1
|
Chu X, Zhu X, Xu H, Zhao W, Guo D, Chen X, Wu J, Li L, Wang H, Fei J. Deciphering the role of miRNA-mRNA interactions in cerebral vasospasm post intracranial hemorrhage. Front Mol Biosci 2025; 12:1492729. [PMID: 39981435 PMCID: PMC11840915 DOI: 10.3389/fmolb.2025.1492729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cerebral vasospasm (CVS), a serious complication following subarachnoid hemorrhage, is associated with high rates of mortality and disability. Emerging evidence suggests that abnormal miRNA and mRNA are involved in the development of CVS. This study aims to identify essential miRNA-mRNA regulatory pairs that contribute to CVS pathogenesis. We compared the differences between spasm and non-spasm groups after cerebral hemorrhage, identifying 183 differentially expressed genes (DEGs) and 19 differentially expressed miRNAs (DEMs) related to cerebral vasospasm from the GEO database. Further functional enrichment and KEGG analysis revealed that these DEGs were enriched in several terms and pathways, including the PI3K/AKT/mTOR signaling pathway, oxidative phosphorylation pathway, RNA degradation, and folate biosynthesis signaling pathway. By employing the degree scores method for each gene, we identified the top 10 genes and developed a protein-protein interaction (PPI) network. Additionally, we discovered 19 DEMs associated with CVS and integrated them with mRNA dataset analysis to construct a miRNA-mRNA network, which comprised 8 functionally differentially expressed DEMs and 6 target mRNAs. Experimental validation confirmed the significant regulatory roles of four miRNAs (Let-7a-5p, miR-24-3p, miR-29-3p, and miR-132-3p) and two mRNAs (CDK6 and SLC2A1) in the pathogenesis of CVS. In conclusion, this comprehensive study identifies pivotal miRNAs and their target mRNAs associated with CVS through an integrated bioinformatics analysis of miRNA-mRNA co-expression networks. This approach elucidates the intricate molecular mechanisms underlying CVS and uncovers potential therapeutic targets, thereby providing a valuable foundation for refining and optimizing future treatment strategies.
Collapse
Affiliation(s)
- Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children’s Hospital, Chongqing Medical University, Chongqing, China
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Honghao Xu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Debin Guo
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinze Wu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Fei
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Lin H, Jia Y, Han F, Xia C, Zhao Q, Zhang J, Li E. Toxic effects of waterborne benzylparaben on the growth, antioxidant capacity and lipid metabolism of Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106197. [PMID: 35623196 DOI: 10.1016/j.aquatox.2022.106197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Benzylparaben (BzP) is a potential endocrine disruptor; however, its antioxidant defense, lipotoxicity and underlying mechanism of BzP in aquatic organisms are unknown. This study investigated the impacts of waterborne low-, environmental-related and high-level benzylparaben on the growth, antioxidant capacity, lipid metabolism and lipidomic response of Nile tilapia (Oreochromis niloticus). Juvenile tilapia (0.60 ± 0.11 g) were exposed to 0, 5, 50, 500 and 5000 ng/L benzylparaben for 8 weeks in quadruplicate for each group. Benzylparaben increased the body crude fat content but decreased brain acetylcholinesterase activity in O. niloticus. Benzylparaben caused oxidative stress, leading to hepatic morphology damage and lipid metabolism disorders in fish. Lipidomic analysis identified 13 lipid classes in fish liver. Benzylparaben exposure induced metabolic disorders of glycerol phospholipids, glycerolipids and sphingomyelins in fish liver. These findings indicate that environmentally related benzylparaben levels (5 to 50 ng/L) could induce an antioxidant response, result in triglyceride accumulation, and increase adipocyte formation and fatty acid intake in tilapia. However, high benzylparaben concentrations inhibit lipid deposition, presumably due to the effects of the antioxidant system, and induce tissue inflammation. Therefore, this study provides new insights into the toxic effects and potential mechanism of benzylparaben in fish, especially from the aspect of lipid metabolism.
Collapse
Affiliation(s)
- Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yongyi Jia
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Chuyan Xia
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
3
|
Ketabchi F, Bajoovand S, Adlband M, Naseh M, Nekooeian AA, Mashghoolozekr E. Right ventricular pressure elevated in one-kidney, one clip Goldblatt hypertensive rats. Clin Exp Hypertens 2017; 39:344-349. [PMID: 28513232 DOI: 10.1080/10641963.2016.1259329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Both renal and respiratory diseases are common with high mortality rate around the world. This study was the first to compare effects of two kidneys, one clip (2K1C) and one-kidney, one clip (1K1C) Goldblatt hypertension on right ventricular pressure during normal condition and mechanical ventilation with hypoxia gas. Male Sprague-Dawley rats were subjected to control, 2K1C, or 1K1C groups. Twenty-eight days after the first surgery, animals were anesthetized, and femoral artery and vein, and right ventricle cannulated. Systemic arterial pressure and right ventricular systolic pressures (RVSP) were recorded during ventilation the animals with normoxic or hypoxic gas. RVSP in the 1K1C group was significantly more than the control and 2K1C groups during baseline conditions and ventilation the animals with hypoxic gas. Administration of antioxidant Trolox increased RVSP in the 1K1C and control groups compared with their baselines. Furthermore, there was no alteration in RVSP during hypoxia in the presence of Trolox. This study indicated that RVSP only increased after 28 days induction of 1K1C but not 2K1C model. In addition, it seems that the response to hypoxic gas and antioxidants in 1K1C is more than 2K1C. These data also suggest that effects of 1K1C may partially be related to reactive oxygen species (ROS) pathways.
