1
|
Ji A, Trumbauer AC, Noffsinger VP, de Beer FC, Webb NR, Tannock LR, Shridas P. Serum amyloid A augments the atherogenic effects of cholesteryl ester transfer protein. J Lipid Res 2023; 64:100365. [PMID: 37004910 PMCID: PMC10165456 DOI: 10.1016/j.jlr.2023.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.
Collapse
Affiliation(s)
- Ailing Ji
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Andrea C Trumbauer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Victoria P Noffsinger
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Frederick C de Beer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nancy R Webb
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lisa R Tannock
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Preetha Shridas
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Cui T, El Mekkaoui K, Reinvall J, Havulinna AS, Marttinen P, Kaski S. Gene-gene interaction detection with deep learning. Commun Biol 2022; 5:1238. [PMID: 36371468 PMCID: PMC9653457 DOI: 10.1038/s42003-022-04186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The extent to which genetic interactions affect observed phenotypes is generally unknown because current interaction detection approaches only consider simple interactions between top SNPs of genes. We introduce an open-source framework for increasing the power of interaction detection by considering all SNPs within a selected set of genes and complex interactions between them, beyond only the currently considered multiplicative relationships. In brief, the relation between SNPs and a phenotype is captured by a neural network, and the interactions are quantified by Shapley scores between hidden nodes, which are gene representations that optimally combine information from the corresponding SNPs. Additionally, we design a permutation procedure tailored for neural networks to assess the significance of interactions, which outperformed existing alternatives on simulated datasets with complex interactions, and in a cholesterol study on the UK Biobank it detected nine interactions which replicated on an independent FINRISK dataset.
Collapse
Affiliation(s)
- Tianyu Cui
- Department of Computer Science, Aalto University, Espoo, Finland.
| | | | - Jaakko Reinvall
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Pekka Marttinen
- Department of Computer Science, Aalto University, Espoo, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Samuel Kaski
- Department of Computer Science, Aalto University, Espoo, Finland
- Department of Computer Science, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Negi P, Heikkilä T, Tallgren T, Malmi P, Lund J, Sinisalo J, Metso J, Jauhiainen M, Pettersson K, Lamminmäki U, Lövgren J. Three two-site apoA-I immunoassays using phage expressed detector antibodies - Preliminary clinical evaluation with cardiac patients. J Pharm Biomed Anal 2020; 194:113772. [PMID: 33309125 DOI: 10.1016/j.jpba.2020.113772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
High density lipoproteins (HDL) are a heterogenous group of subpopulations differing in protein/lipid composition and in their anti-atherogenic function. There is a lack of specific and robust assays which can target the functionality of HDL with respect to atherosclerosis. With recently generated CAD HDL targeted, single chain recombinant antibodies (scFvs) we set out to design and optimize apo A-I tests to compare it with conventional HDL-C and apo A-I analyses for diagnosis and risk assessment of coronary artery disease (CAD) and its outcome. Three highly sensitive two-site apo A-I assays: 022-454, 109-121 and 110-525 were optimized. A preliminary clinical evaluation of these assays, after proper sample dilution procedure, was performed using samples derived from 195 chest pain patients (myocardial infarction (MI), n = 86 and non-MI, n = 109), collected at the time of admission and at discharge from hospital (hospital stay ≤ 24 h). The clinical performance of the assays was compared with apo A-I measured with polyclonal anti-apo A-I antibody using conventional ELISA. Apo A-I data was in addition compared with HDL-C concentration of the samples. The concentration of apo A-I was significantly lower in MI patients than in non-MI individuals with assay 022-454 (admission and discharge samples, P < 0.0001 and = 0.004); assay 109-121 (admission and discharge samples, P = 0.04 and 0.0009), and, ELISA based apo A-I test (admission and discharge samples, P = 0.008 and < 0.0001). HDL-C (admission and discharge samples, P = 0.002 and P = 0.01) was also significantly lower in MI patients. In Kaplan- Meier analysis, two-site assay 109-121 assay predicted mortality from admission samples at 1.5 yrs (whole cohort, P = 0.01 and in MI patients, P = 0.05) and at 6 months (whole cohort, P = 0.04). Assay 110-525 predicted mortality at 1.5 yrs from admission samples of non-MI patients (P = 0.01) and at 6 months from whole discharge sample cohort (P = 0.04). Polyclonal anti-apo A-I based conventional assay predicted mortality at 1.5 yrs from admission samples of whole cohort (P = 0.03). Two-site apo A-I assay 022-454 and HDL-C provided no capability of predicting mortality in the whole cohort or any sub-group. In conclusion, two of the tested recombinant apo A-I antibody combinations (sc 109-121 and sc 110-525) display promising outcome to improve diagnosis and prediction of future cardiac events in cardiac patients over polyclonal apo A-I ELISA and HDL-C assays. The noted differences, while interesting, are preliminary and need however to be verified in extensive cohorts of pathological cardiac conditions and healthy controls.
Collapse
Affiliation(s)
- Priyanka Negi
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland.
| | - Taina Heikkilä
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Terhi Tallgren
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Päivi Malmi
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Juha Lund
- Heart Center, Turku University Hospital, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland; National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland; National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland
| | - Kim Pettersson
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Janita Lövgren
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Changes in redox and endoplasmic reticulum homeostasis are related to congenital generalized lipodystrophy type 2. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158610. [PMID: 31917334 DOI: 10.1016/j.bbalip.2020.158610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022]
Abstract
CGL type 2 is a rare autosomal recessive syndrome characterized by an almost complete lack of body fat. CGL is caused by loss-of-function mutations in both alleles of the BSCL2 gene that codifies to seipin. Subjects often show hyperglycemia, decreased HDL-c, and hypoadiponectinemia. These laboratory findings are important triggers for changes in redox and ER homeostasis. Therefore, our aim was to investigate whether these intracellular mechanisms are associated with this syndrome. We collected blood from people from Northeastern Brazil with 0, 1, and 2 mutant alleles for the rs786205071 in the BSCL2 gene. Through the qPCR technique, we evaluated the expression of genes responsible for triggering the antioxidant response, DNA repair, and ER stress in leukocytes. Colorimetric tests were applied to quantify lipid peroxidation and to evaluate the redox status of glutathione, as well as to access the panorama of energy metabolism. Long extension PCR was performed to observe leukocyte mitochondrial DNA lesions, and the immunoblot technique to investigate plasma adiponectin concentrations. Subjects with the rs786205071 in both BSCL2 alleles showed increased transcription of NFE2L2, APEX1, and OGG1 in leukocytes, as well as high concentrations of malondialdehyde and the GSSG:GSH ratio in plasma. We also observed increase of mitochondrial DNA lesions and XBP1 splicing, as well as a decrease in adiponectin and HDL-c. Our data suggest the presence of lipid lesions due to changes in redox homeostasis in that group, associated with increased levels of mitochondrial DNA damage and transcriptional activation of genes involved with antioxidant response and DNA repair.
Collapse
|
5
|
Abstract
High-density lipoprotein (HDL) and its main protein component apolipoprotein (apo)A-I, play an important role in cholesterol homeostasis. It has been demonstrated that HDLs comprise of a very heterogeneous group of particles, not only regarding size but also composition. HDL's best described function is its role in the reverse cholesterol transport, where lipid-free apoA-I or small HDLs can accept and take up cholesterol from peripheral cells and subsequently transport this to the liver for excretion. However, several other functions have also been described, like anti-oxidant, anti-inflammatory and anti-thrombotic effects. In this article, the general features, synthesis and metabolism of apoA-I and HDLs will be discussed. Additionally, an overview of HDL functions will be given, especially in the context of some major pathologies like cardiovascular disease, cancer and diabetes mellitus. Finally, the therapeutic potential of raising HDL will be discussed, focussing on the difficulties of the past and the promises of the future.
