1
|
Bouissane L, Elfardi Y, Khatib S, Fatimi A, Pereira C, Cruz-Martins N. Medicinal plants and their derivatives for skin and hair: a Mediterranean perspective of women care. Arch Dermatol Res 2025; 317:710. [PMID: 40221958 PMCID: PMC11994543 DOI: 10.1007/s00403-025-04202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Since olden days, medicinal and aromatic plants have been consumed due to their well-known therapeutic, ornamental, culinary, and cosmetic properties. Plant-based cosmetics comprise a growing market offering brands of sustainable products with the ultimate goal of responding to the woman needs to boost their natural beauty, such as soothing, toning, moisturizing and protecting skin and hair. The increasing focus on body and beauty care, combined with a better understanding of the diverse biological effects of plants and their derivatives, has revitalized their significance in aesthetic, cosmetic, and dermatological contexts. Concurrently, the increasing prevalence of allergies and hypersensitivity reactions to synthetic additives commonly found in cosmetics and other skin products has spurred interest in seeking healthier and more efficacious natural alternatives. An intense investigation has been stated around the formulation of medicinal plants- and other plant-based cosmetic products for dermatological and aesthetic purposes. Similarly, a raising awareness by cosmetics' manufacturers and related industries have been progressively stated, culminating with the emergence of a line of plant-based cosmetics increasingly safe and with reliable quality features for multiple purposes. Although a high demand for natural-based products for cosmetic purposes has been stated, further studies are required to deepening knowledge on their beneficial properties, safety and quality features and to identify the main limitations and likelihood of side effects occurrence. In this review, an outlook of the current scenario regarding the use of medicinal and aromatic plants as cosmetic ingredients in the formulation of skin care and other dermatological products traditionally used by the Mediterranean woman for prevention and even cure of skin and hair diseases or for beautification is provided.
Collapse
Affiliation(s)
- Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000, Beni-Mellal, Morocco.
| | - Yahya Elfardi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000, Beni-Mellal, Morocco
| | - Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000, Beni-Mellal, Morocco
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Mghila Campus, P.O. Box 592, 23000, Beni Mellal, Morocco
| | - Carla Pereira
- CIMO, La SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319, Porto, Portugal.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
| |
Collapse
|
2
|
Kaczmarek-Szczepańska B, Glajc P, Chmielniak D, Gwizdalska K, Swiontek Brzezinska M, Dembińska K, Shinde AH, Gierszewska M, Łukowicz K, Basta-Kaim A, D’Amora U, Zasada L. Development and Characterization of Biocompatible Chitosan-Aloe Vera Films Functionalized with Gluconolactone and Sorbitol for Advanced Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15196-15207. [PMID: 39999379 PMCID: PMC11912206 DOI: 10.1021/acsami.5c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Chitosan (CTS) has emerged as a promising biopolymer for wound healing due to its biocompatibility, biodegradability, and intrinsic bioactive properties. This study explores the development and characterization of CTS-based films enhanced with natural bioactive agents, aloe vera (A), gluconolactone (GL), and sorbitol (S), to improve their mechanical, antimicrobial, and regenerative performance for potential use in advanced wound care. A series of CTS-based films were fabricated with varying concentrations of A, GL, and S, and their physicochemical, mechanical, and biological properties were comprehensively evaluated. Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) analysis revealed modifications in the film structure attributable to these additives, influencing the surface roughness, hydrophilicity, and thermal stability. Biocidal assays confirmed enhanced antimicrobial activity, particularly in films containing GL and A. Biodegradation studies demonstrated a significant enhancement in microbial decomposition of the films, while cytocompatibility tests confirmed minimal cytotoxic effects and improved cellular response. This research underscores the potential of combining CS with A, GL, and S to engineer multifunctional biomaterials tailored for effectively tackling different phases of the wound healing process, offering a sustainable and biocompatible alternative for clinical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Glajc
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dorota Chmielniak
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Klaudia Gwizdalska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Maria Swiontek Brzezinska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Katarzyna Dembińska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Ambika H. Shinde
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Magdalena Gierszewska
- Department
of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Krzysztof Łukowicz
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Ugo D’Amora
- Institute
of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d’Oltremare,
Pad. 20, 80125 Naples, Italy
| | - Lidia Zasada
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
3
|
Gome G, Chak B, Tawil S, Rotem I, Ribarski-Chorev I, Giron J, Shoseyov O, Schlesinger S. Cultivation of bovine lipid chunks on Aloe vera scaffolds. NPJ Sci Food 2025; 9:26. [PMID: 40000634 PMCID: PMC11862248 DOI: 10.1038/s41538-025-00391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aloe vera, renowned for its medicinal and food applications, offers a sustainable, scalable, and cost-effective scaffold material for cultured meat production. Our method repurposes Aloe vera parenchyma into a sustainable and innovative scaffold for CM production. These scaffolds, derived from agricultural byproducts, feature a porous structure that retains liquids and supports bovine mesenchymal stem cell (bMSC) adhesion, proliferation, and extracellular matrix formation. By incorporating oleic acid, the scaffolds enable the accumulation of fat-like tissue, creating "lipid chunks" that can enhance the texture and flavor profile of plant-based meat alternatives. Furthermore, scalability is addressed by culturing the scaffolds in a macrofluidic single-use bioreactor (MSUB), showcasing the potential for large-scale production. This work demonstrates Aloe vera scaffold's versatility as a cost-effective material and highlights its promise for sustainable protein solutions and tissue engineering applications.
Collapse
Affiliation(s)
- Gilad Gome
- Department of Plant Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Benyamin Chak
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shadi Tawil
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itai Rotem
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ivana Ribarski-Chorev
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Giron
- Sammy Ofer School of Communication, Reichman University, Herzliya, Israel
| | - Oded Shoseyov
- Department of Plant Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
4
|
Hakeem MK, Maraqa M, Elangovan SK, Saeed EE, Mishra AK, Hazzouri KM, Shah I, Amiri KMA. Innovative determination of phytohormones in Aloe vera. Front Chem 2025; 12:1490639. [PMID: 39902263 PMCID: PMC11788730 DOI: 10.3389/fchem.2024.1490639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/12/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Aloe vera is widely known for its therapeutic properties, but concerns regarding the levels of phytohormones and their potential impact on human health highlight the need for advanced analytical techniques. This study aims to develop and validate a sensitive method for the determination of six key phytohormones in Aloe vera using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods A validated LC-MS/MS method was optimized for the determination and quantification of six phytohormones in Aloe vera: Abscisic Acid (ABA), Salicylic Acid (SA), Indole-3-Acetic Acid (I3AA), Gibberellic Acid (GA), 6-Benzylaminopurine (6BAP), and Isopentenyladenine (ISA). The sample extraction process and mobile phase composition were optimized to enhance chromatographic separation and mass spectrometry sensitivity. A C-18 column was used for separation, and a triple quadrupole mass spectrometer was employed for quantification. The method's performance was assessed in terms of linearity, sensitivity, and limits of detection. Results The LC-MS/MS method exhibited excellent linearity (R 2 > 0.99) and low limits of detection for all six phytohormones. Four of the six analytes were identified as predominant in Aloe vera. Quantitative analysis showed that ABA was the most abundant phytohormone, with a median concentration of 8.39 ng/mL, followed by I3AA (4.32 ng/mL), SA (3.16 ng/mL), and GA (1.55 ng/mL). Discussion This study provides a comprehensive and validated LC-MS/MS method for profiling phytohormones in Aloe vera. The results underscore the significant role of ABA, I3AA, SA, and GA in the plant's hormonal profile, offering a valuable tool for the analysis of phytohormonal content in Aloe vera and other plant species. The method is particularly beneficial for addressing health-related concerns regarding the presence and concentration of phytohormones in Aloe vera.