Collapse
Affiliation(s)
- Farzaneh Ketabchi
- a Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Shirin Bajoovand
- b Department of Food and Drug, Reference Laboratory, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mojtaba Adlband
- a Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Naseh
- a Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali A Nekooeian
- c Department of Phamacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elaheh Mashghoolozekr
- c Department of Phamacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
4
|
Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Woźniak M, Lejnowski D, Collawn JF, Bartoszewski R. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs. Cell Mol Biol Lett 2016; 21:16. [PMID: 28536619 PMCID: PMC5415778 DOI: 10.1186/s11658-016-0017-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Understanding the cellular pathways that regulate endothelial nitric oxide (eNOS, NOS3) expression and consequently nitric oxide (NO) bioavailability during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. eNOS expression and eNOS-dependent NO cellular signaling during hypoxia promote an equilibrium of transcriptional and posttranscriptional molecular mechanisms that belong to both proapoptotic and survival pathways. Furthermore, NO bioavailability results not only from eNOS levels, but also relies on the presence of eNOS substrate and cofactors, the phosphorylation status of eNOS, and the presence of reactive oxygen species (ROS) that can inactivate eNOS. Since both NOS3 levels and these signaling pathways can also be a subject of posttranscriptional modulation by microRNAs (miRNAs), this class of short noncoding RNAs contribute another level of regulation for NO bioavailability. As miRNA antagomirs or specific target protectors could be used in therapeutic approaches to regulate NO levels, either by changing NOS3 mRNA stability or through factors governing eNOS activity, it is critical to understand their role in governing eNOS activity during hypoxa. In contrast to a large number of miRNAs reported to the change eNOS expression during hypoxia, only a few miRNAs modulate eNOS activity. Furthermore, impaired miRNA biogenesis leads to NOS3 mRNA stabilization under hypoxia. Here we discuss the recent studies that define miRNAs’ role in maintaining endothelial NO bioavailability emphasizing those miRNAs that directly modulate NOS3 expression or eNOS activity.
Collapse
Affiliation(s)
- Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Woźniak
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Dawid Lejnowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - James F Collawn
- Department of Cell Biology, Developmental, and Integrative, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
5
|
Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2015; 47:288-303. [PMID: 26493804 DOI: 10.1183/13993003.00945-2015] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 01/17/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV.
Collapse
Affiliation(s)
- Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
6
|
Soloviev AI, Bondarenko AI, Kizub IV. Selective glycolysis blockade in guinea pig pulmonary artery and aorta reverses contractile and electrical responses to acute hypoxia. Vascul Pharmacol 2012; 57:119-23. [PMID: 22706072 DOI: 10.1016/j.vph.2012.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/31/2012] [Accepted: 06/07/2012] [Indexed: 11/18/2022]
Abstract
The goal of this study was to clarify the mechanisms of hypoxic pulmonary vasoconstriction (HPV) reversal following selective glycolysis blockade and to assess possible contribution of endothelial electrogenesis to this phenomenon as a trigger mechanism. We compared smooth muscle (SM) contractility and endothelial cell (EC) membrane potential (MP) during acute hypoxia before and after glycolysis blockade. MPs were recorded from the endothelium of guinea pig pulmonary artery (GPPA) and thoracic aorta (GPTA) using the patch-clamp technique. Acute hypoxia caused hyperpolarization in GPTA EC, while EC from GPPA were depolarized. Also, acute hypoxia elicited constriction in isolated GPPA and dilatation in GPTA. Selective glycolysis inhibition always reversed both electrical and contractile responses in GPPA to hypoxia, but in GPTA this only occurred in 30% of experiments. It is likely that an unknown glycolysis-driven mechanism in EC mediates vascular tone regulation under hypoxia and underlies the paradoxical difference in the response of pulmonary and systemic arterial SM to hypoxia. Our data suggest that HPV development in GPPA might, at least partially, be driven by EC depolarization spreading to the underlying SM cells.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Experimental Therapeutics, Institute of Pharmacology and Toxicology, 14 E. Pottier Str., 03068, Kiev, Ukraine.
