1
|
Kim J, Kang C, Yoo JW, Yoon IS, Jung Y. Colon-Targeted β 3-Adrenoceptor Agonist Mirabegron Enhances Anticolitic Potency of the Drug via Potentiating the Nrf2-HO-1 Pathway. Mol Pharm 2025; 22:2431-2445. [PMID: 40241685 DOI: 10.1021/acs.molpharmaceut.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The selective agonist of β3-adrenergic receptor mirabegron (MBG), clinically used to treat overactive bladders, exerts beneficial effects in animal models of colitis. Here, we aimed to enhance the therapeutic activity and safety of MBG as an anticolitic drug by implementing colon-targeted drug delivery using a prodrug approach. MBG was azo-linked with salicylic acid (SA) to yield SA-conjugated MBG (MAS), which was conjugated with aspartic acid (Asp) and glutamic acid (Glu) to yield more hydrophilic derivatives: Asp-conjugated MAS (MAS-Asp) and Glu-conjugated MAS (MAS-Glu). MBG derivatives reduced the distribution coefficient and cell permeability of MBG, which were greater with the amino acid-conjugated MAS than with MAS. MBG derivatives were cleaved to release MBG in the cecal contents. Upon oral gavage, compared with MBG, MBG derivatives delivered greater amounts of MBG to the cecum while limiting the systemic absorption of MBG, and the amino acid-conjugated MAS exhibited a greater performance than MAS. In a rat colitis model, MBG derivatives were more effective than MBG in ameliorating colonic damage and inflammation, and the amino acid-conjugated MAS was more potent than MAS. MAS-Glu was therapeutically superior to sulfasalazine, a current drug to treat inflammatory bowel disease, against rat colitis. Moreover, MBG activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-hemeoxygenase (HO)-1 pathway in inflamed colonic tissue, and the MAS-Glu-mediated amelioration of colitis was significantly compromised by an HO-1 inhibitor. Taken together, colon-targeted delivery of MBG may enhance the anticolitic activity, reduce the risk of systemic side effects of MBG, and elicit the therapeutic effects, at least partly by activating the Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Changyu Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025; 19:15189-15219. [PMID: 40249331 PMCID: PMC12045021 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
3
|
Wang B, Guo X, Qin L, He L, Li J, Jin X, Chen D, Ge G. Pharmacological modulation of mitochondrial function as novel strategies for treating intestinal inflammatory diseases and colorectal cancer. J Pharm Anal 2025; 15:101074. [PMID: 40242218 PMCID: PMC11999614 DOI: 10.1016/j.jpha.2024.101074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal disease, and has become a major global health issue. Individuals with IBD face an elevated risk of developing colorectal cancer (CRC), and recent studies have indicated that mitochondrial dysfunction plays a pivotal role in the pathogenesis of both IBD and CRC. This review covers the pathogenesis of IBD and CRC, focusing on mitochondrial dysfunction, and explores pharmacological targets and strategies for addressing both conditions by modulating mitochondrial function. Additionally, recent advancements in the pharmacological modulation of mitochondrial dysfunction for treating IBD and CRC, encompassing mitochondrial damage, release of mitochondrial DNA (mtDNA), and impairment of mitophagy, are thoroughly summarized. The review also provides a systematic overview of natural compounds (such as flavonoids, alkaloids, and diterpenoids), Chinese medicines, and intestinal microbiota, which can alleviate IBD and attenuate the progression of CRC by modulating mitochondrial function. In the future, it will be imperative to develop more practical methodologies for real-time monitoring and accurate detection of mitochondrial function, which will greatly aid scientists in identifying more effective agents for treating IBD and CRC through modulation of mitochondrial function.
Collapse
Affiliation(s)
- Boya Wang
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xinrui Guo
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lanhui Qin
- Department of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingnan Li
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xudong Jin
- St. Hilda's College, Oxford University, Oxford, OX4 1DY, UK
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Guangbo Ge
- Department of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
4
|
Atalar K, Alim E, Yigman Z, Belen HB, Erten F, Sahin K, Soylu A, Dizakar SOA, Bahcelioglu M. Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model. J Anat 2025; 246:602-615. [PMID: 39707162 PMCID: PMC11911132 DOI: 10.1111/joa.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30 min for 10 days. Postmortem macroscopic and microscopic colon morphology were evaluated by histological staining. Additionally, IL-1β, IL-6, IL-10, and TNF-α cytokine levels in the colon and the brain were evaluated by immunohistochemistry and western blotting analysis. TNBS induced epithelial damage, inflammation, ulceration, and thickened mucosal layer in the colonic tissues. Administration of tVNS significantly ameliorated the severity of TNBS-induced tissue damage and inflammatory response. TNBS also alters pro-inflammatory and anti-inflammatory balance in the brain tissue. TVNS application significantly suppressed the protein levels of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF- α while augmenting the level of anti-inflammatory cytokine IL-10 in the colonic and the brain tissue. We have shown that TNBS-mediated colonic inflammation and tissue damage are associated with neuroinflammatory responses in the brain tissue. Also demonstrated for the first time that neuroinflammatory response in the gut-brain axis is suppressed by tVNS in the IBD model. Non-invasive tVNS stands out as a new potential treatment option for types of IBD.
Collapse
Affiliation(s)
- Kerem Atalar
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Ece Alim
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Zeynep Yigman
- Department of Histology and Embryology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Türkiye
| | - Hayrunnisa Bolay Belen
- Department of Neurology and Algology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Fusun Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Türkiye
| | - Kazım Sahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ayse Soylu
- Department of Anatomy Faculty of Medicine, Gazi University, Ankara, Türkiye
| | | | - Meltem Bahcelioglu
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| |
Collapse
|
5
|
Ayati A, Khodabandelu S, Khaleghi S, Nourmohammadi A, Jafari F, Ahmadianghalehsorkh M, Vatani Z, Bashiri HS, Ahmadi M, Jafari M, Soltaninejad H, Rahmanian M. A systematic review and network meta-analysis of the association between periodontitis and inflammatory bowel diseases. BMC Oral Health 2025; 25:463. [PMID: 40165211 PMCID: PMC11956190 DOI: 10.1186/s12903-025-05830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVES Several earlier studies have shown that IBD (including its two subtypes, ulcerative colitis (UC) and Crohn's disease (CD)) increases the risk of periodontal disease. This study aimed to evaluate the relevance among periodontitis and IBD subcategories. METHODS This study was conducted based on PRISMA guidelines. The Web of Science, PubMed, Google Scholar, and Scopus databases were searched up to February 2024 using pertinent keywords. Case series, review articles, and animal studies were excluded. The risk of bias in this research was evaluated through the Joanna Briggs Institute (JBI) criteria. The meta-analysis was conducted using R statistical software. RESULTS A total of 9134 patients within 13 studies after the screening process were evaluated. Our study has shown that periodontitis is significantly more prevalent among IBD patients (UC and CD). According to prior meta-analyses, PD morbidity was found to be significantly high among CD patients (OR: 4.30; 95% CI: 3.72-4.98; I2 = 0%). Similarly, UC elevated PD risk (OR: 4.55; 95% CI: 3.76-5.50; I2 = 0%). The risk of periodontitis was not significantly different between CD and UC patients (OR: 0.96; 95% CI: 0.65-1.43; I2 = 34%). CONCLUSIONS UC and CD patients were more likely to develop periodontitis, with low heterogeneity between studies, while the prevalence of periodontitis among UC and CD patients was not meaningfully different. CLINICAL RELEVANCE The higher risk of periodontitis in patients with IBD indicates the necessity of screening for periodontitis. Considering the various oral manifestations and poor quality of life associated with IBD, it is important to be aware of the symptoms of periodontitis.
Collapse
Affiliation(s)
- Ariyan Ayati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Postal code, Tehran, 19839-63113, Iran
| | - Sajad Khodabandelu
- Department of Biostatistics and Epidemiology, Student Research Committee, School of Health, Mazandaran University of Medical Sciences, Postal code, Sari, 48175-866, Iran
| | - Sara Khaleghi
- Department of Biostatistics and Epidemiology, Student Research Committee, School of Health, Mazandaran University of Medical Sciences, Postal code, Sari, 48175-866, Iran
| | - Anita Nourmohammadi
- Faculty of Dentistry, Postal Code, Tehran Medical Sciences, Islamic Azad University, Tehran, 19468-53314, Iran
| | - Farnaz Jafari
- Oral and Dental Diseases Research Center, Kerman University of Medical Sciences, Postal code, Kerman, 1946853314, Iran
| | - Mina Ahmadianghalehsorkh
- Department of Pediatric Dentistry, Postal Code, Ilam University of Medical Sciences, Ilam, 6939177314, Iran
| | - Zahra Vatani
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| | - Hanieh Sadat Bashiri
- Department of Public Health, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Postal code, Tehran, 19839-69411, Iran
| | - Mahta Ahmadi
- School of Dentistry, Shiraz University of Medical Sciences, Postal code, Shiraz, 71956-15878, Iran
| | | | - Hossein Soltaninejad
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Rahmanian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Postal Code, Tehran, 19839-63113, Iran.
| |
Collapse
|
6
|
Ahmadi A, Yousefimashouf R, Mohammadi A, Nikkhoo B, Shokoohizadeh L, Khan Mirzaei M, Alikhani MY, Sheikhesmaili F, Khodaei H. Investigating the expression of anti/pro-inflammatory cytokines in the pathogenesis and treatment of ulcerative colitis and its association with serum level of vitamin D. Sci Rep 2025; 15:7569. [PMID: 40038357 PMCID: PMC11880460 DOI: 10.1038/s41598-025-87551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Ulcerative colitis is an idiopathic gastrointestinal disease described by chronic inflammation of the digestive system. Cytokines may be responsible for immunopathogenesis, mucosal and tissue damage, and even treatment response. In addition to its role in calcium and phosphorus homeostasis and bone health, vitamin D is an immunomodulatory and anti-inflammatory agent. Understanding the role of cytokines may lead to improving the pathogenesis and treatment of this disease, therefore we aimed to investigate the relative gene expression of pro- and anti-inflammatory cytokines in biopsy samples taken from the affected area in the colon of ulcerative colitis patients and its association with serum vitamin D levels. A total of 47 ulcerative colitis patients were enrolled in this case-control study. The case group consisted of 23 patients with treatment-resistant ulcerative colitis, and the control group consisted of 24 ulcerative colitis patients responding to routine treatment. Serum vitamin D levels were measured by ELISA method. Real-time PCR was employed to quantify the relative expression of pro- and anti-inflammatory cytokines in colon biopsy samples from case and control groups. The pro-inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, IL-17 A, and IL-33, while the anti-inflammatory cytokines were IL-10, IL-35, and TGF-β. Data are showed as mean ± standard deviation (SD), and p values < 0.05 were considered statistically significant. The mean age of the control group was 45.88 ± 18.51 years, while that of the case group was 41.30 ± 13.01 years. The relative gene expression of TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IL-17 A, IL-33, TGF-β, IL-10, and IL-35, in the case and control groups did not exhibit statistically significant differences (p > 0.05). However, the gene expression levels of the principal pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α, were elevated in treatment-resistant patients compared to patients who responded to treatments. No correlation was observed between serum vitamin D levels and the gene expression of pro- and anti-inflammatory cytokines (p > 0.05). The present study did not identify a statistically significant correlation between the expression of pro- or anti-inflammatory cytokines and treatment response. Therefore, routine treatments had no effect on the expression of these cytokines in treatment-resistant patients. Additionally, serum vitamin D levels were not related to the relative expression of pro- and anti-inflammatory cytokines in the affected area of the colon of these patients. Despite the need for further research on the protective and pathological roles of cytokines and vitamin D, regular screening and early and complementary treatment may be beneficial in reducing inflammatory symptoms in these patients.