Collapse
Affiliation(s)
- Muhammad K. Hakeem
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Meera Maraqa
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Sampath K. Elangovan
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ajay Kumar Mishra
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
6
|
Kaur S, Bains K. Aloe Barbadensis Miller (Aloe Vera). INT J VITAM NUTR RES 2024; 94:308-321. [PMID: 37915246 DOI: 10.1024/0300-9831/a000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Aloe Barbadensis Miller (Aloe Vera, AV) is a widely recognized for its diverse health-promoting, skin care, and medicinal properties. This narrative review provides a comprehensive overview of AV's bioactive compounds, pharmacological activities, potential applications, its toxic and adverse effects, as well as the clinical evidence supporting AV's efficacy in disease prevention. AV contains over 200 bioactive compounds, with the inner clear gel of the leaves containing the majority of these compounds. These include phenolic acids (274.5-307.5 mg/100 g), flavonoids. (3.63-4.70 g/kg), polysaccharides (3.82-6.55 g/kg), saponins, alkaloids, terpenoids, and anthraquinone derivatives. Findings from clinical studies involving both humans and animals highlight the therapeutic potential of AV across diverse health domains. The studies demonstrate AV's efficacy in reducing blood glucose levels, exhibiting antioxidant and immunomodulatory effects, inducing apoptosis in cancer cells, protecting the liver from damage, and displaying antimicrobial properties. In the fields of dermatology and dentistry, AV has also been observed to promote skin and oral health. However, it is imperative to acknowledge potential risks, adhere to recommended dosages, and seek guidance from healthcare experts before employing AV as a natural therapeutic option. Moreover, considering safety concerns, further well-designed randomized controlled trials are necessary to substantiate the potential benefits of AV and comprehensively assess any associated risks.
Collapse
Affiliation(s)
- Sukhdeep Kaur
- Department of Food & Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kiran Bains
- Department of Food & Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
7
|
Rashid MH, Sujoy SI, Rahman MS, Haque MJ. Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties. Heliyon 2024; 10:e25438. [PMID: 38322891 PMCID: PMC10844577 DOI: 10.1016/j.heliyon.2024.e25438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential of utilizing Aloe vera-assisted green synthesis with transition metal dopants of Ag and Cu for greater efficiency and sustainability in advanced scientific applications utilizing ZnO nanoparticles. Samples were prepared using the co-precipitation method, maintaining a basic pH media of 10. Aloe vera gel extract was chosen for its acclaimed role as a stabilizing and reducing agent and its proven antioxidant, antibacterial, and anticancer properties. The XRD report revealed the hexagonal Wurtzite crystal structure of nanoparticles, exhibiting a crystallite size range of 17-23 nm with substantial alterations in lattice parameters, dislocation density, and bond lengths when dopants were added. Additionally, EDX analysis confirmed the perfect doping of Ag and Cu in ZnO without any impurities. SEM analysis indicated a reduction in agglomeration, accompanied by a transition in particle morphology from columnar to globular. Additionally, the optical study showed a band gap range of 3.18-3.27 eV, confirming it to be a wide band gap semiconductor. The effect of dopants resulted in an increase in transparency and band gap, while a decrease in absorption coefficient in the visible wavelength region. With increasing temperature, a decline in electrical resistivity was noted, with co-doped nanoparticles consistently exhibiting the lowest resistivity, affirming semiconductor characteristics. Most importantly, A remarkable antibacterial efficacy was noticed at low concentrations against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The zone of inhibition produced by nanoparticles exhibited values akin to the antibiotic control, even at substantially lower doses. This research offers a comprehensive analysis of the effects of Ag and Cu in Aloe vera-assisted green-synthesized ZnO nanoparticles, concurrently addressing their potential applications in biomedical, energy storage, and optoelectronic devices.
Collapse
Affiliation(s)
- Md Hasnat Rashid
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Saiful Islam Sujoy
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Saifur Rahman
- Department of Physics, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Jahidul Haque
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| |
Collapse
|
8
|
Hassan SMH, Zayeda R, Elakany H, Badr S, Abou-Rawash A, Abd-Ellatieff H. Anticoccidial activity of Aloe Vera Leafs' aqueous extract and vaccination against Eimeria tenella: pathological study in broilers. Vet Res Commun 2024; 48:403-416. [PMID: 37736869 PMCID: PMC10811142 DOI: 10.1007/s11259-023-10222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to assess the efficacy of an anticoccidial vaccine and the anticoccidial activity of Aloe vera in broiler chickens infected with Eimeria tenella (E. tenella). A total of 225 healthy, sexless, one-day-old broiler chicks (avian48) from a commercial broiler company were randomized into nine experimental groups of 25 chicks. The groups were as follows: Group 1 (control, vaccinated, non-infected), Group 2 (vaccinated and infected with 5 × 104 sporulated oocysts), Group 3 (vaccinated, infected with 5 × 104 sporulated oocysts, and treated with Aloe vera), Group 4 (infected with 5 × 104 sporulated oocysts and treated with Aloe vera), Group 5 (positive control, infected with 5 × 104 sporulated oocysts), Group 6 (challenged with 5 × 104 sporulated oocysts and then treated with amprolium), Group 7 (treated with amprolium), Group 8 (blank control negative group), and Group 9 (treated with Aloe vera gel).Various parameters were evaluated, including clinical signs, growth performance, oocyst shedding, hematological and immunological parameters, and pathological lesion scoring. The results demonstrated that Aloe vera improved growth performance, reduced oocyst shedding, and decreased caecal lesion scores in E. Tenella-infected broiler chicks. The use of Aloe vera in combination with either amprolium or anticoccidial vaccines provided a potential solution to the issues of drug resistance and drug residues.In conclusion, this study provides valuable insights regarding the control of coccidiosis in broilers. Supplementing the chicken diet with Aloe vera had beneficial effects on the pathogenicity and infectivity of E. tenella, making it a cost-effective alternative as an herbal extract with no adverse side effects for coccidiosis control. These findings suggest that Aloe vera can be considered a potential candidate for inclusion in broiler diets for effective coccidiosis control.
Collapse
Affiliation(s)
- Shahenaz M H Hassan
- Alexandria Regional Laboratory, Animal Health Research Institute, Agriculture Research Center, Alexandria City, Egypt
| | - Rasha Zayeda
- Animal Health Research Institute, Tanta Regional Laboratory, Tanta City, Egypt
| | - H Elakany
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, Egypt
| | - Sohair Badr
- Pathology Department, Animal Health Research Institute Agriculture Research Center, Cairo City, Egypt
| | - A Abou-Rawash
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour Cty, 25511, Egypt.
| | - Hoda Abd-Ellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour Cty, 25511, Egypt
| |
Collapse
|
9
|
Yimam M, Horm T, O'Neal A, Jiao P, Hong M, Jia Q. UP360, a Standardized Composition from Extracts of Aloe barbadense, Poria cocos, and Rosemary officinalis Protected Against Sepsis and Mitigated Acute Lung Injury in Murine Models. J Med Food 2023; 26:489-499. [PMID: 37192488 DOI: 10.1089/jmf.2022.0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated and unbalanced immune response to microbial infection. Restoring immune homeostasis and infection control are considered the primary strategies to manage sepsis. Natural bioactives such as polysaccharide and polyphenols from botanicals are known for their immune modulation activity. In this study, we evaluated a standardized aloe-based composition, UP360 (constitute of polysaccharides from Aloe barbadense and Poria cocos and polyphenols from Rosemary officinalis) in lipopolysaccharide (LPS)-induced sepsis and acute inflammatory lung injury murine models. Prophylactic oral administration of UP360 for 7 days at an oral dose of 500 mg/kg improved the survival rate of mice by 62.5%, whereas all mice in the vehicle control group were deceased 82 h after LPS injection. The merit of combining these traditional herbs to yield the standardized composition UP360 was also demonstrated in this model with a mortality rate of only 30.8%, whereas 76.9%, 53.9%, and 61.5% were recorded for each individual constituents A. barbadense, P. cocos, and R. officinalis, respectively. Dose-correlated statistically significant reductions in proinflammatory cytokines and chemokine tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-3 were observed for UP360 when administered at 250 and 500 mg/kg orally for 7 days before induction of acute lung injury (ALI) model in rats. The histopathology data from lung showed statistically significant 37.9% and 37% reductions in the overall lung damage severity and pulmonary edema, respectively, for UP360-treated rats. The aloe-based composition UP360 effectively improved the survival rate of septic animals and mitigated the severity of LPS-induced ALI in vivo. These data warrant further investigation of the composition for a potential application in human as an adjunct supplement in respiratory distress and sepsis.
