1
|
Lozano IE, Lo Nostro FL, Llamazares Vegh S, Lagraña A, Marino DJG, Czuchlej C, de la Torre FR. Impact of antiparasitic used in livestock: effects of ivermectin spiked sediment in Prochilodus lineatus, an inland fishery species of South America. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45425-45440. [PMID: 38965109 DOI: 10.1007/s11356-024-34057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Ivermectin (IVM) is a widely used antiparasitic. Concerns have been raised about its environmental effects in the wetlands of Río de la Plata basin where cattle have been treated with IVM for years. This study investigated the sublethal effects of environmentally relevant IVM concentrations in sediments on the Neotropical fish Prochilodus lineatus. Juvenile P. lineatus were exposed to IVM-spiked sediments (2 and 20 µg/Kg) for 14 days, alongside a control sediment treatment without IVM. Biochemical and oxidative stress responses were assessed in brain, gills, and liver tissues, including lipid damage, glutathione levels, enzyme activities, and antioxidant competence. Muscle and brain acetylcholinesterase activity (AChE) and stable isotopes of 13C and 15N in muscle were also measured. The lowest IVM treatment resulted in an increase in brain lipid peroxidation, as measured by thiobarbituric acid reactive substances (TBARs), decreased levels of reduced glutathione (GSH) in gills and liver, increased catalase activity (CAT) in the liver, and decreased antioxidant capacity against peroxyl radicals (ACAP) in gills and liver. The highest IVM treatment significantly reduced GSH in the liver. Muscle (AChE) was decreased in both treatments. Multivariate analysis showed significant overall effects in the liver tissue, followed by gills and brain. These findings demonstrate the sublethal effects of IVM in P. lineatus, emphasizing the importance of considering sediment contamination and trophic habits in realistic exposure scenarios.
Collapse
Affiliation(s)
- Ismael E Lozano
- Lab. Ecotoxicología Acuática, DBBE, FCEN, Universidad de Buenos & IBBEA, UBA-CONICET, CABA, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- Lab. Ecotoxicología Acuática, DBBE, FCEN, Universidad de Buenos & IBBEA, UBA-CONICET, CABA, Buenos Aires, Argentina
| | - Sabina Llamazares Vegh
- Instituto de Investigaciones en Producción Animal, INPA, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Aldana Lagraña
- GECAP, Instituto de Ecología y Desarrollo Sustentable, Ciencias Básicas, Universidad Nacional de Luján-CONICET, Luján, Argentina
| | - Damián J G Marino
- CIM, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Cristina Czuchlej
- Lab. Ecotoxicología Acuática, DBBE, FCEN, Universidad de Buenos & IBBEA, UBA-CONICET, CABA, Buenos Aires, Argentina
| | - Fernando R de la Torre
- GECAP, Instituto de Ecología y Desarrollo Sustentable, Ciencias Básicas, Universidad Nacional de Luján-CONICET, Luján, Argentina.
| |
Collapse
|
2
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
3
|
Tokodi N, Drobac D, Meriluoto J, Lujić J, Marinović Z, Važić T, Nybom S, Simeunović J, Dulić T, Lazić G, Petrović T, Vuković-Gačić B, Sunjog K, Kolarević S, Kračun-Kolarević M, Subakov-Simić G, Miljanović B, Codd GA, Svirčev Z. Cyanobacterial effects in Lake Ludoš, Serbia - Is preservation of a degraded aquatic ecosystem justified? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1047-1062. [PMID: 29710560 DOI: 10.1016/j.scitotenv.2018.04.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are present in many aquatic ecosystems in Serbia. Lake Ludoš, a wetland area of international significance and an important habitat for waterbirds, has become the subject of intense research interest because of practically continuous blooming of cyanobacteria. Analyses of water samples indicated a deterioration of ecological condition and water quality, and the presence of toxin-producing cyanobacteria (the most abundant Limnothrix redekei, Pseudanabaena limnetica, Planktothrix agardhii and Microcystis spp.). Furthermore, microcystins were detected in plants and animals from the lake: in macrophyte rhizomes (Phragmites communis, Typha latifolia and Nymphaea elegans), and in the muscle, intestines, kidneys, gonads and gills of fish (Carassius gibelio). Moreover, histopathological deleterious effects (liver, kidney, gills and intestines) and DNA damage (liver and gills) were observed in fish. A potential treatment for the reduction of cyanobacterial populations employing hydrogen peroxide was tested during this study. The treatment was not effective in laboratory tests although further in-lake trials are needed to make final conclusions about the applicability of the method. Based on our observations of the cyanobacterial populations and cyanotoxins in the water, as well as other aquatic organisms and, a survey of historical data on Lake Ludoš, it can be concluded that the lake is continuously in a poor ecological state. Conservation of the lake in order to protect the waterbirds (without urgent control of eutrophication) actually endangers them and the rest of the biota in this wetland habitat, and possibly other ecosystems. Thus, urgent measures for restoration are required, so that the preservation of this Ramsar site would be meaningful.
