was evaluated using metrics such as the area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and F1 scores. The SHapley Additive exPlanation (SHAP) was applied to interpret the final model, while decision curve analysis (DCA) was used to assess the clinical net benefit. Findings In the derivation cohort, 599 (73.3%) patients had normal CT scans and 218 (26.7%) had abnormal CT scans. The Gradient boosting classifier (GBC) model performed best among the seven ML models, with an AUC of 0.932 (95% CI: 0.900-0.963). After reducing features to 21 (8 biochemical test indicators, 3 coagulation markers, and 10 complete blood cell count indicators) according to feature importance rank, an explainable GBC-final model was established. The final model accurately predicted mTBI patients with abnormal CT in both internal (AUC 0.926, 95% CI: 0.893-0.958) and external (AUC 0.904, 95% CI: 0.835-0.973) validation cohorts. In the prospective cohort, final GBC model achieved AUC of 0.885 (95% CI: 0.753-1.000) and was significantly superior to traditional TBI biomarkers GFAP (AUC: 0.745) and PGP9.5 (AUC: 0.794). DCA revealed that the final model offered greater net benefits than "full intervention" or "no intervention" strategies within a probability threshold range of 0.16-0.93. SHAP analysis identified D-dimer levels, absolute lymphocyte and neutrophil counts, and hematocrit as key high-risk features. Interpretation Our optimal feature selection-based ML model accurately and reliably predicts CT abnormalities in mTBI patients using routine test data. By addressing clinicians' concerns regarding transparency and decision-making through SHAP and DCA analyses, we strengthen the potential clinical applicability of our ML model. Funding The Natural Science Foundation of Hubei Province, high-level Talent Research Startup Funding of Hubei University of Chinese Medicine, Wuhan Health and Family Planning Scientific Research Fund Project of Hubei Province, and Machine Learning-based Intelligent Diagnosis System for AFP-negative Liver Cancer Project.
Collapse
Affiliation(s)
- Yuling Pan
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Mengqi Wei
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengyuan Jin
- College of Information Engineering, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ying Liang
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Huiji Road, Wuhan, 430010, China
| | - Tianjiao Yi
- Departments of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, No. 856, Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jiancheng Tu
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shimin Wu
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Huiji Road, Wuhan, 430010, China
| | - Fang Hu
- College of Information Engineering, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunzi Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| |
Collapse
|
8
|
Cheng Y, Gu W, Wu X, Tian W, Mu Z, Ye Y, Chao H, Bao Z. Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156500. [PMID: 39986225 DOI: 10.1016/j.phymed.2025.156500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to neuroinflammation, which is a key contributor to the negative prognosis in TBI patients. Recent evidence indicates that allicin can prevent neuronal injury after TBI. However, whether allicin alleviates neuroinflammation by promoting mitophagy is unclear. PURPOSE We investigated the suppressive effects of allicin on neuroinflammation and clarified the role of mitophagy in the underlying mechanism. STUDY DESIGN/METHODS The controlled cortical impact (CCI) was employed to effectively mimic TBI in a living system. Cellular mechanical damage was modeled in vitro using a Bv2 cell stretch model. Neuroinflammation was assessed by evaluating levels of TNF-α, IL-1β, IL-6, ROS, IL-4 and IL-10, along with the expression of NLRP3 and TLR4 proteins. RNA-sequence and KEGG analyses revealed allicin-regulated molecular processes in the Bv2 cell stretch model. Immunofluorescence staining was performed to label both the autophagy marker protein LC3 and the outer mitochondrial membrane (OMM) marker COX IV. Lipid MS and lipidomic analyses were used to determine the CL levels in the OMM and IMM. The characteristic bilayer structure of mitochondria was observed using transmission electron microscopy (TEM). PKC-δ expression and phosphorylated phospholipid scramblase-3 (PLS3) levels were detected via western blotting. Stretched Bv2 cells and primary neurons were cocultured to assess the anti-neuroinflammatory effects of allicin. Neuro-rehabilitation was assessed using behavioral experiments such as the rotarod and morris water maze (MWM) tests. RESULTS Allicin treatment reduced TNF-α, IL-1β, IL-6, ROS levels, and the expression of NLRP3 and TLR4 proteins in mice with CCI, while IL-4 and IL-10 levels remained unchanged. Additionally, allicin reduced tissue lesions and cell death after CCI. The transcriptomic analysis revealed that mitophagy was important in allicin-related molecular pathways. The translocation of CL from IMM to OMM was facilitated by allicin, as demonstrated by flow cytometry and lipidomic analyses. Importantly, allicin increased PKC-δ expression and PLS3 phosphorylation in the CL-related mitophagy process in both the CCI and Bv2 cell stretch models. These findings suggest that allicin reduces mitophagy-related neuroinflammation and further prevents neuronal injury in vitro. Rottlerin, a selective PKC-δ inhibitor, effectively diminished allicin's capacity to reduce neuroinflammation, correlating with worsened motor function and cognitive abilities. Thus, CCI-induced behavioral deficits were also ameliorated by the administration of allicin via a PKC-δ-related mitophagy. CONCLUSIONS This study uncovers a novel mechanism where allicin enhances PKC-δ expression and PLS3 phosphorylation, facilitating CL translocation to the OMM and activating mitophagy, thereby reducing TBI-induced neuroinflammation.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Radiology, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Wei Gu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuechao Wu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Wei Tian
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Zhenqian Mu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongyuan Bao
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China.
| |
Collapse
|
9
|
Zhong H, Feng Y, Shen J, Rao T, Dai H, Zhong W, Zhao G. Global Burden of Traumatic Brain Injury in 204 Countries and Territories From 1990 to 2021. Am J Prev Med 2025; 68:754-763. [PMID: 39793770 DOI: 10.1016/j.amepre.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION This study aimed to evaluate the burden and underlying causes of traumatic brain injury (TBI) in 204 countries and territories from 1990 to 2021. METHODS Utilizing data from the Global Burden of Disease 2021 study, which derived estimates of TBI burden from hospital and emergency department records, national surveys, and claims data, the incidence, prevalence, and years lived with disability (YLDs) associated with TBI were analyzed. A comparative analysis of TBI burden by location, age, sex, and sociodemographic index was performed, along with an underlying assessment of 15 major causes contributing to age-standardized incidence rates. Analyses were conducted in 2024. RESULTS In 2021, there were 20.84 million (95% uncertainty interval [UI]=18.13, 23.84) incident cases and 37.93 million (95% UI=36.33, 39.77) prevalent cases of TBI globally, resulting in 5.48 million (95% UI=3.87, 7.33) YLDs. While the absolute number increased from 1990 to 2021, age-standardized rates of TBI incidence, prevalence, and YLDs showed a significant decline. These rates generally increased with age and were higher in males than females. The highest age-standardized prevalence and YLD rates were observed in Eastern and Central Europe. Globally, falls were the leading cause of TBI in 2021, followed by road injuries, interpersonal violence, and exposure to mechanical forces. CONCLUSIONS Despite declines in age-standardized rates, the total number of TBI cases and associated disabilities has risen since 1990, indicating a persistent global burden. Targeted interventions are urgently needed in high-burden regions like Eastern and Central Europe, with focus on leading causes and vulnerable populations.
Collapse
Affiliation(s)
- Huiming Zhong
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiping Feng
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Taiwen Rao
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Zhong
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guangfeng Zhao
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Li P, Sun S, Zhu X, Liu X, Yin R, Chen Y, Chang J, Ye L, Gao J, Zhao X, Xu H, Wang Y, Zuo W, Sun Z, Wang S, Zhang X, Wei J, Zhao RC, Han Q. Intranasal delivery of engineered extracellular vesicles promotes neurofunctional recovery in traumatic brain injury. J Nanobiotechnology 2025; 23:229. [PMID: 40114197 PMCID: PMC11927228 DOI: 10.1186/s12951-025-03181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/01/2025] [Indexed: 03/22/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, significantly affecting patients' quality of life. Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have demonstrated therapeutic potential in TBI treatment. However, their limited targeting ability, short half-life, and low bioavailability present significant challenges for clinical application. In this study, we engineered extracellular vesicles (EEVs) by transfecting hADSCs with lentivirus and incorporating ultra-small paramagnetic nanoparticles (USPNs), resulting in EVs with enhanced miRNA expression and targeted delivery capabilities. These EEVs were administered intranasally to specifically target injury sites, effectively modulating the NF-κB signaling pathway to suppress neuroinflammation. In both in vitro and in vivo assessments, EEVs exhibited superior efficacy in promoting neurofunctional recovery and neurogenesis after brain injury compared to unmodified EVs. Furthermore, validation using human brain organoid models confirmed EEVs' remarkable ability to suppress neuroinflammation, offering a promising strategy for TBI treatment.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Sishuai Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyu Zhu
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yin
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxi Gao
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhao
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zuo
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shihua Wang
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Robert Chunhua Zhao
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Qin Han
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Song B, Qiu Y, Wang Z, Tao Y, Wang M, Duan A, Xie M, Yin Z, Chen Z, Ma C, Wang Z. The Causal Relationship Between Gut Microbiomes, Inflammatory Mediators, and Traumatic Brain Injury in Europeans: Evidence from Genetic Correlation and Functional Mapping Annotation Analyses. Biomedicines 2025; 13:753. [PMID: 40149729 PMCID: PMC11939942 DOI: 10.3390/biomedicines13030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The gut microbiome (GM) has been reported to play a role in traumatic brain injury (TBI). To investigate the causal relationship between GMs, inflammatory mediators, and TBI, a comprehensive Mendelian randomization (MR) analysis was conducted. Methods: We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM and TBI. To assess the potential causal associations between GM and TBI, we employed the inverse-variance-weighted, MR-Egger, and weighted median methods. Mediation analysis was used to assess the possible mediating factors. Several sensitivity analyses methods were implemented to verify the stability of the results. Additionally, we utilized FUMA GWAS to map single-nucleotide polymorphisms to genes and conduct transcriptomic MR analysis. Results: We identified potential causal relationships between nine bacterial taxa and TBI. Notably, class Methanobacteria, family Methanobacteriaceae, and order Methanobacteriales (p = 0.0003) maintained a robust positive correlation with TBI. This causal association passed false discovery rate (FDR) correction (FDR < 0.05). Genetically determined 1 inflammatory protein, 30 immune cells and 3 inflammatory factors were significantly causally related to TBI. None of them mediated the relationship between GMs and TBI. The outcome of the sensitivity analysis corroborated the findings. Regarding the mapped genes of significant GMs, genes such as CLK4, MTRF1, NAA16, SH3BP5, and ZNF354A in class Methanobacteria showed a significant causal correlation with TBI. Conclusions: Our study reveals the potential causal effects of nine GMs, especially Methanogens on TBI, and there was no link between TBI and GM through inflammatory protein, immune cells, and inflammatory factors, which may offer fresh insights into TBI biomarkers and therapeutic targets through specific GMs.