| | | | | |
Collapse
|
7
|
Zhao G, Zhao Y, Wang X, Xu Y. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons. Neurochem Int 2012; 61:146-55. [PMID: 22580330 DOI: 10.1016/j.neuint.2012.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/13/2012] [Accepted: 05/01/2012] [Indexed: 12/19/2022]
Abstract
NADPH derived from glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has been implicated not only to promote reduced glutathione (GSH) but also enhance oxidative stress in specific cellular conditions. In this study, the effects of G6PD antisense oligodeoxynucleotides (AS-ODNs) was examined on the CA1 pyramidal neurons following transient cerebral ischemia. Specifically knockdown of G6PD protein expression in hippocampus CA1 subregion at early reperfusion period (1-24 h) with a strategy to pre-treated G6PD AS-ODNs significantly reduced G6PD activity and NADPH level, an effect correlated with attenuation of NADPH oxidase activation and superoxide anion production. Concomitantly, pre-treatment of G6PD AS-ODNs markedly reduced oxidative DNA damage and the delayed neuronal cell death in rat hippocampal CA1 region induced by global cerebral ischemia. By contrast, knockdown of G6PD protein at late reperfusion period (48-96 h) increased oxidative DNA damage and exacerbated the ischemia-induced neuronal cell death in hippocampal CA1 region, an effect associated with reduced NADPH level and GSH/GSSG ratio. These findings indicate that G6PD not only plays a role in oxidative neuronal damage but also a neuroprotective role during different ischemic reperfusion period. Therefore, G6PD mediated oxidative response and redox regulation in the hippocampal CA1 act as the two sides of the same coin and may represent two potential applications of G6PD during different stage of cerebral ischemic reperfusion.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Cardiovascular Diseases, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, PR China
| | | | | | | |
Collapse
|
8
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
9
|
Anju TR, Nandhu MS, Jes P, Paulose CS. Endocrine regulation of neonatal hypoxia: role of glucose, oxygen, and epinephrine supplementation. Fetal Pediatr Pathol 2011; 30:338-49. [PMID: 21846315 DOI: 10.3109/15513815.2011.587498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Responses of the endocrine system are vital in revealing the mechanisms of respiratory activities. The present study focused on changes in insulin and triiodothyronine concentration in serum, its receptors in the hearts of hypoxic neonatal rats and glucose, oxygen, and epinephrine resuscitated groups. The insulin concentration was significantly increased with a significant upregulation of receptors in hypoxic neonates. Triiodothyronine content and its receptors were significantly decreased in serum and the hearts of hypoxic neonates. The change in hormonal levels is an adaptive modification of the endocrine system to encounter the stress. The effectiveness of glucose resuscitation to hypoxic neonates was also reported.
Collapse
Affiliation(s)
- T R Anju
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | | | | | | |
Collapse
|
10
|
Gupte RS, Rawat DK, Chettimada S, Cioffi DL, Wolin MS, Gerthoffer WT, McMurtry IF, Gupte SA. Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction. J Biol Chem 2010; 285:19561-71. [PMID: 20363753 DOI: 10.1074/jbc.m109.092916] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to a decrease in airway O(2) tension, but the underlying mechanism is incompletely understood. We studied the contribution of glucose-6-phosphate dehydrogenase (Glc-6-PD), an important regulator of NADPH redox and production of reactive oxygen species, to the development of HPV. We found that hypoxia (95% N(2), 5% CO(2)) increased contraction of bovine pulmonary artery (PA) precontracted with KCl or serotonin. Depletion of extracellular glucose reduced NADPH, NADH, and HPV, substantiating the idea that glucose metabolism and Glc-6-PD play roles in the response of PA to hypoxia. Our data also show that inhibition of glycolysis and mitochondrial respiration (indicated by an increase in NAD(+) and decrease in the ATP-to-ADP ratio) by hypoxia, or by inhibitors of pyruvate dehydrogenase or electron transport chain complexes I or III, increased generation of reactive oxygen species, which in turn activated Glc-6-PD. Inhibition of Glc-6-PD decreased Ca(2+) sensitivity to the myofilaments and diminished Ca(2+)-independent and -dependent myosin light chain phosphorylation otherwise increased by hypoxia. Silencing Glc-6-PD expression in PA using a targeted small interfering RNA abolished HPV and decreased extracellular Ca(2+)-dependent PA contraction increased by hypoxia. Similarly, Glc-6-PD expression and activity were significantly reduced in lungs from Glc-6-PD(mut(-/-)) mice, and there was a corresponding reduction in HPV. Finally, regression analysis relating Glc-6-PD activity and the NADPH-to-NADP(+) ratio to the HPV response clearly indicated a positive linear relationship between Glc-6-PD activity and HPV. Based on these findings, we propose that Glc-6-PD and NADPH redox are crucially involved in the mechanism of HPV and, in turn, may play a key role in increasing pulmonary arterial pressure, which is involved in the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Rakhee S Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bechet D, Tirand L, Faivre B, Plénat F, Bonnet C, Bastogne T, Frochot C, Guillemin F, Barberi-Heyob M. Neuropilin-1 targeting photosensitization-induced early stages of thrombosis via tissue factor release. Pharm Res 2010; 27:468-79. [PMID: 20087632 DOI: 10.1007/s11095-009-0035-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/09/2009] [Indexed: 01/13/2023]
Abstract
PURPOSE This article characterizes the vascular effects following vascular-targeted photodynamic therapy with a photosensitizer which actively targets endothelial cells. METHODS This strategy was considered by coupling a chlorin to a heptapeptide targeting neuropilin-1 in human malignant glioma-bearing nude mice. A laser Doppler microvascular perfusion monitor was used to monitor microvascular blood perfusion in tumor tissue. Endothelial cells' ultra structural integrity was observed by transmission electron microscopy. The consequences of photosensitization on tumor vessels, tissue factor expression, fibrinogen consumption, and thrombogenic effects were studied by immunohistochemical staining. RESULTS Treatment of glioma-bearing mice with the conjugate showed a statistically significant tumor growth delay. Vascular effect was characterized by a decrease in tumor tissue blood flow at about 50% baseline during treatment not related to variations in temperature. This vascular shutdown was mediated by tumor blood vessels' congestion. A pro-thrombotic behavior of targeted endothelial cells in the absence of ultra structural changes led to the induction of tissue factor expression from the earliest times post-treatment. Expression of tissue factor-initiated thrombi formation was also related to an increase in fibrinogen consumption. CONCLUSION Using a peptide-conjugated photosensitizer targeting neuropilin-1, induction of tissue factor expression immediately post-treatment, led to the establishment of thrombogenic effects within the vessel lumen.