Collapse
Affiliation(s)
| | | | | | - Ping Jiao
- Unigen, Inc., Tacoma, Washington, USA
| | - Mei Hong
- Unigen, Inc., Tacoma, Washington, USA
| | - Qi Jia
- Unigen, Inc., Tacoma, Washington, USA
| |
Collapse
|
10
|
Mandrich L, Piccolella S, Esposito AV, Costa S, Mercadante V, Pacifico S, Caputo E. Different Extraction Procedures Revealed the Anti-Proliferation Activity from Vegetable Semi-Purified Sources on Breast Cancer Cell Lines. Antioxidants (Basel) 2023; 12:1242. [PMID: 37371972 DOI: 10.3390/antiox12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from carrot, Calendula officinalis flower, and Aloe vera on breast cancer vs. epithelial cell lines. Various extraction methods were used, and the proliferative effect of the resulting extracts was assessed by proliferation assay on breast cancer and epithelial cell lines. Carrot, Aloe leaf, and Calendula flower extracts were extracted by hexane and methanol methods, and their semi-purified extracts were able to specifically inhibit the proliferation of breast cancer cell lines. The extract composition was investigated by colorimetric assays, UHPLC-HRMS, and MS/MS analysis. All the extracts contained monogalactosyl-monoacylglycerol (MGMG), while digalactosyl-monoacylglycerol (DGMG) and aloe-emodin were found in Aloe, and glycerophosphocholine (GPC) derivatives were identified in Calendula, except for the isomer 2 detected in carrot, suggesting that their observed different anti-proliferative properties may be associated with the different lipid compounds. Interestingly, Calendula extract was able to strongly inhibit the triple negative breast cancer MDA-MB-231 cell line proliferation (about 20% cell survival), supporting MGMG and GPC derivatives as potential drugs for this BC subtype treatment.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Piccolella
- Department for Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonia Valeria Esposito
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Silvio Costa
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Mercadante
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Severina Pacifico
- Department for Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
11
|
Genesi BP, de Melo Barbosa R, Severino P, Rodas ACD, Yoshida CMP, Mathor MB, Lopes PS, Viseras C, Souto EB, Ferreira da Silva C. Aloe vera and copaiba oleoresin-loaded chitosan films for wound dressings: microbial permeation, cytotoxicity, and in vivo proof of concept. Int J Pharm 2023; 634:122648. [PMID: 36709832 DOI: 10.1016/j.ijpharm.2023.122648] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Chitosan films are commonly used for wound dressing, provided that this polymer has healing, mucoadhesiveness and antimicrobial properties. These properties can be further reinforced by the combination of chitosan with polysaccharides and glycoproteins present in aloe vera, together with copaiba oleoresin's pharmacological activity attributed to sesquiterpenes. In this work, we developed chitosan films containing either aloe vera, copaiba oil or both, by casting technique, and evaluated their microbial permeation, antimicrobial activity, cytotoxicity, and in vivo healing potential in female adult rats. None of the developed chitosan films promoted microbial permeation, while the cytotoxicity in Balb/c 3 T3 clone A31 cell line revealed no toxicity of films produced with 2 % of chitosan and up to 1 % of aloe vera and copaiba oleoresin. Films obtained with either 0.5 % chitosan or 0.5 % copaiba oleoresin induced cell proliferation which anticipate their potential for closure of wound and for the healing process. The in vivo results confirmed that tested films (0.5 % copaiba-loaded chitosan film and 0.5 % aloe vera-loaded chitosan film) were superior to a commercial dressing film. For all tested groups, a fully formed epithelium was seen, while neoformation of vessels seemed to be greater in formulations-treated groups than those treated with the control. Our work confirms the added value of combining chitosan with aloe vera and copaiba oil in the healing process of wounds.
Collapse
Affiliation(s)
- Bianca P Genesi
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain; Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Patricia Severino
- Instituto de Pesquisa e Tecnologia, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | | | - Cristiana M P Yoshida
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Mônica B Mathor
- Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, Brazil
| | - Patrícia S Lopes
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain
| | - Eliana B Souto
- UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Department of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Classius Ferreira da Silva
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
12
|
Chelu M, Musuc AM, Aricov L, Ozon EA, Iosageanu A, Stefan LM, Prelipcean AM, Popa M, Moreno JC. Antibacterial Aloe vera Based Biocompatible Hydrogel for Use in Dermatological Applications. Int J Mol Sci 2023; 24:ijms24043893. [PMID: 36835300 PMCID: PMC9959823 DOI: 10.3390/ijms24043893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The present research aims to describe a new methodology to obtain biocompatible hydrogels based on Aloe vera used for wound healing applications. The properties of two hydrogels (differing in Aloe vera concentration, AV5 and AV10) prepared by an all-green synthesis method from raw, natural, renewable and bioavailable materials such as salicylic acid, allantoin and xanthan gum were investigated. The morphology of the Aloe vera based hydrogel biomaterials was studied by SEM analysis. The rheological properties of the hydrogels, as well as their cell viability, biocompatibility and cytotoxicity, were determined. The antibacterial activity of Aloe vera based hydrogels was evaluated both on Gram-positive, Staphylococcus aureus and on Gram-negative, Pseudomonas aeruginosa strains. The obtained novel green Aloe vera based hydrogels showed good antibacterial properties. In vitro scratch assay demonstrated the capacity of both AV5 and AV10 hydrogels to accelerate cell proliferation and migration and induce closure of a wounded area. A corroboration of all morphological, rheological, cytocompatibility and cell viability results indicates that this Aloe vera based hydrogel may be suitable for wound healing applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (J.C.M.)
| | - Ludmila Aricov
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Andreea Iosageanu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Laura M. Stefan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (J.C.M.)
| |
Collapse
|
13
|
Balaba N, Horsth DFL, Correa JDS, Primo JDO, Jaerger S, Alves HJ, Bittencourt C, Anaissi FJ. Eco-Friendly Polysaccharide-Based Synthesis of Nanostructured MgO: Application in the Removal of Cu 2+ in Wastewater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:693. [PMID: 36676431 PMCID: PMC9860860 DOI: 10.3390/ma16020693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The present study described three synthesis routes using different natural polysaccharides as low-cost non-toxic fuels and complexing agents for obtaining MgO. Cassava starch, Aloe vera leaves (mainly acemannan) gel, and citric pectin powder were mixed with magnesium nitrate salt and calcined at 750 °C for 2 h. The samples were named according to the polysaccharide: cassava starch (MgO-St), citrus pectin (MgO-CP), and Aloe vera (MgO-Av). X-ray diffraction identified the formation of a monophasic periclase structure (FCC type) for the three samples. The N2 adsorption/desorption isotherms (B.E.T. method) showed an important difference in textural properties, with a higher pore volume (Vmax = 89.76 cc/g) and higher surface area (SA = 43.93 m2/g) obtained for MgO-St, followed by MgO-CP (Vmax = 11.01 cc/g; SA = 7.01 m2/g) and MgO-Av (Vmax = 6.44 cc/g; SA = 6.63 m2/g). These data were consistent with the porous appearance observed in SEM images. Porous solids are interesting as adsorbents for removing metallic and molecular ions from wastewater. The removal of copper ions from water was evaluated, and the experimental data at equilibrium were adjusted according to the Freundlich, Langmuir, and Temkin isotherms. According to the Langmuir model, the maximum adsorption capacity (qmax) was 6331.117, 5831.244, and 6726.623 mg·g-1 for the adsorbents MgO-St, MgO-Av, and MgO-CP, respectively. The results of the adsorption isotherms indicated that the synthesized magnesium oxides could be used to decrease the amount of Cu2+ ions in wastewater.
Collapse
Affiliation(s)
- Nayara Balaba
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Dienifer F. L. Horsth
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Jamille de S. Correa
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Julia de O. Primo
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Silvia Jaerger
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Helton J. Alves
- Laboratório de Materiais e Energias Renováveis, LABMATER/UFPR, Universidade Federal do Paraná—UFPR, Palotina 85950-000, Brazil
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Fauze J. Anaissi
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| |
Collapse
|
14
|
Balaba N, Jaerger S, Horsth DFL, Primo JDO, Correa JDS, Bittencourt C, Zanette CM, Anaissi FJ. Polysaccharides as Green Fuels for the Synthesis of MgO: Characterization and Evaluation of Antimicrobial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010142. [PMID: 36615339 PMCID: PMC9822341 DOI: 10.3390/molecules28010142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
The synthesis of structured MgO is reported using feedstock starch (route I), citrus pectin (route II), and Aloe vera (route III) leaf, which are suitable for use as green fuels due to their abundance, low cost, and non-toxicity. The oxides formed showed high porosity and were evaluated as antimicrobial agents. The samples were characterized by energy-dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The crystalline periclase monophase of the MgO was identified for all samples. The SEM analyses show that the sample morphology depends on the organic fuel used during the synthesis. The antibacterial activity of the MgO-St (starch), MgO-CP (citrus pectin), and MgO-Av (Aloe vera) oxides was evaluated against pathogens Staphylococcus aureus (ATCC 6538P) and Escherichia coli (ATCC 8739). Antifungal activity was also studied against Candida albicans (ATCC 64548). The studies were carried out using the qualitative agar disk diffusion method and quantitative minimum inhibitory concentration (MIC) tests. The MIC of each sample showed the same inhibitory concentration of 400 µg. mL-1 for the studied microorganisms. The formation of inhibition zones and the MIC values in the antimicrobial analysis indicate the effective antimicrobial activity of the samples against the test microorganisms.