Collapse
Affiliation(s)
- Nada Tokodi
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Damjana Drobac
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland; Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jelena Lujić
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő 2100, Hungary
| | - Zoran Marinović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő 2100, Hungary
| | - Tamara Važić
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sonja Nybom
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tamara Dulić
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Gospava Lazić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Tamaš Petrović
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Branka Vuković-Gačić
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - Karolina Sunjog
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - Stoimir Kolarević
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - Gordana Subakov-Simić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Miljanović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Geoffrey A Codd
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
4
|
Piscopo M, Ricciardiello M, Palumbo G, Troisi J. Selectivity of metal bioaccumulation and its relationship with glutathione S-transferase levels in gonadal and gill tissues of Mytilus galloprovincialis exposed to Ni (II), Cu (II) and Cd (II). RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0564-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Glutathione Transferases Responses Induced by Microcystin-LR in the Gills and Hepatopancreas of the Clam Venerupis philippinarum. Toxins (Basel) 2015; 7:2096-120. [PMID: 26067368 PMCID: PMC4488691 DOI: 10.3390/toxins7062096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
A multi-method approach was employed to compare the responses of Glutatione Transferases (GSTs) in the gills and hepatopancreas of Venerupis philippinarum to microcystins (MCs) toxicity. In this way, using the cytosolic fraction, the enzymatic activity of GSTs, superoxide dismutase (SOD), serine/threonine protein phosphatases (PPP2) along with the gene expression levels of four GST isoforms (pi, mu, sigma1, sigma2) were investigated in both organs of the clams exposed for 24 h to 10, 50 and 100 μg L−1 of MC-LR. Cytosolic GSTs (cGSTs) from both organs of the high dose exposed clams were purified by glutathione-agarose affinity chromatography, characterized kinetically and the changes in the expression of cGSTs of the gills identified using a proteomic approach. MC-LR caused an increase in GST enzyme activity, involved in conjugation reactions, in both gills and hepatopancreas (100 μg L−1 exposure). SOD activity, an indicator of oxidative stress, showed significantly elevated levels in the hepatopancreas only (50 and 100 μg L−1 exposure). No significant changes were found in PPP2 activity, the main target of MCs, for both organs. Transcription responses revealed an up-regulation of sigma2 in the hepatopancreas at the high dose, but no significant changes were detected in the gills. Kinetic analysis evidenced differences between gills of exposed and non-exposed extracts. Using proteomics, qualitative and quantitative differences were found between the basal and inducible cGSTs. Overall, results suggest a distinct role of GST system in counteracting MCs toxicity between the gills and the hepatopancreas of V. philippinarum, revealing different roles between GST isoforms within and among both organs.