Collapse
|
6
|
Macho-González A, Garcimartín A, López-Oliva M, Celada P, Bastida S, Benedí J, Sánchez-Muniz F. Carob-fruit-extract-enriched meat modulates lipoprotein metabolism and insulin signaling in diabetic rats induced by high-saturated-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Grefhorst A, Verkade HJ, Groen AK. The TICE Pathway: Mechanisms and Lipid-Lowering Therapies. Methodist Debakey Cardiovasc J 2019; 15:70-76. [PMID: 31049152 DOI: 10.14797/mdcj-15-1-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the well-known hepatobiliary pathway of cholesterol excretion into the feces, transintestinal cholesterol excretion (TICE) is a second major pathway through which cholesterol is disposed from the body. In the process of TICE, cholesterol is taken up from lipoprotein particles at the basolateral side of the enterocyte and translocates towards the apical side of the enterocyte. At the apical side, the ATP-binding cassette transporters G5 and G8 form a heterodimer that transports cholesterol into the intestinal lumen. A substantial amount of the secreted cholesterol is likely reabsorbed by the cholesterol influx transporter Niemann-Pick C1-Like 1 (NPC1L1) since recent data indicate that inhibition of NPC1L1 increases the efficacy of TICE for disposal of cholesterol via the feces. The pathways and proteins involved in intracellular cholesterol trafficking in the enterocyte have not yet been identified. Therefore, in addition to discussing known mediators of TICE, this review will also examine potential candidates involved in cholesterol translocation in the enterocyte. Both the cholesterol reuptake and efflux pathways can be influenced by pharmaceutical means; thus, the TICE pathway is a very attractive target to increase cholesterol excretion from the body and prevent or mitigate atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Aldo Grefhorst
- AMSTERDAM UNIVERSITY MEDICAL CENTERS, AMSTERDAM, THE NETHERLANDS
| | - Henkjan J Verkade
- UNIVERSITY MEDICAL CENTER GRONINGEN, UNIVERSITY OF GRONINGEN, GRONINGEN, THE NETHERLANDS
| | - Albert K Groen
- AMSTERDAM UNIVERSITY MEDICAL CENTERS, AMSTERDAM, THE NETHERLANDS.,UNIVERSITY MEDICAL CENTER GRONINGEN, UNIVERSITY OF GRONINGEN, GRONINGEN, THE NETHERLANDS
| |
Collapse
|
8
|
High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatol J Cardiol 2019; 18:149-154. [PMID: 28766509 PMCID: PMC5731265 DOI: 10.14744/anatoljcardiol.2017.7608] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key to effective treatment of cardiovascular disease is to understand the body’s complex lipoprotein transport system. Reverse cholesterol transport (RCT) is the process of cholesterol movement from the extrahepatic tissues back to the liver. Lipoproteins containing apoA-I [high-density lipoprotein (HDL)] are key mediators in RCT, whereas non-high-density lipoproteins (non-HDL, lipoproteins containing apoB) are involved in the lipid delivery pathway. HDL particles are heterogeneous; they differ in proportion of proteins and lipids, size, shape, and charge. HDL heterogeneity is the result of the activity of several factors that assemble and remodel HDL particles in plasma: ATP-binding cassette transporter A1 (ABCA1), lecithin cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), hepatic lipase (HL), phospholipid transfer protein (PLTP), endothelial lipase (EL), and scavenger receptor class B type I (SR-BI). The RCT pathway consists of the following steps: 1. Cholesterol efflux from peripheral tissues to plasma, 2. LCAT-mediated esterification of cholesterol and remodeling of HDL particles, 3. direct pathway of HDL cholesterol delivery to the liver, and 4. indirect pathway of HDL cholesterol delivery to the liver via CETP-mediated transfer There are several established strategies for raising HDL cholesterol in humans, such as lifestyle changes; use of drugs including fibrates, statins, and niacin; and new therapeutic approaches. The therapeutic approaches include CETP inhibition, peroxisome proliferator-activated receptor (PPAR) agonists, synthetic farnesoid X receptor agonists, and gene therapy. Results of clinical trials should be awaited before further clinical management of atherosclerotic cardiovascular disease.
Collapse
|
9
|
Blackburn NB, Porto A, Peralta JM, Blangero J. Heritability and genetic associations of triglyceride and HDL-C levels using pedigree-based and empirical kinships. BMC Proc 2018; 12:34. [PMID: 30263045 PMCID: PMC6157025 DOI: 10.1186/s12919-018-0133-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The heritability of a phenotype is an estimation of the percent of variance in that phenotype that is attributable to additive genetic factors. Heritability is optimally estimated in family-based sample populations. Traditionally, this involves use of a pedigree-based kinship coefficient generated from the collected genealogical relationships between family members. An alternative, when dense genotype data are available, is to directly measure the empirical kinship between samples. This study compares the use of pedigree and empirical kinships in the GAW20 data set. Two phenotypes were assessed: triglyceride levels and high-density lipoprotein cholesterol (HDL-C) levels pre- and postintervention with the cholesterol-reducing drug fenofibrate. Using SOLAR (Sequential Oligogenic Linkage Analysis Routines), pedigree-based kinships and empirically calculated kinships (using IBDLD and LDAK) were used to calculate phenotype heritability. In addition, a genome-wide association study was conducted using each kinship model for each phenotype to identify genetic variants significantly associated with phenotypic variation. The variant rs247617 was significantly associated with HDL-C levels both pre- and post-fenofibrate intervention. Overall, the phenotype heritabilities calculated using pedigree based kinships or either of the empirical kinships generated using IBDLD or LDAK were comparable. Phenotype heritabilities estimated from empirical kinships generated using IBDLD were closest to the pedigree-based estimations. Given that there was not an appreciable amount of unknown relatedness between the pedigrees in this data set, a large increase in heritability in using empirical kinship was not expected, and our calculations support this. Importantly, these results demonstrate that when sufficient genotypic data are available, empirical kinship estimation is a practical alternative to using pedigree-based kinships.
Collapse
Affiliation(s)
- Nicholas B. Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, One University Blvd., Modular Building #100, Brownsville, TX 78250 USA
| | - Arthur Porto
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, One University Blvd., Modular Building #100, Brownsville, TX 78250 USA
| | - Juan M. Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, One University Blvd., Modular Building #100, Brownsville, TX 78250 USA
- Menzies Institute for Medical Research, University of Tasmania, Liverpool St, Hobart, TAS 17 Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, One University Blvd., Modular Building #100, Brownsville, TX 78250 USA
- Menzies Institute for Medical Research, University of Tasmania, Liverpool St, Hobart, TAS 17 Australia
| |
Collapse
|
10
|
Ghosh GC, Bhadra R, Ghosh RK, Banerjee K, Gupta A. RVX 208: A novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther 2018; 35. [PMID: 28423226 DOI: 10.1111/1755-5922.12265] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/17/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
Low-density cholesterol (LDL) has been the prime target of currently available lipid-lowering therapies although current research is expanding the focus beyond LDL lowering and has included high-density cholesterol (HDL) also as the target. Bromo and extra-terminal (BET) proteins are implicated in the regulation of transcription of several regulatory genes and regulation of proinflammatory pathways. As atherosclerosis is an inflammatory pathway and studies showed that BET inhibition has a role in inhibiting inflammation, the concept of BET inhibition came in the field of atherosclerosis. RVX 208 is a novel, orally active, BET protein inhibitor and the only BET inhibitor currently available in the field of atherosclerosis. RVX 208 acts primarily by increasing apo A-I (apolipoprotein A-I) and HDL levels. RVX 208 has a novel action of increasing larger, more cardio-protective HDL particles. Post hoc analysis of Phase II trials also showed that RVX 208 reduced major adverse cardiovascular events (MACE) in treated patients, over and above that of apo A-I/HDL increasing action. This MACE reducing actions of RVX 208 were largely due to its novel anti-inflammatory actions. Currently, a phase III trial, BETonMACE, is recruiting patients to look for the effects of RVX 208 in patients with increased risk of atherosclerotic cardiovascular disease. So BET inhibitors act in multiple ways to inhibit and modulate atherosclerosis and would be an emerging and potential option in the management of multifactorial disease like coronary artery disease by inhibiting a single substrate. But we need long-term phase III trial data's to look for effects on real-world patients.
Collapse
Affiliation(s)
- Gopal C Ghosh
- Department of Cardiology, Christian Medical College, Vellore, India
| | - Rajarshi Bhadra
- Department of Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Raktim K Ghosh
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anjan Gupta
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Gao S, Wang X, Cheng D, Li J, Li L, Ran L, Zhao S, Fan J, Liu E. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits. Mediators Inflamm 2017; 2017:3824276. [PMID: 29317793 PMCID: PMC5727764 DOI: 10.1155/2017/3824276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
High levels of plasma high-density lipoprotein-cholesterol (HDL-C) are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP) is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg) rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.
Collapse
Affiliation(s)
- Shoucui Gao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaojing Wang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Daxing Cheng
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Jiayan Li
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lu Li
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Ningxia 750004, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
12
|
Wang X, Hao L, Xu X, Li W, Liu C, Zhao D, Cheng M. Design, Synthesis and Biological Evaluation of N,N-Substituted Amine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors. Molecules 2017; 22:molecules22101658. [PMID: 28972557 PMCID: PMC6151529 DOI: 10.3390/molecules22101658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
N,N-Substituted amine derivatives were designed by utilizing a bioisosterism strategy. Consequently, twenty-two compounds were synthesized and evaluated for their inhibitory activity against CETP. Structure-activity relationship (SAR) studies indicate that hydrophilic groups at the 2-position of the tetrazole and 3,5-bistrifluoromethyl groups on the benzene ring provide important contributions to the potency. Among these compounds, compound 17 exhibited excellent CETP inhibitory activity (IC50 = 0.38 ± 0.08 μM) in vitro. Furthermore, compound 17 was selected for an in vitro metabolic stability study.
