1
|
Ji J, Yin H, Zhou X, Song B, Feng X, Cai P, Qin L, Huang Y, Liu J, Chen D. The carrier dynamics for self-assembled black phosphorus and perovskite nanocrystals enable photocatalytic conversion. Phys Chem Chem Phys 2025; 27:9732-9740. [PMID: 40261066 DOI: 10.1039/d4cp04748f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Few-layer black phosphorus (BP) becomes an ideal self-assembled material with perovskite nanocrystals (NCs) for photoluminescence (PL) and photocatalysis, due to the feasible control of photogenerated charge carriers. Until now, it is still a challenge to figure out the intrinsic carrier dynamics for multifunctional photodegradation in water. In this work, a series of few-layer BP components were successfully incorporated into CsPbBr3 NCs to achieve apparent PL quenching and ˙O2--dominated photocatalytic degradation of rhodamine B in aqueous solution. The strategy of BP modification can extend photoabsorption ensuring optimized photocatalytic activity by facilitating electron transfer from CsPbBr3 to BP with strong van der Waals interactions. In particular, CsPbBr3:5%BP NC eliminates the effect of sub-bandgap luminescence centers, resulting in a low charge transfer resistance, good carrier mobility, and high photocurrent densities under light irradiation.
Collapse
Affiliation(s)
- Jing Ji
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Hang Yin
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Xin Zhou
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Bingxi Song
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Xuhui Feng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Laishun Qin
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Yuexiang Huang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Da Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Yue Y, Wen T, He Y, Qu X, Dou J, Zhong Y, Ding J, Zhang H. Photo-Enhanced Peroxymonosulfate Activation via Well-Dispersed Cobalt Nanoparticles Encapsulated on Carbon Nitride for 2,8-Dichlorodibenzo-p-dioxin Removal. Molecules 2025; 30:1917. [PMID: 40363724 PMCID: PMC12073787 DOI: 10.3390/molecules30091917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
The removal of polychlorinated dibenzo-p-dioxins (PCDDs) via advanced oxidation processes (AOPs) poses a significant challenge due to their high toxicity and chemical stability. In this study, a series of well-dispersed cobalt nanoparticles supported on carbon nitrides (xCoCNs) was synthesized to activate peroxymonosulfate (PMS) for 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) degradation under visible light. The catalysts prepared were characterized using SEM, XPS, photoluminescence (PL), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). Among them, 2CoCN with an optimal Co content exhibited the highest photocatalytic efficiency, achieving 90.5% degradation of 2,8-DCDD within 160 min under visible light/persulfate oxidation (Vis+PMS+2CoCN system). Compared with other catalysts, 2CoCN exhibited superior optical performance and a narrower bandgap, enabling efficient excitation under visible light (Vis). Notably, all xCoCNs demonstrated pH adaptability, achieving complete degradation of 2,8-DCDD under neutral conditions (pH = 7) without additional acid/alkali adjustment. Through rigorous free radical capture experiments, it was demonstrated that SO4•-, •OH and 1O2 were the primary reactive oxygen species (ROS) in the Vis+PMS+2CoCN system. The catalyst exhibited excellent reusability, with stable activity retained over five cycles. Based on these findings, degradation pathways and mechanisms of 2,8-DCDD in the 2CoCN+Vis+PMS system were proposed. This study presents an effective approach for PCDD abatement in wastewater treatment applications.