Collapse
Affiliation(s)
- Amjad Ahmadi
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leili Shokoohizadeh
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Infectious Diseases, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Farshad Sheikhesmaili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Hakim Khodaei
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
7
|
Schanne G, Vincent A, Chain F, Ruffié P, Carbonne C, Quévrain E, Mathieu E, Balfourier A, Bermúdez-Humarán LG, Langella P, Thenet S, Carrière V, Hammoudi N, Svrcek M, Demignot S, Seksik P, Policar C, Delsuc N. SOD mimics delivered to the gut using lactic acid bacteria mitigate the colitis symptoms in a mouse model of inflammatory bowel diseases. Free Radic Res 2025; 59:262-273. [PMID: 40079422 DOI: 10.1080/10715762.2025.2478121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, represent a global health issue as a prevalence of 1% is expected in the western world by the end of this decade. These diseases are associated with a high oxidative stress that induces inflammatory pathways and severely damages gut tissues. IBD patients suffer from antioxidant defenses weakening, through, for instance, an impaired activity of superoxide dismutases (SOD)-that catalyze the dismutation of superoxide-or other endogenous antioxidant enzymes including catalase and glutathione peroxidase. Manganese complexes mimicking SOD activity have shown beneficial effects on cells and murine models of IBD. However, efficient SOD mimics are often manganese complexes that can suffer from decoordination and thus inactivation in acidic stomachal pH. To improve their delivery in the gut after oral administration, two SOD mimics Mn1 and Mn1C were loaded into lactic acid bacteria that serve as delivery vectors. When orally administrated to mice suffering from a colitis, these chemically modified bacteria (CMB) showed protective effects on the global health status of mice. In addition, they have shown beneficial effects on lipocalin-2 content and intestinal permeability. Interestingly, mRNA SOD2 content in colon homogenates was significantly decreased upon mice feeding with CMB loaded with Mn1C, suggesting that the beneficial effects observed may be due to the release of the SOD mimic in the gut that complement for this enzyme. These CMB represent new efficient chemically modified antioxidant probiotics for IBD treatment.
Collapse
Affiliation(s)
- Gabrielle Schanne
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Amandine Vincent
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Florian Chain
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Pauline Ruffié
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Célia Carbonne
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Elodie Quévrain
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Emilie Mathieu
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Alice Balfourier
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Sophie Thenet
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Nassim Hammoudi
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, Paris, France
| | - Magali Svrcek
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Sylvie Demignot
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, APHP, Paris, France
| | - Clotilde Policar
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Nicolas Delsuc
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
8
|
Zhang Q, Feng T, Chang Q, Yang D, Li Y, Shang Y, Gao W, Zhao J, Li X, Ma L, Liang Z. Exploring the potential active components and mechanisms of Tetrastigma hemsleyanum against ulcerative colitis based on network pharmacology in LPS-induced RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119384. [PMID: 39863095 DOI: 10.1016/j.jep.2025.119384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic form of inflammatory bowel disease, which current treatments often show limited effectiveness. Ferroptosis, a newly recognized form of programmed cell death has been implicated in UC pathogenesis, suggesting that it may be viable therapeutic target. Tetrastigma hemsleyanum (TH) has shown potential anti-UC effects, though it is unclear whether its therapeutic benefits are mediated by ferroptosis. AIM OF THE STUDY This study investigated the involvement of ferroptosis in the therapeutic effects of TH and identified key active components and pathways of TH against UC. MATERIALS AND METHODS The ethyl acetate extract of TH (TH_E) was found to be the most effective anti-inflammatory extract compared with the petroleum ether extract (TH_P), n-butanol extract (TH_N), and water-soluble extract (TH_W). TH_E's components were identified using UHPLC-MS/MS, ADME parameters, and network pharmacology. Additionally, TH_E's effects on ferroptosis were evaluated in an LPS-induced RAW264.7 cell model. RESULTS TH_E exhibited the strongest anti-inflammatory activity among four extracts. 10 compounds (Linolenic acid; Apigenin; Protocatechualdehyde; Asiatic acid; Quercetin; Isorhamnetin; Kaempferol; Azelaic acid; Oleic Acid; Palmitic acid) were selected from SwissADME database. Then a total of 281 targets for these 10 compounds and 1330 UC-related targets were identified from different database. Isorhamnetin was selected as the most promising anti-inflammatory component among 10 components. Furthermore, enrichment analysis revealed that ferroptosis was involved in UC development, with both TH_E and isorhamnetin exhibited inhibition of ferroptosis. Finally, isorhamnetin's anti-ferroptosis effects were linked to the Keap1/Nrf2/HO-1 pathway. CONCLUSIONS The results demonstrate that TH_E and isorhamnetin alleviate LPS-induced UC through restraining ferroptosis. Moreover, isorhamnetin's anti-UC properties are mediated by inhibiting ferroptosis via activation of the Keap1/Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Tinghui Feng
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qinxiang Chang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Dongfeng Yang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Yuan Li
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Yujie Shang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Wenxin Gao
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Jiayan Zhao
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Xiaohu Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Lei Ma
- Food Nutrition Sciences Centre (FNSC), School of Food Science and Biotechnology Zhejiang Gongshang University, 310012, Hangzhou, People's Republic of China
| | - Zongsuo Liang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
9
|
Liu F, Guo C, Liu X, Gu Z, Zou W, Tang X, Tang J. Luteolin in Inflammatory Bowel Disease and Colorectal Cancer: A Disease Continuum Perspective. Curr Issues Mol Biol 2025; 47:126. [PMID: 39996847 PMCID: PMC11853781 DOI: 10.3390/cimb47020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that may progress to colorectal cancer (CRC), presenting significant challenges to global health. With shifts in lifestyle, the incidence of both conditions continues to rise, underscoring the urgent need for effective treatments. While traditional therapies can be effective, their high recurrence rates and associated adverse reactions limit their broader application. Luteolin, a flavonoid derived from natural plants, has emerged as a promising focus in both IBD and CRC research due to its multi-target therapeutic potential. This article reviews the molecular mechanisms and signaling pathways through which luteolin regulates immune cell differentiation, mitigates inflammation and oxidative stress, modulates gut microbiota, and restores intestinal mucosal barrier function in IBD. In the context of CRC, luteolin demonstrates significant anti-tumor effects by inhibiting cancer cell proliferation, inducing apoptosis, and suppressing cell migration and invasion. Notably, luteolin has demonstrated significant improvements in IBD symptoms by influencing the differentiation of T cell subsets, decreasing the expression of inflammatory mediators, activating antioxidant pathways, and enhancing the structure of gut microbiota. Furthermore, advancements in formulation technology, such as the use of polymer micelles and responsive nanoparticles, have greatly improved the bioavailability and efficacy of luteolin. However, further investigation is needed to address the bioavailability and potential toxicity of luteolin, particularly in the critical transition from IBD to CRC. This article emphasizes the potential of luteolin in the treatment of IBD and CRC and anticipates its promising prospects for future clinical applications as a natural therapeutic agent.
Collapse
Affiliation(s)
- Fang Liu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Cui Guo
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| | - Xue Liu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Zhili Gu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Wenxuan Zou
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Xuegui Tang
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Jianyuan Tang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| |
Collapse
|
10
|
Peng X, Yang Y, Zhong R, Yang Y, Yan F, Liang N, Yuan S. Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment. Biol Trace Elem Res 2025; 203:624-634. [PMID: 38805169 DOI: 10.1007/s12011-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota's balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve the severity of clinical symptoms in IBD patients and animal models.
Collapse
Affiliation(s)
- Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yingxiang Yang
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yuexuan Yang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shibin Yuan
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
11
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
12
|
Ghusn W, Mourad FH, Francis FF, Pasha S, Farraye FA, Hashash JG. The Use of Immunomodulators, Biologic Therapies, and Small Molecules in Patients With Inflammatory Bowel Disease and Solid Organ Transplant. J Clin Gastroenterol 2025; 59:24-35. [PMID: 39145836 DOI: 10.1097/mcg.0000000000002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Patients with inflammatory bowel diseases (IBDs) may require solid organ transplants (SOTs) for multiple reasons, making its prevalence slightly higher than the general population. Although immunosuppression used in SOT may help control IBD-related inflammation, many patients still require additional immunosuppressive medications. We aim to assess the effectiveness and safety of the combination of SOT-related immunosuppression and IBD medications in patients with liver, kidney, or heart transplantation. We conducted a clinical review using PubMed, Scopus, MEDLINE, Embase, and Google Scholar databases for our search. We included data from systematic reviews, meta-analyses, case series, and case reports to assess the safety, effectiveness, and side effect profile of immunomodulators, biologic therapies, and small molecules in patients with SOT. Our review encompassed 25 liver, 6 kidney, and 1 heart transplant studies involving patients with IBD. Common liver transplant immunosuppressants included tacrolimus, mycophenolate mofetil, cyclosporine, and steroids. Anti-TNF agents, widely used in all SOT types, showed no significant safety issues, though infections and malignancies were noted. Patients with liver transplant on tacrolimus responded well to anti-integrins and ustekinumab without major complications. For kidney transplants, cyclosporine and tacrolimus were prevalent, and their combination with anti-TNF or ustekinumab was generally safe, with rare reports of malignancy or infection. Hence, the use of anti-TNF, anti-integrin agents, and ustekinumab appears to be safe in patients with SOT, regardless of their transplant related immunosuppression. More studies are needed in patients with kidney and heart transplants and in patients treated with small molecules for their IBD.
