1
|
Wang J, Wang D, Hu G, Yang L, Liu Z, Yan D, Serikuly N, Alpyshov E, Demin KA, Strekalova T, Gil Barcellos LJ, Barcellos HHA, Amstislavskaya TG, de Abreu MS, Kalueff AV. The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behav Processes 2021; 193:104505. [PMID: 34547376 DOI: 10.1016/j.beproc.2021.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- St. Petersburg State University, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Leonardo J Gil Barcellos
- Graduate Programs in Bio-experimentation and Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
2
|
Bonnefoy J, Ghislin S, Beyrend J, Coste F, Calcagno G, Lartaud I, Gauquelin-Koch G, Poussier S, Frippiat JP. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models. Int J Mol Sci 2021; 22:2961. [PMID: 33803957 PMCID: PMC7998548 DOI: 10.3390/ijms22062961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.
Collapse
Affiliation(s)
- Julie Bonnefoy
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Stéphanie Ghislin
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Jérôme Beyrend
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Florence Coste
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Gaetano Calcagno
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Isabelle Lartaud
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | | | - Sylvain Poussier
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| |
Collapse
|
3
|
Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 2021; 7:9. [PMID: 33750813 PMCID: PMC7943786 DOI: 10.1038/s41526-021-00136-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Spaceflight uniquely alters the physiology of both human cells and microbial pathogens, stimulating cellular and molecular changes directly relevant to infectious disease. However, the influence of this environment on host-pathogen interactions remains poorly understood. Here we report our results from the STL-IMMUNE study flown aboard Space Shuttle mission STS-131, which investigated multi-omic responses (transcriptomic, proteomic) of human intestinal epithelial cells to infection with Salmonella Typhimurium when both host and pathogen were simultaneously exposed to spaceflight. To our knowledge, this was the first in-flight infection and dual RNA-seq analysis using human cells.
Collapse
|
4
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
5
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
6
|
Regulation of Electromagnetic Perceptive Gene Using Ferromagnetic Particles for the External Control of Calcium Ion Transport. Biomolecules 2020; 10:biom10020308. [PMID: 32075263 PMCID: PMC7072303 DOI: 10.3390/biom10020308] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023] Open
Abstract
Developing synthetic biological devices to allow the noninvasive control of cell fate and function, in vivo can potentially revolutionize the field of regenerative medicine. To address this unmet need, we designed an artificial biological “switch” that consists of two parts: (1) the electromagnetic perceptive gene (EPG) and (2) magnetic particles. Our group has recently cloned the EPG from the Kryptopterus bicirrhis (glass catfish). The EPG gene encodes a putative membrane-associated protein that responds to electromagnetic fields (EMFs). This gene’s primary mechanism of action is to raise the intracellular calcium levels or change in flux through EMF stimulation. Here, we developed a system for the remote regulation of [Ca2+]i (i.e., intracellular calcium ion concentration) using streptavidin-coated ferromagnetic particles (FMPs) under a magnetic field. The results demonstrated that the EPG-FMPs can be used as a molecular calcium switch to express target proteins. This technology has the potential for controlled gene expression, drug delivery, and drug developments.