Collapse
Affiliation(s)
- Nayara Balaba
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Silvia Jaerger
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Dienifer F. L. Horsth
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Julia de O. Primo
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Jamille de S. Correa
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
- Correspondence:
| | - Cristina M. Zanette
- Departamento de Engenharia de Alimentos, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Fauze J. Anaissi
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava 85040-080, Brazil
| |
Collapse
|
15
|
Haghighat F, Arjomand S, Ghasemi S, Afkhami E, Montaseri H, Motealleh A. Effects of phonophoresis of Aloe vera gel and ultrasound on knee osteoarthritis: A randomized controlled trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Laux A, Hamman J, Svitina H, Wrzesinski K, Gouws C. In vitro evaluation of the anti-melanoma effects (A375 cell line) of the gel and whole leaf extracts from selected aloe species. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Jangra A, Sharma G, Sihag S, Chhokar V. The dark side of miracle plant-Aloe vera: a review. Mol Biol Rep 2022; 49:5029-5040. [PMID: 35092563 DOI: 10.1007/s11033-022-07176-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Aloe vera (Aloe barbadensis Miller), commonly known as Ghritkumari/Gwarpatha, is a member of the Liliaceae family, used in the traditional medicine system for ages. Aloe vera has made its importance as a therapeutic agent, acting as a cure for various diseases such as skin problems, lungs, and heart disorders, diabetes, ulcers, various microbial infections, and asthma. Despite its tremendous health benefits, the dark side of the plant is a reason of concern as there are several active compounds present in the plant, raising questions on its safe oral consumption and application. METHODS AND RESULTS The literature review was compiled from information resourced from various national and international journals available at Google Scholar and curated with Mendeley. The data mining was carried out during the period of January to May 2021. This study explored and summarized the dark side of Aloe vera, subjected to various secondary metabolites present in it. Aloin, the most active compound of Aloe vera, is a type of anthraquinone metabolized by human gut microflora, resulting in the formation of aloe-emodin anthraquinone, later being associated with several harmful effects such as carcinogenicity, genotoxicity, nephrotoxicity, and purgative. Besides this, several alkaloids and polysaccharides present in the plant are reported to cause hepatotoxicity and male infertility, respectively. CONCLUSIONS The harmful effects of the plants are not adequately discovered yet; hence there is a need to come up with some mechanism to understand and suppress the formation of such toxic compounds completely. This review examined the botany, active compounds, and adverse clinical effects in the range of metabolites associated with this herb - "Aloe vera".
Collapse
Affiliation(s)
- Alka Jangra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Garima Sharma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sonia Sihag
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India.
| |
Collapse
|
18
|
Sharma A, Mittal P, Yadav A, Mishra AK, Hazari PP, Sharma RK. Sustained Activity of Stimuli-Responsive Curcumin and Acemannan Based Hydrogel Patches in Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:598-609. [PMID: 35089010 DOI: 10.1021/acsabm.1c01078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural plant extract, namely acemannan (Ac) and curcumin (Cur), coencapsulated pluronic micelles, showing thermoresponsive properties, were designed for efficient and safe in vivo wound healing applications. Ac and Cur, widely used antimicrobials, find limited applications because of their low stability, short biological half-life, poor solubility, and low bioavailability. Herein, we report the extraction of Ac from aloe vera and coencapsulation of it with Cur in pluronic micelles to take advantage of the combined effects of both components. Both Ac and Cur preserved their bioactive functionality upon encapsulation. Single photon emission computed tomography imaging confirmed that NPAcC2 hydrogel masked the whole wound by forming a layer. Cur and Ac synergistically resulted in rapid wound closure on the seventh day, and full-grown hair was observed on the 10th day. Individually they both take more than 20 days for wound closure. The increase in the concentration of curcumin increases the healing properties of the material. For days 1, 6, and 10 of the wound dressing experiment, the percentages of wound closure of the mice were the highest for NPAcC2 (i.e., 100%) compared to the untreated control (25%) while maintaining the integrity of the skin. These natural product-based hydrogels have limited side effects vs those caused by commercial drugs in wound healing.
Collapse
Affiliation(s)
- Anu Sharma
- Nanotechnology and Drug Delivery Research Group, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Parul Mittal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi-110054, India
| | - Anita Yadav
- Nanotechnology and Drug Delivery Research Group, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi-110054, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi-110054, India
| | - Rakesh Kumar Sharma
- Nanotechnology and Drug Delivery Research Group, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
19
|
Advances in Understanding the Role of Aloe Emodin and Targeted Drug Delivery Systems in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7928200. [PMID: 35087619 PMCID: PMC8789423 DOI: 10.1155/2022/7928200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022]
Abstract
Cancer is one of the important causes of death worldwide. Despite remarkable improvements in cancer research in the past few decades, several cancer patients still cannot be cured owing to the development of drug resistance. Natural sources might have prominence as potential drug candidates. Among the several chemical classes of natural products, anthraquinones are characterized by their large structural variety, noticeable biological activity, and low toxicity. Aloe emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. This compound has proven its antineoplastic, anti-inflammatory, antiangiogenic, and antiproliferative potential as well as ability to prevent cancer metastasis and potential in reversing multidrug resistance of cancer cells. The anticancer property of aloe emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of inhibition of cell growth and proliferation, cell cycle arrest deterioration, initiation of apoptosis, antimetastasis, and antiangiogenic effect. In accordance with the strategy of developing potential drug candidates from natural products, aloe emodin's low bioavailability has been tried to be overcome by structural modifications and nanocarrier systems. Consequently, this review summarizes the antiproliferative and anticarcinogenic properties of aloe emodin, as well as the enhanced activity of its derivatives and the advantages of drug delivery systems on bioavailability.
Collapse
|
20
|
Farid A, Tawfik A, Elsioufy B, Safwat G. In vitro and in vivo anti-Cryptosporidium and anti-inflammatory effects of Aloe vera gel in dexamethasone immunosuppressed mice. Int J Parasitol Drugs Drug Resist 2021; 17:156-167. [PMID: 34637982 PMCID: PMC8503859 DOI: 10.1016/j.ijpddr.2021.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Cryptosporidiosis has been considered as a serious diarrheal disease, especially in immunodeficient patients, where they failed to clear the infection leading to several consequences of infection (i.e death). The role of cell mediated immunity in clearing the infection was demonstrated by the increased susceptibility of HIV/AIDS patients to infection. To date, no specific treatment has been proven for cryptosporidiosis in immunodeficient patients. The study aimed to evaluate the efficacy of Aloe vera gel for the treatment of cryptosporidiosis in immunocompetent and dexamethasone immunosuppressed mice in comparison to that of nitazoxanide. Mice were orally administrated with Aloe vera gel, in a daily dose of 250 mg/L in drinking water, for 14 consecutive days post infection. Parasitological, molecular and immunological measurements were recorded on the 7th, 14th, 21st and 32nd days post infection. Our in vitro results showed that 250 mg/L of prepared gel achieved the highest parasitic reduction. The body weights of Aloe vera treated mice on the 21st and 32nd day post infection, either in immunocompetent or immunosuppressed groups, were nearly the same as those of their corresponding control groups. Aloe vera gel succeeded in clearing cryptosporidiosis with a percent reduction of 100% in immunocompetent mice and 99.67% in immunosuppressed mice. The anti-inflammatory effect of Aloe vera reduced the levels of IFN-γ, IL-4, -6 and -17. The success of Aloe vera gel, in clearing cryptosporidiosis in immunosuppressed mice, was obvious either from the reduction of Cryptosporidium DNA or the oocysts in stool samples; and from the improvement of histopathological sections.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt.
| | - Aya Tawfik
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Basil Elsioufy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
21
|
Fabrication of multifunctional chitosan-Guar-Aloe Vera gel to promote wound healing. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01958-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Dybka-Stępień K, Otlewska A, Góźdź P, Piotrowska M. The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients 2021; 13:nu13103354. [PMID: 34684354 PMCID: PMC8539170 DOI: 10.3390/nu13103354] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Plant mucilage is a renewable and cost-effective source of plant-based compounds that are biologically active, biodegradable, biocompatible, nontoxic, and environmentally friendly. Until recently, plant mucilage has been of interest mostly for technological purposes. This review examined both its traditional uses and potential modern applications in a new generation of health-promoting foods, as well as in cosmetics and biomaterials. We explored the nutritional, phytochemical, and pharmacological richness of plant mucilage, with a particular focus on its biological activity. We also highlighted areas where more research is needed in order to understand the full commercial potential of plant mucilage.