Collapse
Affiliation(s)
- Yao Yue
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
| | - Teer Wen
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
| | - Yunfei He
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuetong Qu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Jibo Dou
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuchi Zhong
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; (Y.Y.); (T.W.); (Y.H.); (X.Q.); (J.D.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Shen Y, Liu Z, Bi R, Zhou B, Wang Y, Liu J, Wang Z, Han B. Low-Crystallized Carbon as an Electron Mediator in g-C 3N 4/C/TiO 2 for Enhancing Photocatalytic Degradation of Antibiotics. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:365. [PMID: 40072168 PMCID: PMC11901478 DOI: 10.3390/nano15050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Photodegradation of antibiotics based on photocatalytic semiconductors is a promising option to alleviate water pollution. Despite its limitations, TiO2-based photocatalysts are still the most widely studied materials for pollutant degradation. In this work, a pomegranate-like g-C3N4/C/TiO2 nano-heterojunction was constructed using the hydrothermal-calcination method, consisting of interconnected small crystals with a dense structure and closely contacted interface. Low-crystallized carbon filled the gap between TiO2 and g-C3N4, forming a large interface. The local in-plane heterostructures generated by C/g-C3N4 are further improved for carrier transport. As expected, the optimal sample calcined at 300 °C (GTC-300) efficiently eliminated tetracycline hydrochloride (TC-HCl, 20 mg L-1), achieving a removal rate of up to 92.9% within 40 min under full-spectrum irradiation and 87.8% within 60 min under the visible spectrum (λ > 400 nm). The electron mediator, low-crystallized carbon, successfully promoted the formation of new internal electric fields via the widespread heterojunction interface, which accelerated the separation and migration of photogenerated carriers between g-C3N4 and TiO2. These results confirm that the g-C3N4/C/TiO2 nano-heterojunction exhibited outstanding photodegradation performance of TC-HCl. The electron mediator shows great potential in promoting carrier transfer and enhancing photocatalytic performance of heterogeneous photocatalysts in water treatment.
Collapse
Affiliation(s)
- Yijie Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Zhe Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Renke Bi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Bianbian Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Yan Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Jialong Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Zhiyu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.S.); (Z.L.)
| | - Bing Han
- College of Sciences, College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Barakat NAM, Tayeb AM, Hamad R, Hashem M, Fouad H, Kim HY, Hefny RA. Enhanced photocatalytic hydrogen production via water splitting using cobalt-based organic nanofibers under visible light irradiation. RSC Adv 2024; 14:34904-34917. [PMID: 39483383 PMCID: PMC11526821 DOI: 10.1039/d4ra06778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024] Open
Abstract
This study focuses on the development of cobalt-based organic nanofibers as efficient photocatalysts for hydrogen production via water splitting under visible light irradiation. The depletion of fossil fuels necessitates the exploration of alternative energy sources, with hydrogen emerging as a promising candidate due to its clean and renewable nature. While conventional photocatalysts have shown potential, their limited activity under visible light and fast electron-hole recombination hinder their efficiency. In this work, cobalt acetate/poly(vinyl alcohol) (CoAc/PVA) nanofibers were electrospun and treated in a novel reactor design under water gas atmosphere at 160 °C to produce continuous, smooth, and stable nanobelts. The nanofibers displayed a band gap energy of 2.29 eV, indicating strong absorption in the visible light range. Detailed characterization using FTIR, XPS, SEM, and TGA confirmed the formation of organic-inorganic hybrid nanofibers with uniform cobalt distribution. Hydrogen production experiments showed that the proposed nanofibers significantly outperformed Co3O4 nanofibers, with an optimal hydrogen generation rate of 3.266 mmol gcat -1 s-1 at 70 vol% methanol. Furthermore, the treated nanofibers demonstrated good stability over multiple cycles, maintaining a constant hydrogen production rate after the third run. The study highlights the advantages of cobalt-based organic nanofibers in overcoming the limitations of traditional photocatalysts, providing a novel route for sustainable hydrogen production.