Collapse
|
7
|
Sokolovskaya A, Korneeva E, Zaichenko D, Virus E, Kolesov D, Moskovtsev A, Kubatiev A. Changes in the Surface Expression of Intercellular Adhesion Molecule 3, the Induction of Apoptosis, and the Inhibition of Cell-Cycle Progression of Human Multidrug-Resistant Jurkat/A4 Cells Exposed to a Random Positioning Machine. Int J Mol Sci 2020; 21:E855. [PMID: 32013031 PMCID: PMC7037860 DOI: 10.3390/ijms21030855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Experiments from flight- and ground-based model systems suggest that unexpected alterations of the human lymphoblastoid cell line Jurkat, as well as effects on cell growth, metabolism, and apoptosis, can occur in altered gravity conditions. Using a desktop random positioning machine (RPM), we investigated the effects of simulated microgravity on Jurkat cells and their multidrug-resistant subline, Jurkat/A4 cells. The viability of Jurkat/A4 cells decreased after simulated microgravity in contrast with the Jurkat cells. At the same time, the viability between the experimental Jurkat cells and control Jurkat cells was not significantly different. Of note, Jurkat cells appeared as less susceptible to apoptosis than their multidrug-resistant clone Jurkat/A4 cells, whereas cell-cycle analysis showed that the percentage of Jurkat/A4 cells in the S-phase was increased after 72 and 96 h of RPM-simulated microgravity relative to their static counterparts. The differences in Jurkat cells at all phases between static and simulated microgravity were not significant. The surface expression of the intercellular adhesion molecule 3 (ICAM-3)-also known as cluster of differentiation (CD)50-protein was changed for Jurkat/A4 cells following exposure to the RPM. Changes in cell morphology were observed in the Jurkat/A4 cells after 96 h of RPM-simulated microgravity. Thus, we concluded that Jurkat/A4 cells are more sensitive to RPM-simulated microgravity as compared with the parental Jurkat cell line. We also suggest that intercellular adhesion molecule 3 may be an important adhesion molecule involved in the induction of leukocyte apoptosis. The Jurkat/A4 cells with an acquired multidrug resistance phenotype could be a useful model for studying the effects of simulated microgravity and testing anticancer drugs.
Collapse
Affiliation(s)
- Alisa Sokolovskaya
- Department of Molecular and Cellular Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya str. 8, 125315 Moscow, Russia; (E.K.); (D.Z.); (E.V.); (D.K.); (A.M.); (A.K.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Morabito C, Lanuti P, Caprara GA, Marchisio M, Bizzarri M, Guarnieri S, Mariggiò MA. Physiological Responses of Jurkat Lymphocytes to Simulated Microgravity Conditions. Int J Mol Sci 2019; 20:ijms20081892. [PMID: 30999563 PMCID: PMC6515345 DOI: 10.3390/ijms20081892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
The presence of microgravity conditions deeply affects the human body functions at the systemic, organ and cellular levels. This study aimed to investigate the effects induced by simulated-microgravity on non-stimulated Jurkat lymphocytes, an immune cell phenotype considered as a biosensor of the body responses, in order to depict at the cellular level the effects of such a peculiar condition. Jurkat cells were grown at 1 g or on random positioning machine simulating microgravity. On these cells we performed: morphological, cell cycle and proliferation analyses using cytofluorimetric and staining protocols—intracellular Ca2+, reactive oxygen species (ROS), mitochondria membrane potential and O2− measurements using fluorescent probes—aconitase and mitochondria activity, glucose and lactate content using colorimetric assays. After the first exposure days, the cells showed a more homogeneous roundish shape, an increased proliferation rate, metabolic and detoxifying activity resulted in decreased intracellular Ca2+ and ROS. In the late exposure time, the cells adapted to the new environmental condition. Our non-activated proliferating Jurkat cells, even if responsive to altered external forces, adapted to the new environmental condition showing a healthy status. In order to define the cellular mechanism(s) triggered by microgravity, developing standardized experimental approaches and controlled cell culture and simulator conditions is strongly recommended.
Collapse
Affiliation(s)
- Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Paola Lanuti
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Marco Marchisio
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 06100 Rome, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
9
|
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 2016; 6:20043. [PMID: 26818711 PMCID: PMC4730242 DOI: 10.1038/srep20043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.