Collapse
|
6
|
Zahran E, Risha E. Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2014; 41:654-662. [PMID: 25304544 DOI: 10.1016/j.fsi.2014.09.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/28/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Arsenic intoxicant have long been regarded as an impending carcinogenic, genotoxic, and immunotoxic heavy metal to human and animals as well. In this respect, we evaluated biomarkers of the innate immune response and oxidative stress metabolism in gills and liver of Nile tilapia (Oreochromis niloticus) after arsenic exposure, and the protective role of Chlorella vulgaris (Ch) dietary supplementation were elucidated. Protective role of C. vulgaris (Ch), as supplementary feeds (5% and 10% of the diet) was studied in Nile tilapia (O. niloticus) against arsenic induced toxicity (NaAsO2 at 7 ppm) for 21 days exposure period. A significant down-regulation in innate immune response; including, respiratory burst, lysozyme, and bactericidal activity followed due to deliberately As(+3) exposure. Similarly, oxidative stress response; like nitric oxide (NO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were significantly decreased. Combined treatment of Ch and As(+3) significantly enhanced the innate immune response and antioxidant activity. Strikingly, Ch supplementation at 10% has been considered the optimum for Nile tilapia since it exhibited enhancement of innate immune response and antioxidant activity over the level 5%, and even better than that of control level. Thus, our results concluded that dietary Ch supplementation could protect Nile tilapia against arsenic induced immunosuppression and oxidative stresses.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Internal Medicine, Infections and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Engy Risha
- Departments of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Gonçalves-Soares D, Zanette J, Yunes JS, Yepiz-Plascencia GM, Bainy ACD. Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. MARINE ENVIRONMENTAL RESEARCH 2012; 75:54-61. [PMID: 21889198 DOI: 10.1016/j.marenvres.2011.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/23/2011] [Accepted: 07/27/2011] [Indexed: 05/21/2023]
Abstract
Microcystin (MC) produced during cyanobacteria blooms is notably toxic to human and wildlife. Conjugation with reduced glutathione (GSH) by glutathione S-transferase (GST) and the antioxidant enzymes defenses (e.g. catalase, CAT) are important biochemical defense mechanisms against MCs toxicity. We investigated the enzymatic activity of CAT and GST and the gene expression levels of CAT and eight GST isoforms in the hepatopancreas of the globally farmed shrimp Litopenaeus vannamei 48-h after injection with a sub-lethal dose of 100 μg kg⁻¹ of a toxic Microcystis aeruginosa extract. MCs caused up-regulation for GSTΩ, μ and a MAPEG isoform, by 12-, 2.8- and 1.8-fold, respectively, and increases in the total GST enzyme activity and CAT enzyme activity. The study points to the importance of further characterization for the L. vannamei GST isoforms and GST/CAT post-translational regulation processes to better understand the key mechanisms involved in the shrimp's defense against MC exposure.
Collapse
Affiliation(s)
- Daniela Gonçalves-Soares
- Departamento de Bioquímica, Núcleo de Estudos em Patologia Aquícola, Universidade Federal de Santa Catarina, Servidão Caminho do Porto, s/n, Itacorubi, Florianópolis, SC 88034-257, Brazil
| | | | | | | | | |
Collapse
|
8
|
Liang XF, Li GG, He S, Huang Y. Transcriptional responses of alpha- and rho-class glutathione S-transferase genes in the liver of three freshwater fishes intraperitoneally injected with microcystin-LR: relationship of inducible expression and tolerance. J Biochem Mol Toxicol 2008; 21:289-98. [PMID: 17912703 DOI: 10.1002/jbt.20188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rho-class glutathione S-transferase (GST) is found only in teleost fish with no homologues in mammals. Silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon idellus), and Nile tilapia (Oreochromis nilotica) are three warm freshwater fishes with differential tolerance to microcystin-LR (MC-LR): Nile tilapia has a little higher tolerance than silver carp, but both have much higher tolerance than grass carp. Full-length cDNAs encoding the rho-class GST were cloned and sequenced from the livers of the three fishes. The silver carp, grass carp, and Nile tilapia rho-class GST cDNAs were 1078, 1104, and 904 bp in length, respectively, and all contained an open-reading frame (ORF) of 681 bp (encoding a polypeptide of 226 amino acids). Using beta-actin as an external control, semiquantitative RT-PCR was conducted to determine the constitutive and inducible expression level of alpha- and rho-class GST genes among the three fishes (6-12 g) intraperitoneally injected with MC-LR (50 mug kg(-1) body weight). Liver mRNA expression levels of alpha-class GST gene were found to be higher than those of rho-class GST gene in both exposed and control fish of silver carp and grass carp, whereas liver mRNA expression levels of rho-class GST gene were higher than those of alpha -class GST gene in both exposed and control fish of Nile tilapia. Increased liver transcription of GST isoforms was detected at 8-h postinjection of MC-LR in silver carp (alpha- and rho-class GST) and Nile tilapia (rho-class GST), and at 24-h postinjection in silver carp (alpha-class GST) and Nile tilapia (alpha-class GST), but an increase in liver transcription neither of alpha-class GST nor of rho-class GST was detected in grass carp at either 8-h or 24-h postinjection. The inducible expression of the liver GST gene showed a close relationship with their tolerance to MC-LR: high-resistant fish (phytoplanktivorous silver carp and Nile tilapia) had inducible liver expression of either alpha- or rho-class GST, and the high-sensitive fish (herbivorous grass carp) had no inducible liver expression of either one. We suggest that inducible expression (instead of constitutive expression) of the liver GST gene should play an important role in the tolerance to microcystin exposure, and that in addition to alpha-class GST, high-liver expression of rho-class GST gene might have facilitated the evolutionary radiation of teleost fish.