Collapse
Affiliation(s)
- Nasser A M Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| | - Aghareed M Tayeb
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| | - Rahma Hamad
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| | - Mohamed Hashem
- Department of Dental Health, College of Applied Medical Sciences, King Saud University P. O. Box. 12372 Riyadh Saudi Arabia
| | - Hassan Fouad
- Biomedical Engineering Department, Faculty of Engineering, Helwan University Helwan Egypt
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University Jeonju 54896 South Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University Jeonju 54896 South Korea
| | - Rasha A Hefny
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| |
Collapse
|
5
|
Tee SY, Kong J, Koh JJ, Teng CP, Wang X, Wang X, Teo SL, Thitsartarn W, Han MY, Seh ZW. Structurally and surficially activated TiO 2 nanomaterials for photochemical reactions. NANOSCALE 2024; 16:18165-18212. [PMID: 39268929 DOI: 10.1039/d4nr02342k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Renewable fuels and environmental remediation are of paramount importance in today's world due to escalating concerns about climate change, pollution, and the finite nature of fossil fuels. Transitioning to sustainable energy sources and addressing environmental pollution has become an urgent necessity. Photocatalysis, particularly harnessing solar energy to drive chemical reactions for environmental remediation and clean fuel production, holds significant promise among emerging technologies. As a benchmark semiconductor in photocatalysis, TiO2 photocatalyst offers an excellent solution for environmental remediation and serves as a key tool in energy conversion and chemical synthesis. Despite its status as the default photocatalyst, TiO2 suffers from drawbacks such as a high recombination rate of charge carriers, low electrical conductivity, and limited absorption in the visible light spectrum. This review provides an in-depth exploration of the fundamental principles of photocatalytic reactions and presents recent advancements in the development of TiO2 photocatalysts. It specifically focuses on strategic approaches aimed at enhancing the performance of TiO2 photocatalysts, including improving visible light absorption for efficient solar energy harvesting, enhancing charge separation and transportation efficiency, and ensuring stability for robust photocatalysis. Additionally, the review delves into the application of photodegradation and photocatalysis, particularly in critical processes such as water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide generation, and alcohol oxidation. It also highlights the novel use of TiO2 in plastic polymerization and degradation, showcasing its potential for converting plastic waste into valuable chemicals and fuels, thereby offering sustainable waste management solutions. By addressing these essential areas, the review offers valuable insights into the potential of TiO2 photocatalysis for addressing pressing environmental and energy challenges. Furthermore, the review encompasses the application of TiO2 photochromic systems, expanding its scope to include other innovative research and applications. Finally, it addresses the underlying challenges and provides perspectives on the future development of TiO2 photocatalysts. Through addressing these issues and implementing innovative strategies, TiO2 photocatalysis can continue to evolve and play a pivotal role in sustainable energy and environmental applications.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Justin Junqiang Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xizu Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
6
|
Wang X, Ding L, Li X, Wang Z, Xu X, Deng F, Luo X. S-scheme carbon doped-TiO 2/ZnIn 2S 4 heterojunction for enhanced photocatalytic degradation of microcystin-LR and hydrogen evolution. CHEMOSPHERE 2024; 363:142996. [PMID: 39097105 DOI: 10.1016/j.chemosphere.2024.142996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Photocatalytic degradation of pollutants coupled with hydrogen (H2) evolution has emerged as a promising solution for environmental and energy crises. However, the fast recombination of photoexcited electrons and holes limits photocatalytic activities. Herein, an S-scheme heterojunction carbon doped-TiO2/ZnIn2S4 (C-TiO2/ZnIn2S4) was designed by substituting oxygen sites within C-TiO2 by ZnIn2S4. Under visible light irradiation, the optimal C-TiO2/ZnIn2S4 exhibits a higher