Collapse
Affiliation(s)
- Xinran Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lijuan Hao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xuanqi Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunchi Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Hoeke G, Nahon KJ, Bakker LEH, Norkauer SSC, Dinnes DLM, Kockx M, Lichtenstein L, Drettwan D, Reifel-Miller A, Coskun T, Pagel P, Romijn FPHTM, Cobbaert CM, Jazet IM, Martinez LO, Kritharides L, Berbée JFP, Boon MR, Rensen PCN. Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans. J Clin Lipidol 2017. [PMID: 28625343 DOI: 10.1016/j.jacl.2017.04.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. OBJECTIVE The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. METHODS Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [3H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. RESULTS Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. CONCLUSIONS Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol.
Collapse
Affiliation(s)
- Geerte Hoeke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Kimberly J Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Leontine E H Bakker
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Donna L M Dinnes
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Laeticia Lichtenstein
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse, France
| | | | - Anne Reifel-Miller
- Diabetes/Endocrine Department, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Tamer Coskun
- Diabetes/Endocrine Department, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Fred P H T M Romijn
- Deparment of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Deparment of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse, France
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia; Department of Cardiology, Concord Repatriation General Hospital, University of Sydney, Sydney, Australia
| | - Jimmy F P Berbée
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, O'Sullivan SE, Tan GD. Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study. Diabetes Care 2016; 39:1777-86. [PMID: 27573936 DOI: 10.2337/dc16-0650] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cannabidiol (CBD) and Δ(9)-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized, double-blind, placebo-controlled study, 62 subjects with noninsulin-treated type 2 diabetes were randomized to five treatment arms: CBD (100 mg twice daily), THCV (5 mg twice daily), 1:1 ratio of CBD and THCV (5 mg/5 mg, twice daily), 20:1 ratio of CBD and THCV (100 mg/5 mg, twice daily), or matched placebo for 13 weeks. The primary end point was a change in HDL-cholesterol concentrations from baseline. Secondary/tertiary end points included changes in glycemic control, lipid profile, insulin sensitivity, body weight, liver triglyceride content, adipose tissue distribution, appetite, markers of inflammation, markers of vascular function, gut hormones, circulating endocannabinoids, and adipokine concentrations. Safety and tolerability end points were also evaluated. RESULTS Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = -1.2 mmol/L; P < 0.05) and improved pancreatic β-cell function (HOMA2 β-cell function [ETD = -44.51 points; P < 0.01]), adiponectin (ETD = -5.9 × 10(6) pg/mL; P < 0.01), and apolipoprotein A (ETD = -6.02 μmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (-898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated. CONCLUSIONS THCV could represent a new therapeutic agent in glycemic control in subjects with type 2 diabetes.
Collapse
Affiliation(s)
- Khalid A Jadoon
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Derby, U.K
| | | | - David A Barrett
- School of Pharmacy, Centre for Analytical Bioscience, University of Nottingham, Nottingham, U.K
| | - E Louise Thomas
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, U.K
| | | | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, U.K
| | - Saoirse E O'Sullivan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Derby, U.K.
| | - Garry D Tan
- NIHR Oxford Biomedical Research Centre, Oxford Centre for Diabetes, Endocrinology & Metabolism, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, U.K
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of novel cholesteryl ester transfer protein inhibitors bearing a cycloalkene scaffold. Eur J Med Chem 2016; 123:419-430. [PMID: 27490022 DOI: 10.1016/j.ejmech.2016.07.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
Abstract
Cholesteryl ester transfer protein (CETP) is a potential target for cardiovascular disease therapy as inhibition of CETP leads to increased HDL-C in humans. Based on the structure of Merck's biphenyl CETP inhibitor, we designed novel N,N-substituted-cycloalkenyl-methylamine scaffold derivatives by utilizing core replacement and conformational restriction strategies. Consequently, twenty-eight compounds were synthesized and evaluated for their inhibitory activity against CETP. Their preliminary structure-activity relationships (SARs) studies indicate that polar substituents were tolerated in moiety A and hydrophobic alkyl groups at the 5-position of cyclohexene were critical for potency. Among them, compound 17a, bearing an N-(5-pyrazolyl-pyrimidin-2-yl)-cycloalkenyl- methylamine scaffold, exhibited excellent CETP inhibitory activity (IC50 = 0.07 μM) in vitro. Furthermore, it showed an acceptable pharmacokinetic profile in S-D rats and efficient HDL-C increase in high-fat fed hamsters.
Collapse
|
16
|
Shamburek RD, Bakker-Arkema R, Auerbach BJ, Krause BR, Homan R, Amar MJ, Freeman LA, Remaley AT. Familial lecithin:cholesterol acyltransferase deficiency: First-in-human treatment with enzyme replacement. J Clin Lipidol 2015; 10:356-67. [PMID: 27055967 DOI: 10.1016/j.jacl.2015.12.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Humans with familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) have extremely low or undetectable high-density lipoprotein cholesterol (HDL-C) levels and by early adulthood develop many manifestations of the disorder, including corneal opacities, anemia, and renal disease. OBJECTIVE To determine if infusions of recombinant human LCAT (rhLCAT) could reverse the anemia, halt progression of renal disease, and normalize HDL in FLD. METHODS rhLCAT (ACP-501) was infused intravenously over 1 hour on 3 occasions in a dose optimization phase (0.3, 3.0, and 9.0 mg/kg), then 3.0 or 9.0 mg/kg every 1 to 2 weeks for 7 months in a maintenance phase. Plasma lipoproteins, lipids, LCAT levels, and several measures of renal function and other clinical labs were monitored. RESULTS LCAT concentration peaked at the end of each infusion and decreased to near baseline over 7 days. Renal function generally stabilized or improved and the anemia improved. After infusion, HDL-C rapidly increased, peaking near normal in 8 to 12 hours; analysis of HDL particles by various methods all revealed rapid sequential disappearance of preβ-HDL and small α-4 HDL and appearance of normal α-HDL. Low-density lipoprotein cholesterol increased more slowly than HDL-C. Of note, triglyceride routinely decreased after meals after infusion, in contrast to the usual postprandial increase in the absence of rhLCAT infusion. CONCLUSIONS rhLCAT infusions were well tolerated in this first-in-human study in FLD; the anemia improved, as did most parameters related to renal function in spite of advanced disease. Plasma lipids transiently normalized, and there was rapid sequential conversion of small preβ-HDL particles to mature spherical α-HDL particles.
Collapse
Affiliation(s)
- Robert D Shamburek
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
| | | | | | | | | | - Marcelo J Amar
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Lita A Freeman
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Alan T Remaley
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
17
|
Sundaram R, Shanthi P, Sachdanandam P. Tangeretin, a polymethoxylated flavone, modulates lipid homeostasis and decreases oxidative stress by inhibiting NF-κB activation and proinflammatory cytokines in cardiac tissue of streptozotocin-induced diabetic rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Lu J, Cleary Y, Maugeais C, Kiu Weber CI, Mazer NA. Analysis of "On/Off" Kinetics of a CETP Inhibitor Using a Mechanistic Model of Lipoprotein Metabolism and Kinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:465-73. [PMID: 26380155 PMCID: PMC4562162 DOI: 10.1002/psp4.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
RG7232 is a potent inhibitor of cholesteryl-ester transfer protein (CETP). Daily oral administration of RG7232 produces a dose- and time-dependent increase in high-density lipoprotein-cholesterol (HDL-C) and apolipoproteinA-I (ApoA-I) levels and a corresponding decrease in low-density lipoprotein-cholesterol (LDL-C) and apolipoproteinB (ApoB) levels. Due to its short plasma half-life (∼3 hours), RG7232 transiently inhibits CETP activity during each dosing interval ("on/off" kinetics), as reflected by the temporal effects on HDL-C and LDL-C. The influence of RG7232 on lipid-poor ApoA-I (i.e., pre-β 1) levels and reverse cholesterol transport rates is unclear. To investigate this, a published model of lipoprotein metabolism and kinetics was combined with a pharmacokinetic model of RG7232. After calibration and validation of the combined model, the effect of RG7232 on pre-β 1 levels was simulated. A dose-dependent oscillation of pre-β 1, driven by the "on/off" kinetics of RG7232 was observed. The possible implications of these findings are discussed.