Collapse
Affiliation(s)
- Bingyi Song
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Youjia Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Zilan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Yuchen Tao
- Suzhou Medical College, Soochow University, Suzhou 215002, China
| | - Menghan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Aojie Duan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Minjia Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Ziqian Yin
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Chao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| |
Collapse
|
12
|
Zhang Y, Shen J, Yang J, Huang G, Niu H, Zhang S, Tang Z, Wang Y, Tan Y, Liu J, Chen X, Du L, Jin Y. Brain-targeted M2 macrophage membrane-hybrid biomimetic liposomes for treatment of traumatic brain injury. Int J Pharm 2025; 672:125316. [PMID: 39909153 DOI: 10.1016/j.ijpharm.2025.125316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Traumatic brain injury (TBI) is highly incidental but effective solutions are absent. Moreover, the secondary injury following TBI is arising due to the Ca2+ influx of injured neural cells. Here, a Ca2+ influx inhibitor, nimodipine, was loaded in M2 macrophage membrane-hybrid biomimetic liposomes (NM2Ls). NM2Ls significantly inhibited the influx of Ca2+ into inflammatory neural cells and reduced the expression of inflammatory factors. More importantly, intravenously injected NM2Ls avoided the clearance of the immune system and targeted the brain via CCR2 following TBI; the inflammation in the brain was greatly alleviated in the TBI mouse model. NM2Ls improved the long-term learning and memory abilities as well as the motor abilities of TBI mice. Oxidative stress indicators were reduced and the repair of nerve cells was improved. NM2Ls is a promising brain-targeted medicine by the biomembrane biomimetic strategy.
Collapse
Affiliation(s)
- Yizhi Zhang
- Pharmaceutical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junzhe Yang
- Pharmaceutical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Guiyu Huang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hong Niu
- Pharmaceutical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuxiu Zhang
- Pharmaceutical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyan Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yaxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yaomin Tan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jingjing Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lina Du
- Pharmaceutical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
13
|
Zhang X, Li M, Xu Y, Wu J, Yuan R, Sun Y, Chen X, Lv M, Jin B, Chen X, Liang W. Gal-3 activates Tyro3 to ameliorate ferroptosis of hippocampal neurons after traumatic brain injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102433. [PMID: 39902149 PMCID: PMC11788728 DOI: 10.1016/j.omtn.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025]
Abstract
Traumatic brain injury (TBI) leads to significant hippocampal neuronal loss, contributing to cognitive dysfunction. Our bioinformatics analysis of single-cell RNA sequencing data from hippocampal tissue following TBI revealed persistent neuronal loss and activation of ferroptosis-related pathways. Notably, Tyro3 expression was significantly upregulated, suggesting its potential role in neuronal ferroptosis. This finding was further validated in both in vivo and in vitro studies using a controlled cortical impact (CCI) model. We observed that Tyro3 knockdown exacerbated ferroptosis, while Tyro3 overexpression mitigated it. Moreover, treatment with the Tyro3 agonist Gal-3 conferred protective effects, improving both motor and cognitive functions through Tyro3 activation. These results highlight Tyro3 as a promising therapeutic target for TBI.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Jingting Wu
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yihan Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Bo Jin
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiameng Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| |
Collapse
|
14
|
Fu X, Zhang Y, Chen G, Mao G, Tang J, Xu J, Han Y, Chen H, Ding L. Responsive nanoparticles synergize with Curcumin to break the "reactive oxygen Species-Neuroinflammation" vicious cycle, enhancing traumatic brain injury outcomes. J Nanobiotechnology 2025; 23:172. [PMID: 40045354 PMCID: PMC11881390 DOI: 10.1186/s12951-025-03251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious "ROS-neuroinflammation" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)120 scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the "ROS-neuroinflammation" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.
Collapse
Affiliation(s)
- Xianhua Fu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yongkang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guojie Chen
- Clinical Laboratory, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Guangyao Mao
- Clinical Laboratory, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiajia Tang
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Jin Xu
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yuhan Han
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Honglin Chen
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China.
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
| |
Collapse
|
15
|
Ding C, Xi S, Xiao L, Qian Z. Intraoperative Initial Intracranial Pressure Demonstrates High Diagnostic Efficacy for Postoperative Intestinal Mucosal Barrier Dysfunction Following Severe Traumatic Brain Injury. World Neurosurg 2025; 195:123711. [PMID: 39864807 DOI: 10.1016/j.wneu.2025.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE To investigate the risk factors and their diagnostic efficacy for postoperative intestinal mucosal barrier dysfunction (IBD) following severe traumatic brain injury (sTBI). METHODS There were 140 patients with sTBI enrolled in this study. Univariate and multivariate logistic regression analyses were conducted to assess the relationship between the clinical data and postoperative IBD in sTBI patients and determine the independent risk factors. The diagnostic efficacy of each risk factor was evaluated using the receiver operating characteristic curve and the area under the curve. RESULTS According to the diagnostic criteria for IBD, the 140 enrolled patients were classified into the IBD group (n = 60) and the non-IBD group (n = 80). The levels of intraoperative initial intracranial pressure (iICP) of patients with IBD were significantly higher compared with those of patients without IBD (P < 0.001). Furthermore, intraoperative iICP presented high diagnostic efficacy for postoperative IBD (area under the curve = 0.91, 95% confidence interval 0.85-0.96, P < 0.001). Patients with higher intraoperative iICP were more prone to suffering unfavorable neurological outcomes. CONCLUSIONS Intraoperative iICP could act as an independent and quantifiable predictor with high diagnostic efficacy for IBD in patients with sTBI after emergency surgery.
Collapse
Affiliation(s)
- Chunlong Ding
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Neurosurgery, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, Jiangsu, China
| | - Shaodong Xi
- Department of Neurosurgery, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, Jiangsu, China
| | - Li Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Zhang Z, Li Z, Li S, Xiong B, Zhou Y, Shi C. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury. Med Gas Res 2025; 15:156-163. [PMID: 39324933 PMCID: PMC11515069 DOI: 10.4103/mgr.medgasres-d-24-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 09/27/2024] Open
Abstract
The use of hyperbaric oxygen (HBO 2 ) in the field of traumatic brain injury (TBI) is becoming more widespread and increasing yearly, however there are few prognostic reports on long-term functional efficacy. The aim of this study was to assess the functional prognosis of patients with moderate-to-severe TBI 5-8 years following HBO 2 treatments and to explore the optimal HBO 2 regimen associated with prognosis, using a retrospective study. Clinical data were retrospectively collected as a baseline for patients with moderate-to-severe TBI treated with HBO 2 during inpatient rehabilitation from January 2014 to December 2017. The primary outcome measure was the Disability Rating Scale (DRS) and the secondary outcome measure was the Glasgow Outcome Scale. A total of 133 patients enrolled, with 9 (6.8%) dying, 41 (30.8%) remaining moderately disabled or worse (DRS scores 4-29), 83 (62.4%) remaining partially/mildly disabled or no disability (DRS scores 0-3). Logistic regression analysis revealed that age at injury (odds ratio (OR), 0.96; 95% confidence interval (CI), 0.92-0.99), length of intensive care unit stay (OR, 0.94; 95% CI, 0.88-0.99), and HBO 2 sessions (OR, 0.97; 95% CI, 0.95-0.99) were variables that independently influenced long-term prognosis. Cubic fitting models revealed that 14 and 21.6 sessions of HBO 2 could be effective for moderate and severe TBI, respectively. This study highlighted that HBO 2 in moderate-to-severe TBI may contribute to minimize death and reduce overall disability in the long-term. However, clinicians should be cautious of the potential risk of adverse long-term prognosis from excessive HBO 2 exposure when tailoring individualized HBO 2 regimens for patients with moderate-to-severe TBI. The study was registered on ClinicalTrials.gov (NCT05387018) on March 31, 2022.
Collapse
Affiliation(s)
- Zhihua Zhang
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhenwei Li
- Department of Infection Control, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuyang Li
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Bing Xiong
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - You Zhou
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chaohong Shi
- Departments of Physical Medicine and Rehabilitation, The First People’s Hospital of Wenling, Taizhou, Zhejiang Province, China
| |
Collapse
|
17
|
Weng W, He Z, Ma Z, Huang J, Han Y, Feng Q, Qi W, Peng Y, Wang J, Gu J, Wang W, Lin Y, Jiang G, Jiang J, Feng J. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Cell Death Differ 2025; 32:530-545. [PMID: 39496783 PMCID: PMC11894137 DOI: 10.1038/s41418-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient TufmK286R mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.