Collapse
Affiliation(s)
- Denise Bechet
- Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, Centre Alexis Vautrin, Avenue de Bourgogne, Brabois, 54511, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lemire J, Mailloux R, Puiseux-Dao S, Appanna VD. Aluminum-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. J Neurosci Res 2009; 87:1474-83. [PMID: 19084901 DOI: 10.1002/jnr.21965] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although aluminum (Al), a known environmental toxin, has been implicated in a variety of neurological disorders, the molecular mechanism responsible for these conditions is not fully understood. In this report, we demonstrate the ability of Al to trigger mitochondrial dysfunction and ineffective adenosine triphosphate (ATP) production. This situation severely affected cytoskeletal dynamics. Whereas the control cells had well-defined structures, the Al-exposed astrocytoma cells appeared as globular structures. Creatine kinase (CK) and profilin-2, two critical modulators of cellular morphology, were markedly diminished in the astrocytoma cells treated with Al. Antioxidants such as alpha-ketoglutarate and N-acetylcysteine mitigated the occurrence of the globular-shaped cells promoted by Al toxicity. Taken together, these data reveal an intricate link between ATP metabolism and astrocytic dysfunction and provide molecular insights into the pathogenesis of Al-induced neurological diseases.
Collapse
Affiliation(s)
- J Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Thomas N, Bechet D, Becuwe P, Tirand L, Vanderesse R, Frochot C, Guillemin F, Barberi-Heyob M. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 96:101-8. [PMID: 19464192 DOI: 10.1016/j.jphotobiol.2009.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 02/08/2023]
Abstract
The strategy developed aims to favor the vascular effect of photodynamic therapy (PDT) by targeting tumor vasculature. This approach is considered by coupling a photosensitizer (PS) to an heptapeptide targeting neuropilin-1 (NRP-1). We previously demonstrated that this new conjugated PS, which binds to recombinant NRP-1 protein, was a much more potent PS compared to the non-conjugated PS in human umbilical vein endothelial cells (HUVEC) expressing NRP-1, due to the coupling of the peptide moiety. To argue the involvement of NRP-1 in the conjugated PS cellular uptake, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor, and we evidenced a significant decrease of the conjugated PS uptake after RNA interference-mediated silencing of NRP-1. In mice xenografted ectopically with U87 human malignant glioma cells, we demonstrated that only the conjugated PS allowed a selective accumulation in endothelial cells lining tumor vessels. Vascular endothelial growth factor (VEGF) plasma and tumor levels could not prevent the recognition of the conjugate by NRP-1. The vascular effect induced by the conjugated PS, was characterized by a reduction in tumor blood flow around 50% during PDT. In vivo, the photodynamic efficiency with the conjugated PS induced a statistically significant tumor growth delay compared to the non-coupled PS. The peptide-conjugated chlorin-type PS uptake involves NRP-1 and this targeting strategy favors the vascular effect of PDT in vivo.