Collapse
|
23
|
Anti-inflammatory Effect of Aloe vera Extract on Inflammatory Cytokines of Rats Fed with a High-Fat Diet (HFD). Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Cytokines are glycoprotein compounds with an important role in inducing and regulating inflammation. Objectives: The present study aimed to measure the effect of Aloe vera alcoholic extracts on inflammatory cytokines in rats fed with a high-fat diet. Methods: Forty adult male Wistar rats were purchased and randomly categorized into five groups, including two control groups (control and control fed a high-fat diet (HFD) and three experimental groups (high-fat diet + 150 mg/kg Aloe vera, high fat diet + 300 mg/kg Aloe vera, and high-fat diet + 600 mg/kg Aloe vera). The rats in the experimental groups received high-fat emulsion and three doses of Aloe vera for 60 days in the form of gavage. Following blood sampling, serum concentrations of tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), and interferon-γ (INF-γ) were measured. Statistical analysis was administered using SPSS-20 software by ANOVA test. Mean comparisons were conducted via Duncan’s multiple range test at the 0.05 level of significance. Results: The findings showed that a high-fat diet (HFD) could increase the concentrations of inflammatory factors TNF-α and TGF-β (P < 0.05). Moreover, an increase in the concentration of inflammatory factor IL-6 was observed at P < 0.01. No significant effects were observed in the mean concentration of INF-γ in the study groups. The use of Aloe vera gel extract considerably reduced inflammatory factors TNF-α, TGF-β, and IL-6 in the Aloe vera extract-receiving groups. Conclusions: In general, the results of the present study revealed that Aloe vera alcoholic extract reduced inflammatory factors in the rats fed with a high-fat diet.
Collapse
|
24
|
Galli CL, Cinelli S, Ciliutti P, Melzi G, Marinovich M. Lack of in vivo genotoxic effect of dried whole Aloe ferox juice. Toxicol Rep 2021; 8:1471-1474. [PMID: 34401356 PMCID: PMC8353378 DOI: 10.1016/j.toxrep.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Dried Aloe juice hazard identification. Dried Aloe juice is not genotoxic in in vivo Comet rodent assay. Dried Aloe juice is safe in food supplements and herbal medicinal products.
Aloe ferox Mill is widely used as a traditional herbal medicine for the treatment of a broad spectrum of illnesses given its laxative, anti-inflammatory, bitter tonic, anti-oxidant, antimicrobial and anti-cancer properties. Using the in vivo alkaline comet assay in animals (OECD 489), this study investigated the potential in vivo genotoxicity of dried Aloe ferox juice at dose levels of 500, 1000, and 2000 mg/kg/day in mice. Aloe ferox showed no genotoxic activity in preparations of single cells from the colon of the treated Hsd:ICR (CD-1) male mice. No statistically significant increase in DNA migration over the negative control was observed by analysis of variance for both comet parameters, tail moment and tail intensity, apart from the positive control ethyl methanesulphonate that induced clear and statistically significant increases in DNA migration parameters over the concurrent controls. The new reported scientific evidence unequivocally demonstrates that dried Aloe ferox juice containing hydroxyanthracene derivatives does not induce DNA damage in preparations of single cells from colon in in vivo comet genotoxicity studies. This suggests that the hyperplastic changes and mucosal hyperplasia observed after long-term administration of Aloe vera non-decolourised whole leaf extract may be attributed to an epigenetic effect of the material under investigation.
Collapse
Affiliation(s)
- Corrado L Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| | - Serena Cinelli
- European Research Biology Center, ERBC, Pomezia, Rome, Italy
| | - Paola Ciliutti
- European Research Biology Center, ERBC, Pomezia, Rome, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Arbaga A, El-Bahrawy A, Elsify A, Khaled H, Hassan HY, Kamr A. Biochemical and histopathological changes related to the topical application of Aloe vera ointment for canine pyoderma. Vet World 2021; 14:1354-1362. [PMID: 34220141 PMCID: PMC8243673 DOI: 10.14202/vetworld.2021.1354-1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Pyoderma is common in dogs, and its treatment requires a novel medication rather than antibiotic therapy. This study aimed to determine the biochemical and histopathological changes associated with the topical application of Aloe vera 20% and 40% ointments, compared with gentamicin 0.1% ointment, in dogs suffering from Staphylococcus aureus pyoderma. Materials and Methods: Serum and skin samples were collected from a negative control group before inducing pyoderma and from other subdivided groups on the 3rd, 7th, 10th, and 14th days post-inoculation for biochemical and histopathology examination. Results: Serum aspartate aminotransferase, alanine aminotransferase (ALT), urea, and creatinine concentrations were higher in the positive control dogs on the 3rd day without treatment (DWT) compared with the negative control dogs (p<0.05). Compared with the healthy control dogs, serum zinc concentrations were lower in the positive control group on the 3rd, 7th, and 10th DWT and in dogs treated with A. vera 20% and gentamicin 0.1% ointments on the 3rd and 7th days post-treatment (p<0.05). Grossly, skin had erythema, pruritus, and pus-filled pustules of the untreated group. Microscopically, skin showed epidermal necrosis and edema, dermal collagen necrosis, and severe neutrophilic infiltration. Conclusion: Compared with A. vera 20% and gentamicin 0.1% ointments, the topical application of A. vera 40% ointment-induced quicker skin healing and decreased the inflammatory changes caused by S. aureus inoculation, based on biochemical and histopathological changes reflective of its curative efficiency. A. vera 40% ointment may be a suitable alternative to antibiotics for the treatment of staphylococcal pyoderma in dogs.
Collapse
Affiliation(s)
- Ali Arbaga
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Amanallah El-Bahrawy
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hadeer Khaled
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hany Youssef Hassan
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Kamr
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
26
|
Postharvest quality of orange fruit as influenced by salicylic acid, acetic acid, and carboxymethyl cellulose coating. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00966-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Jales STL, Barbosa RDM, Silva GR, Severino P, Lima Moura TFA. Natural Polysaccharides From
Aloe vera
L. Gel (
Aloe barbadensis
Miller): Processing Techniques and Analytical Methods. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
Abstract
Summary
The aim of the article was to obtain maximum information about plant mucilage, its sources and applications in the pharmaceutical industry. This study focuses on the scientific articles and books available in Internet resources and college library that deal with the sources, applications, extraction and isolation of plant mucilage. Mucilage is obtained mainly from plant sources and can be isolated easily. Due to the low cost, easy availability, non-toxicity, non-irritancy, and biocompatibility, mucilage is of great demand in the field of pharmaceuticals. Hibiscus rosa-sinensis L., Trigonella foenum-graecum L., Abelmoschus esculentus L, Plantago ovata Forssk. and Aloe barbadensis L. are some common sources of mucilage. The isolation methods vary depending on the part of the plant where mucilage is present. It is commonly used as gelling agent, suspending agent, binder, and disintegrant. Since it is hydrophilic in nature, chances of deterioration are higher. In this review, different mucilage sources and their isolation methods are discussed in detail. Mucilage is used as excipient in many formulations of tablets, suspensions, gels, etc. The study explores the potential of plant mucilage as an excipient in pharmaceutical formulations. The biodegradable and biocompatible properties of this inexpensive excipient make it more favourable for the newer formulation development.