Collapse
|
10
|
Aleshcheva G, Wehland M, Sahana J, Bauer J, Corydon TJ, Hemmersbach R, Frett T, Egli M, Infanger M, Grosse J, Grimm D. Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J 2015; 29:2303-14. [PMID: 25681461 DOI: 10.1096/fj.14-268151] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023]
Abstract
Real and simulated microgravity induce a variety of changes in human cells. Most importantly, changes in the cytoskeleton have been noted, and studies on microtubules have shown that they are gravisensitive. This study focuses on the effects of short-term real microgravity on gene expression, protein content, and cytoskeletal structure of human chondrocytes. We cultivated human chondrocytes, took them along a parabolic flight during the 24th Deutsches Zentrum für Luft- und Raumfahrt Parabolic (DLR) Flight Campaign, and fixed them after the 1st and the 31st parabola. Immunofluorescence microscopy revealed no changes after the 1st parabola, but disruptions of β-tubulin, vimentin, and cytokeratin networks after the 31st parabola. No F-actin stress fibers were detected even after 31 parabolas. Furthermore, mRNA and protein quantifications after the 31st parabola showed a clear up-regulation of cytoskeletal genes and proteins. The mRNAs were significantly up-regulated as follows: TUBB, 2-fold; VIM, 1.3-fold; KRT8, 1.8-fold; ACTB, 1.9-fold; ICAM1, 4.8-fold; OPN, 7-fold; ITGA10, 1.5-fold; ITGB1, 1.2-fold; TGFB1, 1.5-fold; CAV1, 2.6-fold; SOX9, 1.7-fold; BMP-2, 5.3-fold. However, SOX5 (-25%) and SOX6 (-28%) gene expression was decreased. Contrary, no significant changes in gene expression levels were observed during vibration and hypergravity experiments. These data suggest that short-term microgravity affects the gene expression of distinct proteins. In contrast to poorly differentiated follicular thyroid cancer cells or human endothelial cells, chondrocytes only exert moderate cytoskeletal alterations. The up-regulation of BMP-2, TGF-β1, and SOX9 in chondrocytes may play a key role in preventing cytoskeletal alterations.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Markus Wehland
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Jayashree Sahana
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Johann Bauer
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Thomas J Corydon
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Ruth Hemmersbach
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Timo Frett
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Marcel Egli
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Manfred Infanger
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Jirka Grosse
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Daniela Grimm
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Vandenberg LN, Stevenson C, Levin M. Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner. PLoS One 2012; 7:e51473. [PMID: 23251546 PMCID: PMC3519728 DOI: 10.1371/journal.pone.0051473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs) and Danio rerio (zebrafish), specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Claire Stevenson
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Battista N, Meloni MA, Bari M, Mastrangelo N, Galleri G, Rapino C, Dainese E, Agrò AF, Pippia P, Maccarrone M. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. FASEB J 2012; 26:1791-8. [PMID: 22253478 DOI: 10.1096/fj.11-199406] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional adaptation of the immune system to the surrounding environment is also a fundamental issue in space. It has been suggested that a decreased number of lymphocytes might be a cause of immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of the apoptotic program. The goal of the role of apoptosis in lymphocyte depression (ROALD) experiment, flown on the International Space Station as part of the BIO-4 mission of the European Space Agency, was to ascertain the induction of apoptosis in human lymphocytes under authentic microgravity, and to elucidate the possible involvement of 5-LOX. Our results demonstrate that exposure of human lymphocytes to microgravity for 48 h onboard the ISS remarkably increased apoptotic hallmarks such as DNA fragmentation (∼3-fold compared to ground-based controls) and cleaved-poly (ADP-ribose) polymerase (PARP) protein expression (∼3-fold), as well as mRNA levels of apoptosis-related markers such as p53 (∼3-fold) and calpain (∼4-fold); these changes were paralleled by an early increase of 5-LOX activity (∼2-fold). Our findings provide a molecular background for the immune dysfunction observed in astronauts during space missions, and reveal potential new markers to monitor health status of ISS crew members.