Collapse
Affiliation(s)
- Wissam Ghusn
- Division of Gastroenterology and Hepatology, Mayo Clinic, MN
- Department of Internal Medicine, Boston Medical Center, MA
| | - Fadi H Mourad
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Fadi F Francis
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, PA
| | - Shabana Pasha
- Division of Gastroenterology and Hepatology, Mayo Clinic, AZ
| | | | - Jana G Hashash
- Division of Gastroenterology and Hepatology, Mayo Clinic, FL
| |
Collapse
|
13
|
Wang C, Li S, Lin N, Zhang X, Han Y, Wang X, Liu D, Tan X, Pu D, Li K, Qian G, Yin R. Application of Large Language Models in Medical Training Evaluation-Using ChatGPT as a Standardized Patient: Multimetric Assessment. J Med Internet Res 2025; 27:e59435. [PMID: 39742453 PMCID: PMC11736217 DOI: 10.2196/59435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/24/2024] [Accepted: 11/11/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND With the increasing interest in the application of large language models (LLMs) in the medical field, the feasibility of its potential use as a standardized patient in medical assessment is rarely evaluated. Specifically, we delved into the potential of using ChatGPT, a representative LLM, in transforming medical education by serving as a cost-effective alternative to standardized patients, specifically for history-taking tasks. OBJECTIVE The study aims to explore ChatGPT's viability and performance as a standardized patient, using prompt engineering to refine its accuracy and use in medical assessments. METHODS A 2-phase experiment was conducted. The first phase assessed feasibility by simulating conversations about inflammatory bowel disease (IBD) across 3 quality groups (good, medium, and bad). Responses were categorized based on their relevance and accuracy. Each group consisted of 30 runs, with responses scored to determine whether they were related to the inquiries. For the second phase, we evaluated ChatGPT's performance against specific criteria, focusing on its anthropomorphism, clinical accuracy, and adaptability. Adjustments were made to prompts based on ChatGPT's response shortcomings, with a comparative analysis of ChatGPT's performance between original and revised prompts. A total of 300 runs were conducted and compared against standard reference scores. Finally, the generalizability of the revised prompt was tested using other scripts for another 60 runs, together with the exploration of the impact of the used language on the performance of the chatbot. RESULTS The feasibility test confirmed ChatGPT's ability to simulate a standardized patient effectively, differentiating among poor, medium, and good medical inquiries with varying degrees of accuracy. Score differences between the poor (74.7, SD 5.44) and medium (82.67, SD 5.30) inquiry groups (P<.001), between the poor and good (85, SD 3.27) inquiry groups (P<.001) were significant at a significance level (α) of .05, while the score differences between the medium and good inquiry groups were not statistically significant (P=.16). The revised prompt significantly improved ChatGPT's realism, clinical accuracy, and adaptability, leading to a marked reduction in scoring discrepancies. The score accuracy of ChatGPT improved 4.926 times compared to unrevised prompts. The score difference percentage drops from 29.83% to 6.06%, with a drop in SD from 0.55 to 0.068. The performance of the chatbot on a separate script is acceptable with an average score difference percentage of 3.21%. Moreover, the performance differences between test groups using various language combinations were found to be insignificant. CONCLUSIONS ChatGPT, as a representative LLM, is a viable tool for simulating standardized patients in medical assessments, with the potential to enhance medical training. By incorporating proper prompts, ChatGPT's scoring accuracy and response realism significantly improved, approaching the feasibility of actual clinical use. Also, the influence of the adopted language is nonsignificant on the outcome of the chatbot.
Collapse
Affiliation(s)
- Chenxu Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
- Department of Medical Simulation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuhan Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Nuoxi Lin
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Xinyu Zhang
- Department of Medical Simulation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Han
- Department of Medical Simulation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiandi Wang
- Department of Medical Simulation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Di Liu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xiaomei Tan
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Dan Pu
- Department of Medical Simulation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Guangwu Qian
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Computer Science, Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Rong Yin
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Industrial Engineering, Pittsburgh Institute, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Kang C, Kim J, Jeong Y, Yoo JW, Jung Y. Colon-Targeted Poly(ADP-ribose) Polymerase Inhibitors Synergize Therapeutic Effects of Mesalazine Against Rat Colitis Induced by 2,4-Dinitrobenzenesulfonic Acid. Pharmaceutics 2024; 16:1546. [PMID: 39771525 PMCID: PMC11728683 DOI: 10.3390/pharmaceutics16121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: In addition to oncological applications, poly(ADP-ribose) polymerase (PARP) inhibitors have potential as anti-inflammatory agents. Colon-targeted delivery of PARP inhibitors has been evaluated as a pharmaceutical strategy to enhance their safety and therapeutic efficacy against gut inflammation. Methods: Colon-targeted PARP inhibitors 5-aminoisoquinoline (5-AIQ) and 3-aminobenzamide (3-AB) were designed and synthesized by azo coupling with salicylic acid (SA), yielding 5-AIQ azo-linked with SA (AQSA) and 3-AB azo-linked with SA (ABSA). Additional conjugation of AQSA with acidic amino acids yielded glutamic acid-conjugated AQSA (AQSA-Glu) and aspartic acid-conjugated AQSA, which further increased the hydrophilicity of AQSA. Results: The distribution coefficients of PARP inhibitors were lowered by chemical modifications, which correlated well with drug permeability via the Caco-2 cell monolayer. All derivatives were effectively converted to their corresponding PARP inhibitors in the cecal contents. Compared with observations in the oral administration of PARP inhibitors, AQSA-Glu and ABSA resulted in the accumulation of much greater amounts of each PARP inhibitor in the cecum. ABSA accumulated mesalazine (5-ASA) in the cecum to a similar extent as sulfasalazine (SSZ), a colon-targeted 5-ASA prodrug. In the DNBS-induced rat colitis model, AQSA-Glu enhanced the anticolitic potency of 5-AIQ. Furthermore, ABSA was more effective against rat colitis than SSZ or AQSA-Glu, and the anticolitic effects of AQSA-Glu were augmented by combined treatment with a colon-targeted 5-ASA prodrug. In addition, the colon-targeted delivery of PARP inhibitors substantially reduced their systemic absorption. Conclusions: Colon-targeted PARP inhibitors may improve the therapeutic and toxicological properties of inhibitors and synergize the anticolitic effects of 5-ASA.
Collapse
Affiliation(s)
| | | | | | | | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (C.K.); (J.K.); (Y.J.); (J.-W.Y.)
| |
Collapse
|
15
|
Ma Y, Qiang Z, Zhou M, Zhang T, Li Z, Zhong H, Chang Y, Ning Z, Liu Y. Prevalence of bronchiectasis in inflammatory bowel disease: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1447716. [PMID: 39640979 PMCID: PMC11617167 DOI: 10.3389/fmed.2024.1447716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objective The aim of this study was to conduct a systematic review and meta-analysis of the incidence of inflammatory bowel disease-associated bronchiectasis (IBD-BE) and to explore the possible risk factors for IBD-BE, which could help to understand the pulmonary involvement in patients with IBD and to determine the global incidence of the disease. Methods We searched PubMed and EMBASE databases to identify information on the prevalence of IBD-BE among IBD patients in the published literature. Information was extracted on study design, country, year, IBD-BE testing method, IBD characteristics, number of IBD-BE cases and total number of IBD patients, and factors associated with IBD-BE. We conducted meta-analyses using random-effects or fixed-effects models to estimate the prevalence of IBD-BE among IBD patients. Results Out of a total of 682 studies, we identified 16 studies that reported prevalence. These studies used a heterogeneous approach to identify IBD-BE. In these 16 studies, there were 92,191 patients with IBD, of whom 372 cases of IBD-BE were identified. The results of the meta-analysis showed that the overall prevalence of IBD-BE in IBD derived from the use of a random effects model was 5.0% (95% CI 2.0-12.0%). In contrast, the prevalence of IBD-BE in studies using high-resolution chest computed tomography (HRCT) imaging was 12% (95% CI 4-39%) using a random-effects model. When only retrospective studies with sample sizes greater than 100 (n = 6) were considered, the prevalence was 1% (95% CI 0-1%). However, when only retrospective studies with sample sizes less than 100 were included (n = 4), the prevalence was 29% (95% CI 6-100%); in prospective studies (n = 6), the combined prevalence was 11% (95% CI 4-29%). we performed a subgroup analysis of the differences in the incidence of IBD-BE between the different studies, each of which we subgrouped by type of study, type of disease, duration of disease, and diagnostic modality, and the results showed no significance. Future studies should standardize methods to identify IBD-BE cases and investigate the natural history and clinical course given the relatively high prevalence among IBD. Conclusion In this systematic review and meta-analysis, the prevalence of IBD-BE was 12% among studies with HRCT imaging, suggesting that bronchiectasis may be an underestimated common extraintestinal manifestation of IBD. Asymptomatic patients with IBD-BE may present with abnormalities on HRCT or pulmonary function tests. Future studies should standardize methods to identify IBD-BE cases and investigate the natural history and clinical course given the relatively high prevalence among IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Liu
- Department of Respiratory and Critical Care Medicine, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| |
Collapse
|
16
|
Baydoun ZA, Rao M, Khan I. Endoplasmic Reticular Stress and Pathogenesis of Experimental Colitis: Mechanism of Action of 5-Amino Salicylic Acid. Med Princ Pract 2024; 34:39-47. [PMID: 39496247 PMCID: PMC11805548 DOI: 10.1159/000541791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVES Inflammatory bowel diseases which are characterized by endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling pathway are commonly treated with 5-amino salicylic acid (5-ASA). The objective of this study was to investigate the role of 5-amino salicylic acid in the UPR-signaling pathway in experimental colitis. MATERIALS AND METHODS Colitis was induced in male Sprague-Dawley rats by intrarectal instillation of trinitrobenzene sulfonic acid. Animals received 5-amino salicylic acid (100 mg/kg body weight) 2 h before the induction of colitis and repeated daily until day 7. The animals were sacrificed on day 7 and tissues were collected for analysis. RESULTS The expression of protein kinase R (PKR)-like ER kinase (PERK), a mediator of UPR signaling increased significantly (p < 0.05), while inositol-requiring enzyme type-1 (IRE1) and the CCAAT/enhancer-binding homologous protein (CHOP) remained unaltered in the inflamed colon. The expression of glucose-regulated protein-78, activator of transcription factor-4, and phosphorylated-eukaryotic initiation factor-2α (eIF2αP) increased (p < 0.05) in the inflamed colon. However, the levels of eIF2α protein and mRNA expression remained unchanged. Myeloperoxidase activity, colon weight, and infiltration of inflammatory cells increased significantly (p < 0.05) in the submucosa whereas the body weight decreased. These changes were significantly inhibited by 5-amino salicylate treatment. CONCLUSION These findings suggest that the anti-inflammatory properties of 5-amino salicylic acid are mediated through the inhibition of the PERK signaling pathway. OBJECTIVES Inflammatory bowel diseases which are characterized by endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling pathway are commonly treated with 5-amino salicylic acid (5-ASA). The objective of this study was to investigate the role of 5-amino salicylic acid in the UPR-signaling pathway in experimental colitis. MATERIALS AND METHODS Colitis was induced in male Sprague-Dawley rats by intrarectal instillation of trinitrobenzene sulfonic acid. Animals received 5-amino salicylic acid (100 mg/kg body weight) 2 h before the induction of colitis and repeated daily until day 7. The animals were sacrificed on day 7 and tissues were collected for analysis. RESULTS The expression of protein kinase R (PKR)-like ER kinase (PERK), a mediator of UPR signaling increased significantly (p < 0.05), while inositol-requiring enzyme type-1 (IRE1) and the CCAAT/enhancer-binding homologous protein (CHOP) remained unaltered in the inflamed colon. The expression of glucose-regulated protein-78, activator of transcription factor-4, and phosphorylated-eukaryotic initiation factor-2α (eIF2αP) increased (p < 0.05) in the inflamed colon. However, the levels of eIF2α protein and mRNA expression remained unchanged. Myeloperoxidase activity, colon weight, and infiltration of inflammatory cells increased significantly (p < 0.05) in the submucosa whereas the body weight decreased. These changes were significantly inhibited by 5-amino salicylate treatment. CONCLUSION These findings suggest that the anti-inflammatory properties of 5-amino salicylic acid are mediated through the inhibition of the PERK signaling pathway.