Collapse
Affiliation(s)
- Weiji Weng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui He
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Zixuan Ma
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Han
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Qiyuan Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenlan Qi
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yidong Peng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiangchang Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiacheng Gu
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenye Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yong Lin
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyao Jiang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Junfeng Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
18
|
Wang S, Ren Y, Duan A, Lu D, Liu G, Meng L, Zhang Y, Shou R, Li H, Wang Z, Wang Z, Sun X. Unravelling the impact of QRICH1 modulation on endoplasmic reticulum stress and neuronal apoptosis in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167621. [PMID: 39662754 DOI: 10.1016/j.bbadis.2024.167621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major public health concern with high morbidity and mortality rates. Secondary brain injury, marked by inflammatory responses and apoptosis, worsens TBI outcomes. The endoplasmic reticulum stress (ERS) response has been implicated in secondary brain injury, with Glutamine Rich 1 Gene (QRICH1) emerging as a potential mediator. However, the precise role of QRICH1 in TBI pathogenesis and its therapeutic implications remain unclear. METHODS Controlled cortical impact mouse and Lipopolysaccharide-stimulated primary neuron models were used. Behavioral assessments, including the modified Garcia score, Y-maze test, and open-field test, were used to evaluate postoperative recovery in mice. QRICH1 neuron conditional knockout (cKO) mice were used to assess QRICH1 function, whereas adeno-associated virus (AAV)-mediated gene manipulation was used to modulate QRICH1 expression in cortical neurons. RESULTS QRICH1 expression was upregulated in the brain tissue of TBI mice, particularly 24 h post-injury, as shown by western blot analysis and immunofluorescence staining. QRICH1 is localized within neuronal nuclei, suggesting a role in cellular stress responses. QRICH1 cKO improved behavioral outcomes post-TBI, whereas AAV-mediated QRICH1 overexpression exacerbated secondary brain injury, characterized by increased ERS-related protein expression and neuronal death. Conversely, AAV-mediated QRICH1 knockdown reduced secondary brain injury as evidenced by decreased ERS-related protein expression and neuronal death. CONCLUSION QRICH1 plays a critical role in exacerbating ERS and apoptosis, and influences neuronal fate in secondary brain injury. Its involvement in the ERS pathway and in the induction of neuronal apoptosis post-TBI highlights QRICH1 as a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang Clinical College of Anhui Medical University, Fuyang, Anhui 236006, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Lei Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Yu Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Renjie Shou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
19
|
Zhang L, Zhao H, Wang L, Shi Y, Li C. Time-to-surgery for traumatic brain injury in the hyperacute period: a systemic review and meta-analysis. Brain Inj 2025; 39:179-186. [PMID: 39514240 DOI: 10.1080/02699052.2024.2425735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To study the functional outcomes of traumatic brain injury (TBI) patients who have undergone surgical intervention in the hyperacute phase (<24 h). DATA SOURCES Cochrane Library, PubMed, Embase, Medline and Web of Science databases. REVIEW METHODS A meta-analysis of 7 trials involving 237 patients was performed. Patients were categorized into two groups based on time to surgery: within 6 h and within 24 h. Patients were also categorized into developed and developing regions. Effect estimates were calculated using a fixed-effects model and heterogeneity was assessed with Cochrane I² statistic. RESULTS Our findings revealed that those who underwent neurosurgery in the hyperacute phase of TBI were at risk of adverse outcomes. The odds ratio (OR) was 1.50 (95% CI 1.03-2.19). Subgroup analysis demonstrated that TBI patients who underwent surgery within 6 h were at a greater risk of adverse effects (OR, 1.72; 95% CI, 1.08-2.74). Moreover, a greater risk was observed in developing regions (OR, 2.33; 95% CI, 0.97-5.58). CONCLUSION Earlier neurosurgical intervention in the acute phase of TBI might result in higher incidence of adverse events. Surgery would be postponed for TBI patients whose initial GCS score is greater than 8 during the hyperacute period.
Collapse
Affiliation(s)
- Lijian Zhang
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Baoding, Hebei, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongfang Zhao
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Clinical Medicine College, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanfang Shi
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Chunhui Li
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
20
|
Manrui L, Xu Y, Liu J, Zhang X, Yuan R, Sun Y, Sun Y, Yang Q, Liao M, Lv M, Hu X, Chen X, Liang W. Aminophylline targets miR-128-3p/Slc7a11 axis to attenuate neuronal ferroptosis after traumatic brain injury. Cell Mol Life Sci 2025; 82:87. [PMID: 39985589 PMCID: PMC11846823 DOI: 10.1007/s00018-025-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
Traumatic brain injury (TBI) is a significant global health issue, characterized by high rates of morbidity and mortality, along with substantial economic strains on healthcare systems. This study explores the potential of Aminophylline (AMP), a medication traditionally used for cardiovascular conditions and bronchiectasis, to enhance TBI outcomes by protecting against neuronal damage. Our findings indicate that AMP treatment significantly reduces neuronal ferroptosis in the cortex, leading to less tissue damage and notable improvements in cognitive and motor functions in mice subjected to controlled cortical impact (CCI). Additionally, we found that TBI resulted in decreased expression of miR-128-3p, a reduction that was further strengthened by AMP treatment. Gain-of-function experiments showed that overexpressing miR-128-3p increases neuronal ferroptosis by targeting Slc7a11, indicating how AMP mitigates cognitive and motor impairments in CCI mice. This study highlights the potential of AMP in treating TBI through the miR-128-3p/Slc7a11 pathway, marking the first report of its protective effects against ferroptosis in TBI.
Collapse
Affiliation(s)
- Li Manrui
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Jinyuan Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Ruixuan Yuan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Yuwen Sun
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Yihan Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, 610000, Chengdu, China.
| |
Collapse
|
21
|
Zhou L, Li L, Yang J, Mansuer M, Deng X, Wang Y, Ren H, Cui D, Jiang Y, Gao L. TNFAIP3 affects ferroptosis after traumatic brain injury by affecting the deubiquitination and ubiquitination pathways of the HMOX1 protein and ACSL3. Free Radic Biol Med 2025; 228:221-239. [PMID: 39743027 DOI: 10.1016/j.freeradbiomed.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The occurrence and progression of traumatic brain injury involve a complex process. The pathophysiological mechanisms triggered by neuronal damage include various forms of programmed cell death, including ferroptosis. We observed upregulation of TNFAIP3 in mice after traumatic brain injury. Overexpression of TNFAIP3 inhibits HT-22 proliferation and cell viability through ferroptosis. Mechanistically, TNFAIP3 interacts with the HMOX1 protein and promotes its stability through the deubiquitination pathway. Additionally, TNFAIP3 can enhance lipoperoxidation, mitochondrial damage, and neuronal cell death by promoting ACSL3 degradation via NEDD4-mediated ubiquitination. Mice injected with AAV-shTNFAIP3 exhibited reduced neuronal degeneration and improved motor and cognitive function following cortical impact injury. In conclusion, our findings demonstrate that TNFAIP3 deficiency inhibits neuronal cell ferroptosis and ameliorates cognitive impairment caused by traumatic brain injury and demonstrate its potential applicability in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinghao Yang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Ren
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200435, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
22
|
Mao Y, Li F, Shen L, Huang C. Construction and validation of a prediction nomogram model for acute gastrointestinal failure in patients with severe traumatic brain injury. Medicine (Baltimore) 2025; 104:e41423. [PMID: 39928796 PMCID: PMC11812995 DOI: 10.1097/md.0000000000041423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
This study aims to establish and validate the prediction model of acute gastrointestinal failure (AGF) in patients with severe traumatic brain injury. A total of 665 inpatients from Shaoxing People's Hospital from January 2018 to January 2024 were admitted and randomly divided into training group (466 cases) and validation group (199 cases). Data were collected by general situation questionnaire and AGF assessment tool. According to the results of multivariate logistic regression analysis, the prediction nomogram model was established with R software. Bootstrap method was used for internal verification of the model, and verification group was used for external verification. The area under receiver operating characteristic (ROC) curve, Hosmer-Lemeshow test and calibration curves were used to evaluate the differentiation and calibration degree of the model. Multivariate Logistic regression analysis showed that pulmonary infection, hypoxemia, glasgow coma scale (GCS) score ≤ 8 on admission, hyponatremia and metabolic acidosis were independent risk factors for AGF in patients with severe traumatic brain injury (P < .05). On this basis, a new prediction model was constructed, as follows: logit P = -4.998 + 0.858 × pulmonary infection + 0.923 × hypoxemia + 1.488 × GCS score ≤ 8 + 1.274 × hyponatremia + 1.020 × metabolic acidosis. The area under ROC of the new model was 0.787 (95% CI: 0.831-0.909), and the cutoff point was 0.4589. The sensitivity and specificity of the model were 69.74% and 76.15%, respectively. Hosmer-Lemeshow goodness of fit test showed that the prediction model had a good fitting effect (χ2 = 4.828, P = .681). External verification showed that the Hosmer-Lemeshow goodness of fit test showed that the prediction model had a good fitting effect (χ2 = 12.712, P = .122). Calibration curves showed the nomogram established fits well with the real data. The prediction model constructed in this study has good differentiation and calibration degree, which can intuitively and easily select high-risk patients, and provide reference for early screening and gastrointestinal nursing intervention.
Collapse
Affiliation(s)
- Yadi Mao
- Department of Neurosurgery, Shaoxing People’s Hospital, Zhongxinbei Road 568th, Yuecheng District, Shaoxing, Zhejiang, China
| | - Fei Li
- Department of Neurosurgery, Shaoxing People’s Hospital, Zhongxinbei Road 568th, Yuecheng District, Shaoxing, Zhejiang, China
| | - Lidi Shen
- Department of Neurosurgery, Shaoxing People’s Hospital, Zhongxinbei Road 568th, Yuecheng District, Shaoxing, Zhejiang, China
| | - Chunmin Huang
- Department of Neurosurgery, Shaoxing People’s Hospital, Zhongxinbei Road 568th, Yuecheng District, Shaoxing, Zhejiang, China
| |
Collapse
|
23
|
Dawood MH, Fazli Y, Lund S, Qazi SU, Tahir R, Masood AZ, Qureshi AA, Safdar S, Zaheer H, Chaychi MT. Mortality trends of traumatic brain injuries in the adult population of the United States: a CDC WONDER analysis from 1999 to 2020. BMC Public Health 2025; 25:482. [PMID: 39910550 PMCID: PMC11800646 DOI: 10.1186/s12889-025-21657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a critical public health issue in the United States, contributing significantly to morbidity, mortality, and healthcare costs. Accounting for a substantial proportion of injury-related deaths and disabilities, TBI impacts a wide demographic, with particularly high incidence rates among young and elderly populations. Despite earlier declines, recent years have seen an uptick in TBI-related fatalities. This study aimed to evaluate the patterns and geographical disparities in mortality related to TBI among the adult population in the United States. METHODS We examined the death certificates sourced from the Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) database to identify adults in whom TBI was documented as an underlying or contributing cause of death between 1999 and 2020. Age-adjusted mortality rates (AAMRs) per 100,000 individuals and annual percent change (APC) were computed and stratified based on year, gender, race/ethnicity, and geographic region. RESULTS Between 1999 and 2020, 1,026,185 TBI-related deaths occurred among adults aged ≥ 25 years. The AAMR remained stable from 22.2 in 1999 to 22.3 in 2007, followed by an insignificant decline to 21.5 in 2010, and a steeper significant subsequent increase to 24.6 in 2020. Men had consistently higher AAMR than women from 1999 (men: 35.6; women: 11.1) to 2020 (men: 38.8; women: 11.9). The 85 + years age group had the highest AAMR 118.5 trailed by 75-84-year age group at 53.2. American Indian or Alaska Native adults had the highest AAMR (31.9) followed by White (24.4). South had the highest AAMR (25.3), followed by West (22.7). Non-metropolitan areas consistently had higher mortality rates compared to metropolitan areas. CONCLUSIONS Following a brief period of stability in TBI-related mortality from 1999 to 2010, there has been a subsequent increase of 1.3% per year in mortality till 2020. Notable geographic and demographic disparities persist, underscoring the need for further research and precise health policy interventions to better understand and address these differences.