Collapse
Affiliation(s)
- Natalia Battista
- Department of Biomedical Sciences, University of Teramo, Piazza A. Moro 45, I-64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Grosse J, Wehland M, Pietsch J, Ma X, Ulbrich C, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R, Braun M, van Loon J, Vagt N, Infanger M, Eilles C, Egli M, Richter P, Baltz T, Einspanier R, Sharbati S, Grimm D. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 2011; 26:639-55. [PMID: 22024737 DOI: 10.1096/fj.11-194886] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight campaigns. Hoechst 33342 and acridine orange/ethidium bromide staining showed no signs of cell death in ECs after 31 parabolas (P31). Gene array analysis revealed 320 significantly regulated genes after the first parabola (P1) and P31. COL4A5, COL8A1, ITGA6, ITGA10, and ITGB3 mRNAs were down-regulated after P1. EDN1 and TNFRSF12A mRNAs were up-regulated. ADAM19, CARD8, CD40, GSN, PRKCA (all down-regulated after P1), and PRKAA1 (AMPKα1) mRNAs (up-regulated) provide a very early protective mechanism of cell survival induced by 22 s microgravity. The ABL2 gene was significantly up-regulated after P1 and P31, TUBB was slightly induced, but ACTA2 and VIM mRNAs were not changed. β-Tubulin immunofluorescence revealed a cytoplasmic rearrangement. Vibration had no effect. Hypergravity reduced CARD8, NOS3, VASH1, SERPINH1 (all P1), CAV2, ADAM19, TNFRSF12A, CD40, and ITGA6 (P31) mRNAs. These data suggest that microgravity alters the gene expression patterns and the cytoskeleton of ECs very early. Several gravisensitive signaling elements, such as AMPKα1 and integrins, are involved in the reaction of ECs to altered gravity.
Collapse
Affiliation(s)
- Jirka Grosse
- Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ulbrich C, Pietsch J, Grosse J, Wehland M, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R, Braun M, van Loon J, Vagt N, Egli M, Richter P, Einspanier R, Sharbati S, Baltz T, Infanger M, Ma X, Grimm D. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 2011; 28:185-98. [PMID: 21865726 DOI: 10.1159/000331730] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions to hypergravity and/or vibrations. To determine the effects of real microgravity on human cells, we used four DLR parabolic flight campaigns and focused on the effects of short-term microgravity (22 s), hypergravity (1.8 g), and vibrations on ML-1 thyroid cancer cells. No signs of apoptosis or necrosis were detectable. Gene array analysis revealed 2,430 significantly changed transcripts. After 22 s microgravity, the F-actin and cytokeratin cytoskeleton was altered, and ACTB and KRT80 mRNAs were significantly upregulated after the first and thirty-first parabolas. The COL4A5 mRNA was downregulated under microgravity, whereas OPN and FN were significantly upregulated. Hypergravity and vibrations did not change ACTB, KRT-80 or COL4A5 mRNA. MTSS1 and LIMA1 mRNAs were downregulated/slightly upregulated under microgravity, upregulated in hypergravity and unchanged by vibrations. These data indicate that the graviresponse of ML-1 cells occurred very early, within the first few seconds. Downregulated MTSS1 and upregulated LIMA1 may be an adaptive mechanism of human cells for stabilizing the cytoskeleton under microgravity conditions.
Collapse
Affiliation(s)
- Claudia Ulbrich
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vandenberg LN, Pennarola BW, Levin M. Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One 2011; 6:e23306. [PMID: 21826245 PMCID: PMC3149648 DOI: 10.1371/journal.pone.0023306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Brian W. Pennarola
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Grimm D, Wise P, Lebert M, Richter P, Baatout S. How and why does the proteome respond to microgravity? Expert Rev Proteomics 2011; 8:13-27. [PMID: 21329425 DOI: 10.1586/epr.10.105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For medical and biotechnological reasons, it is important to study mammalian cells, animals, bacteria and plants exposed to simulated and real microgravity. It is necessary to detect the cellular changes that cause the medical problems often observed in astronauts, cosmonauts or animals returning from prolonged space missions. In order for in vitro tissue engineering under microgravity conditions to succeed, the features of the cell that change need to be known. In this article, we summarize current knowledge about the effects of microgravity on the proteome in different cell types. Many studies suggest that the effects of microgravity on major cell functions depend on the responding cell type. Here, we discuss and speculate how and why the proteome responds to microgravity, focusing on proteomic discoveries and their future potential.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Århus C, Denmark.