Collapse
Affiliation(s)
- Zahraa A. Baydoun
- Department of Biochemistry, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Muddanna Rao
- Department of Anatomy, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Islam Khan
- Department of Biochemistry, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
17
|
Brown K, Funk K, Figueroa Barrientos A, Bailey A, Shrader S, Feng W, McClain CJ, Song ZH. The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut. Cells 2024; 13:1618. [PMID: 39404382 PMCID: PMC11475737 DOI: 10.3390/cells13191618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Collapse
Affiliation(s)
- Kevin Brown
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kyle Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alexa Figueroa Barrientos
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ashly Bailey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sarah Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
18
|
Ning S, Zhang Z, Zhou C, Wang B, Liu Z, Feng B. Cross-talk between macrophages and gut microbiota in inflammatory bowel disease: a dynamic interplay influencing pathogenesis and therapy. Front Med (Lausanne) 2024; 11:1457218. [PMID: 39355844 PMCID: PMC11443506 DOI: 10.3389/fmed.2024.1457218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic immune-mediated gastrointestinal disorders. The etiology of IBD is multifactorial, involving genetic susceptibility, environmental factors, and a complex interplay between the gut microbiota and the host's immune system. Intestinal resident macrophages play an important role in the pathogenesis and progress of IBD, as well as in maintaining intestinal homeostasis and facilitating tissue repair. This review delves into the intricate relationship between intestinal macrophages and gut microbiota, highlighting their pivotal roles in IBD pathogenesis. We discuss the impact of macrophage dysregulation and the consequent polarization of different phenotypes on intestinal inflammation. Furthermore, we explore the compositional and functional alterations in gut microbiota associated with IBD, including the emerging significance of fungal and viral components. This review also examines the effects of current therapeutic strategies, such as 5-aminosalicylic acid (5-ASA), antibiotics, steroids, immunomodulators, and biologics, on gut microbiota and macrophage function. We underscore the potential of fecal microbiota transplantation (FMT) and probiotics as innovative approaches to modulate the gut microbiome in IBD. The aim is to provide insights into the development of novel therapies targeting the gut microbiota and macrophages to improve IBD management.
Collapse
Affiliation(s)
- Shiyang Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Shanghai, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Kumar S, Sarkar B. Deciphering the multi-target therapeutic capabilities of Ocimum tenuiflorum Linn. Compounds against systemic lupus erythematosus and inflammatory bowel disease: a network pharmacology and molecular modelling approach. Nat Prod Res 2024:1-5. [PMID: 39105677 DOI: 10.1080/14786419.2024.2388792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The coexistence of Systemic Lupus Erythematosus (SLE) and Inflammatory Bowel Disease (IBD) is a rare and hard-to-diagnose multisystem autoimmune disorder. Allopathic treatment approaches often fall short in managing both conditions simultaneously, as specific medications targeting this dual manifestation are lacking. In such instances, herbal medicine can offer a potential solution through its holistic approach. Ocimum tenuiflorum (O. tenuiflorum) a rich source of bioactive compounds belonging to Lamiaceae family. This study employs network pharmacology and molecular modelling to unveil the multi-target and multi-pathway mechanisms of O. tenuiflorum as a complementary therapy. A total of 423 common targets were obtained, among which AKT1, TNF, SRC, EGFR, HIF1A, HSP9AA, BCL2, and STAT3 were identified as the key targets. Lastly, molecular modelling validated the strong binding affinity between O. tenuiflorum 's compounds and the identified targets. In conclusion, these investigations provide new insight for further study of O. tenuiflorum towards the management of SLE and IBD.
Collapse
Affiliation(s)
- Satish Kumar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
20
|
Li Z, Duan Y, Zhang F, Luan H, Shen WT, Yu Y, Xian N, Guo Z, Zhang E, Yin L, Fang RH, Gao W, Zhang L, Wang J. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci Robot 2024; 9:eadl2007. [PMID: 38924422 DOI: 10.1126/scirobotics.adl2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed "algae-MΦNP-robot," for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane-coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines "on the fly." The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.
Collapse
Affiliation(s)
- Zhengxing Li
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Fangyu Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nianfei Xian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Edward Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Dai C, Li W, Zhang C, Shen X, Wan Z, Deng X, Liu F. Microencapsule delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:199-255. [PMID: 39218503 DOI: 10.1016/bs.afnr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microencapsulation, a typical core-shell structure technology, encapsulates functional active ingredients for protection, controlled release, and targeted delivery. In precise nutrition, the focus is on utilizing microcapsule delivery systems for personalized dietary supplements and disease intervention. This chapter outlines the morphological structure of microcapsules, common wall materials, and preparation techniques. It discusses the characteristics of different hydrophilic and lipophilic functional factors and their function as dietary supplements. The role of microencapsulation on the controlled release, odor masking, and enhanced bioavailability of functional factors is explored. Additionally, the application of microcapsule delivery systems in nutritional interventions for diseases like inflammatory bowel disease, alcoholic/fatty liver disease, diabetes, and cancer is introduced in detail. Lastly, the chapter proposes the future developments of anticipation in responsive wall materials for precise nutrition interventions, including both challenges and opportunities.
Collapse
Affiliation(s)
- Chenlin Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wenhan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xuelian Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ziyan Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
23
|
Chen Y, Ye S, Shi J, Wang H, Deng G, Wang G, Wang S, Yuan Q, Yang L, Mou T. Functional evaluation of pure natural edible Ferment: protective function on ulcerative colitis. Front Microbiol 2024; 15:1367630. [PMID: 38952444 PMCID: PMC11215050 DOI: 10.3389/fmicb.2024.1367630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose To investigate the therapeutic efficiency of a novel drink termed "Ferment" in cases of ulcerative colitis (UC) and its influence on the gut microbiota. Method In this study, we developed a complex of mixed fruit juice and lactic acid bacteria referred to as Ferment. Ferment was fed to mice for 35 days, before inducing UC with Dextran Sulfate Sodium Salt. We subsequently investigated the gut microbiome composition using 16S rRNA sequencing. Result After Ferment treatment, mouse body weight increased, and animals displayed less diarrhea, reduced frequency of bloody stools, and reduced inflammation in the colon. Beneficial bacteria belonging to Ileibacterium, Akkermansia, and Prevotellacea were enriched in the gut after Ferment treatment, while detrimental organisms including Erysipelatoclostridium, Dubosiella, and Alistipes were reduced. Conclusion These data place Ferment as a promising dietary candidate for enhancing immunity and protecting against UC.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengzhi Ye
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaolong Shi
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Wang
- First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guangxu Deng
- Department of Gastrointestinal and Anorectal, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | | | - Shijie Wang
- College of Foods Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, China
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Balde A, Ramya CS, Nazeer RA. A review on current advancement in zebrafish models to study chronic inflammatory diseases and their therapeutic targets. Heliyon 2024; 10:e31862. [PMID: 38867970 PMCID: PMC11167310 DOI: 10.1016/j.heliyon.2024.e31862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory diseases are caused due to prolonged inflammation at a specific site of the body. Among other inflammatory diseases, bacterial meningitis, chronic obstructive pulmonary disease (COPD), atherosclerosis and inflammatory bowel diseases (IBD) are primarily focused on because of their adverse effects and fatality rates around the globe in recent times. In order to come up with novel strategies to eradicate these diseases, a clear understanding of the mechanisms of the diseases is needed. Similarly, detailed insight into the mechanisms of commercially available drugs and potent lead compounds from natural sources are also important to establish efficient therapeutic effects. Zebrafish is widely accepted as a model to study drug toxicity and the pharmacokinetic effects of the drug. Moreover, researchers use various inducers to trigger inflammatory cascades and stimulate physiological changes in zebrafish. The effect of these inducers contrasts with the type of zebrafish used in the investigation. Hence, a thorough analysis is required to study the current advancements in the zebrafish model for chronic inflammatory disease suppression. This review presents the most common inflammatory diseases, commercially available drugs, novel therapeutics, and their mechanisms of action for disease suppression. The review also provides a detailed description of various zebrafish models for these diseases. Finally, the future prospects and challenges for the same are described, which can help the researchers understand the potency of the zebrafish model and its further exploration for disease attenuation.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Cunnathur Saravanan Ramya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
25
|
Qiu X, Luo W, Li H, Li T, Huang Y, Huang Q, Zhou R. A Traditional Chinese Medicine, Zhenqi Granule, Potentially Alleviates Dextran Sulfate Sodium-Induced Mouse Colitis Symptoms. BIOLOGY 2024; 13:427. [PMID: 38927307 PMCID: PMC11200386 DOI: 10.3390/biology13060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
26
|
Chen M, Wei S, Wu X, Xiang Z, Li X, He H, Liao F, Wang X, Zhang J, Yu B, Dong W. 2'-Hydroxycinnamaldehyde Alleviates Intestinal Inflammation by Attenuating Intestinal Mucosal Barrier Damage Via Directly Inhibiting STAT3. Inflamm Bowel Dis 2024; 30:992-1008. [PMID: 38422244 PMCID: PMC11144992 DOI: 10.1093/ibd/izad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND The currently available clinical therapeutic drugs for ulcerative colitis (UC) are considered inadequate owing to certain limitations. There have been reports on the anti-inflammatory effects of 2'-hydroxycinnamaldehyde (HCA). However, whether HCA can improve UC is still unclear. Here, we aimed to investigate the pharmacological effects of HCA on UC and its underlying molecular mechanisms. METHODS The pharmacological effects of HCA were comprehensively investigated in 2 experimental setups: mice with dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-treated fetal human colon (FHC) cells. Furthermore, the interaction between HCA and signal transducer and activator of transcription 3 (STAT3) was investigated using molecular docking. The FHC cells with STAT3 knockdown or overexpression and mice with intestinal epithelium-specific STAT3 deletion (STAT3ΔIEC) were used to evaluate whether STAT3 mediated the pharmacological effects of HCA. RESULTS 2'-Hydroxycinnamaldehyde attenuated dysregulated expression of inflammatory cytokines in a dose-dependent manner while increasing the expression of tight junction proteins, reducing the apoptosis of intestinal epithelial cells, and effectively alleviating inflammation both in vivo and in vitro. 2'-Hydroxycinnamaldehyde bound directly to STAT3 and inhibited its activation. The modulation of STAT3 activation levels due to STAT3 knockdown or overexpression influenced the mitigating effects of HCA on colitis. Further analysis indicated that the remission effect of HCA was not observed in STAT3ΔIEC mice, indicating that STAT3 mediated the anti-inflammatory effects of HCA. CONCLUSIONS We present a novel finding that HCA reduces colitis severity by attenuating intestinal mucosal barrier damage via STAT3. This discovery holds promise as a potential new strategy to alleviate UC.