Collapse
Affiliation(s)
| | | | - Sejal Lund
- Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| | | | - Rija Tahir
- Ziauddin Medical College, Karachi, Pakistan
| | | | | | | | | | | |
Collapse
|
24
|
Wang S, Wang R, Han C, Hu H, Sun H. Development and validation of a nomogram for predicting early neurological deterioration in patients with moderate traumatic brain injury: a retrospective analysis. Front Neurol 2025; 16:1512125. [PMID: 39974365 PMCID: PMC11835672 DOI: 10.3389/fneur.2025.1512125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Objective Early neurological deterioration (END) greatly affects prognosis of moderate traumatic brain injury (TBI). This study aimed to develop and validate a nomogram to predict the occurrence of END in patients with moderate TBI. Methods A total of 371 patients with moderate TBI were enrolled and divided into the training (n = 260) and validation (n = 111) groups at a ratio of 7:3. Univariate and multivariate logistic regression analyses were used to identify the significant factors for END, which were used to develop a nomogram. The discrimination of the nomogram was evaluated using area under the receiver operating characteristic curves (AUC), the calibration was evaluated using calibration curves and Hosmer-Lemeshow tests. Decision curve analysis (DCA) was used to evaluate the net benefit of the model for patients. Results In the training group, multivariate logistic regression demonstrated that GCS score, epidural hematoma, intracerebral hemorrhage, fibrinogen, and D-dimer were independent risk factors for END in patients with moderate TBI. A nomogram was constructed using the logistic regression prediction model. The AUCs of the nomogram in the training and validation groups were 0.901 and 0.927, respectively. The calibration curves showed that the predicted probability was consistent with the actual situation in both the training and validation sets. DCA curves demonstrated significantly better net benefit with the model. Then a web-based calculator was generated to facilitate clinical application. Conclusion The present study developed and validated a model to predict END in patients with moderate TBI. The nomogram that had good discrimination, calibration, and clinical utility can provide clinicians with an effective and accurate tool for evaluating the occurrence of END after moderate TBI.
Collapse
Affiliation(s)
- Shen Wang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Ruhai Wang
- Department of Neurosurgery, Fuyang Fifth People’s Hospital, Anhui, China
| | - Chao Han
- Department of Neurosurgery, Fuyang Fifth People’s Hospital, Anhui, China
| | - Haicheng Hu
- Department of Neurosurgery, Fuyang Fifth People’s Hospital, Anhui, China
| | - Hongtao Sun
- The First School of Clinical Medical, Lanzhou University, Lanzhou, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| |
Collapse
|
25
|
Chen Y, Qiu Z, Hu X, Wang T, Li G, Tang Z, Fang C, Sheng W, Zhao J, Yu F, Weng J, Udduttula A, Manivasagam G, Zeng H. Biofunctional supramolecular injectable hydrogel with spongy-like metal-organic coordination for effective repair of critical-sized calvarial defects. Asian J Pharm Sci 2025; 20:100988. [PMID: 39926635 PMCID: PMC11803222 DOI: 10.1016/j.ajps.2024.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/22/2024] [Accepted: 06/15/2024] [Indexed: 02/11/2025] Open
Abstract
In clinical settings, regenerating critical-sized calvarial bone defects presents substantial problems owing to the intricacy of surgical methods, restricted bone growth medications, and a scarcity of commercial bone grafts. To treat this life-threatening issue, improved biofunctional grafts capable of properly healing critical-sized bone defects are required. In this study, we effectively created anti-fracture hydrogel systems using spongy-like metal-organic (magnesium-phosphate) coordinated chitosan-modified injectable hydrogels (CPMg) loaded with a bioinspired neobavaisoflavone (NBF) component. The CPMg-NBF hydrogels showed outstanding anti-fracture capabilities during compression testing and retained exceptional mechanical stability even after 28 d of immersion in phosphate-buffered saline. They also demonstrated prolonged and stable release profiles of Mg2+ and NBF. Importantly, CPMg-NBF hydrogels revealed robust biphasic mineralization and were non-toxic to MC3T3-E1 cells. To better understand the underlying mechanism of Mg2+ and NBF component, as well as their synergistic effect on osteogenesis, we investigated the expression of key osteogenic proteins in the p38 MAPK and NOTCH pathways. Our results showed that CPMg-NBF hydrogels greatly increased the expression of osteogenic proteins (Runx2, OCN, OPN, BMPS and ALP). In vivo experiments showed that the implantation of CPMg-NBF hydrogels resulted in a significant increase in new bone growth within critical-sized calvarial defects. Based on these findings, we expect that the CPMg-NBF supramolecular hydrogel has tremendous promise for use as a therapeutic biomaterial for treating critical-sized calvarial defects.
Collapse
Affiliation(s)
- Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zuocheng Qiu
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Xueling Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Tiehua Wang
- Internal Medicine, Shenzhen New Frontier United Family Hospital, Shenzhen 518031, China
| | - Guoqing Li
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Ziling Tang
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Anjaneyulu Udduttula
- Centre of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Geetha Manivasagam
- Centre of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Terasaki Institute for Biomedical Innovation, Los Angeles 90024, United States
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
26
|
Yuan X, Xu Q, Du F, Gao X, Guo J, Zhang J, Wu Y, Zhou Z, Yu Y, Zhang Y. Development and validation of a model to predict cognitive impairment in traumatic brain injury patients: a prospective observational study. EClinicalMedicine 2025; 80:103023. [PMID: 39850016 PMCID: PMC11753911 DOI: 10.1016/j.eclinm.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
Background Traumatic brain injury (TBI) is a significant public health issue worldwide that affects millions of people every year. Cognitive impairment is one of the most common long-term consequences of TBI, seriously affect the quality of life. We aimed to develop and validate a predictive model for cognitive impairment in TBI patients, with the goal of early identification and support for those at risk of developing cognitive impairment at the time of hospital admission. Methods The training cohort included 234 TBI patients, all of whom were admitted to the Department of Neurosurgery at the Third Affiliated Hospital of Soochow University from May 2017 to April 2020. These patients were selected from our previously published studies. Baseline characteristics, medical history, clinical TBI characteristics, treatment details, and vital signs during hospitalization were screened via least absolute shrinkage and selection operator (LASSO) and logistic regression to construct a predictive net risk score. The derived score represents an estimate of the risk of developing cognitive impairment in patients with TBI. A nomogram was constructed, and its accuracy and predictive performance were evaluated with the area under the receiver operating characteristic curve (AUC), calibration curves, and clinical decision curves. For the validation cohort, data were prospectively collected from TBI patients admitted to the Department of Neurosurgery at the Third Affiliated Hospital of Soochow University from March 1, 2024 to August 30, 2024, according to the inclusion and exclusion criteria. This study is registered with the Chinese Clinical Trial Registry (ChiCTR) at http://www.chictr.org.cn/ (registration number: ChiCTR2400083495). Findings The training cohort included 234 patients. The mean (standard deviation, SD) age of the patients in the cohort was 47.74 (17.89) years, and 184 patients (78.63%) were men. The validation cohort included 84 patients with a mean (SD) age of 48.44 (14.42) years, and 68 patients (80.95%) were men. Among the 48 potential predictors, the following 6 variables were significant independent predictive factors and were included in the net risk score: age (odds ratio (OR) = 1.06, 95% confidence interval (CI): 1.03-1.08, P = 0.00), years of education (OR = 0.80, 95% CI: 0.70-0.93, P = 0.00), pulmonary infection status (OR = 4.64, 95% CI: 1.41-15.27, P = 0.01), epilepsy status (OR = 4.79, 95% CI: 1.09-21.13, P = 0.04), cerebrospinal fluid leakage status (OR = 5.57, 95% CI: 1.08-28.75, P = 0.04), and the Helsinki score (OR = 1.53, 95% CI: 1.28-1.83, P = 0.00). The AUC in the training cohort was 0.90, and the cut-off value was 0.71. The AUC in the validation cohort was 0.87, and the cut-off value was 0.63. The score was translated into an online risk calculator that is freely available to the public (https://yuanxiaofang.shinyapps.io/Predict_cognitive_impairment_in_TBI/). Interpretation This model for predicting post-TBI cognitive impairment has potential value for facilitating early predictions by clinicians, aiding the early initiation of preventative interventions for cognitive impairment. Funding This research was supported by Science and Technology Development Plan Project of ChangZhou (CJ20229036); Science and Technology Project of Changzhou Health Commission (QN202113).