Collapse
Affiliation(s)
- Xu-Fang Liang
- College of Life Science and Technology, Jinan University, Shipai, Guangzhou 510632, People's Republic of China.
| | | | | | | |
Collapse
|
9
|
Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:675-732. [PMID: 18461789 DOI: 10.1007/978-0-387-75865-7_32] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper reviews the rapidly expanding literature on the ecological effects of cyanobacterial toxins. The study employs a qualitative meta-analysis from the literature examining results from a large number of independent studies and extracts general patterns from the literature or signals contradictions. The meta-analysis is set up by putting together two large tables--embodying a large and representative part of the literature (see Appendix A). The first table (Table A.1) reviews the presence (concentrations) of different cyanobacterial toxins in the tissues of various groups of aquatic biota after exposure via different routes, experimentally in the lab or via natural routes in the environment. The second table (Table A.2) reviews the dose dependent effect of toxins on biota. The great majority of studies deal with the presence and effects of microcystin, especially of the MC-LR congener. Although this may partly be justified--MC-LR is an abundant and highly toxic protein--our review also emphasizes what is known about (i) other MC congeners (a number of studies showed a preferred accumulation of the less toxic variant MC-RR in animal tissues), (ii) nodularin (data on a range of biota from studies on the Baltic Sea), (iii) neurotoxins like anatoxin-a(s), which are conspicuously often present at times when mass mortalities of birds occur, (iv) a few studies on the presence and effects of cylindrospermposin, as well as (v) the first examples of ecological effects of newly identified bioactive compounds, like microviridin-J. Data were reorganized to assess to what extent bioconcentration (uptake and concentration of toxins from the water) or biomagnification (uptake and concentration via the food) of cyanobacterial toxins occurs in ecosystems. There is little support for the occurrence of biomagnification, and this reduces the risk for biota at higher trophic levels. Rather than biomagnification biodilution seems to occur in the foodweb with toxins being subject to degradation and excretion at every level. Nevertheless toxins were present at all tropic levels, indicating that some vectorial transport must take place, and in sufficient quantities for effects to possibly occur. Feeding seemed to be the most important route for exposure of aquatic biota to cyanobacterial toxins. A fair number of studies focus on dissolved toxins, but in those studies purified toxin typically is used, and biota do not appear very sensitive to this form of exposure. More effects are found when crude cyanobacterial cell lysates are used, indicating that there may be synergistic effects between different bioactive compounds. Aquatic biota are by no means defenseless against toxic cyanobacteria. Several studies indicate that those species that are most frequently exposed to toxins in their natural environment are also the most tolerant. Protection includes behavioral mechanisms, detoxication of MC and NODLN by conjugation with glutathione, and fairly rapid depuration and excretion. A common theme in much of the ecological studies is that of modulating factors. Effects are seldom straightforward, but are dependent on factors like the (feeding) condition of the animals, environmental conditions and the history of exposure (acclimation and adaptation to toxic cyanobacteria). This makes it harder to generalize on what is known about ecological effects of cyanobacterial toxins. The paper concludes by summarizing the risks for birds, fish, macroinvertebrates and zooplankton. Although acute (lethal) effects are mentioned in the literature, mass mortalities of--especially--fish are more likely to be the result of multiple stress factors that co-occur during cyanobacterial blooms. Bivalves appear remarkably resistant, whilst the harmful effects of cyanobacteria on zooplankton vary widely and the specific contribution of toxins is hard to evaluate.