Collapse
Affiliation(s)
- J Lu
- Roche Pharma Research and Early Development, Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Basel, Switzerland
| | - Y Cleary
- Roche Pharma Research and Early Development, Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Basel, Switzerland
| | - C Maugeais
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Basel, Switzerland
| | - C I Kiu Weber
- Global Medical Affairs, F. Hoffmann-La Roche Basel, Switzerland
| | - N A Mazer
- Roche Pharma Research and Early Development, Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Basel, Switzerland
| |
Collapse
|
19
|
McConathy WJ, Paranjape S, Mooberry L, Buttreddy S, Nair M, Lacko AG. Validation of the reconstituted high-density lipoprotein (rHDL) drug delivery platform using dilauryl fluorescein (DLF). Drug Deliv Transl Res 2015; 1:113-20. [PMID: 25788110 DOI: 10.1007/s13346-010-0012-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dilauryl fluorescein (DLF) is a lipid soluble molecule that becomes fluorescent when lauric acid is removed by hydrolysis The purpose of these studies was to evaluate DLF as a potential probe for the function of reconstituted high-density lipoproteins (rHDL) as hydrophobic drug transport vehicles. The DLF containing rHDL nanoparticles were characterized regarding their physical/chemical properties, including molecular diameter, molecular weight, chemical composition, and buoyant density. We investigated the uptake of DLF from rHDL in cells that overexpress the scavenger receptor (SR-B1), known to facilitate the selective cellular uptake of cholesteryl esters from HDL. These studies show that DLF can be incorporated into rHDL and redistributed in the plasma compartment. In addition, these studies demonstrated an enhanced uptake and hydrolysis of DLF from rHDL by cells that overexpress the SR-B1 receptor, suggesting the involvement of a receptor mediated mechanism. The incorporation of DLF into the rHDL nanoparticles appear to protect against hydrolysis in the systemic circulation based on the lower rate of rHDL/DLF hydrolysis compared with the free DLF during incubation with human plasma. DLF may thus be used as a probe to track the movement and metabolism of HDL core constituents, including cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Walter J McConathy
- Center for Diabetes and Metabolic Disorders, Department of Internal Medicine, Texas Tech University Health Sciences Center-Permian Basin, Odessa, TX, 79763, USA
| | | | | | | | | | | |
Collapse
|
20
|
Xin G, Yang G, Hui L. Study to assess whether waist circumference and changes in serum glucose and lipid profile are independent variables for the CETP gene. Diabetes Res Clin Pract 2014; 106:95-100. [PMID: 25115339 DOI: 10.1016/j.diabres.2014.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/02/2014] [Accepted: 07/20/2014] [Indexed: 11/22/2022]
Abstract
AIMS To observe the relationship among genes, obesity and the changes in serum glucose and lipid profile to assess whether obesity-related disease results from genes and/or obesity. METHODS Correlations among serum glucose, lipids, waist circumference (WC), and Taq1B, I405V, and D442G polymorphisms of the cholesteryl ester transfer protein (CETP) gene were assessed. Logistic regression analysis was used to screen independent variables among obesity-related anthropometric indexes and serum biochemical indicators for genes. RESULTS The waist circumference density index (WCDI) may be attributed to changes in serum biochemical indicators and among WCDI, BMI and serum biochemical indicators, however, only WCDI was an independent variable for the G allele. Differences were observed in anthropometric indexes and serum biochemical indicators between subjects with the G allele and those without (p<0.05). CONCLUSION Abdominal obesity and changes in serum glucose and lipid profile are affected by a group of genes, including CETP. Correlation of the CETP gene with waist circumference may be independent compared with serum glucose and lipid profile.
Collapse
Affiliation(s)
- Ge Xin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Gao Yang
- Dalian Tuberculosis Hospital, China
| | - Liu Hui
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
21
|
|
22
|
Lu J, Hübner K, Nanjee MN, Brinton EA, Mazer NA. An in-silico model of lipoprotein metabolism and kinetics for the evaluation of targets and biomarkers in the reverse cholesterol transport pathway. PLoS Comput Biol 2014; 10:e1003509. [PMID: 24625468 PMCID: PMC3952822 DOI: 10.1371/journal.pcbi.1003509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the potential utility of the model in drug development.
Collapse
Affiliation(s)
- James Lu
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Clinical Pharmacology, Basel, Switzerland
- * E-mail:
| | - Katrin Hübner
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - M. Nazeem Nanjee
- Division of Cardiovascular Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Eliot A. Brinton
- Utah Foundation for Biomedical Research, Salt Lake City, Utah, United States of America
| | - Norman A. Mazer
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Clinical Pharmacology, Basel, Switzerland
| |
Collapse
|
23
|
Moxon JV, Liu D, Wong G, Weir JM, Behl-Gilhotra R, Bradshaw B, Kingwell BA, Meikle PJ, Golledge J. Comparison of the serum lipidome in patients with abdominal aortic aneurysm and peripheral artery disease. ACTA ACUST UNITED AC 2014; 7:71-9. [PMID: 24448739 DOI: 10.1161/circgenetics.113.000343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Currently, the relationship between circulating lipids and abdominal aortic aneurysm (AAA) is unclear. We conducted a lipidomic analysis to identify serum lipids associated with AAA presence. Secondary analyses assessed the ability of models incorporating lipidomic features to improve stratification of patient groups with and without AAA beyond traditional risk factors. METHODS AND RESULTS Serum lipids were profiled via liquid chromatography tandem mass spectrometry analysis of serum from 161 patients with AAA and 168 controls with peripheral artery disease. Binary logistic regression was used to identify AAA-associated lipids. Classification models were created based on a combination of (1) traditional risk factors only or (2) lipidomic features and traditional risk factors. Model performance was assessed using receiver operator characteristic curves. Three diacylglycerols and 7 triacylglycerols were associated with AAA. Combining lipidomic features with traditional risk factors significantly improved stratification of AAA and peripheral artery disease groups when compared with traditional risk factors alone (mean area under the receiver operator characteristic curve [95% confidence interval], 0.760 [0.756-0.763] and 0.719 [0.716-0.723], respectively; P<0.05). CONCLUSIONS A group of linoleic acid containing triacylglycerols and diacylglycerols were significantly associated with AAA presence. Inclusion of lipidomic features in multivariate analyses significantly improved prediction of AAA presence when compared with traditional risk factors alone.
Collapse
Affiliation(s)
- Joseph V Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Almeida ERD, Reiche EMV, Kallaur AP, Flauzino T, Watanabe MAE. The roles of genetic polymorphisms and human immunodeficiency virus infection in lipid metabolism. BIOMED RESEARCH INTERNATIONAL 2013; 2013:836790. [PMID: 24319689 PMCID: PMC3844249 DOI: 10.1155/2013/836790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
Dyslipidemia has been frequently observed among individuals infected with human immunodeficiency virus type 1 (HIV-1), and factors related to HIV-1, the host, and antiretroviral therapy (ART) are involved in this phenomenon. This study reviews the roles of genetic polymorphisms, HIV-1 infection, and highly active antiretroviral therapy (HAART) in lipid metabolism. Lipid abnormalities can vary according to the HAART regimen, such as those with protease inhibitors (PIs). However, genetic factors may also be involved in dyslipidemia because not all patients receiving the same HAART regimen and with comparable demographic, virological, and immunological characteristics develop variations in the lipid profile. Polymorphisms in a large number of genes are involved in the synthesis of structural proteins, and enzymes related to lipid metabolism account for variations in the lipid profile of each individual. As some genetic polymorphisms may cause dyslipidemia, these allele variants should be investigated in HIV-1-infected patients to identify individuals with an increased risk of developing dyslipidemia during treatment with HAART, particularly during therapy with PIs. This knowledge may guide individualized treatment decisions and lead to the development of new therapeutic targets for the treatment of dyslipidemia in these patients.