Collapse
Affiliation(s)
- Meilin Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Niu C, Zhang J, Napel M, Boppana LKT, Anas H, Jadhav N, Dunnigan K, Okolo PI. Systematic Review with Meta-analysis: Efficacy and Safety of Upadacitinib in Managing Moderate-to-Severe Crohn's Disease and Ulcerative Colitis. Clin Drug Investig 2024; 44:371-385. [PMID: 38777970 DOI: 10.1007/s40261-024-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND In the panorama of therapeutic strategies for inflammatory bowel diseases, oral upadacitinib stands out for its potential to improve short-term and long-term patient outcomes. OBJECTIVE This meta-analysis aspires to collate and assess the available evidence regarding the efficacy and safety of upadacitinib in managing moderate-to-severe Crohn's disease and ulcerative colitis. METHODS A meta-analysis was conducted using studies sourced from MEDLINE/PubMed, Cochrane Library, Scopus, and Embase, published from January 2010 to March 2024. Peer-reviewed articles that reported data on the effects of upadacitinib in adult patients with Crohn's disease and ulcerative colitis were included based on established inclusion and exclusion criteria. RESULTS Eight studies, encompassing a total of 2818 patients treated with upadacitinib, were included. In primary outcomes, for patients with Crohn's disease who were using upadacitinib, the weighted pooled clinical remission rate was found to be 45.8% (95% confidence interval [CI] 0.39-0.52), while for patients with ulcerative colitis who were using upadacitinib, the rate was 25.4% (95% CI 0.17-0.36). The pooled clinical response rate for Crohn's disease was 53.6% (95% CI 0.50-0.57), and for ulcerative colitis it was 72.6% (95% CI 0.69-0.76). The pooled serious adverse event rate was 6.0% (95% CI 0.07-0.09). CONCLUSIONS Upadacitinib demonstrates significant efficacy in achieving clinical remission and response in patients with moderate-to-severe Crohn's disease and ulcerative colitis, as shown by clinical remission rates of 44.9% and 36.0%, respectively. The treatment also maintains a favorable safety profile with a serious adverse event rate of 7.8%, making it an effective option for those resistant or intolerant to traditional immunosuppressants or tumor necrosis factor antagonists.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | | | - Mahesh Napel
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, USA
| | | | - Hashem Anas
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Nagesh Jadhav
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Karin Dunnigan
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, USA
| |
Collapse
|
28
|
Wu Y, Fu H, Xu X, Jin H, Kao QJ, Teng WL, Wang B, Zhao G, Pi XE. Intervention with fructooligosaccharides, Saccharomyces boulardii, and their combination in a colitis mouse model. Front Microbiol 2024; 15:1356365. [PMID: 38835484 PMCID: PMC11148295 DOI: 10.3389/fmicb.2024.1356365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Objective To examine the effects of an intervention with fructooligosaccharides (FOS), Saccharomyces boulardii, and their combination in a mouse model of colitis and to explore the mechanisms underlying these effects. Methods The effects of FOS, S. boulardii, and their combination were evaluated in a DSS-induced mouse model of colitis. To this end, parameters such as body weight, the disease activity index (DAI), and colon length were examined in model mice. Subsequently, ELISA was employed to detect the serum levels of proinflammatory cytokines. Histopathological analysis was performed to estimate the progression of inflammation in the colon. Gas chromatography was used to determine the content of short-chain fatty acids (SCFAs) in the feces of model mice. Finally, 16S rRNA sequencing technology was used to analyze the gut microbiota composition. Results FOS was slight effective in treating colitis and colitis-induced intestinal dysbiosis in mice. Meanwhile, S. boulardii could significantly reduced the DAI, inhibited the production of IL-1β, and prevented colon shortening. Nevertheless, S. boulardii treatment alone failed to effectively regulate the gut microbiota. In contrast, the combined administration of FOS/S. boulardii resulted in better anti-inflammatory effects and enabled microbiota regulation. The FOS/S. boulardii combination (109 CFU/ml and 107 CFU/ml) significantly reduced the DAI, inhibited colitis, lowered IL-1β and TNF-α production, and significantly improved the levels of butyric acid and isobutyric acid. However, FOS/S. boulardii 109 CFU/ml exerted stronger anti-inflammatory effects, inhibited IL-6 production and attenuated colon shortening. Meanwhile, FOS/S. boulardii 107 CFU/ml improved microbial regulation and alleviated the colitis-induced decrease in microbial diversity. The combination of FOS and S. boulardii significantly increased the abundance of Parabacteroides and decreased the abundance of Escherichia-Shigella. Additionally, it promoted the production of acetic acid and propionic acid. Conclusion Compared with single administration, the combination can significantly increase the abundance of beneficial bacteria such as lactobacilli and Bifidobacteria and effectively regulate the gut microbiota composition. These results provide a scientific rationale for the prevention and treatment of colitis using a FOS/S. boulardii combination. They also offer a theoretical basis for the development of nutraceutical preparations containing FOS and S. boulardii.
Collapse
Affiliation(s)
- Yan Wu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xu Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Hui Jin
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Qing-Jun Kao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wei-Lin Teng
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Bing Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Gang Zhao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiong-E Pi
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Qiao Y, Tang X, Liu Z, Ocansey DKW, Zhou M, Shang A, Mao F. Therapeutic Prospects of Mesenchymal Stem Cell and Their Derived Exosomes in the Regulation of the Gut Microbiota in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:607. [PMID: 38794176 PMCID: PMC11124012 DOI: 10.3390/ph17050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Xiaohua Tang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China;
| | - Ziyue Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| |
Collapse
|
30
|
Husien HM, Rehman SU, Duan Z, Wang M. Effect of Moringa oleifera leaf polysaccharide on the composition of intestinal microbiota in mice with dextran sulfate sodium-induced ulcerative colitis. Front Nutr 2024; 11:1409026. [PMID: 38765820 PMCID: PMC11099247 DOI: 10.3389/fnut.2024.1409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a natural plant that has excellent nutritional and medicinal potential. M. oleifera leaves (MOL) contain several bioactive compounds. The aim of this study was to evaluate the potential effect of MOL polysaccharide (MOLP) on intestinal flora in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. DSS-induced colitis was deemed to be a well-characterized experimental colitis model for investigating the protective effect of drugs on UC. In this study, we stimulated the experimental mice with DSS 4% for 7 days and prepared the high dose of MOLP (MOLP-H) in order to evaluate its effect on intestinal flora in DSS-induced UC mice, comparing three experimental groups, including the control, DSS model, and DSS + MOLP-H (100 mg/kg/day). At the end of the experiment, feces were collected, and the changes in intestinal flora in DSS-induced mice were analyzed based on 16S rDNA high throughput sequencing technology. The results showed that the Shannon, Simpson, and observed species indices of abundance decreased in the DSS group compared with the control group. However, the indices mentioned above were increased in the MOLP-H group. According to beta diversity analysis, the DSS group showed low bacterial diversity and the distance between the control and MOLP-H groups, respectively. In addition, compared with the control group, the relative abundance of Firmicutes in the DSS group decreased and the abundance of Helicobacter increased, while MOLP-H treatment improves intestinal health by enhancing the number of beneficial organisms, including Firmicutes, while reducing the number of pathogenic organisms, such as Helicobacter. In conclusion, these findings suggest that MOLP-H may be a viable prebiotic with health-promoting properties.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Albutana University, Rufaa, Sudan
| | - Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
31
|
Niu Z, Liu Y, Shen R, Jiang X, Wang Y, He Z, Li J, Hu Y, Zhang J, Jiang Y, Hu W, Si C, Wei S, Shen T. Ginsenosides from Panax ginseng as potential therapeutic candidates for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155474. [PMID: 38471369 DOI: 10.1016/j.phymed.2024.155474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.