Collapse
Affiliation(s)
- Xiaofang Yuan
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qingrong Xu
- Department of Anesthesiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fengxia Du
- Department of Nursing, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Xiaoxia Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Guo
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianan Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yehuan Wu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | | | - Youjia Yu
- Department of Anesthesiology, Suzhou Xiangcheng People's Hospital, Suzhou, China
- Yangzhou University School of Medicine, China
| | - Yi Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
27
|
Liu G, Lu D, Wu J, Wang S, Duan A, Ren Y, Zhang Y, Meng L, Shou R, Li H, Wang Z, Wang Z, Sun X. Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury. Nitric Oxide 2025; 154:29-41. [PMID: 39566653 DOI: 10.1016/j.niox.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, along with high mortality and disability rates. Pathological conversion of excess nitric oxide (NO) to S-nitrosoglutathion (GSNO) after TBI leads to high S-nitrosylation of intracellular proteins, causing nitrative stress. GSNO reductase (GSNOR) plays an important role by regulating GSNO and SNO-proteins (PSNOs) and as a redox regulator of the nervous system. However, the effect of GSNOR on protein S-nitrosylation in secondary brain injury after TBI is not clear. In vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Neuron-targeted GSNOR-overexpression adeno-associated virus (AAV) was constructed and administered to mice by stereotactic cortical injection. The results showed that NO, GSNO, neuronal protein S-nitrosylation and neuronal death increased after TBI, while the level and activity of GSNOR decreased. Overexpression of GSNOR by AAV decreased GSNO and NO and improved short-term neurobehavioral outcomes in mice. GSNOR overexpression can reduce endoplasmic reticulum stress and neuronal death by reducing the S-nitrosylation of ERO1α via H2O2 generation and plays a neuroprotective role. In conclusion, our results suggest that GSNOR regulating S-nitrosylation of ERO1α may participate in neuronal death, and overexpression of GSNOR in neurons after experimental brain injury alleviates secondary brain injury. Our research provides a potential therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Jie Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yu Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lei Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Renjie Shou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
28
|
Xu N, Sun Z, Guan W, Liu Y, Gao Y, Yang C. PLGA scaffold combined with MSCs transplantation improved neural function and brain tissue structure in rats with traumatic brain injury. Brain Res Bull 2025; 221:111216. [PMID: 39832756 DOI: 10.1016/j.brainresbull.2025.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is an important biomaterial for tissue defect repair, but its application in replacing missing brain tissue needs improvement. Mesenchymal stem cells (MSCs) have been used to treat various neurological diseases, but they face challenges when filling large tissue defects. The purpose of this study was to investigate the effects of PLGA combined with MSCs transplantation on brain structure and neural function in rats with traumatic brain injury (TBI), and explore its possible mechanism. The results showed that both PLGA transplantation and PLGA+MSCs transplantation could improve the brain structure and promote nerve function recovery in rats with TBI, with PLGA+MSCs transplantation being superior to PLGA transplantation. Furthermore, compared to PLGA transplantation alone, PLGA+MSCs transplantation further reduced brain injury and cell apoptosis, promoted neuron survival, and improved synaptic plasticity. Overall, the adhesion of MSCs to PLGA can enhance the therapeutic efficacy of PLGA in rats following TBI.
Collapse
Affiliation(s)
- Na Xu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zihuan Sun
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Yiming Liu
- Department of Pediatrics, Southwest Medical University, Luzhou, China
| | - Yun Gao
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Chaoxian Yang
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
29
|
Han Y, Huang Y. Political economics in health and implications for neurosurgery diseases. Front Public Health 2025; 12:1444249. [PMID: 39935745 PMCID: PMC11811093 DOI: 10.3389/fpubh.2024.1444249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
The field of political economics in health has a significant and far-reaching impact on public health. It encompasses a diverse range of interconnected domains, including the economy, welfare, the environment, food and drug safety, pollution emissions, occupational safety, the quality of medical services, consumer rights, public health policy, healthcare policy, scientific research, and marketing management. In this review, we examine the global influence of political economics on health outcomes and delineate the impact of prevalent neurosurgical conditions on individual and collective healthcare resources. This review will discuss the effects of political-economic factors on the prevalence and treatment of neurosurgical diseases, including stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH), and brain malignant tumors. Furthermore, the current challenges and future directions will be discussed. We intend this review to facilitate the exchange and integration of political economics, public health, and neurosurgery, provide a foundation for policy development, enhance the prevention, diagnosis, and treatment of neurosurgical diseases, and ultimately promote public health.
Collapse
Affiliation(s)
- Yi Han
- School of Economics and Management, Leshan Normal University, Leshan, China
| | - Yutao Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Jones B, Patel R, Wang B, Evans-Nguyen T, Patel NA. Lyophilized Small Extracellular Vesicles (sEVs) Derived from Human Adipose Stem Cells Maintain Efficacy to Promote Healing in Neuronal Injuries. Biomedicines 2025; 13:275. [PMID: 40002689 PMCID: PMC11853053 DOI: 10.3390/biomedicines13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Traumatic brain injury (TBI) occurs in individuals of all ages, predominantly during sports, accidents, and in active military service members. Chronic consequences of TBI include declined cognitive and motor function, dementia, and emotional distress. Small extracellular vesicles (sEVs), previously referred to as exosomes, are nano-sized lipid vesicles that play a role in intercellular communication. Our prior research established the efficacy of sEVs derived from human adipose stem cells (hASC sEVs) in accelerating the healing of brain injuries. The hASC sEVs are a biologic therapeutic and need to be stored at -20 °C or -80 °C. This limits their use in translating to everyday use in clinics or their inclusion in first-aid kits for application immediately after injury. To address this, here we demonstrate that hASC sEVs can be stored at room temperature (RT) for two months post lyophilization. Methods: A transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA) were used to validate the morphology of lyophilized RT sEVs. Using in vitro models of neuronal injury mimicking physical injury, inflammation, and oxidative stress, we demonstrate that lyophilized RT hASC sEVs are viable and promote the healing of neuronal injuries. Results: The lyophilized sEVs maintain their purity, size, and morphology upon rehydration. Lyophilized, RT stored sEVs showed better efficacy after two months compared with -80 °C stored sEVs. Conclusions: RT storage of lyophilized hASC sEVs maintains their efficacy to accelerate the healing of injuries in neuronal cells. This will advance the use of hASC sEVs, bringing them closer to use in clinics, home first-aid kits, and on battlefields by active service members.
Collapse
Affiliation(s)
- Brianna Jones
- Research Service, J.A. Haley Veterans Hospital, Tampa, FL 33612, USA; (B.J.); (N.A.P.); (R.P.); (B.W.)
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33612, USA (T.E.-N.)
| | - Rekha Patel
- Research Service, J.A. Haley Veterans Hospital, Tampa, FL 33612, USA; (B.J.); (N.A.P.); (R.P.); (B.W.)
| | - Bangmei Wang
- Research Service, J.A. Haley Veterans Hospital, Tampa, FL 33612, USA; (B.J.); (N.A.P.); (R.P.); (B.W.)
| | - Theresa Evans-Nguyen
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33612, USA (T.E.-N.)
| | - Niketa A. Patel
- Research Service, J.A. Haley Veterans Hospital, Tampa, FL 33612, USA; (B.J.); (N.A.P.); (R.P.); (B.W.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
31
|
Zhang Y, Bai Y, Hou X, Yang Y, Ma H, Wang G, Li Y. Neuroprotective effects of hypidone hydrochloride (YL-0919) after traumatic brain injury in mice. Chin Med J (Engl) 2025:00029330-990000000-01391. [PMID: 39809708 DOI: 10.1097/cm9.0000000000003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI. METHODS TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method. First, the modified neurological severity score (mNSS), rotarod test, and Morris water maze (MWM) test were conducted to assess the impact of YL-0919 on neurological function in mice with TBI. Next, immunofluorescence and laser speckle contrast imaging were utilized to measure the number and activation of microglia and cerebral blood flow (CBF) after TBI. Enzyme-linked immunosorbent assays (ELISAs) were employed to assess the inflammatory factors. Finally, Western blotting was performed to measure the expression of proteins. Golgi-Cox staining was utilized to investigate the structure of pyramidal neurons. RESULTS YL-0919 significantly alleviated neurological dysfunction in TBI+YL-0919 mice compared with TBI+Vehicle mice, increased the time spent on the rotarod (F = 1.297, P <0.05), and partially relieved cognitive dysfunction in TBI mice (for mNSS, F = 5.540, P <0.01; for MWM test, F = 30.78, P <0.05). Additionally, YL-0919 effectively inhibited the proliferation and activation of microglia (both P <0.01), promoted the recovery of CBF around the brain injury site and inhibited the expression of tumor necrosis factor-α (F = 9.142, P <0.05) and IL-1β (F = 4.662, P <0.05), and increased the concentration of IL-4 (F = 5.172, P <0.05). Furthermore, continuous gavage of YL-0919 (2.5 mg/kg) for seven days effectively increased the protein expression of brain-derived neurotrophic factor (BDNF), promoted the phosphorylation of mammalian target of rapamycin (mTOR), increased postsynaptic density protein 95 (PSD95) and synapsin1 levels, and increased the neuronal dendritic complexity and the dendritic spine density around the brain injury site (all P <0.05). CONCLUSIONS Our findings indicated that YL-0919 can ameliorate neurological dysfunction in mice after TBI through the suppression of inflammation and the stimulation of the BDNF-mTOR signaling pathway. These findings provide an insightful perspective on the potential pharmacological mechanism involved in the neuroprotective effect of YL-0919.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaojuan Hou
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Yixin Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing 100850, China
| |
Collapse
|
32
|
Cui M, Xu X, Ye J, Pu X, Ren L. Effect of traumatic brain injury severity on intestinal barrier and gastrointestinal function. World J Emerg Med 2025; 16:82-84. [PMID: 39906113 PMCID: PMC11788114 DOI: 10.5847/wjem.j.1920-8642.2025.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/26/2024] [Indexed: 02/06/2025] Open
Affiliation(s)
- Meifang Cui
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Xiaoyu Xu
- Intensive Care Unit, Nanjing Medical University, Nanjing 210000, China
| | - Jilu Ye
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Xuehua Pu
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Liping Ren
- Intensive Care Unit, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
33
|