Collapse
|
29
|
Bendjedid S, Lekmine S, Tadjine A, Djelloul R, Bensouici C. Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Effect of Chitosan and Aloe Vera Extract Concentrations on the Physicochemical Properties of Chitosan Biofilms. Polymers (Basel) 2021; 13:polym13081187. [PMID: 33917123 PMCID: PMC8067903 DOI: 10.3390/polym13081187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
Chitosan films have been extensively studied as dressings in formulations for the treatment of chronic wounds. The incorporation of aloe vera (Aloe barbadensis Miller) into chitosan dressings could potentialize the healing process since aloe vera shows several pharmacological activities. This work aimed to evaluate the effect of aloe vera and chitosan concentrations on the physicochemical properties of the developed films. The films were obtained by casting technique and characterized with respect to their color parameters, morphology, barrier and mechanical properties, and thermal analysis. Results showed that the presence of aloe vera modified the films′ color parameters, changed barrier properties, increased fluid handling capacity (FHC), and decreased water-vapor permeability (WVP). The reduced elongation at break resulted in more rigid films. Aloe vera concentration did not significantly change film properties, but the presence of this gel increased the films’ stability at temperatures below 200 °C, showing similar behavior as chitosan films above 400 °C. The results suggest a crosslinking/complexation between chitosan and aloe vera, which combine appropriate physicochemical properties for application as wound dressing materials.
Collapse
|
31
|
Sharma A, Khanna S, Kaur G, Singh I. Medicinal plants and their components for wound healing applications. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00202-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Background
Wound is an anatomical and functional disruption of the skin following an injury. In response to the injury, wound healing is a complex process of tissue repair or remodeling. Historically, plants and plant-based constituents have been extensively used for the treatment and management of different types of wounds. In the current times, different types of biopolymers are being researched for developing economical, sustainable, stable, and effective delivery system for the treatment of wounds.
Main text
The present review article attempts to enlist medicinal plants which have been reported to be effective in the treatment of wounds. Plant constituent-based wound dressings have also been discussed systematically including patented formulations reported by different inventors.
Conclusion
The compiled data aims to update the researchers/scientists which will be helpful in providing them a directional view in understanding the role and importance of plant-based components for the treatment and management of wounds.
Collapse
|
32
|
Health Potential of Aloe vera against Oxidative Stress Induced Corneal Damage: An "In Vitro" Study. Antioxidants (Basel) 2021; 10:antiox10020318. [PMID: 33672553 PMCID: PMC7923787 DOI: 10.3390/antiox10020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by the gradual deterioration of corneal endothelial cells (CECs) and is the most common cause of corneal transplantation worldwide. CECs apoptosis caused by oxidative stress plays a pivotal role in the pathogenesis of FECD. Antioxidant compounds have been of considerable significance as a candidate treatment in the management of corneal diseases. Based on these findings, the objective of this study was to evaluate the effects of an aloe extract with antioxidant properties, in an “in vitro” model of FECD. Human corneal epithelial (HCE) cells were preincubated with aloe extract 100 μg/mL, two hours before hydrogen peroxide (H2O2) stimulus. H2O2 challenge significantly reduced the cell viability, increased the generation of Reactive Oxygen Species (ROS) and malondialdehyde levels. Moreover, m-RNA expression and activity of Nrf-2, Catalase and Superoxide dismutase (SOD) were reduced together with an enhanced expression of IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and cyclooxygenase 2 (COX-2). Furthermore, Bcl-2, Caspase-3 and Caspase-8 expression were down-regulated while Bax was up-regulated by H2O2 stimulus. Aloe extract blunted the oxidative stress-induced inflammatory cascade triggered by H2O2 and modulated apoptosis. Aloe extract defends HCE cells from H2O2-induced injury possibly due its antioxidant and anti-inflammatory activity, indicating that eye drops containing aloe extract may be used as an adjunctive treatment for FECD.
Collapse
|
33
|
Hasan MU, Riaz R, Malik AU, Khan AS, Anwar R, Rehman RNU, Ali S. Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. J Food Biochem 2021; 45:e13640. [PMID: 33533511 DOI: 10.1111/jfbc.13640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Aloe vera (ALV) with its unique nutritional profile is being used for food, health, and nutraceutical industries globally. Due to its organic nature, ALV gel coating has created lot of interest for exploring its potential in extending the shelf and storage life of fresh produce. ALV gel coating plays imperative role in delaying fruit ripening by lowering ethylene biosynthesis, respiration rate, and internal metabolic activities associated with fruit softening, color development, enzymatic browning, and decay. ALV gel coating reduces the microbial spoilage due to its antifungal properties and maintains visual appearance, firmness, sugar: acid ratio, total antioxidants, and phenolic contents with conserved eating quality. ALV coated fruits and vegetables showed reduced weight loss, superoxide ion ( O 2 - ∙ ), hydrogen peroxide (H2 O2 ), ion leakage, and soluble solids content and exhibited higher acidity, anthocyanins, ascorbic acid, catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) activities. It also delayed the enzymatic browning by inducing peroxidase (POD) activity during storage. Recent local studies also revealed that ALV gel coating markedly conserved higher consuming quality and extended storage period (>1.34-fold) of different fruits and vegetables. Overall, Aloe vera gel coating alone or in combination with other organic compounds has shown great potential as a food-safe and eco-friendly coating for maintaining the quality of fruits and vegetables over extended period and reducing postharvest losses in the supply chain. PRACTICAL APPLICATIONS: ALV gel is a plant-based natural coating of eco-friendly nature. The present review summarizes the updated information of ALV gel coating application, methods of extraction, combinations with other postharvest coatings, and its impact on quality of various fruits and vegetables. It also provides future insights for the development of commercially applicable ALV gel coating protocols through simulation studies. So, being a natural coating, ALV gel has tremendous potential to be used in fruit and vegetable industries around the globe.
Collapse
Affiliation(s)
- Mahmood Ul Hasan
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rehan Riaz
- CAB International (Central and West Asia), Rawalpindi, Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Sattar Khan
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Raheel Anwar
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rana Naveed Ur Rehman
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
34
|
|
35
|
Caban M, Owczarek K, Chojnacka K, Lewandowska U. Overview of Polyphenols and Polyphenol-rich Extracts as Modulators of Inflammatory Response in Dry Eye Syndrome. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Chojnacka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Sarker A, Grift TE. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00802-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Primo JDO, Bittencourt C, Acosta S, Sierra-Castillo A, Colomer JF, Jaerger S, Teixeira VC, Anaissi FJ. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal From Wastewater. Front Chem 2020; 8:571790. [PMID: 33330360 PMCID: PMC7732540 DOI: 10.3389/fchem.2020.571790] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Zinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn2+. SEM images of the ZnO nanoparticles synthesized using Cassava starch show the presence of pseudo-spherical nanoparticles and nanosheets, while just pseudo-spherical nanoparticles were observed when Aloe vera was used. The UV-Vis spectra showed a slight difference in the absorption edge of the ZnO particles obtained using Aloe vera (3.18 eV) and Cassava starch (3.24 eV). The ZnO nanoparticles were tested as adsorbents for the removal of copper in wastewater, it is shown that at low Cu2+ ion concentration (~40 mg/L) the nanoparticles synthesized by both routes have the same removal efficiency, however, increasing the absorbate concentration (> 80 mg/L) the ZnO nanoparticles synthesized using Aloe vera have a higher removal efficiency. The synthesized ZnO nanoparticles can be used as effective and environmental-friendly metal trace absorbers in wastewater.
Collapse
Affiliation(s)
- Julia de O Primo
- Laboratório de Materiais e Compostos Inorgânicos (LabMat), Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava, Brazil
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Mons, Belgium
| | - Selene Acosta
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Mons, Belgium
| | - Ayrton Sierra-Castillo
- Research Group on Carbon Nanostructures (CARBONNAGe), Université de Namur, Namur, Belgium
| | - Jean-François Colomer
- Research Group on Carbon Nanostructures (CARBONNAGe), Université de Namur, Namur, Belgium
| | - Silvia Jaerger
- Laboratório de Materiais e Compostos Inorgânicos (LabMat), Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava, Brazil
| | - Verônica C Teixeira
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Fauze J Anaissi
- Laboratório de Materiais e Compostos Inorgânicos (LabMat), Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava, Brazil
| |
Collapse
|
38
|
Lima A, Batista-Santos P, Veríssimo E, Rebelo P, Ferreira RB. Differential inhibition of gelatinase activity in human colon adenocarcinoma cells by Aloe vera and Aloe arborescens extracts. BMC Complement Med Ther 2020; 20:379. [PMID: 33308217 PMCID: PMC7733245 DOI: 10.1186/s12906-020-03134-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Aloe's reported bioactivities (anticancer, anti-inflammatory and wound healing) suggest they might inhibit a subgroup of matrix metalloproteinases (MMPs) called gelatinases (MMP-2 and MMP-9). The goal of the present study was to compare the MMP inhibitory potential of two Aloe species, A. vera and A. arborescens. METHODS Different types of extraction were tested and specific bioactive compounds were quantified. Cancer cell invasion inhibitory activities were measured in vitro using the wound healing assay in human colon cancer cells (HT29). Effects on gelatinase activities were further assessed by dye-quenched gelatin and gelatin zymography. RESULTS Different types of extraction yielded significantly different levels of bioactivities and of bioactive compounds, which might be due to a greater amount of extractable bioactive compounds such as anthraquinones. Both A. arborescens and A. vera have potential as inhibitory agents in cancer cell proliferation via MMP-9 and MMP-2 enzymatic activity inhibition, being able to reduce colon cancer cell proliferation and migration but A. arborescens showed to be a more effective inhibitor of cancer cell migration than A. vera. CONCLUSION This work opens novel perspectives on the mode of action of Aloe species in cancer cell migration and may provide clues as to why there are so many conflicting results on Aloe's activities.