degradation efficiency (88.6%) of microcystin-LR (MC-LR), compared to pristine C-TiO2 (72.9%) and ZnIn2S4 (66.8%). Furthermore, the H2 yield of the C-TiO2/ZnIn2S4 reaches 1526.9 μmol g-1 h-1, which is 3.83 times and 2.87 times that of the C-TiO2 and ZnIn2S4, respectively. Experimental and theoretical investigations reveal that an internal electric field (IEF) informed in the C-TiO2/ZnIn2S4 heterojunction, accelerates the separation of photogenerated charge pairs, thereby enhancing photocatalytic efficiency of MC-LR degradation and H2 production. This work highlights a new perspective on the development of high-performance photocatalysts for wastewater treatment and H2 generation.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Xibao Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenzhou Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiwei Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Fang Deng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China
| |
Collapse
|
7
|
Wan Y, Gao K, Pan Z, Zhao T, Cheng Q. Constructing TiO 2@MOF S-scheme heterojunctions for enhanced photocatalytic degradation of antibiotics and Cr(VI) photoreduction. Dalton Trans 2024; 53:12370-12380. [PMID: 38993174 DOI: 10.1039/d4dt00831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The residue of antibiotics and various pollutants has led to an urgent issue in environmental pollution control. In this study, we constructed an S-scheme P-TiO2@Zn-MOF heterojunction by self-assembling phosphonate-based MOFs on mesoporous phosphate-TiO2 beads. Compared to monomers, the P-TiO2@Zn-MOF2.0 heterojunction exhibits significantly higher photocatalytic activity for the photo-oxidative degradation of ciprofloxacin (97.2% in 60 min) and tetracyclic (TC) (94.5% in 100 min) and the photo-reduction of Cr(VI) (92.7% in 60 min) under simulated sunlight. Experimental results and calculations revealed the effective separation and transfer of photogenerated carriers at the P-TiO2@Zn-MOF2.0 S-scheme heterojunction interface, enabling the formation of highly active superoxide and hydroxyl radicals. Furthermore, the hybrid maintained excellent Cr(VI) photoreduction performance after recycling tests in actual electroplating industry wastewater at a strongly acidic pH.
Collapse
Affiliation(s)
- Yuqi Wan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
- The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, PR China.
| | - Ke Gao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Zhiquan Pan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Tianshuo Zhao
- The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, PR China.
| | - Qingrong Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
8
|
Gao X, Cao L, Wang L, Liu S, Zhang M, Li C, Waterhouse GIN, Fan H, Xu J. Z-scheme heterojunction g-C 3N 4-TiO 2 reinforced chitosan/poly(vinyl alcohol) film: Efficient and recyclable for fruit packaging. Int J Biol Macromol 2024; 268:131627. [PMID: 38636752 DOI: 10.1016/j.ijbiomac.2024.131627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Nanoparticles-loaded bio-based polymers have emerged as a sustainable substitute to traditional oil-based packaging materials, addressing the challenges of limited recyclability and significant environmental impact. However, the functionality and efficiency of nanoparticles have a significant impact on the application of bio-based composite films. Herein, graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) coupled photocatalyst (g-C3N4-TiO2) was prepared by one-step calcination and introduced into chitosan (CS) and polyvinyl alcohol (PVA) solution to fabricate g-C3N4-TiO2/CS/PVA green renewable composite film via solution casting method. The results demonstrated the successful preparation of a Z-scheme heterojunction g-C3N4-TiO2 with exceptional photocatalytic activity. Furthermore, the incorporation of heterojunction enhanced mechanical properties, water barrier, and ultraviolet (UV) resistance properties of the fresh-keeping film. The g-C3N4-TiO2/CS/PVA composite film exhibited superior photocatalytic antibacterial preservation efficacy on strawberries under LED light, with a prolonged preservation time of up to 120 h, when compared to other films such as polyethylene (PE), CS/PVA, g-C3N4/CS/PVA, and TiO2/CS/PVA. In addition, the composite film has good recyclability and renewability. This work is expected to have great potential for low-cost fruit preservation and sustainable packaging, which also contributes to environmental protection.