Wu L, Li Y, Sun M, Ye P, Zhang Z, Liu W. Global, regional, and national burdens of mild traumatic brain injuries from 1990 to 2019: findings from the Global Burden of Disease Study 2019 - a cross-sectional study. Int J Surg 2025; 111:160-170. [PMID: 38913425 PMCID: PMC11745685 DOI: 10.1097/js9.0000000000001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The objective of this study was to utilize data from the Global Burden of Disease Study (GBD) 2019 to estimate the patterns and prevalence of mild traumatic brain injury (mTBI) from 1990 to 2019, with the intention of informing the development of efficacious intervention strategies. MATERIAL AND METHODS Data from the GBD 2019 were examined to determine the prevalence, incidence, and rates of years lived with disability (YLDs) associated with mTBI across global geographic populations from 1990 to 2019. To assess temporal patterns, estimated annual percentage changes (EAPCs) and age-standardized rates were computed. Additionally, an age-period-cohort model (APC model) framework was employed to analyze potential trends in incidence based on age, period, and birth cohort. RESULTS In 2019, there were a total of 12 268.5 thousand incident cases (95% uncertainty interval [UI] 992.66-1602.07), 11 482.5 thousand prevalent cases (95% UI 107.59-123.52), and 1366.9 thousand YLDs (95% UI 96.36-183.35) of mTBI worldwide. The age-standardized rates (ASRs) of incidence, prevalence, and YLDs exhibited a decline from 1990 to 2019. Across all age groups, males had higher prevalence, incidence, and YLD rates. Furthermore, middle-aged and elderly adults experienced a greater disease burden. The primary causes of the global mTBI burden in 2019 were falls and road injuries. According to the APC model, the age effect trend exhibited a similar pattern across individual sociodemographic index (SDI) groups, characterized by an initial increase, followed by a decrease and a subsequent increase. Regarding the period effect, each SDI group demonstrated variation, with the middle SDI group notably displaying a consistent increase. Furthermore, in terms of the birth effect, the middle-SDI group experienced the most substantial and continuous increase. CONCLUSION The global incident cases and prevalent cases of mTBI increased significantly from 1990 to 2019, with a heavier burden observed in males, older adults, and in low SDI such as Afghanistan. More efforts are needed in the prevention and management of mTBI, such as reducing the incidence of falls among older people and building safer road transport facilities to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Liang Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Yunfei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Meng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Haidian District
| | - Pengpeng Ye
- National Centre for Non-Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Haidian District
- Beijing’s Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, People’s Republic of China
| | - Weiming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
34
|
Xiang Z, Luo Y, Yu J, Ma H, Zhao Y. Comprehensive Transcriptome-Wide Profiling of 5-Methylcytosine Modifications in Long Non-Coding RNAs in a Rat Model of Traumatic Brain Injury. Curr Issues Mol Biol 2024; 46:14497-14513. [PMID: 39727999 DOI: 10.3390/cimb46120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) poses a major global health challenge, leading to serious repercussions for those affected and imposing considerable financial strains on families and healthcare systems. RNA methylation, especially 5-methylcytosine (m5C), plays a crucial role as an epigenetic modification in regulating RNA at the level of post-transcriptional regulation. However, the impact of TBI on the m5C methylation profile of long non-coding RNAs (lncRNAs) remains unexplored. In the present study, we conducted a thorough transcriptome-wide examination of m5C methylation in lncRNAs in a rat TBI model utilizing MeRIP-Seq. Our results revealed significant differences in the amount and distribution of m5C methylation in lncRNAs between TBI and control groups, indicating profound changes in m5C methylation following TBI. Bioinformatic analyses linked these specifically methylated transcripts to pathways involved in immune response, neural repair, and lipid metabolism, providing insight into possible mechanisms underlying TBI pathology. These findings offer novel perspectives on the post-transcriptional modifications in lncRNA m5C methylation following TBI, which may contribute to understanding the disease mechanisms and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Zhijun Xiang
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yixing Luo
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| |
Collapse
|
35
|
Huang J, Peng Y, Wang X, Gu X, Yi Y, Wang W, He Z, Ma Z, Feng Q, Qi W, Hui J, Gong R, Weng W, Jiang G, Gao Y, Lin Y, Li J, Jiang J, Feng J. Temperature induces brain-intake shift of recombinant high-density lipoprotein after traumatic brain injury. J Nanobiotechnology 2024; 22:769. [PMID: 39695696 DOI: 10.1186/s12951-024-03016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the leading public health concerns in the world. Therapeutic hypothermia is routinely used in severe TBI, and pathophysiological hyperthermia, frequently observed in TBI patients, has an unclear impact on drug transport in the injured brain due to a lack of study on its effects. We investigated the effect of post-traumatic therapeutic hypothermia at 33°C and pathophysiological hyperthermia at 39°C on brain transport and cell uptake of neuroprotectants after TBI. Recombinant high-density lipoprotein (rHDL), which possesses anti-inflammatory, antioxidant activity, and blood-brain barrier (BBB) permeability, was chosen as the model drug. First, we found that mild hypothermia and hyperthermia impaired rHDL transport to the brain and lesion targeting in controlled cortical impact mice. Second, we investigated the temperature-induced rHDL uptake shift by various brain cell types. Mild hypothermia impeded the uptake of rHDL by endothelial cells, neurons, microglia, and astrocytes. Hyperthermia impeded the uptake of rHDL by endothelial cells and neurons while promoting its uptake by microglia and astrocytes. In an attempt to understand the mechanisms behind the above phenomena, it was found that temperature induced brain-intake shift of rHDL through the regulation of low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) stability in brain cells. We therefore reported the full view of the temperature-induced brain-intake shift of rHDL after TBI for the first time. It would be of help in coordinating pharmacotherapy with temperature management in individualization and precision medicine.
Collapse
Affiliation(s)
- Jialin Huang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Yidong Peng
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Xin Wang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaokun Gu
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Yao Yi
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
- Department of Ophthalmology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenye Wang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Zhenghui He
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Zixuan Ma
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Qiyuan Feng
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Wenlan Qi
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Jiyuan Hui
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru Gong
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weiji Weng
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology Shanghai Universities Collaborative Innovation Center for Translational Medicine Shanghai, Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingwei Gao
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Yong Lin
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Jin Li
- Department of Ophthalmology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jiyao Jiang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| | - Junfeng Feng
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| |
Collapse
|
36
|
Dai Y, He Q, Wang S, Cao T, Chai X, Wang N, Dong Y, Wong P, He J, Duan F, Yang Y. Deciphering network dysregulations and temporo-spatial dynamics in disorders of consciousness: insights from minimum spanning tree analysis. Front Psychol 2024; 15:1458339. [PMID: 39749272 PMCID: PMC11693494 DOI: 10.3389/fpsyg.2024.1458339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Objectives The neural mechanism associated with impaired consciousness is not fully clear. We aim to explore the association between static and dynamic minimum spanning tree (MST) characteristics and neural mechanism underlying impaired consciousness. Methods MSTs were constructed based on full-length functional magnetic resonance imaging (fMRI) signals and fMRI signal segments within each time window. Global and local measures of static MSTs, as well as spatio-temporal interaction characteristics of dynamic MSTs were investigated. Results A disruption or an alteration in the functional connectivity, the decreased average coupling strength and the reorganization of hub nodes were observed in patients with minimally conscious state (MCS) and patients with vegetative state (VS). The analysis of global and local measures quantitatively supported altered static functional connectivity patterns and revealed a slower information transmission efficiency in both patient groups. From a dynamic perspective, the spatial distribution of hub nodes exhibited relative stability over time in both normal and patient populations. The increased temporal variability in multiple brain regions within resting-state networks associated with consciousness was detected in MCS patients and VS patients, especially thalamus. As well, the increased spatial variability in multiple brain regions within these resting-state networks was detected in MCS patients and VS patients. In addition, local measure and spatio-temporal variability analysis indicated that the differences in network structure between two groups of patients were mainly in frontoparietal network and auditory network. Conclusion Our findings suggest that altered static and dynamic MST characteristics may shed some light on neural mechanism underlying impaired consciousness.
Collapse
Affiliation(s)
- Yangyang Dai
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Tianqing Cao
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xiaoke Chai
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Nan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yijun Dong
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taiwan, China
| | - Jianghong He
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Feng Duan
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
37
|
Li M, Cecconi B, Gosseries O, Cheng L, Yan Y, Chen Y, Li Y, Laureys S, Di H. Exploring end-of-life decision-making in China for disorders of consciousness. Ann Med 2024; 56:2423794. [PMID: 39587778 PMCID: PMC11600546 DOI: 10.1080/07853890.2024.2423794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 09/18/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVES We aim to investigate the ethical attitudes of the Chinese population toward withdrawal of life-sustaining treatment (WLST) in disorders of consciousness (DoC) patients. METHODS A self-administered questionnaire concerning WLST was distributed to Chinese medical professionals and non-medical participants between February and July 2022. Statistical analysis included chi-square tests and logistic regressions. RESULTS A total of 1223 Chinese participants responded to the questionnaire (39% of whom were medical professionals). Less than one third of participants reported positive attitudes towards withdrawing artificial nutrition and hydration (ANH), antibiotics, and do-not-resuscitation (DNR) orders in patients with unresponsive wakefulness syndrome (UWS) (30%, 24%, 24%) and minimally conscious state (MCS) (23%, 19%, 15%). More respondents agreed with WLST in UWS compared to MCS (p < 0.05). Positive attitudes toward DNR orders were associated with participants' older age, religion, monthly income > 5000 RMB and medical profession (p < 0.05). Most participants deemed patient's will (78%), families' wishes (67%), and financial burden (63%) to be crucial factors when considering WLST. CONCLUSIONS Chinese respondents exhibit a relatively low propensity to accept WLST in DoC. Ethical attitudes toward WLST resulted to be affected by individual characteristics of responders. These results call for developing better regulations for identifying qualified surrogate decision-makers and reducing legal ambiguities.