Collapse
Affiliation(s)
- Noémie Thomas
- Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Standish BA, Lee KK, Jin X, Mariampillai A, Munce NR, Wood MF, Wilson BC, Vitkin IA, Yang VX. Interstitial Doppler Optical Coherence Tomography as a Local Tumor Necrosis Predictor in Photodynamic Therapy of Prostatic Carcinoma: An In vivo Study. Cancer Res 2008; 68:9987-95. [DOI: 10.1158/0008-5472.can-08-1128] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Olson KR, Healy MJ, Qin Z, Skovgaard N, Vulesevic B, Duff DW, Whitfield NL, Yang G, Wang R, Perry SF. Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 2008; 295:R669-80. [PMID: 18565835 DOI: 10.1152/ajpregu.00807.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquatic O2 sensing and the homolog of the mammalian carotid body. Intrabuccal injection of H2S in unanesthetized trout produced a dose-dependent bradycardia and increased ventilatory frequency and amplitude similar to the hypoxic response. Removal of the first, but not second, pair of gills significantly inhibited H2S-mediated bradycardia, consistent with the loss of aquatic chemoreceptors. mRNA for H2S-synthesizing enzymes, cystathionine beta-synthase and cystathionine gamma-lyase, was present in branchial tissue. Homogenized gills produced H2S enzymatically, and H2S production was inhibited by O2, whereas mitochondrial H2S consumption was O2 dependent. Ambient hypoxia did not affect plasma H2S in unanesthetized trout, but produced a PO2-dependent increase in a sulfide moiety suggestive of increased H2S production. In isolated zebrafish neuroepithelial cells, the putative chemoreceptive cells of fish, both hypoxia and H2S, produced a similar approximately 10-mV depolarization. These studies are consistent with H2S involvement in O2 sensing/signal transduction pathway(s) in chemoreceptive cells, as previously demonstrated in vascular smooth muscle. This novel mechanism, whereby H2S concentration ([H2S]) is governed by the balance between constitutive production and oxidation, tightly couples tissue [H2S] to PO2 and may provide an exquisitely sensitive, yet simple, O2 sensor in a variety of tissues.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, 1234 Notre Dame Ave., South Bend, IN 46617, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gupte SA, Wolin MS. Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 2008; 10:1137-52. [PMID: 18315496 PMCID: PMC2443404 DOI: 10.1089/ars.2007.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been well known for >100 years that systemic blood vessels dilate in response to decreases in oxygen tension (hypoxia; low PO2), and this response appears to be critical to supply blood to the stressed organ. Conversely, pulmonary vessels constrict to a decrease in alveolar PO2 to maintain a balance in the ventilation-to-perfusion ratio. Currently, although little question exists that the PO2 affects vascular reactivity and vascular smooth muscle cells (VSMCs) act as oxygen sensors, the molecular mechanisms involved in modulating the vascular reactivity are still not clearly understood. Many laboratories, including ours, have suggested that the intracellular calcium concentration ([Ca2+]i), which regulates vasomotor function, is controlled by free radicals and redox signaling, including NAD(P)H and glutathione (GSH) redox. In this review article, therefore, we discuss the implications of redox and oxidant alterations seen in pulmonary and systemic hypertension, and how key targets that control [Ca2+]i, such as ion channels, Ca2+ release from internal stores and uptake by the sarcoplasmic reticulum, and the Ca2+ sensitivity to the myofilaments, are regulated by changes in intracellular redox and oxidants associated with vascular PO2sensing in physiologic or pathophysiologic conditions.
Collapse
Affiliation(s)
- Sachin A Gupte
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
17
|
Ward JPT. Oxygen sensors in context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:1-14. [PMID: 18036551 DOI: 10.1016/j.bbabio.2007.10.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/21/2007] [Accepted: 10/24/2007] [Indexed: 01/02/2023]
Abstract
The ability to adapt to changes in the availability of O2 provides a critical advantage to all O2-dependent lifeforms. In mammals it allows optimal matching of the O2 requirements of the cells to ventilation and O2 delivery, underpins vital changes to the circulation during the transition from fetal to independent, air-breathing life, and provides a means by which dysfunction can be limited or prevented in disease. Certain tissues such as the carotid body, pulmonary circulation, neuroepithelial bodies and fetal adrenomedullary chromaffin cells are specialised for O2 sensing, though most others show for example alterations in transcription of specific genes during hypoxia. A number of mechanisms are known to respond to variations in PO2 over the physiological range, and have been proposed to fulfil the function as O2 sensors; these include modulation of mitochondrial oxidative phosphorylation and a number of O2-dependent synthetic and degradation pathways. There is however much debate as to their relative importance within and between specific tissues, whether their O2 sensitivity is actually appropriate to account for their proposed actions, and in particular their modus operandi. This review discusses our current understanding of how these mechanisms may operate, and attempts to put them into the context of the actual PO2 to which they are likely to be exposed. An important point raised is that the overall O2 sensitivity (P50) of any O2-dependent mechanism does not necessarily correlate with that of its O2 sensor, as the coupling function between the two may be complex and non-linear. In addition, although the bulk of the evidence suggests that mitochondria act as the key O2 sensor in carotid body, pulmonary artery and chromaffin cells, the signalling mechanisms by which alterations in their function are translated into a response appear to differ fundamentally, making a global unified theory of O2 sensing unlikely.