Collapse
Affiliation(s)
- Xianqiang Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China; College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Lulu Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Shujun Liu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Mengting Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Changyu Li
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | | | - Hai Fan
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Jing Xu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
9
|
Koranteng-Mantey E, Kessie C, Selorm Agorku E, Kwaansa-Ansah EE, Osei-Bonsu Oppong S, Opoku F. Interfacial Electronic States of GeC/g-C 3N 4 van der Waal Heterostructure with Promising Photocatalytic Activity via Hydrogenation. Chemphyschem 2024; 25:e202300947. [PMID: 38335116 DOI: 10.1002/cphc.202300947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The bandgap of most known two-dimensional materials can be tuned by hydrogenation, although certain 2D materials lack a sufficient wide bandgap. Currently, it would be perfect to design non-toxic, low-cost, and high-performance photocatalysts for photocatalytic water splitting via hydrogenation. We systematically examine the impact of hydrogenation on the optical and electronic characteristics of GeC/g-C3N4 vdW heterostructures (vdWHs) with four different stacking patterns using first-principles calculations. The phonon spectra, interlayer distance, binding energies and ab initio molecular dynamics calculations show the kinetic, mechanical, and thermal stability of GeC/g-C3N4 vdWH after hydrogenation at 300, 500 and 800 K and possesses anisotropic Poisson's ratio, Young's and bulk modulus, suggesting that it's a promising candidate for experimental fabrication. According to an investigation of its electronic properties, GeC/g-C3N4 vdWH has a bandgap of 1.28 eV, but hydrogenation dramatically increases it to 2.47 eV. As a result of interface-induced electronic doping, the electronic states in g-C3N4 might be significantly adjusted by coming into contact with hydrogenated GeC sheets. The vdWH exhibits a type-II semiconductor, which can enhance the spatial separation of electron-hole pairs and has a strong red-shift of absorption coefficient than those of the constituent monolayers. The high potential drop caused by the significant valence and conduction band offsets effectively separated the charge carriers. The absorption coefficient of GeCH2/g-C3N4 vdWH is highly influenced by a biaxial compressive strain more than the biaxial tensile strain. Our theoretical research implies that the hydrogenated GeCH2/g-C3N4 vdWH possesses tunable optical and electronic behaviour for use as a hole-transport material in solar energy harvesting, nanoelectronic and optoelectronic devices.
Collapse
Affiliation(s)
- Eugenia Koranteng-Mantey
- Department of Chemistry, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, UP, Kumasi, Ghana
| | - Charles Kessie
- Department of Chemistry, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, UP, Kumasi, Ghana
| | - Eric Selorm Agorku
- Department of Chemistry, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, UP, Kumasi, Ghana
| | - Edward Ebow Kwaansa-Ansah
- Department of Chemistry, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, UP, Kumasi, Ghana
| | | | - Francis Opoku
- Department of Chemistry, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, UP, Kumasi, Ghana
| |
Collapse
|
10
|
Yang W, Gao Y, Cao M. Enhanced Photocatalytic Activity of π-Conjugated Pyridine Rings-Modified C 3N 4/Bi@BiOCl Z-Scheme Heterogeneous Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18342-18353. [PMID: 38064754 DOI: 10.1021/acs.langmuir.3c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The enhanced photocatalytic properties of Z-Scheme Bi@BiOCl/C3N4-DPY heterojunction materials were successfully prepared by the ultrasonic-assisted coprecipitation method. The Bi@BiOCl/C3N4-DPY heterojunction exhibited remarkable photocatalytic activity under visible light irradiation, and the degradation rate of methyl orange (MO) was about 90.6% in 180 min. This impressive efficiency is mainly due to the Z-Scheme charge transfer mechanism in Bi@BiOCl/C3N4-DPY, resulting in the efficient separation of charge carriers and an increase in the REDOX potential of photogenerated electrons and holes. C3N4 was modified with a π-deficient conjugated pyridine ring, which caused the light absorption redshift, promoted the formation of oxidizing •O2-, and improved the photocatalytic activity. At the same time, a well-aligned heterojunction is formed at the interface between C3N4-DPY and BiOCl, facilitating the seamless transfer of light-induced electrons from the LUMO of C3N4-DPY to the CB of BiOCl. In addition, the addition of Bi introduces a unique band gap reduction effect, resulting in a change in the density of the band states, which further promotes charge transfer and separation. It is worth noting that the introduction of metallic bismuth (Bi) brings about a unique band gap reduction effect, resulting in a change in the density of states within the band, which ultimately promotes charge transfer and separation. The Z-scheme charge migration inside Bi@BiOCl/C3N4-DPY further promotes the efficient separation of photogenerated electron-hole pairs, greatly improving the overall efficiency of the material. The Z-structured photocatalyst developed in this study has great application potential in various fields of photocatalysis.