Collapse
Affiliation(s)
- Ana Lima
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Paula Batista-Santos
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Eduarda Veríssimo
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Patrícia Rebelo
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
39
|
Ebrahim AA, Elnesr SS, Abdel-Mageed MAA, Aly MMM. Nutritional significance of aloe vera (Aloe barbadensis Miller) and its beneficial impact on poultry. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1830010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amany A. Ebrahim
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - M. A. A. Abdel-Mageed
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Egypt
| | - M. M. M. Aly
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
40
|
Takaku Y, Takehara S, Suzuki C, Suzuki H, Shimomura M, Hariyama T. In situ elemental analyses of living biological specimens using 'NanoSuit' and EDS methods in FE-SEM. Sci Rep 2020; 10:14574. [PMID: 32884008 PMCID: PMC7471950 DOI: 10.1038/s41598-020-71523-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Energy dispersive X-ray spectroscopy (EDS) carried out alongside scanning electron microscopy (SEM) is a common technique for elemental analysis. To investigate “wet” biological specimens, complex pre-treatments are required to stabilize them under the high vacuum conditions of high-resolution SEM. These often produce unwanted artifacts. We have previously reported that the polymerization of natural surface substances on organisms by the electron beam of the SEM setup or by plasma irradiation causes a nano-scale layer to form—called a “NanoSuit”—that can act as a barrier and keep organisms alive and hydrated in a field-emission SEM system. In the study reported herein, we examined the suitability of the NanoSuit method for elemental analyses of biological specimens by EDS. We compared experimental results for living Drosophila larvae and Aloe arborescens specimens prepared by the NanoSuit method and by conventional fixation. The NanoSuit method allowed accurate detection of the elemental compositions at high resolution. By contrast, specimens prepared by the conventional fixation method displayed additional EDS signals corresponding to the elements in the chemicals involved in the fixation process. Our results demonstrate that the NanoSuit method is useful for studying hydrous samples via EDS and SEM, particularly in biological sciences.
Collapse
Affiliation(s)
- Yasuharu Takaku
- Preeminent Medical Photonics Education and Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Sayuri Takehara
- Preeminent Medical Photonics Education and Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Chiaki Suzuki
- Preeminent Medical Photonics Education and Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hiroshi Suzuki
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masatsugu Shimomura
- Department of Bio- and Material Photonics, Chitose Institute of Science and Technology, 758-65, Chitose, Hokkaido, 066-8655, Japan
| | - Takahiko Hariyama
- Preeminent Medical Photonics Education and Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
41
|
Fabrication of Promising Antimicrobial Aloe Vera/PVA Electrospun Nanofibers for Protective Clothing. MATERIALS 2020; 13:ma13173884. [PMID: 32887482 PMCID: PMC7504495 DOI: 10.3390/ma13173884] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
In the present condition of COVID-19, the demand for antimicrobial products such as face masks and surgical gowns has increased. Because of this increasing demand, there is a need to conduct a study on the development of antimicrobial material. Therefore, this study was conducted on the development of Aloe Vera and Polyvinyl Alcohol (AV/PVA) electrospun nanofibers. Four different fibers were developed by varying the concentrations of Aloe vera (0.5%, 1.5%, 2.5%, and 3%) while maintaining the concentration of PVA constant. The developed samples were subjected to different characterization techniques such as SEM, FTIR, XRD, TGA, and ICP studies. After that, the antimicrobial activity of the developed Aloe Vera/PVA electrospun nanofibers was checked against Gram-positive (Staphylococcus aureus) bacteria and Gram-negative (Escherichia coli) bacteria. The developed nanofibers had high profile antibacterial activity against both bacteria, but showed excellent results against S. aureus bacteria as compared with E. coli. These nanofibers have potential applications in the development of surgical gowns, gloves, etc.
Collapse
|
42
|
Kaminaka C, Yamamoto Y, Sakata M, Hamamoto C, Misawa E, Nabeshima K, Saito M, Tanaka M, Abe F, Jinnin M. Effects of low-dose Aloe sterol supplementation on skin moisture, collagen score and objective or subjective symptoms: 12-week, double-blind, randomized controlled trial. J Dermatol 2020; 47:998-1006. [PMID: 32515040 PMCID: PMC7496846 DOI: 10.1111/1346-8138.15428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Daily oral intake of 40 μg Aloe sterol was shown in a double‐blind clinical trial to significantly increase skin barrier function, moisture and elasticity. Ultrasonographic results also suggested that the intake of Aloe sterol increases collagen content in the dermis. Here, we evaluate the effects of a much smaller dose of Aloe sterol, approximately half that used previously, on skin functions in more detail. This is a monocentric, double‐blind, randomized, placebo‐controlled, supplementation study of the effects of low‐dose Aloe sterol on skin transepidermal water loss, hydration, collagen score, evaluation of objective or subjective symptoms, and safety after 12 weeks of daily intake. We randomly administrated either Aloe sterol or placebo to 122 healthy volunteers. Transepidermal water loss was significantly reduced and collagen score was increased in the Aloe sterol group compared with the placebo group at week 12. In the Aloe sterol group, there was significant improvement of objective skin condition (face erythema and pruritus of inner and outer arms) at week 12 compared with week 0, but not in the placebo group. Subjectively, there was significant improvement of visual analog scale of skin acne, fingernail brittleness and constipation in the Aloe sterol group. According to subgroup analysis, although not planned before the study initiation, subjects with dry skin in the Aloe sterol group had significantly increased skin hydration values at week 12 compared with the placebo group. Our results confirmed that even low‐dose Aloe sterol ingestion improves skin moisture by promoting skin barrier function and dermal collagen production, which contributes to maintenance of healthy skin.
Collapse
Affiliation(s)
- Chikako Kaminaka
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Mariko Sakata
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Chiaki Hamamoto
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Eriko Misawa
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Kazumi Nabeshima
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Marie Saito
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Miyuki Tanaka
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Fumiaki Abe
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| |
Collapse
|
43
|
Abstract
Ranging from the skin to liver, body has an in-built detox system that keeps it running
smoothly on a daily basis. Due to the present life-style, increased stress, pollution, unhealthy dietary
habits, the natural system gets weakened. The need of present time is to unveil the herbs present in
the nature full of detox potential, inheriting the capacity to purify the kidney, liver, gut, skin and
blood. These herbal detoxifiers facilitate lungs, aids kidneys, facilitates digestive tract and skin. The
present review deals with the study of herbs under the category of detoxifiers for kidney, liver, gut,
skin and blood. The herbs were studied by sectioning them for their detoxification potential for the
major organs of the body. The use of herbal agents to detox the major organs of the body not only
helps to remove the toxins but also increases the overall energy and efficiency of the body.