Collapse
Affiliation(s)
- Jeremy P T Ward
- King's College London School of Medicine, Division of Asthma, Allergy and Lung Biology, London SE1 9RT, UK
| |
Collapse
|
18
|
Min J. 17β-estradiol-stimulated eNOS gene transcriptional activation is regulated through the estrogen-responsive element in eNOS promoter. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Chen XQ, Dong J, Niu CY, Fan JM, Du JZ. Effects of hypoxia on glucose, insulin, glucagon, and modulation by corticotropin-releasing factor receptor type 1 in the rat. Endocrinology 2007; 148:3271-8. [PMID: 17379644 DOI: 10.1210/en.2006-1224] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To determine the influence of continuous hypoxia on body weight, food intake, hepatic glycogen, circulatory glucose, insulin, glucagon, leptin, and corticosterone, and the involvement of the corticotropin-releasing factor receptor type 1 (CRFR1) in modulation of these hormones, rats were exposed to a simulated altitude of 5 km (approximately 10.8% O2) in a hypobaric chamber for 1, 2, 5, 10, and 15 d. Potential involvement of CRFR1 was assessed through five daily sc injections of a CRFR1 antagonist (CP-154,526) prior to hypoxia. Results showed that the levels of body weight, food intake, blood glucose, and plasma insulin were significantly reduced; the content of hepatic glycogen initially and transiently declined, whereas the early plasma glucagon and leptin remarkably increased; plasma corticosterone was markedly increased throughout the hypoxic exposure of 1-15 d. Compared with hypoxia alone, CRFR1 antagonist pretreatment in the hypoxic groups prevented the rise in corticosterone, whereas the levels of body weight and food intake were unchanged. At the same time, the reduction in blood glucose was greater and the pancreatic glucose was increased, plasma insulin reverted toward control, and plasma glucagon decreased. In summary, prolonged hypoxia reduced body weight, food intake, blood glucose, and plasma insulin but transiently enhanced plasma glucagon and leptin. In conclusion, CRFR1 is potentially involved in the plasma insulin reduction and transient glucagon increase in hypoxic rats.
Collapse
Affiliation(s)
- Xue-Qun Chen
- Division of Neurobiology and Physiology, College of Life Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
20
|
Min J, Jin YM, Moon JS, Sung MS, Jo SA, Jo I. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells. Hypertension 2006; 47:1189-96. [PMID: 16651461 DOI: 10.1161/01.hyp.0000222892.37375.4d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.
Collapse
Affiliation(s)
- Jiho Min
- Department of Biomedical Sciences, National Institute of Health, 194 Tongilo, Eunpyeong-gu, Seoul 122-701, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Yu G, Durduran T, Zhou C, Wang HW, Putt ME, Saunders HM, Sehgal CM, Glatstein E, Yodh AG, Busch TM. Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy. Clin Cancer Res 2005; 11:3543-52. [PMID: 15867258 DOI: 10.1158/1078-0432.ccr-04-2582] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To monitor tumor blood flow noninvasively during photodynamic therapy (PDT) and to correlate flow responses with therapeutic efficacy. EXPERIMENTAL DESIGN Diffuse correlation spectroscopy (DCS) was used to measure blood flow continuously in radiation-induced fibrosarcoma murine tumors during Photofrin (5 mg/kg)/PDT (75 mW/cm2, 135 J/cm2). Relative blood flow (rBF; i.e., normalized to preillumination values) was compared with tumor perfusion as determined by power Doppler ultrasound and was correlated with treatment durability, defined as the time of tumor growth to a volume of 400 mm3. Broadband diffuse reflectance spectroscopy concurrently quantified tumor hemoglobin oxygen saturation (SO2). RESULTS DCS and power Doppler ultrasound measured similar flow decreases in animals treated with identical protocols. DCS measurement of rBF during PDT revealed a series of PDT-induced peaks and declines dominated by an initial steep increase (average +/- SE: 168.1 +/- 39.5%) and subsequent decrease (59.2 +/- 29.1%). The duration (interval time; range, 2.2-15.6 minutes) and slope (flow reduction rate; range, 4.4 -45.8% minute(-1)) of the decrease correlated significantly (P = 0.0001 and 0.0002, r2= 0.79 and 0.67, respectively) with treatment durability. A positive, significant (P = 0.016, r2= 0.50) association between interval time and time-to-400 mm3 was also detected in animals with depressed pre-PDT blood flow due to hydralazine administration. At 3 hours after PDT, rBF and SO2 were predictive (P < or = 0.015) of treatment durability. CONCLUSION These data suggest a role for DCS in real-time monitoring of PDT vascular response as an indicator of treatment efficacy.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ward JPT, Knock GA, Snetkov VA, Aaronson PI. Protein kinases in vascular smooth muscle tone--role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction. Pharmacol Ther 2005; 104:207-31. [PMID: 15556675 DOI: 10.1016/j.pharmthera.2004.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is an adaptive mechanism that in the normal animal diverts blood away from poorly ventilated areas of the lung, thereby maintaining optimal ventilation-perfusion matching. In global hypoxia however, such as in respiratory disease or at altitude, it causes detrimental increases in pulmonary vascular resistance and pulmonary artery (PA) pressure. The precise intracellular pathways and mechanisms underlying HPV remain unclear, although it is now recognised that both an elevation in smooth muscle intracellular [Ca2+] and a concomitant increase in Ca2+ sensitivity are involved. Several key intracellular protein kinases have been proposed as components of the signal transduction pathways leading to development of HPV, specifically Rho kinase, non-receptor tyrosine kinases (NRTK), p38 mitogen activated protein (MAP) kinase, and protein kinase C (PKC). All of these have been implicated to a greater or lesser extent in pathways leading to Ca2+ sensitisation, and in some cases regulation of intracellular [Ca2+] as well. In this article, we review the role of these key protein kinases in the regulation of vascular smooth muscle (VSM) constriction, applying what is known in the systemic circulation to the pulmonary circulation and HPV. We conclude that the strongest evidence for direct involvement of protein kinases in the mechanisms of HPV concerns a central role for Rho kinase in Ca2+ sensitisation, and a potential role for Src-family kinases in both modulation of Ca2+ entry via capacitative Ca2+ entry (CCE) and activation of Rho kinase, though others are likely to have indirect or modulatory influences. In addition, we speculate that Src family kinases may provide a central interface between the proposed hypoxia-induced generation of reactive oxygen species by mitochondria and both the elevation in intracellular [Ca2+] and Rho kinase mediated Ca2+ sensitisation.