Collapse
Affiliation(s)
- Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yanan Liu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruyi Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yanting Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ziliang He
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Junyao Li
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ting Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
32
|
Paudel D, Nair DVT, Joseph G, Castro R, Tiwari AK, Singh V. Gastrointestinal microbiota-directed nutritional and therapeutic interventions for inflammatory bowel disease: opportunities and challenges. Gastroenterol Rep (Oxf) 2024; 12:goae033. [PMID: 38690290 PMCID: PMC11057942 DOI: 10.1093/gastro/goae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Evidence-based research has confirmed the role of gastrointestinal microbiota in regulating intestinal inflammation. These data have generated interest in developing microbiota-based therapies for the prevention and management of inflammatory bowel disease (IBD). Despite in-depth understanding of the etiology of IBD, it currently lacks a cure and requires ongoing management. Accumulating data suggest that an aberrant gastrointestinal microbiome, often referred to as dysbiosis, is a significant environmental instigator of IBD. Novel microbiome-targeted interventions including prebiotics, probiotics, fecal microbiota transplant, and small molecule microbiome modulators are being evaluated as therapeutic interventions to attenuate intestinal inflammation by restoring a healthy microbiota composition and function. In this review, the effectiveness and challenges of microbiome-centered interventions that have the potential to alleviate intestinal inflammation and improve clinical outcomes of IBD are explored.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V T Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Amit K Tiwari
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
33
|
Jia W, Yu S, Liu X, Le Q, He X, Yu L, He J, Yang L, Gao H. Ethanol Extract of Limonium bicolor Improves Dextran Sulfate Sodium-Induced Ulcerative Colitis by Alleviating Inflammation and Restoring Gut Microbiota Dysbiosis in Mice. Mar Drugs 2024; 22:175. [PMID: 38667792 PMCID: PMC11050939 DOI: 10.3390/md22040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor (LB), an aquatic traditional Chinese medicine (TCM), exerts multi-targeted therapeutic effects with few side effects and is used to treat anemia and hemostasis. Nevertheless, the impact of LB on UC and its mechanism of action remain unclear. Therefore, the objective of this study was to investigate the anti-inflammatory effects and mechanism of action of ethanol extract of LB (LBE) in lipopolysaccharide-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced UC. The results showed that LBE suppressed the secretion of cytokines in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. LBE had protective effects against DSS-induced colitis in mice, decreased the disease activity index (DAI) score, alleviated symptoms, increased colon length, and improved histological characteristics, thus having protective effects against DSS-induced colitis in mice. In addition, it reversed disturbances in the abundance of proteobacteria and probiotics such as Lactobacillus and Blautia in mice with DSS-induced UC. Based on the results of network pharmacology analysis, we identified four main compounds in LBE that are associated with five inflammatory genes (Ptgs2, Plg, Ppar-γ, F2, and Gpr35). These results improve comprehension of the biological activity and functionality of LB and may facilitate the development of LB-based compounds for the treatment of UC.
Collapse
Affiliation(s)
- Wei Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Siyu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Xi Liu
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361000, China;
| | - Qingqing Le
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Xiwen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Lutao Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, Ministry of Natural Resources), Fuzhou 350400, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Q.L.); (X.H.); (J.H.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, Ministry of Natural Resources), Fuzhou 350400, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (W.J.); (S.Y.); (L.Y.)
| |
Collapse
|
34
|
Huang D, Zou M, Xu C, Wang Y, Xu Z, Zhang W, Tang S, Weng Z. Colon-Targeted Oral Delivery of Hydroxyethyl Starch-Curcumin Microcapsules Loaded with Multiple Drugs Alleviates DSS-Induced Ulcerative Colitis in Mice. Macromol Biosci 2024; 24:e2300465. [PMID: 38111343 DOI: 10.1002/mabi.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Combination therapy through colon-targeted oral delivery of multiple drugs presents a promising approach for effectively treating ulcerative colitis (UC). However, the codelivery of drugs with diverse physicochemical properties in a single formulation remains a formidable challenge. Here, microcapsules are designed based on hydroxyethyl starch-curcumin (HES─CUR) conjugates to enable the simultaneous delivery of hydrophobic dexamethasone acetate (DA) and hydrophilic cefazolin sodium (CS), yielding multiple drug-loaded microcapsules (CS/DA-loaded HES─CUR microcapsules, CDHC-MCs) tailored for colon-targeted therapy of UC. Thorough characterization confirms the successful synthesis and exceptional biocompatibility of CDHC-MCs. Biodistribution studies demonstrate that the microcapsules exhibit an impressive inflammatory targeting effect, accumulating preferentially in inflamed colons. In vivo experiments employing a dextran-sulfate-sodium-induced UC mouse model reveal that CDHC-MCs not only arrest UC progression but also facilitate the restoration of colon length and alleviate inflammation-related splenomegaly. These findings highlight the potential of colon-targeted delivery of multiple drugs within a single formulation as a promising strategy to enhance UC treatment, and the CDHC-MCs developed in this study hold great potential in developing novel oral formulations for advanced UC therapy.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chenlan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
35
|
Cao R, Fang X, Li Z, Li S, Guo Q, Chai Y. Effect of Polygonatum sibiricum saponins on gut microbiota of mice with ulcerative colitis. Fitoterapia 2024; 174:105855. [PMID: 38354822 DOI: 10.1016/j.fitote.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Polygonatum sibiricum is a plant with medicinal and nutritional properties. Saponins are the important biologically active components of Polygonatum sibiricum. In this study, the specific components of Polygonatum sibiricum saponins (PSS) were analyzed, and the regulation effect of PSS on intestinal flora in patients with ulcerative colitis (UC) was investigated by inducing male Kunming mice with dextran sulfate sodium (DSS). PSS could ameliorate the symptoms of weight loss, high DAI score and colon length reduction compared to DSS-induced treatment. Colonic fragments were taken for H&E staining and histopathological scoring. PSS could significantly improve the pathological abnormality of colitis mice. 16S rRNA analysis showed that the intestinal microbial community of mice treated with DSS was significantly damaged. PSS could restore the richness and diversity of intestinal microbial flora, reduce the number of pathogenic bacteria, and increase the abundance of Lactobacillus spp. and Muribaculaceae, and improve the intestinal microbial flora disorder. Generally, PSS had an obvious effect in relieving colitis in mice. This study confirmed that Polygonatum sibiricum saponins play a therapeutic and palliative role in ulcerative colitis by regulating the microbiome balance.
Collapse
Affiliation(s)
- Rong Cao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xinyi Fang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ziyi Li
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Sijia Li
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Qingqi Guo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yangyang Chai
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China.
| |
Collapse
|
36
|
Liu K, Yin Y, Shi C, Yan C, Zhang Y, Qiu L, He S, Li G. Asiaticoside ameliorates DSS-induced colitis in mice by inhibiting inflammatory response, protecting intestinal barrier and regulating intestinal microecology. Phytother Res 2024; 38:2023-2040. [PMID: 38384110 DOI: 10.1002/ptr.8129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.
Collapse
Affiliation(s)
- Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Yin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chong Shi
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuangyan He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| |
Collapse
|
37
|
Yue Y, Shi M, Song X, Ma C, Li D, Hu X, Chen F. Lycopene Ameliorated DSS-Induced Colitis by Improving Epithelial Barrier Functions and Inhibiting the Escherichia coli Adhesion in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5784-5796. [PMID: 38447175 DOI: 10.1021/acs.jafc.3c09717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Adherent-invasive Escherichia coli plays an important role in the pathogenesis of inflammatory bowel disease. Blocking the adhesion of E. coli to intestinal epithelial cells appears to be useful for attenuating inflammatory bowel disease. Lycopene has been reported to have anti-inflammatory and antimicrobial activities. The aim of this study was to test the intervention effect of lycopene on colitis in mice and to investigate the possible mechanism through which lycopene affects the adhesion of E. coli to intestinal epithelial cells. Lycopene (12 mg/kg BW) attenuated dextran sulfate sodium (DSS)-induced colitis, decreased the proportion of E. coli, and activated the NLR family pyrin domain containing 12 and inactivated nuclear factor kappa B pathways. Furthermore, lycopene inhibited the adhesion of E. coli O157:H7 to Caco-2 cells by blocking the interaction between E. coli O157:H7 and integrin β1. Lycopene ameliorated DSS-induced colitis by improving epithelial barrier functions and inhibiting E. coli adhesion. Overall, these results show that lycopene may be a promising component for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Yunshuang Yue
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
- Beijing DaBeiNong Biotechnology Co., Ltd., Beijing 100193, China
| | - Mengxuan Shi
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xunyu Song
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
38
|
Moradi S, Bagheri R, Amirian P, Zarpoosh M, Cheraghloo N, Wong A, Zobeiri M, Entezari MH. Effects of Spirulina supplementation in patients with ulcerative colitis: a double-blind, placebo-controlled randomized trial. BMC Complement Med Ther 2024; 24:109. [PMID: 38424572 PMCID: PMC10905931 DOI: 10.1186/s12906-024-04400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
AIM We conducted a randomized placebo-controlled trial to assess the efficacy of Spirulina (SP) supplementation on disease activity, health-related quality of life, antioxidant status, and serum pentraxin 3 (PTX-3) levels in patients with ulcerative colitis (UC). METHODS Eighty patients with UC were randomly assigned to consume either 1 g/day (two 500 mg capsules/day) of SP (n = 40) or control (n = 40) for 8 weeks. Dietary intakes, physical activity, disease activity, health-related quality of life, antioxidant status, erythrocyte sedimentation rate (ESR), and serum PTX-3 levels were assessed and compared between groups at baseline and post-intervention. RESULTS Seventy-three patients (91.3%) completed the trial. We observed increases in serum total antioxidant capacity levels in the SP supplementation group compared to the control group after 8 weeks of intervention (p ≤ 0.001). A within-group comparison indicated a trend towards a higher health-related quality of life score after 8 weeks of taking two different supplements, SP (p < 0.001) and PL (p = 0.012), respectively. However, there were no significant changes in participant's disease activity score in response to SP administration (p > 0.05). Similarly, changes in ESR and PTX-3 levels were comparable between groups post-intervention (p > 0.05). CONCLUSIONS SP improved antioxidant capacity status and health-related quality of life in patients with UC. Our findings suggest that SP supplementation may be effective as an adjuvant treatment for managing patients with UC. Larger trials with longer interventions periods are required to confirm our findings.