Collapse
Affiliation(s)
- Wei Yang
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanhua Gao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
| | - Mingli Cao
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Bi R, Liu J, Zhou C, Shen Y, Liu Z, Wang Z. In situ synthesis of g-C 3N 4/TiO 2 heterojunction by a concentrated absorption process for efficient photocatalytic degradation of tetracycline hydrochloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55044-55056. [PMID: 36882657 DOI: 10.1007/s11356-023-26265-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The construction of heterojunctions between semiconductors is a preferred route to improve overall photocatalytic activity. In this work, a facile and feasible method was innovatively developed to one-step prepare g-C3N4/TiO2 heterojunctions via an absorption-calcination process using nitrogen and titanium precursors directly. This method can effectively avoid interfacial defects and establish a tight interfacial connection between g-C3N4 and TiO2. The resultant g-C3N4/TiO2 composites exhibited prominent photodegradation efficiency for tetracycline hydrochloride (TC-HCl) under visible light and simulated-sunlight irradiation. The optimal g-C3N4/TiO2 composite (urea content of 4 g) showed the highest photocatalytic efficiency, which can degrade 90.1% TC-HCl under simulated-sunlight irradiation within 30 min, achieving 3.9 and 2 times increases compared to pure g-C3N4 and TiO2, respectively. Besides, photodegradation pathways based on the role of active species ·O2- and ·OH were identified, indicating that a direct Z-scheme heterojunction was formed over the g-C3N4/TiO2 photocatalyst. The enhanced photocatalytic performance can be attributed to the close-knit interface contact and the formation of Z-scheme heterojunction between g-C3N4 and TiO2, which can accelerate the photo-induced charge carrier separation, broaden the spectra absorption range, and retain a higher redox potential. This one-step synthesis method may provide a new strategy for the construction of Z-scheme heterojunction photocatalysts consisting of g-C3N4 and TiO2 for environmental remediation and solar energy utilization.
Collapse
Affiliation(s)
- Renke Bi
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jialong Liu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chutong Zhou
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yijie Shen
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhe Liu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyu Wang
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Li Z, Ul Hassan Q, Zhang W, Zhu L, Gao J, Shi X, Huang Y, Liu P, Zhu G. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3–δ: Experimental and theoretical verification. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Feng H, Zhang C, Luo M, Hu Y, Dong Z, Xue S, Chu PK. Photo Energy-Enhanced Oxygen Reduction and Evolution Kinetics in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6788-6796. [PMID: 36701643 DOI: 10.1021/acsami.2c19598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Harvesting solar energy directly to boost the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on an air cathode is a promising approach. Herein, we synthesize a step-scheme (S-scheme) titanium dioxide-indium selenide (TiO2-In2Se3) heterojunction catalyst. The onset potential in ORR under light illumination reaches 1.28 V and the onset potential decreases to 0.48 V in OER. When an S-scheme TiO2-In2Se3 heterojunction is exposed to light, photogenerated electrons at the conduction band (CB) of TiO2 migrate to the valence band (VB) of In2Se3 due to the built-in electric field. The photogenerated electrons with strong reduction capability on the CB of In2Se3 and the holes with strong oxidation capability on the VB of TiO2 boost the cathode reaction kinetics (ORR/OER). The excellent outcome reveals tremendous commercial potential of photo-enhanced Zn-air batteries.