Collapse
Affiliation(s)
- Elaine Regina Delicato de Almeida
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
- Pathological Sciences Postgraduate Program, Biological Sciences Center, State University of Londrina, Campus Universitário, CEP 86051-970 Londrina, PR, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
| | - Ana Paula Kallaur
- Postgraduate Program of Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
| | - Tamires Flauzino
- Clinical Immunology, Clinical Analysis Laboratory, Health Sciences Center, State University of Londrina, Avenida Robert Koch, 60, CEP 86038-440 Londrina, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Campus Universitário, CEP 86051-970 Londrina, PR, Brazil
| |
Collapse
|
25
|
Sun L, Hu CY, Shi XH, Zheng CG, Huang ZZ, Lv ZP, Huang J, Wan G, Qi KY, Liang SY, Zhou L, Yang Z. Trans-ethnical shift of the risk genotype in the CETP I405V with longevity: a Chinese case-control study and meta-analysis. PLoS One 2013; 8:e72537. [PMID: 23977315 PMCID: PMC3744487 DOI: 10.1371/journal.pone.0072537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The I405V polymorphism of the cholesteryl ester transfer protein gene (CETP) has been suggested to be a protective factor conferring longevity in Ashkenazi Jews, although findings in other races are not supportive. This paper describes a case-control study and a meta-analysis conducted to derive a more precise estimation of the association between CETP 405V and longevity. METHODS We enrolled 1,021 ethnic Han Chinese participants (506 in the longevity group and 515 controls), then performed a meta-analysis that integrated the current study and previously published ones. Pooled odds ratios (OR) were calculated for allele contrasts, dominant and recessive inheritance models to assess the association between CETP 405V and longevity according to the ethnic stratification. RESULTS Our case-control data indicated that CETP 405V is a longevity risk allele in all genetic models (P additive =0.008; P dominant =0.008, OR(dominant)=0.673; P recessive =0.017, OR(recessive)=0.654) after adjustment for the apolipoprotein E (APOE) ε4 allele, body mass index and high-density lipoprotein cholesterol. A synergy was detected between 405V and APOE ε4 (P=0.001, OR=0.530). Eight studies were eligible for meta-analysis, which confirmed 405V is the risky allele against longevity in all genetic models: allele contrasts (OR=0.81, 95%CI=0.74-0.88), dominant model (OR=0.72, 95%CI=0.64-0.82) and recessive model (OR=0.80, 95%CI=0.67-0.96). After ethnic stratification, 405V remained a risk allele in East Asians but no significant association was found in Europeans or white Americans. CONCLUSION Our case-control study suggests CETP 405V as a risk allele against longevity in Chinese. The meta-analysis suggests the involvement of CETP 405V is protective in Ashkenazi Jews but is a risk allele against longevity in the East Asian (Chinese) population.
Collapse
Affiliation(s)
- Liang Sun
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Cai-you Hu
- Department of Neurology, JiangBin Hospital, Nanning, Guangxi, China
| | - Xiao-hong Shi
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Chen-guang Zheng
- Department of Cardiothoracic Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, China
| | - Ze-zhi Huang
- Yongfu Committee of the Chinese People’s Political Consultative Conference, Yongfu, Guangxi, China
| | - Ze-ping Lv
- Department of Neurology, JiangBin Hospital, Nanning, Guangxi, China
| | - Jin Huang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Gang Wan
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Ke-yan Qi
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Si-ying Liang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Lin Zhou
- Beijing Youth Science and Technology Club, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
High-density lipoprotein in uremic patients: metabolism, impairment, and therapy. Int Urol Nephrol 2013; 46:27-39. [PMID: 23443874 DOI: 10.1007/s11255-012-0366-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Several studies have shown that HDL has altered antioxidant and anti-inflammatory effects in chronic uremia, either by the reduction in its antioxidant enzymes or by the impairment of their activity. Systemic oxidative stress, which is highly prevalent in chronic kidney disease (CKD) patients, has been shown to decrease antioxidant and anti-inflammatory effects of HDL and even transform it into a pro-oxidant and pro-inflammatory agent. For this reason, we believe that the propensity for accelerated cardiovascular disease in CKD is facilitated by a few key features of this disease, namely, oxidative stress, inflammation, hypertension, and disorders of lipid metabolism. In a nutshell, oxidative stress and inflammation enhance atherosclerosis leading to increased cardiovascular mortality and morbidity in this population. In this detailed review, we highlight the current knowledge on HDL dysfunction and impairment in chronic kidney disease as well as the available therapy.
Collapse
|
27
|
Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina 2013; 33:265-76. [PMID: 23266879 PMCID: PMC3870202 DOI: 10.1097/iae.0b013e31827e25e0] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To characterize the morphology, prevalence, and topography of subretinal drusenoid deposits, a candidate histological correlate of reticular pseudodrusen, with reference to basal linear deposit (BlinD), a specific lesion of age-related macular degeneration, and to propose a biogenesis model for both lesion. METHODS Donor eyes with median death-to-preservation of 2:40 hours were postfixed in osmium tannic acid paraphenylenediamine and prepared for macula-wide high-resolution digital sections. Annotated thicknesses of 21 chorioretinal layers were determined at standard locations in sections through the fovea and the superior perifovea. RESULTS In 22 eyes of 20 white donors (83.1 ± 7.7 years), SDD appeared as isolated or confluent drusenoid dollops punctuated by tufts of retinal pigment epithelium apical processes and associated with photoreceptor perturbation. Subretinal drusenoid deposits and BlinD were detected in 85 and 90% of non-neovascular age-related macular degeneration donors, respectively. Subretinal drusenoid deposit was thick (median, 9.4 μm) and more abundant in the perifovea than in the fovea (P < 0.0001). BlinD was thin (median, 2.1 μm) and more abundant in the fovea than in the perifovea (P < 0.0001). CONCLUSION Subretinal drusenoid deposits and BlinD prevalence in age-related macular degeneration eyes are high. Subretinal drusenoid deposits organized morphology, topography, and impact on surrounding photoreceptors imply specific processes of biogenesis. Contrasting topographies of subretinal drusenoid deposits and BlinD suggest relationships with differentiable aspects of rod and cone physiology, respectively. A 2-lesion 2-compartment biogenesis model incorporating outer retinal lipid homeostasis is presented.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Gursky O. Crystal structure of Δ(185-243)ApoA-I suggests a mechanistic framework for the protein adaptation to the changing lipid load in good cholesterol: from flatland to sphereland via double belt, belt buckle, double hairpin and trefoil/tetrafoil. J Mol Biol 2013; 425:1-16. [PMID: 23041415 PMCID: PMC3534807 DOI: 10.1016/j.jmb.2012.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/23/2012] [Accepted: 09/29/2012] [Indexed: 12/18/2022]
Abstract
Apolipoprotein A-I (apoA-I) is the major protein of plasma high-density lipoproteins (HDLs), macromolecular assemblies of proteins and lipids that remove cell cholesterol and protect against atherosclerosis. HDL heterogeneity, large size (7.7-12 nm), and ability to exchange proteins have prevented high-resolution structural analysis. Low-resolution studies showed that two apoA-I molecules form an antiparallel α-helical "double belt" around an HDL particle. The atomic-resolution structure of the C-terminal truncated lipid-free Δ(185-243)apoA-I, determined recently by Mei and Atkinson, provides unprecedented new insights into HDL structure-function. It allows us to propose a molecular mechanism for the adaptation of the full-length protein to increasing lipid load during cholesterol transport. ApoA-I conformations on small, midsize, and large HDLs are proposed based on the tandem α-helical repeats and the crystal structure of Δ(185-243)apoA-I and are validated by comparison with extensive biophysical data reported by many groups. In our models, the central half of the double belt ("constant" segment 66-184) is structurally conserved while the N- and C-terminal half ("variable" segments 1-65 and 185-243) rearranges upon HDL growth. This includes incremental unhinging of the N-terminal bundle around two flexible regions containing G39 and G65 to elongate the belt, along with concerted swing motion of the double belt around G65-P66 and G185-G186 hinges that are aligned on various-size particles, to confer two-dimensional surface curvature to spherical HDLs. The proposed conformational ensemble integrates and improves several existing HDL models. It helps provide a structural framework necessary to understand functional interactions with over 60 other HDL-associated proteins and, ultimately, improve the cardioprotective function of HDL.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
29
|
Association studies of several cholesterol-related genes (ABCA1, CETP and LIPC) with serum lipids and risk of Alzheimer's disease. Lipids Health Dis 2012. [PMID: 23181436 PMCID: PMC3532092 DOI: 10.1186/1476-511x-11-163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Accumulating evidence suggested that dysregulation of cholesterol homeostasis might be a major etiologic factor in initiating and promoting neurodegeneration in Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), hepatic lipase (HL, coding genes named LIPC) and cholesteryl ester transfer protein (CETP) are important components of high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) implicated in atherosclerosis and neurodegenerative diseases. In the present study, we will investigate the possible association of several common polymorphisms (ABCA1R219K, CETPTaqIB and LIPC-250 G/A) with susceptibility to AD and plasma lipid levels. Methods Case–control study of 208 Han Chinese (104 AD patients and 104 non-demented controls) from Changsha area in Hunan Province was performed using the PCR-RFLP analysis. Cognitive decline was assessed using Mini Mental State Examination (MMSE) as a standardized method. Additionally, fasting lipid profile and the cognitive testing scores including Wechsler Memory Scale (WMS) and Wisconsin Card Sorting Test (WCST) were recorded. Results and conclusions We found significant differences among the genotype distributions of these three genes in AD patients when compared with controls. But after adjusting other factors, multivariate logistic regression analysis showed only ABCA1R219K (B = −0.903, P = 0.005, OR = 0.405, 95%CI:0.217-0.758) and LIPC-250 G/A variants(B = −0.905, P = 0.018, OR = 0.405, 95%CI:0.191-0.858) were associated with decreased AD risk. There were significantly higher levels of high-density lipoprotein cholesterol (HDL-C) and apolipoproteinA-I in the carriers of KK genotype and K allele (P < 0.05), and B2B2 genotype of CETP Taq1B showed significant association with higher HDL-C levels than other genotypes (F = 5.598, P = 0.004), while -250 G/A polymorphisms had no significant effect on HDL-C. In total population, subjects carrying ABCA1219K allele or LIPC-250A allele obtained higher MMSE or WMS scores than non-carriers, however, no significant association was observed in AD group or controls. Therefore, this preliminary study showed that the gene variants of ABCA1R219K and LIPC-250 G/A might influence AD susceptibility in South Chinese Han population, but the polymorphism of CETPTaq1B didn't show any association in despite of being a significant determinant of HDL-C.