Collapse
|
10
|
Monserrat JM, Martínez PE, Geracitano LA, Lund Amado L, Martinez Gaspar Martins C, Lopes Leães Pinho G, Soares Chaves I, Ferreira-Cravo M, Ventura-Lima J, Bianchini A. Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:221-234. [PMID: 17045848 DOI: 10.1016/j.cbpc.2006.08.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/24/2006] [Accepted: 08/30/2006] [Indexed: 11/16/2022]
Abstract
In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries. Examples of cholinesterase activity measurements are also provided and criteria to select sensitive enzymes to detect pesticides and toxins are discussed. Regarding non-specific biomarkers, toxic responses in terms of antioxidant defenses and/or oxidative damage are also considered in this review, focusing on invertebrate species. In addition, the presence of an antioxidant gradient along the body of the estuarine polychaete Laeonereis acuta (Nereididae) and its relationship to different strategies, which deal with the generation of oxidative stress, is reviewed. Also, unusual antioxidant defenses against environmental pro-oxidants are discussed, including the mucus secreted by L. acuta. Disruption of osmoregulation by pollutants is of paramount importance in several estuarine species. In some cases such as in the estuarine crab Chasmagnathus granulatus, there is a trade off between bioavailability of toxicants (e.g. metals) and their interaction with key enzymes such as Na(+)-K(+)-ATPase and carbonic anhydrase. Thus, the metal effect on osmoregulation is also discussed in the present review. Finally, field case studies with fish species like the croaker Micropogonias furnieri (Scianidae) are used to illustrate the application of DNA damage and immunosuppressive responses as potential biomarkers of complex mixture of pollutants.
Collapse
Affiliation(s)
- José M Monserrat
- Departamento de Ciências Fisiológicas, Fundação Universidade Federal do Rio Grande (FURG), Av. Itália km 8, Campus Carreiros, 96.201-900, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil.
| | - Pablo E Martínez
- Departamento de Ciências Fisiológicas, Fundação Universidade Federal do Rio Grande (FURG), Av. Itália km 8, Campus Carreiros, 96.201-900, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil; Programa de Pós-Graduação em Oceanografia Biológica (FURG), Brazil
| | - Laura A Geracitano
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil
| | - Lílian Lund Amado
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil
| | | | | | | | - Marlize Ferreira-Cravo
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil
| | - Juliane Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil
| | - Adalto Bianchini
- Departamento de Ciências Fisiológicas, Fundação Universidade Federal do Rio Grande (FURG), Av. Itália km 8, Campus Carreiros, 96.201-900, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada (FURG), Brazil; Programa de Pós-Graduação em Oceanografia Biológica (FURG), Brazil
| |
Collapse
|
11
|
Wang L, Liang XF, Liao WQ, Lei LM, Han BP. Structural and functional characterization of microcystin detoxification-related liver genes in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:216-27. [PMID: 17045849 DOI: 10.1016/j.cbpc.2006.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/18/2006] [Accepted: 08/28/2006] [Indexed: 01/01/2023]
Abstract
Liver genes related to phase I and phase II detoxification, as well as inhibition of reactive oxygen species (ROS) production, were cloned, and their response to microcystin-LR (MC-LR) and lipopolysaccharide (LPS) exposure via intraperitoneal injection, was determined in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus). The cloned full-length cDNA of tilapia soluble glutathione S-transferase (sGST) was classified as alpha-class GST based on their amino acid sequence identity with other species. The tilapia sGST clone was 861 bp in length, and contained a 25 bp 5'-UTR, a 167 bp 3'-UTR and an open reading frame of 669 bp, encoding a polypeptide of 222 amino acids. Using genome walker method, a 366 bp 5'-flanking sequence of tilapia sGST gene was further obtained, and the possible regulatory elements were identified. Partial cDNA sequences of glutathione peroxidase (GPX) and uncoupling protein 2 (UCP2) were also obtained by PCR using degenerate primers from tilapia liver. To study the transcriptional response of liver genes to microcystin treatment, tilapia were respectively exposed to a single 50 microg kg(-1) body weight (bwt) dose of pure MC-LR, a single 2 mg kg(-1) bwt dose of LPS and a co-exposure MC-LR and LPS (50 microg kg(-1) bwt+2 