Collapse
Affiliation(s)
- Meiqi Li
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Intensive Care Unite, Hangzhou First People’s Hospital, Hangzhou, China
| | - Benedetta Cecconi
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Lijuan Cheng
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Yifan Yan
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Yan Chen
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Québec, Canada
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
38
|
Shi H, Song L, Wu Y, Shen R, Zhang C, Liao X, Wang Q, Zhu J. Edaravone Alleviates Traumatic Brain Injury by Inhibition of Ferroptosis via FSP1 Pathway. Mol Neurobiol 2024; 61:10448-10461. [PMID: 38733490 PMCID: PMC11584507 DOI: 10.1007/s12035-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Traumatic brain injury (TBI) is a highly severe form of trauma with complex series of reactions in brain tissue which ultimately results in neuronal damage. Previous studies proved that neuronal ferroptosis, which was induced by intracranial haemorrhage and other reasons, was one of the most primary causes of neuronal damage following TBI. However, the association between neuronal mechanical injury and ferroptosis in TBI and relevant treatments remain unclear. In the present study, we first demonstrated the occurrence of neuronal ferroptosis in the early stage of TBI and preliminarily elucidated that edaravone (EDA), a cerebroprotective agent that eliminates oxygen radicals, was able to inhibit ferroptosis induced by TBI. A cell scratching model was established in PC12 cells, and it was confirmed that mechanical injury induced ferroptosis in neurons at the early stage of TBI. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis, and we found that iFSP, a ferroptosis agonist which is capable to inhibit FSP1 pathway, attenuated the anti-ferroptosis effect of EDA. In conclusion, our results suggested that EDA inhibited neuronal ferroptosis induced by mechanical injury in the early phase of TBI by activating FSP1 pathway, which could provide evidence for future research on prevention and treatment of TBI.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Libiao Song
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Yonghui Wu
- Department of Neurosurgery, The Second People's Hospital of Lu'an, Lu'an, 237000, Anhui Province, China
| | - Ruonan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Chenxu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Xingzhi Liao
- Department of Anaesthesiology, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Qiuhong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Jiangnan University, Wuxi, 214002, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
39
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
40
|
Anaki D, Devisheim H, Goldenberg R, Feuerstein R. Long-Term Effects of Intensive Rehabilitation on Memory Functions in Acquired Brain-Damaged Patients. Arch Clin Neuropsychol 2024; 39:1398-1407. [PMID: 38916190 DOI: 10.1093/arclin/acae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Memory difficulties after brain injury are a frequent and concerning outcome, affecting a wide range of daily activities, employment, and social reintegration. Despite the importance of functional memory capacities throughout life, most studies examined the short-term effects of memory interventions in brain-damaged patients who underwent a rehabilitation program. In the present study, we investigated the long-term outcomes and intensity of memory interventions in acquired (traumatic brain injury [TBI] and non-TBI) brain-damaged patients who participated in an intensive cognitive rehabilitation program and either suffered or did not suffer from memory impairments. METHOD We measured pre-post-treatment memory performance of patiients (N = 24) suffering from memory deficits in four common and validated memory tasks (e.g. ROCFT). We compared them to other acquired brain injury patients treated at the same rehabilitation facility who did not suffer from memory impairments (N = 16). RESULTS Patients with memory deficits showed long-term improvements in three out of four tasks, while patients without memory deficits showed memory enhancements in only one task. In addition, rehabilitation intensity and type of brain damage predicted the extent of the memory change over time. DISCUSSION Long-term improvements in objective memory measures can be observed in patients suffering from brain injury. These improvements can be enhanced by intensifying the treatment program. Findings also suggest that these memory improvements are more pronounced in non-TBI than TBI patients. We discuss the implications of these results in designing optimal memory rehabilitation interventions.
Collapse
Affiliation(s)
- David Anaki
- Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain, Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Devisheim
- Feuerstein Institute, 47 Narkis St., PO Box 39040, Jerusalem 9139001, Israel
| | - Rosalind Goldenberg
- Feuerstein Institute, 47 Narkis St., PO Box 39040, Jerusalem 9139001, Israel
| | - Rafael Feuerstein
- Feuerstein Institute, 47 Narkis St., PO Box 39040, Jerusalem 9139001, Israel
| |
Collapse
|
41
|
Ma X, Ning Q, Yang Y, Li Y, Xu J, Yang R, Zhou D, Liao D. Experiences of caregivers of patients with traumatic brain injury during hospitalization in western China: A qualitative study. Neuropsychol Rehabil 2024:1-22. [PMID: 39485286 DOI: 10.1080/09602011.2024.2423089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Family members frequently provide both physical and emotional support to patients. Previous studies have focused primarily on the experiences of patients with traumatic brain injury (TBI) and their caregivers during home care and the transition from hospital care to the community, with less emphasis on their experiences during acute hospital care immediately after TBI. This study aimed to explore the experiences of caregivers of patients with TBI during acute hospitalizations. A qualitative descriptive study using individual semistructured interviews was conducted at the trauma center of a tertiary hospital in western China. A purposive sample of 21 caregivers of patients with TBI were recruited. The interviews were conducted face to face in the inpatient ward from July to September 2023. Conventional content analysis was used to conduct the framework analysis. The experiences of caregivers were identified within three key themes: TBI consequences in patients (physical impairments, psychological distress, and cognitive dysfunctions), challenges of caregivers (physiological/emotional/economic burdens, conflicts, and concerns regarding recovery), and needs of caregivers (health information, medical services, and recovery expectations). This study highlights the experiences of caregivers of patients with TBI during hospital stays in western China. The challenges faced by caregivers and the needs of caregivers are multidimensional. Appropriate support should be provided to alleviate the burden of caregiving.
Collapse
Affiliation(s)
- Xueping Ma
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, People's Republic of China
| | - Qian Ning
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Trauma Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Trauma Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yinping Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jia Xu
- Information Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Rong Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dengbin Liao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Trauma Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
42
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
43
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
44
|
Jiang H, Xie Z, Yang L, Wang H. Pcv-aCO 2/Ca-cvO 2 Combined with Optic Nerve Sheath Diameter in Predicting Elevated Intracranial Pressure of Patients with Traumatic Brain Injury in Prehospital Setting. Int J Gen Med 2024; 17:4519-4528. [PMID: 39398485 PMCID: PMC11468361 DOI: 10.2147/ijgm.s475225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose To investigate a correlation between the central venous minus arterial CO2 pressure to arterial minus central venous O2 content ratio (Pcv-aCO2/Ca-cvO2) combined with optic nerve sheath diameter (ONSD) in predicting prehospital elevated intracranial pressure (ICP) in traumatic brain injury (TBI) patients. Patients and Methods This was a prospective observational study of all adult TBI patients from the surgical intensive care unit who underwent invasive ICP monitoring between January 2023 and December 2023. Using a Delica MVU-6300 machine with 14-5 MHz linear probe to measure ONSD. We drew blood samples for arterial and central venous blood gases to measure and calculate the following indicators such as Pcv-aCO2, Ca-cvO2, and Pcv-aCO2/Ca-cvO2 ratio. ONSD and Pcv-aCO2/Ca-cvO2 were recorded during the first 3 days after admission. Simultaneous ICP values were gained from the invasive monitoring. Associations between ONSD, Pcv-aCO2/Ca-cvO2 and simultaneous ICP were explored by Spearman correlation analysis. We constructed an ROC curve to identify the ONSD and Pcv-aCO2/Ca-cvO2 cutoff for the evaluation of elevated ICP. Results We included 54 patients aged mean 57.13 (standard deviation 4.02) years and 24 (44%) were male. A significant correlation was observed between ONSD and ICP (r = 0.74, P < 0.01). The AUC was 0.861 (95% CI: 0.727-0.951), with a best cutoff value of 5.62 mm. Using a cutoff of 5.62mm, ONSD had a sensitivity of 92.8%, specificity of 80.4%. The Pcv-aCO2/Ca-cvO2 ratio also significantly correlated with ICP (r = 0.70, P < 0.01). The AUC was 0.791 (95% CI: 0.673-0.889). The optimal Pcv-aCO2/Ca-cvO2 value for predicting elevated ICP was 1.98 mmHg/mL. Using a cutoff of 1.98 mmHg/mL, Pcv-aCO2/Ca-cvO2 had a sensitivity of 87.3%, specificity of 77.2%. The AUC for ONSD combined with Pcv-aCO2/Ca-cvO2 was 0.952 (95% CI: 0.869-0.971), which had a sensitivity of 95.1%, specificity of 93.9%. Conclusion Pcv-aCO2/Ca-cvO2 combined with ONSD performed best in predicting elevated intracranial pressure of patients with TBI in a prehospital setting. Our findings provide a crucial tool to improve earlier management of these patients in prehospital care, where the availability and utilization of invasive monitoring is limited. It could lead to significant changes in how TBI patients are monitored and treated before reaching a hospital.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Emergency Medical Service, The First People’s Hospital of Changde City, Changde, Hunan Province, People’s Republic of China
| | - Zhihui Xie
- Department of Emergency Medical Service, The First People’s Hospital of Changde City, Changde, Hunan Province, People’s Republic of China
| | - Liu Yang
- Department of Emergency Medical Service, The First People’s Hospital of Changde City, Changde, Hunan Province, People’s Republic of China
| | - Huiting Wang
- Department of Emergency, The First People’s Hospital of Changde City, Changde, Hunan Province, People’s Republic of China
| |
Collapse
|
45
|
Zheng Y, Tan L, Chen H, He S, Li M, Luo Z, Cai K, Hu Y. Hierarchical Integration of Curcumin-Loaded CaCO 3 Nanoparticles and Black Phosphorus Nanosheets in Core/Shell Nanofiber for Cranial Defect Repair. Adv Healthc Mater 2024:e2401786. [PMID: 39375960 DOI: 10.1002/adhm.202401786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/15/2024] [Indexed: 10/09/2024]
Abstract