Collapse
|
30
|
Dysfunctional HDL: A novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res 2012; 51:314-24. [DOI: 10.1016/j.plipres.2012.03.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 01/23/2023]
|
31
|
Development of a method to measure preβHDL and αHDL apoA-I enrichment for stable isotopic studies of HDL kinetics. Lipids 2012; 47:1011-8. [PMID: 22886353 DOI: 10.1007/s11745-012-3703-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Our understanding of HDL metabolism would be enhanced by the measurement of the kinetics of preβHDL, the nascent form of HDL, since elevated levels have been reported in patients with coronary artery disease. Stable isotope methodology is an established technique that has enabled the determination of the kinetics (production and catabolism) of total HDL apoA-I in vivo. The development of separation procedures to obtain a preβHDL fraction, the isotopic enrichment of which could then be measured, would enable further understanding of the pathways in vivo for determining the fate of preβHDL and the formation of αHDL. A method was developed and optimised to separate and measure preβHDL and αHDL apoA-I enrichment. Agarose gel electrophoresis was first used to separate lipoprotein subclasses, and then a 4-10 % discontinuous SDS-PAGE used to isolate apoA-I. Measures of preβHDL enrichment in six healthy subjects were undertaken following an infusion of L-[1-¹³C-leucine]. After isolation of preβ and αHDL, the isotopic enrichment of apoA-I for each fraction was measured by gas chromatography-mass spectrometry. PreβHDL apoA-I enrichment was measured with a CV of 0.51 % and αHDL apoA-I with a CV of 0.34 %. The fractional catabolic rate (FCR) of preβHDL apoA-I was significantly higher than the FCR of αHDL apoA-I (p < 0.005). This methodology can be used to selectively isolate preβ and αHDL apoA-I for the measurement of apoA-I isotopic enrichment for kinetics studies of HDL subclass metabolism in a research setting.
Collapse
|
32
|
Rhainds D, Arsenault BJ, Brodeur MR, Tardif JC. An update on the clinical development of dalcetrapib (RO4607381), a cholesteryl ester transfer protein modulator that increases HDL cholesterol levels. Future Cardiol 2012; 8:513-31. [DOI: 10.2217/fca.12.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CETP is the target of CETP inhibitors such as anacetrapib and the modulator dalcetrapib. Both molecules have entered Phase III clinical trials, with the ultimate goal of reducing cardiovascular events by raising HDL cholesterol. At the 600-mg dose selected for the dal-OUTCOMES study, dalcetrapib is expected to inhibit CETP activity by approximately 30% and raise HDL-C by approximately 30% with limited effects on LDL cholesterol. Importantly, dalcetrapib does not raise blood pressure or aldosterone levels, two effects previously associated with the CETP inhibitor torcetrapib. Dalcetrapib has been well tolerated at the 600-mg dose. In the dal-PLAQUE atherosclerosis imaging study, dalcetrapib reduced the enlargement of total vessel area over time. In May 2012, following the results of the second interim analysis of dal-OUTCOMES, the Data and Safety Monitoring Board recommended stopping the study owing to a lack of clinically significant benefit, which was followed by Roche’s (Basel, Switzerland) decision to terminate the study and the dalcetrapib program (dal-HEART). Contrary to anacetrapib, a potent CETP inhibitor that markedly increases HDL cholesterol and significantly reduces LDL cholesterol, dalcetrapib has allowed us to test the hypothesis that an isolated, moderate elevation in HDL cholesterol prevents cardiovascular events.
Collapse
Affiliation(s)
- David Rhainds
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
| | - Benoit J Arsenault
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
| | - Mathieu R Brodeur
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
| | - Jean-Claude Tardif
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
- Faculty of Medicine, Université de Montréal, 2900, Boulevard Édouard-Montpetit Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
33
|
Chièze L, Bolanos-Garcia VM, Le Caër G, Renault A, Vié V, Beaufils S. Difference in lipid packing sensitivity of exchangeable apolipoproteins apoA-I and apoA-II: an important determinant for their distinctive role in lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2732-41. [PMID: 22627110 DOI: 10.1016/j.bbamem.2012.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/21/2022]
Abstract
Exchangeable apolipoproteins A-I and A-II play distinct roles in reverse cholesterol transport. ApoA-I interacts with phospholipids and cholesterol of the cell membrane to make high density lipoprotein particles whereas apolipoprotein A-II interacts with high density lipoprotein particles to release apolipoprotein A-I. The two proteins show a high activity at the aqueous solution/lipid interface and are characterized by a high content of amphipathic α-helices built upon repetition of the same structural motif. We set out to investigate to what extent the number of α-helix repeats of this structural motif modulates the affinity of the protein for lipids and the sensitivity to lipid packing. To this aim we have compared the insertion of apolipoproteins A-I and A-II in phospholipid monolayers formed on a Langmuir trough in conditions where lipid packing, surface pressure and charge were controlled. We also used atomic force microscopy to obtain high resolution topographic images of the surface at a resolution of several nanometers and performed statistical image analysis to calculate the spatial distribution and geometrical shape of apolipoproteins A-I and A-II clusters. Our data indicate that apolipoprotein A-I is sensitive to packing of zwitterionic lipids but insensitive to the packing of negatively charged lipids. Interestingly, apolipoprotein A-II proved to be insensitive to the packing of zwitterionic lipids. The different sensitivity to lipid packing provides clues as to why apolipoprotein A-II barely forms nascent high density lipoprotein particles while apolipoprotein A-I promotes their formation. We conclude that the different interfacial behaviors of apolipoprotein A-I and apolipoprotein A-II in lipidic monolayers are important determinants of their distinctive roles in lipid metabolism.
Collapse
Affiliation(s)
- Lionel Chièze
- Institut de Physique de Rennes, UMR-CNRS 6251 Université de Rennes 1, Campus de Beaulieu, Rennes cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. Am Heart J 2012; 163:515-21, 521.e1-3. [PMID: 22424025 DOI: 10.1016/j.ahj.2011.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/30/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) is involved in high-density lipoprotein (HDL) remodeling and transfer of lipids between HDL particles and other lipoproteins. Epidemiologic studies show that both elevated HDL-cholesterol (HDL-C) and reduced CETP activity attenuate cardiovascular risk, making inhibition or modulation of CETP a potential therapeutic target. This study analyzed the effect of dalcetrapib on lipoprotein profile, CETP activity, and cellular cholesterol efflux when co-administered with pravastatin in patients with low or average HDL-C. METHODS Patients were randomized in a double-blind fashion to receive placebo or dalcetrapib 300, 600, or 900 mg once daily for 12 weeks. All patients were concomitantly treated to their low-density lipoprotein cholesterol target with pravastatin. Lipoprotein profile was analyzed by nuclear magnetic resonance spectroscopy and polyacrylamide gradient gel electrophoresis. Composition of the HDL fraction was assessed after polyethylene glycol precipitation. Contribution of this fraction to cholesterol efflux was assessed using radiolabeled donor cells. RESULTS Co-administration of dalcetrapib with pravastatin increased HDL-C, apolipoproteins (apo) A-I and A-II, and CETP mass, and decreased CETP activity. A relative increase in large HDL and low-density lipoprotein subparticle fractions was observed. High-density lipoprotein composition showed increased association of esterified cholesterol, free cholesterol, phospholipids, apo A-I, and apo E. Adenosine 5'-triphosphate-binding cassette A1- and scavenger receptor type BI-mediated cholesterol efflux increased. CONCLUSIONS Dalcetrapib up to 600 mg, combined with pravastatin, increased HDL-C and altered lipoprotein profile, HDL composition, and HDL function, with little further change at a 900-mg dose. The impact on cardiovascular events in dyslipidemic patients is being evaluated.