| | | | | | | | | |
Collapse
|
17
|
Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton (Hoboken) 2011; 68:125-37. [PMID: 21246756 DOI: 10.1002/cm.20499] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Certain functions of immune cells in returning astronauts are known to be altered. A dramatic depression of the mitogenic in vitro activation of human lymphocytes was observed in low gravity. T-cell activation requires the interaction of different type of immune cells as T-lymphocytes and monocytes. Cell motility based on a continuous rearrangement of the cytoskeletal network within the cell is essential for cell-cell contacts. In this investigation on the International Space Station we studied the influence of low gravity on different cytoskeletal structures in adherent monocytes and their ability to migrate. J-111 monocytes were incubated on a colloid gold substrate attached to a cover slide. Migrating cells removed the colloid gold, leaving a track recording cell motility. A severe reduction of the motility of J-111 cells was found in low gravity compared to 1g in-flight and ground controls. Cell shape appeared more contracted, whereas the control cells showed the typical morphology of migrating monocytes, i.e., elongated and with pseudopodia. A qualitative and quantitative analysis of the structures of F-actin, β-tubulin and vinculin revealed that exposure of J-111 cells to low gravity affected the distribution of the different filaments and significantly reduced the fluorescence intensity of F-actin fibers. Cell motility relies on an intact structure of different cytoskeletal elements. The highly reduced motility of monocytes in low gravity must be attributed to the observed severe disruption of the cytoskeletal structures and may be one of the reasons for the dramatic depression of the in vitro activation of human lymphocytes.
Collapse
Affiliation(s)
- Maria Antonia Meloni
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Krause M, Bräucker R, Hemmersbach R. Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J Exp Biol 2010; 213:161-71. [DOI: 10.1242/jeb.030940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The graviperception of the hypotrichous ciliate Stylonychia mytilus was investigated using electrophysiological methods and behavioural analysis. It is shown that Stylonychia can sense gravity and thereby compensates sedimentation rate by a negative gravikinesis. The graviresponse consists of a velocity-regulating physiological component (negative gravikinesis) and an additional orientational component. The latter is largely based on a physical mechanism but might, in addition, be affected by the frequency of ciliary reversals, which is under physiological control. We show that the external stimulus of gravity is transformed to a physiological signal, activating mechanosensitive calcium and potassium channels. Earlier electrophysiological experiments revealed that these ion channels are distributed in the manner of two opposing gradients over the surface membrane. Here, we show, for the first time, records of gravireceptor potentials in Stylonychia that are presumably based on this two-gradient system of ion channels. The gravireceptor potentials had maximum amplitudes of approximately 4 mV and slow activation characteristics (0.03 mV s–1). The presumptive number of involved graviperceptive ion channels was calculated and correlates with the analysis of the locomotive behaviour.
Collapse
Affiliation(s)
- Martin Krause
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | - Ruth Hemmersbach
- DLR, Institute of Aerospace Medicine, Linder Höhe, D-51174 Köln, Germany
| |
Collapse
|
19
|
Gershovich PM, Gershovich JG, Buravkova LB. Cytoskeleton structure and adhesion properties of human stromal precursors under conditions of simulated microgravity. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Sieberer BJ, Kieft H, Franssen-Verheijen T, Emons AMC, Vos JW. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space. PLANTA 2009; 230:1129-40. [PMID: 19756725 PMCID: PMC2764053 DOI: 10.1007/s00425-009-1010-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/13/2009] [Indexed: 05/18/2023]
Abstract
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant's final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March-April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Björn J. Sieberer
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present Address: Laboratoire des Interactions Plantes Micro-organismes, UMR INRA-CNRS 2594/441, 31320 Castanet-Tolosan, France
| | - Henk Kieft
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tiny Franssen-Verheijen
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anne Mie C. Emons
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Biomolecular Systems, FOM Institute for Atomic and Molecular Physics, Science Park 113, 1098 SG Amsterdam, The Netherlands
| | - Jan W. Vos
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
21
|