Collapse
Affiliation(s)
| | | | - Ankita Wal
- Pharmacy Department, PSIT, Kanpur, India
| | - Pranay Wal
- Pharmacy Department, PSIT, Kanpur, India
| |
Collapse
|
44
|
Svitina H, Swanepoel R, Rossouw J, Netshimbupfe H, Gouws C, Hamman J. Treatment of Skin Disorders with Aloe Materials. Curr Pharm Des 2020; 25:2208-2240. [PMID: 31269881 DOI: 10.2174/1381612825666190703154244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Swanepoel
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jacques Rossouw
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Happiness Netshimbupfe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
45
|
Solano F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020; 25:E1537. [PMID: 32230973 PMCID: PMC7180973 DOI: 10.3390/molecules25071537] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Direct sun exposure is one of the most aggressive factors for human skin. Sun radiation contains a range of the electromagnetic spectrum including UV light. In addition to the stratospheric ozone layer filtering the most harmful UVC, human skin contains a photoprotective pigment called melanin to protect from UVB, UVA, and blue visible light. This pigment is a redox UV-absorbing agent and functions as a shield to prevent direct UV action on the DNA of epidermal cells. In addition, melanin indirectly scavenges reactive oxygenated species (ROS) formed during the UV-inducing oxidative stress on the skin. The amounts of melanin in the skin depend on the phototype. In most phenotypes, endogenous melanin is not enough for full protection, especially in the summertime. Thus, photoprotective molecules should be added to commercial sunscreens. These molecules should show UV-absorbing capacity to complement the intrinsic photoprotection of the cutaneous natural pigment. This review deals with (a) the use of exogenous melanin or melanin-related compounds to mimic endogenous melanin and (b) the use of a number of natural compounds from plants and marine organisms that can act as UV filters and ROS scavengers. These agents have antioxidant properties, but this feature usually is associated to skin-lightening action. In contrast, good photoprotectors would be able to enhance natural cutaneous pigmentation. This review examines flavonoids, one of the main groups of these agents, as well as new promising compounds with other chemical structures recently obtained from marine organisms.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
46
|
Polyacrylamide-Metilcellulose Hydrogels Containing Aloe barbadensis Extract as Dressing for Treatment of Chronic Cutaneous Skin Lesions. Polymers (Basel) 2020; 12:polym12030690. [PMID: 32204517 PMCID: PMC7183280 DOI: 10.3390/polym12030690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Chronic wounds are severe breaks in the skin barrier that fail to heal in an acceptable time-frame, thus preventing the complete restoration of the tissue’s anatomical and functional integrity, increasing the likelihood of infections and apoptosis. Hydrogels are known as a drug delivery system and have the potential to cover wounds and burns on the skin. Aloe barbadensis contains over 75 different bioactive compounds which are responsible for its anti-inflammatory and antimicrobial properties. In this study, the polyacrylamide-co-methylcellulose hydrogel containing Aloe barbadensis were developed. The extract was prepared from lyophilized Aloe barbadensis, using methanolic extraction, characterized by high performance liquid chromatography and incorporated into the hydrogels. These Aloe barbadensis hydrogels were characterized by degree of swelling, Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermal profiling using thermogravimetric analysis. The minimum inhibitory concentration test was done on the Aloe barbadensis extract to evaluate its antibacterial and antifungal activity in vitro. The Aloe barbadensis hydrogels and were shown to swell to almost 2000% of their original sizes. The Fourier-transform infrared spectroscopy indicated the presence of bands characteristic of Aloe barbadensis and hydrogel polymers. The basic hydrogel showed greater thermal stability than the hydrogels with Aloe barbadensis. The minimum inhibitory concentration showed inhibition of the growth of S. aureus and Salmonella spp. at specific concentrations. The hydrogel therefore presents itself as an excellent potential curative cover of cutaneous lesions.
Collapse
|
47
|
Fehrmann-Cartes K, Coronado M, Hernández AJ, Allende ML, Feijoo CG. Anti-inflammatory effects of aloe vera on soy meal-induced intestinal inflammation in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 95:564-573. [PMID: 31706009 DOI: 10.1016/j.fsi.2019.10.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Soybean meal is one of the most promising alternatives to replace fishmeal in the aquaculture industry. However, its ingestion triggers an intestinal inflammatory process that compromises fish health and nutrition. Therefore, finding strategies that reduce the deleterious effects of a soy protein-based diet are relevant. In this work we analyzed the effects of an aloe vera (Aloe barbadensis miller, AV) extract on intestinal inflammation and innate immunity of zebrafish by adding it to the water and by supplementing it in a soybean meal-based diet. To search for potential immunomodulatory effects of AV, we tested its effectiveness in two inflammation assays and compared fish fed with either fishmeal or soybean meal-based feed supplemented with AV. Our results show a strong anti-inflammatory effect of AV. Furthermore, while soy-based meal strongly induces the expression of inflammation markers, supplementation with AV reverted this effect. Finally, we show that fish fed with a soy meal diet are highly susceptible to bacterial infection, but that this condition is significantly reduced when the soy meal is supplemented with AV. Our results suggest that AV is a good candidate to be incorporated as an additive in farmed fish diets to facilitate the replacement of fishmeal by soybean meal, maintaining intestinal health.
Collapse
Affiliation(s)
- K Fehrmann-Cartes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica 217, Santiago, 8370146, Chile; Escuela de Graduados de la Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - M Coronado
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica 217, Santiago, 8370146, Chile
| | - A J Hernández
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - M L Allende
- Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - C G Feijoo
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica 217, Santiago, 8370146, Chile.
| |
Collapse
|
48
|
Shakib Z, Shahraki N, Razavi BM, Hosseinzadeh H. Aloe vera as an herbal medicine in the treatment of metabolic syndrome: A review. Phytother Res 2019; 33:2649-2660. [PMID: 31456283 DOI: 10.1002/ptr.6465] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MS) is a highly prevalent health problem worldwide and is associated with different risk factors, including hyperglycemia, dyslipidemia, hypertension, and obesity. This condition increases the risk of developing type II diabetes mellitus and cardiovascular problems. The MS is one of the most important health concerns in industrialized countries and mainly results from a sedentary lifestyle, high levels of subjective stress, and unhealthy diets. Nowadays, the identification of appropriate health care approaches, such as herbal medicines, with fewer side effects is more favorable, especially with regard to the adverse effects of chemical drugs. Aloe barbadensis Miller known as Aloe vera is a useful plant with two major parts, including leaves that contain high concentrations of anthraquinone compounds and a clear gel. The gel is used as a food with several beneficial properties, such as antiinflammatory, antioxidant, antiviral, antibacterial, and wound-healing features. Other effects of A. vera, such as its lipid-lowering, antihypertensive, antidiabetic, antiobesity, and cardioprotective impacts, have been demonstrated in several studies. The present study was conducted to review the evidence on the pharmacological effects of A. vera on the different components of MS.
Collapse
Affiliation(s)
- Zahra Shakib
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naghmeh Shahraki
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Rodríguez-Rodríguez MZ, Meléndez-Pizarro CO, Espinoza-Hicks JC, Quintero-Ramos A, Sánchez-Madrigal MÁ, Meza-Velázquez JA, Jiménez-Castro JA. Effects of UV-C irradiation and traditional thermal processing on acemannan contained in Aloe vera gel blends. Carbohydr Polym 2019; 222:114998. [PMID: 31320065 DOI: 10.1016/j.carbpol.2019.114998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
The effects of pH (3.5, 4.5, and 5.5) and UV-C irradiation dose (12.8, 24.2, 35.8, and 54.6 mJ/cm2) on the physicochemical properties changes in 10% Aloe vera gel blends; in addition, the acemannan concentration and structural changes in the precipitated polysaccharides were evaluated. A thermal treatment (TT; 45 s at 90 °C) was used for comparison. In contrast to TT, a dose of 24.2 mJ/cm2 did not induce significant changes of free sugar content. Moreover, TT and UV-C irradiation did not significantly affect the content of mannose but increased those of galactose, fructose, and glucose. 1H NMR analysis revealed minimal changes in the isolated fractions of acemannan, indicating that compared to the unprocessed control sample, the acemannan deacetylation was more pronounced by TT (27%) than by UV-C irradiation (11% at 54.6 mJ/cm2), without any significant difference between the two. UV-C irradiation of Aloe vera gel blends at pH 3.5 and 24.2 mJ/cm2 was an alternative to TT and efficiently preserve the characteristics of acemannan.
Collapse
Affiliation(s)
- Maylem Z Rodríguez-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Carmen O Meléndez-Pizarro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - José C Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Armando Quintero-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico.
| | - Miguel Á Sánchez-Madrigal
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Jorge A Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Artículo 123 s/n, Fracc. Filadelfia 35010, Gómez Palacio, Dgo., Mexico
| | - Jorge A Jiménez-Castro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| |
Collapse
|
50
|
Nada A, Hawas A, Abd Elmageed Z, Amin N. Protective value of Aloe vera extract against γ-irradiation-induced some biochemical disorders in rats. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2013.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- A.S. Nada
- Radiation Drug Research Department, National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - A.M. Hawas
- Radiation Drug Research Department, National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Z.Y. Abd Elmageed
- Department of Biology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Urology and Oncology, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - N.E. Amin
- Radiation Drug Research Department, National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|