Collapse
|
35
|
Wang H, Peng DQ. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis 2011; 10:176. [PMID: 21988829 PMCID: PMC3207906 DOI: 10.1186/1476-511x-10-176] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023] Open
Abstract
Obesity, a significant risk factor for various chronic diseases, is universally related to dyslipidemia mainly represented by decreasing high-density lipoprotein cholesterol (HDL-C), which plays an indispensible role in development of cardiovascular disease (CVD). However, the mechanisms underlying obesity and low HDL-C have not been fully elucidated. Previous studies have focused on the alteration of HDL catabolism in circulation following elevated triglyceride (TG). But recent findings suggested that liver and fat tissue played pivotal role in obesity related low HDL-C. Some new molecular pathways like microRNA have also been proposed in the regulation of HDL metabolism in obesity. This article will review recent advances in understanding of the potential mechanism of low HDL-C in obesity.
Collapse
Affiliation(s)
- Hao Wang
- Departments of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | | |
Collapse
|
36
|
Parhofer KG. Pathophysiology of diabetic dyslipidemia: implications for atherogenesis and treatment. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Liu H, Wu G, Zhou B, Chen B. Structure and function of cholesteryl ester transfer protein in the tree shrew. Lipids 2011; 46:607-16. [PMID: 21455733 DOI: 10.1007/s11745-011-3552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
Abstract
Cholesteryl ester transfer protein (CETP) plays an important role in reverse cholesterol transport (RCT). To study on the structure and function of CETP in the tree shrew, a kind of animal resistant to atherosclerosis, we completed the cloning of the full-length tree-shrew CETP cDNA sequence based on the reported partial sequence. The full-length cDNA of tree shrew CETP was 1,704 bp and the deduced protein of the cDNA showed a sequence identity of 81, 80 and 74%, respectively, with the human, monkey and rabbit CETP. The level of CETP mRNA in the liver was much more abundant than that in the other tissues. A mutant protein with a substitution of Asn at position 110 by Gln was found to possess an impaired secretion property compared with the wild-type tree shrew CETP. The mutant proteins, respectively, with a substitution of Pro at position 344 by Ser and a substitution of Gln at position 452 by Arg displayed similar secretion ability, but a decreased cholesteryl ester transfer capability compared with the wild type (48 and 26% lower, respectively). These findings demonstrate that liver is the main tissue synthesizing CETP in the tree shrew. Asn at position 110 plays an important role in the secretion of tree shrew CETP. The residues at position 344 and 452 play essential roles in cholesteryl ester transferring process.
Collapse
Affiliation(s)
- Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | | | | | | |
Collapse
|
38
|
Abstract
Type 2 diabetes is commonly accompanied by a low level of high density lipoprotein cholesterol (HDL-C) that contributes to the increased cardiovascular risk associated with this condition. Given that HDLs have the ability to improve increase the uptake of glucose by skeletal muscle and to stimulate the secretion of insulin from pancreatic beta cells the possibility arises that a low HDL concentration in type 2 diabetes may also contribute to a worsening of diabetic control. Thus, there is a double case for raising the level of HDL-C in patients with type 2 diabetes: to reduce cardiovascular risk and to improve glycemic control. Approaches to raising HDL-C include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. Of currently available drugs, the most effective is niacin. Newer formulations of niacin are reasonably well tolerated and have the ability to increase HDL-C by up to 30%. The effect of niacin on cardiovascular events in type 2 diabetes is currently being tested in a large-scale clinical outcome trial.
Collapse
|
39
|
Abstract
INTRODUCTION Increasing attention has focused on the role of high-density lipoprotein function as a target for cardiprotection. Apolipoprotein A-I(Milano) (AIM) involves a single amino-acid mutation of the major wild-type protein carried on high-density lipoprotein (HDL) particles. Early evidence of beneficial activities of AIM has stimulated support in its development as a potential therapy to reduce cardiovascular risk. AREAS COVERED The importance of HDL as a target and early data supporting the beneficial effects of AIM are reviewed. All clinical studies of AIM found in PubMed are reviewed. EXPERT OPINION ETC-216 represents a lipid-deplete form of HDL containing recombinant AIM. While early evidence suggests that administration of ETC-216 promotes rapid regression of coronary atherosclerosis, bringing this compound to clinical practice will require further trials that evaluate its impact on cardiovascular events.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Heart & Vascular Institute, Cleveland Clinic, Department of Cardiovascular Medicine, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
40
|
Nicholls SJ, Gordon A, Johansson J, Wolski K, Ballantyne CM, Kastelein JJP, Taylor A, Borgman M, Nissen SE. Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol 2011; 57:1111-9. [PMID: 21255957 DOI: 10.1016/j.jacc.2010.11.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the safety, tolerability, and efficacy of RVX-208, the first oral agent designed to enhance apolipoprotein (apo) A-I synthesis. BACKGROUND No agent that selectively induces synthesis of apoA-I has reached an advanced stage of clinical development. METHODS A total of 299 statin-treated patients with coronary artery disease were treated with placebo or with RVX-208 at a dose of 50, 100, or 150 mg twice daily for 12 weeks. Changes in lipid-related biomarkers, in addition to safety and tolerability, of RVX-208 were investigated. RESULTS For each dose of RVX-208, individual pairwise comparisons of apoA-I changes with placebo, the primary end point, did not achieve statistical significance. However, treatment with RVX-208 was associated with a dose-dependent increase in apoA-I levels by up to 5.6% (p = 0.035 for trend). Administration of RVX-208 resulted in significant increases in levels of high-density lipoprotein cholesterol (HDL-C) ranging from 3.2% to 8.3% (p = 0.02), and large HDL particles increased by 11.1% to 21.1% (p = 0.003). ApoA-I levels increased rapidly from 8 to 12 weeks, suggesting that peak pharmacological effect has not been achieved by the end of the 12-week study. Transient and reversible elevations in liver transaminases >3 times the upper limit of normal were observed in 18 patients treated with RVX-208, with no associated increase in bilirubin levels. CONCLUSIONS Administration of RVX-208 for 12 weeks was associated with increases in apoA-I, HDL-C, and concentration of large HDL particles, consistent with facilitation of cholesterol mobilization. Maximal increases in apoA-I may require longer exposure. An increase in liver enzymes was observed with active treatment. (Clinical Trial for Dose Finding and Safety of RVX000222 in Subjects With Stable Coronary Artery Disease; NCT01058018).
Collapse
Affiliation(s)
- Stephen J Nicholls
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Karthikesan K, Pari L, Menon V. Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem Biol Interact 2010; 188:643-50. [DOI: 10.1016/j.cbi.2010.07.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 12/22/2022]
|
42
|
Niesor EJ, Magg C, Ogawa N, Okamoto H, von der Mark E, Matile H, Schmid G, Clerc RG, Chaput E, Blum-Kaelin D, Huber W, Thoma R, Pflieger P, Kakutani M, Takahashi D, Dernick G, Maugeais C. Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport. J Lipid Res 2010; 51:3443-54. [PMID: 20861162 PMCID: PMC2975716 DOI: 10.1194/jlr.m008706] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mechanism by which cholesteryl ester transfer protein (CETP) activity affects HDL metabolism was investigated using agents that selectively target CETP (dalcetrapib, torcetrapib, anacetrapib). In contrast with torcetrapib and anacetrapib, dalcetrapib requires cysteine 13 to decrease CETP activity, measured as transfer of cholesteryl ester (CE) from HDL to LDL, and does not affect transfer of CE from HDL3 to HDL2. Only dalcetrapib induced a conformational change in CETP, when added to human plasma in vitro, also observed in vivo and correlated with CETP activity. CETP-induced pre-β-HDL formation in vitro in human plasma was unchanged by dalcetrapib ≤3 µM and increased at 10 µM. A dose-dependent inhibition of pre-β-HDL formation by torcetrapib and anacetrapib (0.1 to 10 µM) suggested that dalcetrapib modulates CETP activity. In hamsters injected with [3H]cholesterol-labeled autologous macrophages, and given dalcetrapib (100 mg twice daily), torcetrapib [30 mg once daily (QD)], or anacetrapib (30 mg QD), only dalcetrapib significantly increased fecal elimination of both [3H]neutral sterols and [3H]bile acids, whereas all compounds increased plasma HDL-[3H]cholesterol. These data suggest that modulation of CETP activity by dalcetrapib does not inhibit CETP-induced pre-β-HDL formation, which may be required to increase reverse cholesterol transport.