Collapse
Affiliation(s)
- Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK.
| | | | | | | |
Collapse
|
23
|
Abstract
Recently, the mitochondria have become the focus of attention as the site of O(2) sensing underlying hypoxic pulmonary vasoconstriction (HPV). However, two disparate models have emerged to explain how mitochondria react to a decrease in Po(2). One model proposes that a drop in Po(2) decreases the rate of mitochondrial reactive oxygen species (ROS) generation, resulting in a decrease in oxidant stress and an accumulation of reducing equivalents. The resulting shift of the cytosol to a reduced state causes the inhibition of voltage-dependent potassium channels, membrane depolarization, and the influx of calcium through voltage-gated (L-type) calcium channels. A second and opposing model suggests that hypoxia triggers a paradoxical increase in a mitochondrial-induced ROS signal. The resulting shift of the cytosol to an oxidized state triggers the release of intracellular calcium stores, recruitment of calcium channels in the plasma membrane, and activation of contraction. This article summarizes the potential involvement of a mitochondria-induced ROS signal in these two very different models.
Collapse
Affiliation(s)
- Gregory B Waypa
- Dept. of Medicine MC6026, The University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | | |
Collapse
|
24
|
Ward JPT, Snetkov VA, Aaronson PI. Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell Calcium 2005; 36:209-20. [PMID: 15261477 DOI: 10.1016/j.ceca.2004.02.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 11/20/2022]
Abstract
A key event in hypoxic pulmonary vasoconstriction (HPV) is the elevation in smooth muscle intracellular Ca2+ concentration. However, there is controversy concerning the source of this Ca2+, the signal transduction pathways involved, and the identity of the oxygen sensor. Although there is wide support for the hypothesis that hypoxia elicits depolarisation via inhibition of K+ channels, and thus promotes Ca2+ entry through L-type channels, a significant number of studies are inconsistent with this mechanism being either the sole or even major means by which Ca2+ is elevated during HPV. There is strong evidence that intracellular Ca2+ stores play a critical role, and voltage-independent Ca2+ entry mechanisms including capacitative Ca2+ entry (CCE) have also been implicated. There is renewed interest in the role of mitochondria in HPV, both in terms of modulators of Ca2+ homeostasis per se and as oxygen sensors. There is however considerable uncertainty concerning the mechanisms involved in the latter, with proposals for changes in redox couples and both an increase and decrease in mitochondrial production of reactive oxygen species (ROS). In this article we review the evidence for and against involvement of such mechanisms in HPV, and propose a model for the regulation of intracellular [Ca2+] in pulmonary artery during hypoxia in which the mitochondria play a central role.
Collapse
Affiliation(s)
- Jeremy P T Ward
- Department of Asthma, Allergy and Respiratory Science, Guy's, King's and St Thomas' School of Medicine, 5th Floor Thomas Guy House, King's College London, Guy's Campus, London SE1 9RT, UK.
| | | | | |
Collapse
|
25
|
Chachami G, Simos G, Hatziefthimiou A, Bonanou S, Molyvdas PA, Paraskeva E. Cobalt induces hypoxia-inducible factor-1alpha expression in airway smooth muscle cells by a reactive oxygen species- and PI3K-dependent mechanism. Am J Respir Cell Mol Biol 2004; 31:544-51. [PMID: 15256383 DOI: 10.1165/rcmb.2003-0426oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cobalt can mimic hypoxia and has been implicated as a cause of lung defects. However, the effect of cobalt on airway smooth muscle (ASM) cells has not been analyzed in detail. In this article, we use primary cultures of ASM cells from rabbit trachea and show that exposure to cobalt chloride causes a rapid increase of the intracellular levels of hypoxia-inducible factor-1alpha, which is detected predominantly inside the nucleus. With the use of specific inhibitors, we demonstrate that induction of hypoxia-inducible factor-1alpha by cobalt depends on active protein synthesis but not transcription. Furthermore, wortmannin, LY294002, and N-acetyl-L-cysteine inhibit the effect of cobalt, suggesting that it involves the phosphatidylinositol 3 kinase pathway and production of reactive oxygen species. Interestingly, cobalt chloride attenuates the contractile response of rabbit airways induced by potassium chloride, but not by acetylcholine, suggesting a link between the cellular response to hypoxic stimuli and the contractile properties of ASM cells.