Kaufmann I, Schachtner T, Feuerecker M, Schelling G, Thiel M, Choukèr A. Parabolic flight primes cytotoxic capabilities of polymorphonuclear leucocytes in humans. Eur J Clin Invest 2009; 39:723-8. [PMID: 19473213 DOI: 10.1111/j.1365-2362.2009.02136.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previously performed in vitro studies suggested that gravitational stress may alter functions of immune cells. This study investigated the in vivo effects of parabolic flight manoeuvres as a short-term model of micro- and hypergravity on the cytotoxic and microbicidal polymorphonuclear leucocyte (PMN) functions as the key element of innate immunity. MATERIAL AND METHODS Twenty-one healthy male volunteers underwent 30 subsequent parabolic flight manoeuvres. Each manoeuvre produced 22-s periods of nearly weightlessness close to <<0g>>, with each parabola starting with a pull-up and ending with a pull-out (hypergravity) at 1.8 g for about 20 s each. Blood samples were drawn 24 h prior to take off (T0), after 25-30 parabolas (T1), and 24 h (T2) and 48 h (T3) after flight for determination of (i) leucocyte number and subpopulations, (ii) PMNs' capabilities to produce hydrogen peroxide (H(2)O(2)) and to adhere and phagocytose particles and (iii) plasma cytokines known to prime PMN functions [interleukin-8 (IL-8), tumour necrosis factor-alpha (TNF-alpha), granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF)]. RESULTS Parabolic flight induced an increase in leucocyte number with a significant elevation of the PMN fraction. The spontaneous H(2)O(2) production by PMNs did not change; however, the capability of PMNs to produce H(2)O(2) in response to soluble stimuli [N-formyl-methionyl-leucyl-phenylalanine (fMLP), fMLP and TNF-alpha, calcium ionophore (A23187), phorbol myristate acetate (PMA)] was increased. Adhesive and phagocytic properties of PMNs were not altered. Regarding priming cytokines, IL-8 and G-CSF were significantly elevated. CONCLUSIONS Our data indicate that parabolic flight induces priming of the cytotoxic capabilities of PMNs without affecting microbicidal functions.
Collapse
Affiliation(s)
- I Kaufmann
- Department of Anaesthesiology, Ludwig-Maximilians-University, Klinikum Grosshadern, Marchioninistrasse 15, Munich, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Populations of ants and other social insects self-organize and develop 'emergent' properties through stigmergy in which individual ants communicate with one another via chemical trails of pheromones that attract or repulse other ants. In this way, sophisticated properties and functions develop. Under appropriate conditions, in vitro microtubule preparations, initially comprised of only tubulin and GTP, behave in a similar manner. They self-organize and develop other higher-level emergent phenomena by a process where individual microtubules are coupled together by the chemical trails they produce by their own reactive growing and shrinking. This behaviour is described and compared with the behaviour of ant colonies. Viewing microtubules as populations of molecular ants may provide new insights as to how the cytoskeleton may spontaneously develop high-level functions. It is plausible that such processes occur during the early stages of embryogenesis and in cells.
Collapse
Affiliation(s)
- James Tabony
- Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
23
|
Tabony J, Rigotti N, Glade N, Cortès S. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. Biophys Chem 2007; 127:172-80. [PMID: 17321031 DOI: 10.1016/j.bpc.2007.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/22/2022]
Abstract
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.
Collapse
Affiliation(s)
- James Tabony
- Commissariat à l'Energie Atomique, DSV, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, Cedex 9, France.
| | | | | | | |
Collapse
|
24
|
Grimm D, Bauer J, Infanger M, Cogoli A. The use of the random positioning machine for the study of gravitational effects on signal transduction in mammalian cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Meloni MA, Galleri G, Pippia P, Cogoli-Greuter M. Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. PROTOPLASMA 2006; 229:243-9. [PMID: 17180508 DOI: 10.1007/s00709-006-0210-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Accepted: 11/02/2005] [Indexed: 05/13/2023]
Abstract
Investigations performed in space have shown that gravity changes affect important cellular mechanisms like proliferation, differentiation, genetic expression, cytoskeletal architecture, and motility in lymphocytes, monocytes, and other mammalian cells. In particular, a dramatic depression of the mitogenic in vitro activation of human peripheral blood lymphocytes was observed at low gravity. The hypothesis of the present work is that a reduced interaction between T lymphocytes and monocytes, essential for the second signalling pathway, might be one of the reasons for the observed depression of the in vitro activation of human lymphocytes. Cell motility and with it a continuous rearrangement of the cytoskeletal network within the cell is essential for cell-to-cell contacts. Whereas nonactivated lymphocytes in suspension are highly motile at low gravity, no data are available so far on the motility of adherent monocytes. It thus can be argued that impaired monocyte locomotion and cytoskeletal changes could be responsible for a reduced interaction of monocytes with T lymphocytes. In this study, the locomotion ability of J-111 cells, an adherent monocyte cell line, attached to colloidal gold particles on coverslips and exposed to modelled low gravity in the random positioning machine was found to be severely reduced compared with that of controls and the structures of actin, tubulin, and vinculin were affected.