Collapse
Affiliation(s)
- Sajjad Moradi
- Department of Nutrition and Food Sciences, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, 8174673441, Iran
| | - Parsa Amirian
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mahsa Zarpoosh
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Neda Cheraghloo
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Mehdi Zobeiri
- Department of Internal Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hassan Entezari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
39
|
Wang K, Zhu Y, Liu K, Zhu H, Ouyang M. Adverse events of biologic or small molecule therapies in clinical trials for inflammatory bowel disease: A systematic review and meta-analysis. Heliyon 2024; 10:e25357. [PMID: 38370239 PMCID: PMC10869791 DOI: 10.1016/j.heliyon.2024.e25357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/20/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Background Biologic or small-molecule therapies are highly effective for the treatment of inflammatory bowel disease (IBD), and approval by the FDA has significantly increased both their clinical use and the development of novel regimens. However, the identification and management of their associated toxicities poses challenges for clinicians and researchers. Methods A systematic review and meta-analysis of randomized controlled trials (RCTs) published from January 1, 2000, to October 15, 2022, and in the databases. A random-effects model with logit transformation was applied to the analysis heterogeneity between studies was evaluated using the I2 statistic with incidence and 95 % confidence interval (CI) for any adverse events (AEs), and serious AEs (SAEs). Results In Crohn's disease (CD), the total AE incidence was 67.0 % (95 % CI, 66.2%-67.8 %; I2 = 97.2 %) for any AEs and 7.3 % (6.9-7.7; 97.2) for serious AEs. In ulcerative colitis (UC), the overall incidence of any and serious AEs was 63.6 % (63.0-64.3; 98.1) and 5.7 % (5.4-6.0; 88.9), respectively. The most common AEs were infections (21.5 [20.3-22.8], 32.6 [31.0-34.2], 25.9 [24.5-27.2], and 13.7 [10.7-16.7]) in CD patients that were treated with TNF antagonists, anti-integrins, anti-IL agents, and JAK inhibitors, respectively, and in UC patients also were infections (22.8 [21.7-24.0], 27.4 [25.9-28.9], and 18.4 [16.7-20.2]), respectively, as well as increases in lactic dehydrogenase levels (23.1 [20.8-25.4]) with JAK inhibitors. Conclusion This study offers a comprehensive summary of toxic side effects of IBD treatments and a useful reference for both patients and clinicians.
Collapse
Affiliation(s)
- Kailing Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kun Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
40
|
Shajari E, Gagné D, Malick M, Roy P, Noël JF, Gagnon H, Brunet MA, Delisle M, Boisvert FM, Beaulieu JF. Application of SWATH Mass Spectrometry and Machine Learning in the Diagnosis of Inflammatory Bowel Disease Based on the Stool Proteome. Biomedicines 2024; 12:333. [PMID: 38397935 PMCID: PMC10886680 DOI: 10.3390/biomedicines12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) flare-ups exhibit symptoms that are similar to other diseases and conditions, making diagnosis and treatment complicated. Currently, the gold standard for diagnosing and monitoring IBD is colonoscopy and biopsy, which are invasive and uncomfortable procedures, and the fecal calprotectin test, which is not sufficiently accurate. Therefore, it is necessary to develop an alternative method. In this study, our aim was to provide proof of concept for the application of Sequential Window Acquisition of All Theoretical Mass Spectra-Mass spectrometry (SWATH-MS) and machine learning to develop a non-invasive and accurate predictive model using the stool proteome to distinguish between active IBD patients and symptomatic non-IBD patients. Proteome profiles of 123 samples were obtained and data processing procedures were optimized to select an appropriate pipeline. The differentially abundant analysis identified 48 proteins. Utilizing correlation-based feature selection (Cfs), 7 proteins were selected for proceeding steps. To identify the most appropriate predictive machine learning model, five of the most popular methods, including support vector machines (SVMs), random forests, logistic regression, naive Bayes, and k-nearest neighbors (KNN), were assessed. The generated model was validated by implementing the algorithm on 45 prospective unseen datasets; the results showed a sensitivity of 96% and a specificity of 76%, indicating its performance. In conclusion, this study illustrates the effectiveness of utilizing the stool proteome obtained through SWATH-MS in accurately diagnosing active IBD via a machine learning model.
Collapse
Affiliation(s)
- Elmira Shajari
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - David Gagné
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Allumiqs, 975 Rue Léon-Trépanier, Sherbrooke, QC J1G 5J6, Canada
| | - Mandy Malick
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Patricia Roy
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | - Hugo Gagnon
- Allumiqs, 975 Rue Léon-Trépanier, Sherbrooke, QC J1G 5J6, Canada
| | - Marie A. Brunet
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Maxime Delisle
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - François-Michel Boisvert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
41
|
Chen Z, Wang H, Tan L, Liu X. Protective Effects of Four Structurally Distinct Sanshools Ameliorate Dextran Sodium Sulfate-Induced Ulcerative Colitis by Restoring Intestinal Barrier Function and Modulating the Gut Microbiota. Antioxidants (Basel) 2024; 13:153. [PMID: 38397751 PMCID: PMC10886262 DOI: 10.3390/antiox13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxy-α-sanshool (HAS), hydroxy-β-sanshool (HBS), hydroxy-γ-sanshool (HRS), and γ-sanshool (RS) are the key components from the Zanthoxylum genus, processing a range of pharmacological activities. The present study investigated the protective capacities of four sanshools on a dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). The results showed that sanshool administration alleviated the colitis symptoms by reducing body weight loss and disease activity index (DAI) score, increasing the colon length, and improving colonic injury and the change in immune organ weight. Furthermore, sanshools enhanced the antioxidant enzyme activities, and RS exhibited the lowest effect on the improvement in total antioxidative capacity (T-AOC) and antioxidant abilities compared to the other three sanshools. The p65 nuclear factor κB (p65 NFκB) signaling pathway was inhibited to prevent hyperactivation and decreased the production of inflammatory factors. The gut barrier function in DSS-induced mice was restored by increasing goblet cell number and levels of tight junction proteins (zonula occludens-1, occludin, and claudin-1), and the levels of protein in HAS and HRS groups were higher than that in the HBS group, significantly. The analysis of gut microbiota suggested that sanshool administration significantly boosted the abundance of Lachnospiraceae, Muribaculaceae, Oscillospiraceae, and Alistipes and reduced the level of Buchnera in colitis mice. Collectively, the sanshool treatment could ameliorate colitis by resisting colon injury and regulating intestinal barrier dysfunction and gut microbiota dysbiosis; meanwhile, HRS and HAS have better improvement effects.
Collapse
Affiliation(s)
- Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China;
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China (L.T.)
| | - Hui Wang
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China (L.T.)
| | - Lulin Tan
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China (L.T.)
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China;
| |
Collapse
|
42
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
43
|
Nie C, Zhao Y, Wang P, Wang R, Li Y, Wang X, Fang B, Wang X, Zhan J, Zhu L, Chen C, Zhang W, Liao H, Liu R. Momordica charantia Polysaccharide intervention ameliorates the symptoms of dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota and inhibiting inflammation. J Funct Foods 2024; 112:105970. [DOI: 10.1016/j.jff.2023.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
|
44
|
Song Z, Lu D, Sun J, Ye Y, Fang J, Wang K, Guo S, Zhang Q, He X, Xie X, Shen J. Discovery of a novel GPR35 agonist with high and equipotent species potency for oral treatment of IBD. Bioorg Med Chem 2023; 96:117511. [PMID: 37976806 DOI: 10.1016/j.bmc.2023.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
The G protein-coupled receptor 35 (GPR35) has been identified as a potential target in the treatment of inflammatory bowel disease (IBD). However, the lack of high and equipotent agonists on both human and mouse GPR35 has limited the in vivo study of GPR35 agonists in mouse models of IBD. In this study, structural modifications to lodoxamide provides a series of high and equivalent agonists on human, mouse, and rat GPR35. These molecules eliminate the species selectivity of human to mouse and rat orthologs that have been prevalent with GPR35 agonists including lodoxamide. The cLogP properties are also optimized to make the compounds more obedient to drug-like rules, yielding compound 4b (cLogP = 2.41), which activates human, mouse or rat GPR35 with EC50 values of 76.0, 63.7 and 77.8 nM, respectively. Oral administration of compound 4b at 20 mg/kg alleviates clinical symptoms of DSS-induced IBD in mice, and is slightly more effective than 5-ASA at 200 mg/kg. In summary, it can serve as a new start point for exploiting more potent GPR35 agonists without species differences for the treatment of IBD, and warrants further study.