Collapse
Affiliation(s)
- Georgia Chachami
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | | | |
Collapse
|
26
|
Ronimus RS, Morgan HW. Cloning and biochemical characterization of a novel mouse ADP-dependent glucokinase. Biochem Biophys Res Commun 2004; 315:652-8. [PMID: 14975750 DOI: 10.1016/j.bbrc.2004.01.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Indexed: 11/20/2022]
Abstract
Glycolysis, the catabolism of glucose to pyruvate, is an iconic central metabolic pathway and often used as a paradigm for explaining the general principles of the regulation/control of cellular metabolism. The ubiquitous mammalian ATP-dependent hexokinases I-III and hexokinase IV, also termed glucokinase, initiate the process by phosphorylating glucose to glucose-6-phosphate. Despite glycolysis having been studied extensively for over 70 years and the last new mammalian ATP-dependent hexokinase isotype having been described in the 1960s, we report here the biochemical characterization of a recombinant ADP-dependent glucokinase cloned from a full-length Mus musculus cDNA, identified by sequence analysis. The recombinant enzyme is quite specific for glucose, is monomeric, has an apparent Km for glucose and ADP of 96 and 280 microM, respectively, and is inhibited by both high concentrations of glucose and AMP. The metabolic role of this enzyme in cells would be dependent on the relative level of its activity to those of the ATP-dependent hexokinases. The greatest advantage of an ADP-GK would clearly be during ischemia/hypoxia, clinically relevant conditions in multiple major disease states, by decreasing the priming cost for the phosphorylation of glucose, saving ATP.
Collapse
Affiliation(s)
- Ron S Ronimus
- Biological Sciences, University of Waikato, Hamilton, Private Bag 3105, New Zealand.
| | | |
Collapse
|
27
|
Coulet F, Nadaud S, Agrapart M, Soubrier F. Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 2003; 278:46230-40. [PMID: 12963737 DOI: 10.1074/jbc.m305420200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human endothelial nitric-oxide synthase gene (heNOS) is constitutively expressed in endothelial cells, and its expression is induced under hypoxia. The goal of this study was to search for regulatory elements of the endothelial nitric-oxide synthase (eNOS) gene responsive to hypoxia. Levels of eNOS mRNA, measured by real time reverse transcriptase-PCR analysis, were increased, and heNOS promoter activity was enhanced by hypoxia as compared with normoxia control experiments. Promoter truncation followed by footprint analysis allowed the mapping and identification of the hypoxia-responsive elements at position -5375 to -5366, closely related to hypoxia-inducible factor (HIF)-responsive element (HRE). To test whether known HIF-1 and HIF-2 are involved in hypoxia-induced heNOS promoter activation, HMEC-1 and HUVEC were transiently transfected with HIF-1alpha and HIF-1beta or HIF-2alpha and HIF-1beta expression vectors. Exogenous HIF-2 markedly increased luciferase reporter activity driven by the heNOS promoter in its native location. The induction of luciferase was conserved with the antisense construct and was increased in cotransfection experiments when this fragment was cloned 5' to the proximal 785-bp fragment of the eNOS promoter. Deletion analysis and site-directed mutagenesis demonstrated that the two contiguous HIF consensus binding sites spanning bp -5375 to -5366 relative to the transcription start site were both functional for heNOS promoter activity induction by hypoxia and by HIF-2 overexpression. In conclusion, we demonstrate that heNOS is a hypoxia-inducible gene, whose transcription is stimulated through HIF-2 interaction with two contiguous HRE sites located at -5375 to -5366 of the heNOS promoter.
Collapse
Affiliation(s)
- Florence Coulet
- INSERM, Unit 525, Université Pierre et Marie Curie, Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | |
Collapse
|
28
|
Robertson TP, Aaronson PI, Ward JPT. Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is endothelium dependent. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1121-6. [PMID: 12611819 DOI: 10.1152/ajplung.00422.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main aim of this study was to determine the effects of endothelium removal on tension and intracellular Ca(2+) ([Ca(2+)](i)) during hypoxic pulmonary vasoconstriction (HPV) in rat isolated intrapulmonary arteries (IPA). Rat IPA and mesenteric arteries (MA) were mounted on myographs and loaded with the Ca(2+)-sensitive fluorophore fura PE-3. Arteries were precontracted with prostaglandin F(2alpha), and the effects of hypoxia were examined. HPV in isolated IPA consisted of a transient constriction superimposed on a second sustained phase. Only the latter phase was abolished by endothelial denudation. However, removal of the endothelium had no effect on [Ca(2+)](i) at any point during HPV. The endothelin-1 antagonists BQ-123 and BQ-788 did not affect HPV, although constriction induced by 100 nM endothelin-1 was abolished. In MA, hypoxia induced an initial transient rise in tension and [Ca(2+)](i), followed by vasodilatation and a fall in [Ca(2+)](i) to (but not below) prehypoxic levels. These results are consistent with sustained HPV being mediated by an endothelium-derived constrictor factor that is distinct from endothelin-1 and that elicits vasoconstriction via Ca(2+) sensitization.
Collapse
Affiliation(s)
- Tom P Robertson
- Department of Physiology and Pharmacology, Institute of Comparative Medicine, University of Georgia, Athens, Georgia 30602-7389, USA.
| | | | | |
Collapse
|