Collapse
Affiliation(s)
- M A Meloni
- Dipartimento di Scienze Fisiologiche, Biochimiche e Cellulari, Universita di Sassari, Sassari, Italy
| | | | | | | |
Collapse
|
26
|
Rösner H, Wassermann T, Möller W, Hanke W. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. PROTOPLASMA 2006; 229:225-34. [PMID: 17180506 DOI: 10.1007/s00709-006-0202-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/28/2005] [Indexed: 05/13/2023]
Abstract
Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6 min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of nonactivated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and evoked lamellar protrusive activity when the cells were kept at 2 g hypergravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to "simulated weightlessness" (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics. A 20 min exposure of the cells to simulated weightlessness or to changing gravity (6 to 31 parabolas) - but not to 2 g (hypergravity, centrifugation) - resulted in an altered arrangement of microtubules indicated by bending, turning, and loop formation. A similar altered arrangement was shown by microtubules which had polymerized into lamellipodia after release from a taxol block at simulated weightlessness (clinorotation) or during changing gravity (5 parabolas). Our data suggest that in human SH-SY5Y neuroblastoma cells, microgravity affects the dynamics and spatial arrangement of microtubules but has no influence on the Rac-controlled lamellar actin cytoskeleton dynamics and cell spreading. The latter, however, seems to be promoted at hypergravity.
Collapse
Affiliation(s)
- H Rösner
- Cell and Developmental Neurobiology, Institute of Zoology, University of Hohenheim, Stuttgart, Federal Republic of Germany.
| | | | | | | |
Collapse
|
27
|
Glade N, Beaugnon E, Tabony J. Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys Chem 2006; 121:1-6. [PMID: 16380203 DOI: 10.1016/j.bpc.2005.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 11/23/2022]
Abstract
The effect of weightlessness on physical and biological systems is frequently studied by experiments in space. However, on the ground, gravity effects may also be strongly attenuated using methods such as magnetic levitation and clinorotation. Under suitable conditions, in vitro preparations of microtubules, a major element of the cytoskeleton, self-organise by a process of reaction-diffusion: self-organisation is triggered by gravity and samples prepared in space do not self-organise. Here, we report experiments carried out with ground-based methods of clinorotation and magnetic levitation. The behaviour observed closely resembles that of the space-flight experiment and suggests that many space experiments could be carried out equally well on the ground. Using clinorotation, we find that weak vibrations also trigger microtubule self-organisation and have an effect similar to gravity. Thus, in some in vitro biological systems, vibrations are a countermeasure to weightlessness.
Collapse
Affiliation(s)
- Nicolas Glade
- Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
28
|
Tabony J. Self-Organization and Other Emergent Properties in a Simple Biological System of Microtubules. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000095480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Glade N, Tabony J. Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes. Biophys Chem 2005; 115:29-35. [PMID: 15848281 DOI: 10.1016/j.bpc.2004.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
A frequent feature of microtubule organisation in living systems is that it can be triggered by a variety of biochemical or physical factors. Under appropriate conditions, in vitro microtubule preparations self-organise by a reaction-diffusion process in which self-organisation depends upon, and can be triggered by, weak external physical factors such as gravity. Here, we show that self-organisation is also strongly dependent upon the presence of a high magnetic field, for a brief critical period early in the process, and before any self-organised pattern is visible. These results provide evidence that external physical factors trigger self-organisation by way of an orientational bias that breaks the symmetry of the reaction-diffusion process. As microtubule organisation is central to many cell functions, this behaviour provides a mechanism by which strong magnetic fields can intervene in biological processes.
Collapse
Affiliation(s)
- Nicolas Glade
- Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, France
| | | |
Collapse
|