Collapse
Affiliation(s)
- Zhaoxiang Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lu
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Sun
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiahui Fang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xinheng He
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
45
|
Zhang W, An EK, Kim SJ, Park HB, Lee PCW, Jin JO. Escherichia coli adhesion protein FimH exacerbates colitis via CD11b +CD103 - dendritic cell activation. Front Immunol 2023; 14:1284770. [PMID: 38077339 PMCID: PMC10703180 DOI: 10.3389/fimmu.2023.1284770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Immune stimulators are used to improve vaccine efficiency; however, they are accompanied by various side effects. In previous studies, we reported that the Escherichia coli adhesion protein, FimH, induces immune activity; however, we did not examine any side effects in colon inflammation. Methods FimH was administered orally or intraperitoneally (i.p.) to mice with dextran sulfate sodium (DSS)-induced colitis, and changes in symptoms were observed. Immune cells infiltrated into the colon after the induction of colon inflammation were analyzed using a flow cytometer. Changes in Th1 and Th17 cells that induce colitis were analyzed. Further, mesenteric lymph node (mLN) dendritic cells (DCs) activated by FimH were identified and isolated to examine their ability to induce T-cell immunity. Results FimH oral and i.p. administration in C57BL/6 mice did not induce inflammation in the colon; however, DSS-induced colitis was exacerbated by oral and i.p. FimH administration. FimH treatment increased immune cell infiltration in the colon compared to that in DSS colitis. Th1 and Th17 cells, which are directly related to colitis, were increased in the colon by FimH; however, FimH did not directly affect the differentiation of these T cells. FimH upregulated the CD11b+CD103- DC activity in the mLNs, which produced the signature cytokines required for Th1 and Th17. In addition, isolated CD11b+CD103- DCs, after stimulation with FimH, directly induced Th1 and Th17 differentiation in a co-culture of CD4 T cells. Conclusion This study demonstrated the side effects of FimH and indicated that the use of FimH can aggravate the disease in patients with colitis.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eun-Koung An
- Department of Microbiology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So-Jung Kim
- Department of Microbiology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hae-Bin Park
- Department of Microbiology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Peter C. W. Lee
- Department of Biochemistry and Molecular Biology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Kim J, Kang C, Yoo JW, Yoon IS, Jung Y. N-Succinylaspartic-Acid-Conjugated Riluzole Is a Safe and Potent Colon-Targeted Prodrug of Riluzole against DNBS-Induced Rat Colitis. Pharmaceutics 2023; 15:2638. [PMID: 38004616 PMCID: PMC10675528 DOI: 10.3390/pharmaceutics15112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In our previous study, riluzole azo-linked to salicylic acid (RAS) was prepared as a colon-targeted prodrug of riluzole (RLZ) to facilitate the repositioning of RLZ as an anticolitic drug. RAS is more effective against rat colitis than RLZ and sulfasalazine, currently used as an anti-inflammatory bowel disease drug. The aim of this study is to further improve colon specificity, anticolitic potency, and safety of RAS. N-succinylaspart-1-ylRLZ (SAR) and N-succinylglutam-1-ylRLZ (SGR) were synthesized and evaluated as a "me-better" colon-targeted prodrug of RLZ against rat colitis. SAR but not SGR was converted to RLZ in the cecal contents, whereas both conjugates remained intact in the small intestine. When comparing the colon specificity of SAR with that of RAS, the distribution coefficient and cell permeability of SAR were lower than those of RAS. In parallel, oral SAR delivered a greater amount of RLZ to the cecum of rats than oral RAS. In a DNBS-induced rat model of colitis, oral SAR mitigated colonic damage and inflammation and was more potent than oral RAS. Moreover, upon oral administration, SAR had a greater ability to limit the systemic absorption of RLZ than RAS, indicating a reduced risk of systemic side effects of SAR. Taken together, SAR may be a "me-better" colon-targeted prodrug of RLZ to improve the safety and anticolitic potency of RAS, an azo-type colon-targeted prodrug of RLZ.
Collapse
Affiliation(s)
| | | | | | | | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (J.K.); (C.K.); (J.-W.Y.); (I.-S.Y.)
| |
Collapse
|
47
|
Wang J, Bakker W, de Haan L, Bouwmeester H. Deoxynivalenol increases pro-inflammatory cytokine secretion and reduces primary bile acid transport in an inflamed intestinal in vitro co-culture model. Food Res Int 2023; 173:113323. [PMID: 37803634 DOI: 10.1016/j.foodres.2023.113323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
The fungal secondary metabolite deoxynivalenol (DON) that can contaminate cereal-based food products not only induces inflammation but also reduces bile acid absorption by a healthy human intestine. Bile acid malabsorption is commonly observed in individuals with an inflamed intestine. Here we studied the effects of DON on inflammation and primary bile acid transport using an in vitro model for an inflamed intestine. An inflamed intestinal in vitro model was established by co-culturing a Caco-2 cell-layer and LPS-pre-stimulated THP-1 macrophages in Transwells. We observed a decreased transport of 5 primary bile acids across inflamed co-cultures compared to healthy co-cultures but not of chenodeoxycholic acid. DON exposure further reduced the transport of the affected primary bile acids across the inflamed co-cultures. DON exposure also enhanced the secretion of pro-inflammatory cytokines in the inflamed co-cultures, while it did not increase the pro-inflammatory cytokines secretion from LPS-pre-stimulated THP-1 monocultures. Exposure of Caco-2 cell-layers to pro-inflammatory cytokines or THP-1 conditioned media partly mimicked the DON-induced effects of the co-culture model. Local activation of intestinal immune cells reinforces the direct pro-inflammatory effects of DON on intestinal epithelial cells. This affects the bile acid intestinal kinetics in an inflamed intestine.
Collapse
Affiliation(s)
- Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
48
|
Georganta I, McIntosh S, Boldovjakova D, Parnaby CN, Watson AJM, Ramsay G. The incidence of malignancy in the residual rectum of IBD patients after colectomy: a systematic review and meta-analysis. Tech Coloproctol 2023; 27:699-712. [PMID: 36906886 PMCID: PMC10404177 DOI: 10.1007/s10151-023-02762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) who have had a total colectomy remain with their rectum in situ, and are therefore at risk of rectal carcinoma. It is not clear how high the incidence of rectal cancer is in this cohort. The primary objective of this meta-analysis was to estimate the incidence of rectal cancer in patients with ulcerative colitis or Crohn's disease who have undergone colectomy but have a residual rectum, and to identify the risk factors for its development. In doing so, we explore the current recommendations for screening processes for these patients. METHODS A systematic review of the literature was performed. Five databases (Medline, Embase, Pubmed, Cochrane Library and Scopus) were searched from inception to 29 October 2021, to identify studies adhering to the population, intervention, control and outcomes (PICO) criteria. The included studies were critically appraised, and the relevant data was extracted. Cancer incidence was estimated from the reported information. Risk stratification was analysed using RevMan. A narrative approach was undertaken for the exploration of the existing screening guidelines. RESULTS Data from 23 of the 24 identified studies was suitable for analysis. The pooled incidence of rectal carcinoma was calculated to be 1.3%. Subgroup analysis showed an incidence of 0.7% and 3.2% for patients with a de-functioned rectal stump and ileorectal anastomosis, respectively. Patients with a history of a colorectal carcinoma were more likely to have a subsequent diagnosis of rectal carcinoma (RR 7.2, 95% CI 2.4-21.1). Patients with previous colorectal dysplasia were also at higher risk (RR 5.1, 95% CI 3.1-8.2). No universal standardised guidance regarding screening for this cohort could be identified in the available literature. CONCLUSIONS The overall risk of malignancy was estimated to be 1.3%, which is lower than previously reported. There is a need for clear and standardised screening guidance for this group of patients.
Collapse
Affiliation(s)
- I Georganta
- Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen, AB252ZD, UK
| | - S McIntosh
- Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen, AB252ZD, UK
| | - D Boldovjakova
- Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen, AB252ZD, UK
| | - C N Parnaby
- Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen, AB252ZD, UK
| | - A J M Watson
- Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen, AB252ZD, UK
| | - G Ramsay
- Health Services Research Unit, University of Aberdeen, Foresterhill, Aberdeen, AB252ZD, UK.
| |
Collapse
|
49
|
Gopalakrishnan S, Thomas R, Sedaghat S, Krishnakumar A, Khan S, Meyer T, Ajieren H, Nejati S, Wang J, Verma MS, Irazoqui P, Rahimi R. Smart capsule for monitoring inflammation profile throughout the gastrointestinal tract. BIOSENSORS & BIOELECTRONICS: X 2023; 14:100380. [PMID: 37799507 PMCID: PMC10552446 DOI: 10.1016/j.biosx.2023.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Inflammatory bowel disease (IBD) has become alarmingly prevalent in the last two decades affecting 6.8 million people worldwide with a starkly high relapse rate of 40% within 1 year of remission. Existing visual endoscopy techniques rely on subjective assessment of images that are error-prone and insufficient indicators of early-stage IBD, rendering them unsuitable for frequent and quantitative monitoring of gastrointestinal health necessary for detecting regular relapses in IBD patients. To address these limitations, we have implemented a miniaturized smart capsule (2.2 cm × 11 mm) that allows monitoring reactive oxygen species (ROS) levels as a biomarker of inflammation for quantitative and frequent profiling of inflammatory lesions throughout the gastrointestinal tract. The capsule is composed of a pH and oxidation reduction potential (ORP) sensor to track the capsule's location and ROS levels throughout the gastrointestinal tract, respectively, and an optimized electronic interface for wireless sensing and data communication. The designed sensors provided a linear and stable performance within the physiologically relevant range of the GI tract (pH: 1-8 and ORP: -500 to +500 mV). Additionally, systematic design optimization of the wireless interface electronics offered an efficient sampling rate of 10 ms for long-running measurements up to 48 h for a complete evaluation of the entire gastrointestinal tract. As a proof-of-concept, the capsule the capsule's performance in detecting inflammation risks was validated by conducting tests on in vitro cell culture conditions, simulating healthy and inflamed gut-like environments. The capsule presented here achieves a new milestone in addressing the emerging need for smart ingestible electronics for better diagnosis and treatment of digestive diseases.
Collapse
Affiliation(s)
- Sarath Gopalakrishnan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Rithu Thomas
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sotoudeh Sedaghat
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Akshay Krishnakumar
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sadid Khan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hans Ajieren
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sina Nejati
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
| | - Mohit S. Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, West Lafayette, IN, 47907, USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
50
|
He S, Li J, Yao Z, Gao Z, Jiang Y, Chen X, Peng L. Insulin alleviates murine colitis through microbiome alterations and bile acid metabolism. J Transl Med 2023; 21:498. [PMID: 37491256 PMCID: PMC10369930 DOI: 10.1186/s12967-023-04214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Insulin has been reported to exhibit anti-inflammatory activities in the context of bowel inflammation. However, the role of the interaction between insulin and the microbiota in gut health is unclear. Our goal was to investigate the mechanism of action of insulin in bowel inflammation and the relationship between insulin and the gut microbiota. METHODS We used acute and chronic murine models of inflammatory bowel disease (IBD) to evaluate whether insulin influences the progression of colitis. Colonic tissues, the host metabolome and the gut microbiome were analyzed to investigate the relationship among insulin treatment, the microbiome, and disease. Experiments involving antibiotic (Abx) treatment and fecal microbiota transplantation (FMT) confirmed the association among the gut microbiota, insulin and IBD. In a series of experiments, we further defined the mechanisms underlying the anti-inflammatory effects of insulin. RESULTS We found that low-dose insulin treatment alleviated intestinal inflammation but did not cause death. These effects were dependent on the gut microbiota, as confirmed by experiments involving Abx treatment and FMT. Using untargeted metabolomic profiling and 16S rRNA sequencing, we discovered that the level of the secondary bile acid lithocholic acid (LCA) was notably increased and the LCA levels were significantly associated with the abundance of Blautia, Enterorhadus and Rumi-NK4A214_group. Furthermore, LCA exerted anti-inflammatory effects by activating a G-protein-coupled bile acid receptor (TGR5), which inhibited the polarization of classically activated (M1) macrophages. CONCLUSION Together, these data suggest that insulin alters the gut microbiota and affects LCA production, ultimately delaying the progression of IBD.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jiating Li
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zirong Yao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|