mg kg(-1) bwt), and were then sacrificed at 24 h post-exposure. Using beta-actin as external control, a significant increase (about 80%) in sGST mRNA expression was found in response to the MC-LR exposure after 24 h (P < 0.05), indicating the importance of sGST in microcystin detoxification. A slight decrease of sGST mRNA expression was observed in the liver of tilapia, exposed to LPS and MC-LR+LPS. It seems that the LPS response element (LPSRE), identified in the promoter region of tilapia sGST gene, may be functional at a rather low level. In contrast, the levels of cytochrome P450 1A (CYP1A) mRNA expression were found to keep unchanged to either MC-LR, or LPS, or MC-LR+LPS treatment, indicating that unlike the phase II enzyme (sGST), the phase I enzyme (CYP1A) might not play an important role in the detoxification process of microcystins. Although not significant, the mRNA expression level of GPX tended to increase in the liver of tilapia exposed to both MC-LR and LPS (P > 0.05). In addition, a significant increase in UCP2 mRNA expression was observed in the liver of tilapia exposed to LPS (P < 0.05), as well as an obvious but not significant increase in MC-LR exposure group. We suggest that phase II detoxification enzyme, instead of phase I detoxification enzyme, might be responsible for the strong tolerance of the phytoplanktivorous fish to microcystins, and hepatocyte proteins coping with oxidative stress (GPX and UCP2), might also have some auxiliary effect. In addition, the rather low and insignificant response of tilapia sGST gene to the inhibitory effect of LPS exposure, might possibly be critical to the phytoplanktivorous fish to utilize toxic blue-green algae.
Collapse
Affiliation(s)
- Lin Wang
- College of Life Science and Technology, Jinan University, Shipai, Guangzhou 510632, China.
| | | | | | | | | |
Collapse
|
12
|
Liao WQ, Liang XF, Wang L, Lei LM, Han BP. Molecular cloning and characterization of alpha-class glutathioneS-transferase gene from the liver of silver carp, bighead carp, and other major chinese freshwater fishes. J Biochem Mol Toxicol 2006; 20:114-26. [PMID: 16788955 DOI: 10.1002/jbt.20125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two full-length cDNAs encoding glutathione S-transferase (GST) were cloned and sequenced from the hepatopancreas of planktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). The silver carp and bighead carp GST cDNA were 920 and 978 bp in length, respectively, and both contained an open reading frame that encoding 223 amino acids. Partial GST cDNA sequences were also obtained from the liver of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius auratu), mud carp (Cirrhinus molitorella), and tilapia (Oreochromis nilotica). All these GSTs could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. The three-dimensional structure of the silver carp GST was predicted using a computer program, and was found to fit the classical two-domain GST structure. Using the genome walker method, a 875-bp 5'-flanking region of the silver carp GST gene was obtained, and several lipopolysaccharide (LPS) response elements were identified in the promoter region of the phytoplanktivorous fish GST gene, indicating that the GST gene expression of this fish might be regulated by LPS, released from the toxic blue-green algae producing microcystins. To compare the constitutive expression level of the liver GST gene among the six freshwater fishes with completely different tolerance to microcystins, beta-actin was used as control and the ratio GST/beta-actin mRNA (%) was determined as 130.7 +/- 6.6 (grass carp), 103.1 +/- 8.9 (bighead carp), 92.6 +/- 15.0 (crucian carp), 72.3 +/- 7.8 (mud carp), 58.8 +/- 11.5 (silver carp), and 33.6 +/- 13.7 (tilapia). The constitutive expression level of the liver GST gene clearly shows that all the six freshwater fishes had a negative relationship with their tolerance to microcystins: high-resistant fishes (phytoplanktivorous silver carp and tilapia) had the lowest tolerance to microcystins and the high-sensitive fish (herbivorous grass carp) had the highest tolerance to microcystins. Taken together with the reciprocal relationship of constitutive and inducible liver GST expression level in some of the tested fish species to microcystin exposure, a molecular mechanism for different microcystin detoxification abilities of the warm freshwater fishes was discussed.
Collapse
Affiliation(s)
- Wan-Qin Liao
- College of Life Science and Technology, Jinan University, Shipai, Guangzhou 510632, People's Republic of China
| | | | | | | | | |
Collapse
|