Reconstruction and healing of large craniofacial bone defects are major clinical challenges due to high risk of chronic inflammation and reduced cell mineralization levels. Herein, a core-shell nanofiber-based implant with significant pro-osteogenesis capability for treating skull defects is reported, which is hierarchically integrated with curcumin-loaded calcium carbonate nanoparticles (CaCO3@Cur NPs) in the outer layers and black phosphorus nanosheets (BPNSs) in the core compartments. The radical alignment of the integrated nanocomponents allows the sequential in situ release of the therapeutic agents in a controlled manner after implantation. Curcumin can repolarize M1 macrophages into M2 phenotypes for anti-inflammation purposes. Meanwhile, the released calcium and phosphate ions can promote the biomineralization of hydroxyapatite at the defect site and facilitate bone regeneration. Evaluations on cranial defect-bearing rat models demonstrated that the electrospun fibers in the present study substantially promoted restoration of the damaged skulls and inhibited inflammation in the wound bed. This strategy provides a new idea for the treatment of skull defects in the clinic.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuohan He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
46
|
Zhao J, Zhao G, Lang J, Sun B, Feng S, Li D, Sun G. Astragaloside IV ameliorated neuroinflammation and improved neurological functions in mice exposed to traumatic brain injury by modulating the PERK-eIF2α-ATF4 signaling pathway. J Investig Med 2024; 72:747-762. [PMID: 38869170 DOI: 10.1177/10815589241261293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Increasing evidence suggests that endoplasmic reticulum stress (ER stress) and neuroinflammation are involved in the complex pathological process of traumatic brain injury (TBI). However, the pathological mechanisms of their interactions in TBI remain incompletely elucidated. Therefore, investigating and ameliorating neuroinflammation and ER stress post-TBI may represent effective strategies for treating secondary brain injury. Astragaloside IV (AS-IV) has been reported as a potential neuroprotective and anti-inflammatory agent in neurological diseases. This study utilized a mouse TBI model to investigate the pathological mechanisms and crosstalk of ER stress, neuroinflammation, and microglial cell morphology in TBI, as well as the mechanisms and potential of AS-IV in improving TBI. The research revealed that post-TBI, inflammatory factors IL-6, IL-1β, and TNF-α increased, microglial cells were activated, and the specific inhibitor of PERK phosphorylation, GSK2656157, intervened to alleviate neuroinflammation and inhibit microglial cell activation. Post-TBI, levels of ER stress-related proteins (p-PERK, p-eIF2a, ATF4, ATF6, and p-IRE1a) increased. Following AS-IV treatment, neurological dysfunction in TBI mice improved. Levels of p-PERK, p-eIF2a, and ATF4 decreased, along with reductions in inflammatory factors IL-6, IL-1β, and TNF-α. Changes in microglial/macrophage M1/M2 polarization were observed. Additionally, the PERK activator CCT020312 intervention eliminated the impact of AS-IV on post-TBI inflammation and ER stress-related proteins p-PERK, p-eIF2a, and ATF4. These results indicate that AS-IV alleviates neuroinflammation and brain damage post-TBI through the PERK pathway, offering new directions and theoretical insights for TBI treatment.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Gengshui Zhao
- Department of Neurosurgery, The People's Hospital of Hengshui City, Hengshui, The People's Republic of China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Dongsheng Li
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| |
Collapse
|
47
|
Zhang Z, Wu X, Kong Y, Zou P, Wang Y, Zhang H, Cui G, Zhu W, Chen H. Dynamic Changes and Effects of H 2S, IGF-1, and GH in the Traumatic Brain Injury. Biochem Genet 2024; 62:3821-3840. [PMID: 38233694 DOI: 10.1007/s10528-023-10557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/21/2023] [Indexed: 01/19/2024]
Abstract
The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Xin Wu
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Yang Kong
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Peng Zou
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Yanbin Wang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Hongtao Zhang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Guangqiang Cui
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Wei Zhu
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China.
| | - Hongguang Chen
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China.
| |
Collapse
|
48
|
Xiao Y, Zhang Y, Yuan W, Wang C, Ge Y, Huang T, Gao J. Piezo2 Contributes to Traumatic Brain Injury by Activating the RhoA/ROCK1 Pathways. Mol Neurobiol 2024; 61:7419-7430. [PMID: 38388773 PMCID: PMC11415480 DOI: 10.1007/s12035-024-04058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Traumatic brain injury (TBI) can lead to short-term and long-term physical and cognitive impairments, which have significant impacts on patients, families, and society. Currently, treatment outcomes for this disease are often unsatisfactory, due at least in part to the fact that the molecular mechanisms underlying the development of TBI are largely unknown. Here, we observed significant upregulation of Piezo2, a key mechanosensitive ion channel protein, in the injured brain tissue of a mouse model of TBI induced by controlled cortical impact. Pharmacological inhibition and genetic knockdown of Piezo2 after TBI attenuated neuronal death, brain edema, brain tissue necrosis, and deficits in neural function and cognitive function. Mechanistically, the increase in Piezo2 expression contributed to TBI-induced neuronal death and subsequent production of TNF-α and IL-1β, likely through activation of the RhoA/ROCK1 pathways in the central nervous system. Our findings suggest that Piezo2 is a key player in and a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Wenjuan Yuan
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Cunjin Wang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China.
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China.
| |
Collapse
|
49
|
Wang H, Liu Y, Yuan J, Wang Y, Yuan Y, Liu Y, Ren X, Zhou J. Development and validation of a nomogram for predicting mortality in patients with acute severe traumatic brain injury: A retrospective analysis. Neurol Sci 2024; 45:4931-4956. [PMID: 38722502 DOI: 10.1007/s10072-024-07572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Recent evidence links the prognosis of traumatic brain injury (TBI) to various factors, including baseline clinical characteristics, TBI specifics, and neuroimaging outcomes. This study focuses on identifying risk factors for short-term survival in severe traumatic brain injury (sTBI) cases and developing a prognostic model. METHODS Analyzing 430 acute sTBI patients from January 2018 to December 2023 at the 904th Hospital's Neurosurgery Department, this retrospective case-control study separated patients into survival outcomes: 288 deceased and 142 survivors. It evaluated baseline, clinical, hematological, and radiological data to identify risk and protective factors through univariate and Lasso regression. A multivariate model was then formulated to pinpoint independent prognostic factors, assessing their relationships via Spearman's correlation. The model's accuracy was gauged using the Receiver Operating Characteristic (ROC) curve, with additional statistical analyses for quantitative factors and model effectiveness. Internal validation employed ROC, calibration curves, Decision Curve Analysis (DCA), and Clinical Impact Curves (CIC) to assess model discrimination, utility, and accuracy. The International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) and Corticosteroid Randomization After Significant Head injury (CRASH) models were also compared through multivariate regression. RESULTS Factors like unilateral and bilateral pupillary non-reactivity at admission, the derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio (PLR), D-dimer to fibrinogen ratio (DFR), infratentorial hematoma, and Helsinki CT score were identified as independent risk factors (OR > 1), whereas serum albumin emerged as a protective factor (OR < 1). The model showed superior predictive performance with an AUC of 0.955 and surpassed both IMPACT and CRASH models in predictive accuracy. Internal validation confirmed the model's high discriminative capability, clinical relevance, and effectiveness. CONCLUSIONS Short-term survival in sTBI is significantly influenced by factors such as pupillary response, dNLR, PLR, DFR, serum albumin levels, infratentorial hematoma occurrence, and Helsinki CT scores at admission. The developed nomogram accurately predicts sTBI outcomes, offering significant clinical utility.
Collapse
Affiliation(s)
- Haosheng Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Yehong Liu
- Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Jun Yuan
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Ying Yuan
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Yuanyuan Liu
- Department of Neurosurgery, The Lu' an Hospital Affiliated to Anhui Medical University, Lu'an, Anhui Province, 237000, China
| | - Xu Ren
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Jinxu Zhou
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China.
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China.
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China.
| |
Collapse
|
50
|
Wang B, Liu Y, Xing J, Zhang H, Ye S. Development and validation of a clinical nomogram for predicting in-hospital mortality in patients with traumatic brain injury prehospital: A retrospective study. Heliyon 2024; 10:e37295. [PMID: 39296141 PMCID: PMC11408059 DOI: 10.1016/j.heliyon.2024.e37295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Traumatic brain injury (TBI) is among the leading causes of death and disability globally. Identifying and assessing the risk of in-hospital mortality in traumatic brain injury patients at an early stage is challenging. This study aimed to develop a model for predicting in-hospital mortality in TBI patients using prehospital data from China. Methods We retrospectively included traumatic brain injury patients who sustained injuries due to external forces and were treated by pre-hospital emergency medical services (EMS) at a tertiary hospital. Data from the pre-hospital emergency database were analyzed, including demographics, trauma mechanisms, comorbidities, vital signs, clinical symptoms, and trauma scores. Eligible patients were randomly divided into a training set (241 cases) and a validation set (104 cases) at a 7:3 ratio. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression were employed to identify independent risk factors. Analyzed the discrimination, calibration, and net benefit of the nomogram across both groups. Results 17.40 % (42/241) of TBI patients died in the hospital in the training set, while 18.30 % (19/104) in the validation set. After analysis, chest trauma (odds ratio [OR] = 4.556, 95 % confidence interval [CI] = 1.861-11.152, P = 0.001), vomiting (OR = 2.944, 95%CI = 1.194-7.258, P = 0.019), systolic blood pressure (OR = 0.939, 95%CI = 0.913-0.966, P < 0.001), SpO2 (OR = 0.778, 95%CI = 0.688-0.881, P < 0.001), and heart rate (OR = 1.046, 95%CI = 1.015-1.078, P = 0.003) were identified as independent risk factors for in-hospital mortality in TBI patients. The nomogram based on the five factors demonstrated well-predictive power, with an area under the curve (AUC) of 0.881 in the training set and 0.866 in the validation set. The calibration curve and decision curve analysis showed that the predictive model exhibited good consistency and covered a wide range of threshold probabilities in both sets. Conclusion The nomogram based on prehospital data demonstrated well-predictive performance for in-hospital mortality in TBI patients, helping prehospital emergency physicians identify and assess severe TBI patients earlier, thereby improving the efficiency of prehospital emergency care.
Collapse
Affiliation(s)
- Bing Wang
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yanping Liu
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Department of Emergency and Critical Care Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Jingjing Xing
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailong Zhang
- Pre-hospital Emergency Section, Wuhu Emergency Center, Wuhu, Anhui, China
| | - Sheng Ye
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|