Collapse
Affiliation(s)
- Eric J Niesor
- Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ruan X, Ma L, Wang S, Lindpaintner K, Liu X, Wang B, Peng Z, Ma X, Cheng M, Zhang J, Liu L, Wang X. TAQIB and I405V polymorphisms of CETP are moderately associated with obesity risk in the Chinese adult population. Acta Diabetol 2010; 47:217-24. [PMID: 19360375 DOI: 10.1007/s00592-009-0117-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Associations between the TAQIB and I405V polymorphisms and obesity risk were studied for a single locus as well as in combination. A total of 934 obese subjects and 924 normal controls were included in the study. TAQIB was associated with high-density lipoprotein (HDL) levels (P < 0.001), while I405V was associated with levels of low-density lipoprotein (P = 0.03) and total cholesterol (P = 0.007). Less common alleles of TAQIB and I405V were associated with decreased obesity risk and further drops in odds ratio (OR) were observed in carriers with rare homozygous alleles on both loci (OR = 0.659, P = 0.02). The TAQIB B2 allele was associated with reductions in both hip circumference (P = 0.034) and triceps skinfold thickness (TST) (P = 0.045), although this effect was completely abolished after controlling for HDL levels. The 405V variant was associated with reductions in hip circumference (P = 0.031), body fat composition (P = 0.039) and TST (P = 0.036); these effects were weakened (P < 0.1) after controlling for HDL levels. In conclusion, less common alleles of TAQIB and I405V appear to be modestly associated with obesity risk in an adult Chinese population. Adjustments for HDL levels completely (TAQIB) or partially (I405V) abolished the observed association.
Collapse
|
44
|
Sánchez SA, Tricerri MA, Ossato G, Gratton E. Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:1399-408. [PMID: 20347719 PMCID: PMC2883020 DOI: 10.1016/j.bbamem.2010.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 12/16/2022]
Abstract
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.
Collapse
Affiliation(s)
- Susana A Sánchez
- Laboratory for Fluorescence Dynamics (LFD), University of California at Irvine, Biomedical Engineering Department, Irvine, CA 92697-2715, USA.
| | | | | | | |
Collapse
|
45
|
Bailey D, Jahagirdar R, Gordon A, Hafiane A, Campbell S, Chatur S, Wagner GS, Hansen HC, Chiacchia FS, Johansson J, Krimbou L, Wong NCW, Genest J. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol 2010; 55:2580-9. [PMID: 20513599 DOI: 10.1016/j.jacc.2010.02.035] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/08/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether a novel small molecule RVX-208 affects apolipoprotein (apo)A-I and high-density lipoprotein cholesterol (HDL-C) levels in vitro and in vivo. BACKGROUND Increased apoA-I and HDL-C levels are potential therapeutic targets for reducing atherosclerotic disease. METHODS HepG2 cells were treated with 0 to 60 mumol/l RVX-208 followed by assays for apoA-I and HDL-C production. For in vivo studies, African green monkeys (AGMs) received 15 to 60 mg/kg/day RVX-208, and the serum was analyzed for lipoprotein levels, HDL-subparticle distribution, cholesterol efflux, and activity of lipid-modifying enzymes. A phase I clinical trial was conducted in healthy volunteers (given 1 to 20 mg/kg/day of RVX-208) to assess safety, tolerability, and pharmacokinetics. RESULTS The RVX-208 induced apoA-I messenger ribonucleic acid and protein synthesis in HepG2 cells, leading to increased levels of pre-beta-migrating and alpha-lipoprotein particles containing apoA-I (LpA-I) in spent media. Similarly, in AGMs, RVX-208 treatment for 63 days increased serum apoA-I and HDL-C levels (60% and 97%, respectively). In addition, the levels of pre-beta(1)-LpA-I and alpha1-LpA-I HDL-subparticles were increased as well as adenosine triphosphate binding cassette AI, adenosine triphosphate binding cassette G1, and scavenger receptor class B type I-dependent cholesterol efflux. These changes were not mediated by cholesteryl-ester-transfer protein. Treatment of humans for 1 week with oral RVX-208 increased apoA-I, pre-beta-HDL, and HDL functionality. CONCLUSIONS RVX-208 increases apoA-I and HDL-C in vitro and in vivo. In AGMs, RVX-208 raises serum pre-beta(1)-LpA-I and alpha-LpA-I levels and enhances cholesterol efflux. Data in humans point to beneficial features of RVX-208 that might be useful for treating atherosclerosis.
Collapse
Affiliation(s)
- Dana Bailey
- Division of Cardiology, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Yetukuri L, Söderlund S, Koivuniemi A, Seppänen-Laakso T, Niemelä PS, Hyvönen M, Taskinen MR, Vattulainen I, Jauhiainen M, Oresic M. Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol. J Lipid Res 2010; 51:2341-51. [PMID: 20431113 DOI: 10.1194/jlr.m006494] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A low level of high density lipoprotein cholesterol (HDL-C) is a powerful risk factor for cardiovascular disease. However, despite the reported key role of apolipo-proteins, specifically, apoA-I, in HDL metabolism, lipid molecular composition of HDL particles in subjects with high and low HDL-C levels is currently unknown. Here lipidomics was used to study HDL derived from well-characterized high and low HDL-C subjects. Low HDL-C subjects had elevated triacylglycerols and diminished lysophosphatidylcholines and sphingomyelins. Using information about the lipid composition of HDL particles in these two groups, we reconstituted HDL particles in silico by performing large-scale molecular dynamics simulations. In addition to confirming the measured change in particle size, we found that the changes in lipid composition also induced specific spatial distributions of lipids within the HDL particles, including a higher amount of triacylglycerols at the surface of HDL particles in low HDL-C subjects. Our findings have important implications for understanding HDL metabolism and function. For the first time we demonstrate the power of combining molecular profiling of lipoproteins with dynamic modeling of lipoprotein structure.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW We review stable isotope tracer studies of apolipoprotein B-100 (apoB) kinetics concerning genetic polymorphisms and mutations that affect human lipoprotein metabolism. RECENT FINDINGS In obese men, the allelic combination of the apoB signal peptide, SP24, and cholesteryl ester transfer protein, CETP B1B1, is independently associated with lower VLDL apoB secretion. Microsomal triglyceride transfer protein -493G/T carriers have reduced IDL apoB and LDL apoB production as compared with controls. Mutations in cholesterol transporters (ATP-binding cassette transporter G8 and Niemann-Pick C1 Like 1) are associated with reduced VLDL apoB secretion and increased LDL apoB production and catabolism. The ATP-binding cassette transporter G8 400K variant is a significant, independent predictor of VLDL apoB secretion. Mutations in lipases (lipoprotein lipase and hepatic lipase) and transfer proteins (lecithin-cholesterol acyltransferase and cholesteryl ester transfer protein) alter their functional activity, which impact on VLDL and LDL kinetics. SUMMARY Mutations in genes that regulate intrahepatic apoB assembly and lipid substrate availability to the liver impact on VLDL apoB secretion. Lipoprotein tracer studies can provide functional insight into the potential impact of genetic polymorphisms in regulating apoB metabolism in humans.
Collapse
Affiliation(s)
- Theodore W K Ng
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
49
|
Natarajan P, Ray KK, Cannon CP. High-Density Lipoprotein and Coronary Heart Disease. J Am Coll Cardiol 2010; 55:1283-99. [PMID: 20338488 DOI: 10.1016/j.jacc.2010.01.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/04/2010] [Accepted: 01/04/2010] [Indexed: 12/29/2022]
Affiliation(s)
- Pradeep Natarajan
- Department of Medicine, Cardiovascular Division, Brigham & Women's Hospital/Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Hu YW, Zheng L, Wang Q. Regulation of cholesterol homeostasis by liver X receptors. Clin Chim Acta 2010; 411:617-25. [PMID: 20060389 DOI: 10.1016/j.cca.2009.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
Abstract
Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. The sterol-responsive transcription factors liver X receptors (LXRalpha and LXRbeta) help maintain cholesterol homeostasis, not only through promotion of cholesterol efflux from peripheral tissues but also through suppression of de novo synthesis and exogenous cholesterol uptake. In this review, we summarize the important role of LXRs in regulating expression of key members that keep cholesterol levels in balance.
Collapse
Affiliation(s)
- Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | | | | |
Collapse
|