Collapse
Affiliation(s)
- Hange Feng
- College of Information Science and Technology, Donghua University, Shanghai 201620, P.R. China
- College of Science, Donghua University, Shanghai 201620, P.R. China
| | - Chaomin Zhang
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Menghao Luo
- College of Science, Donghua University, Shanghai 201620, P.R. China
| | - Yuechuan Hu
- College of Science, Donghua University, Shanghai 201620, P.R. China
| | - Zibo Dong
- College of Science, Donghua University, Shanghai 201620, P.R. China
| | - Shaolin Xue
- College of Science, Donghua University, Shanghai 201620, P.R. China
- Shanghai Institute of Intelligent Electronics and Systems, Donghua University, Shanghai 201620, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077 Hong Kong, China
| |
Collapse
|
14
|
Visible light driven photocatalytic performance of 3D TiO2/g-C3N5 nanocomposite via Z-scheme charge transfer promotion for water purification. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Molybdenum and chitosan-doped MnO2 nanostructures used as dye degrader and antibacterial agent. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Defect Engineering and Surface Polarization of TiO2 Nanorod Arrays toward Efficient Photoelectrochemical Oxygen Evolution. Catalysts 2022. [DOI: 10.3390/catal12091021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The relatively low photo-conversion efficiencies of semiconductors greatly restrict their real-world practices toward photoelectrochemical water splitting. In this work, we demonstrate the fabrication of TiO2-x nanorod arrays enriched with oxygen defects and surface-polarized hydroxyl groups by a facile surface reduction method. The oxygen defects located in the bulk/surface of TiO2-x enable fast charge transport and act as catalytically active sites to accelerate the water oxidation kinetics. Meanwhile, the hydroxyl groups could establish a surface electric field by polarization, for efficient charge separation. The as-optimized TiO2-x nanorod photoanode achieves a high photocurrent density of 2.62 mA cm−2 without any cocatalyst loading at 1.23 VRHE under 100 mW cm−2, which is almost double that of the bare TiO2 counterpart. Notably, the surface charge separation and injection efficiency of the TiO2-x photoanode reach as high as 80% and 97% at 1.23 VRHE, respectively, and the maximum incident photon-to-current efficiency reaches 90% at 400 nm. This work provides a new surface treatment strategy for the development of high-performance photoanodes in photoelectrochemical water splitting.
Collapse
|
17
|
Warshagha MA, Muneer M. Direct Z-Scheme AgBr/β-MnO 2 Photocatalysts for Highly Efficient Photocatalytic and Anticancer Activity. ACS OMEGA 2022; 7:30171-30183. [PMID: 36061726 PMCID: PMC9434753 DOI: 10.1021/acsomega.2c03260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 05/28/2023]
Abstract
The preparation of visible light-responsive efficient photocatalysts for removing organic contaminants from water and killing cancer cells has gotten a lot of attention due to the growing global concern. In this study, we have successfully fabricated an efficient AgBr/β-MnO2 nanocomposite via a facile deposition and precipitation method at room temperature. Techniques such as XRD, SEM-EDS, TEM, DRS, PL, EIS, ESR, and FTIR were used to determine the crystalline, structural, morphological, optical, and other properties. The SEM and TEM analyses reveal that AgBr NPs are decorated on the surface of β-MnO2, which possesses rods with a sphere-like structure for AgBr/β-MnO2. The EDX analysis confirms the existence of Mn, O, Ag, and Br elements in the nanocomposites without an extra peak, indicating that the synthesized samples are highly pure. The high photocatalytic performance of AgBr/β-MnO2 could be attributed to the formation of Ag NPs and the construction of the Z-scheme heterojunction between AgBr and β-MnO2. This may enhance fast light absorption and efficient photogenerated (e-/h+) pairs, as indicated by EIS and photoluminescence measurements, which in turn achieved high activity for the decomposition of MB (97%, in 12 min), RhB (98.9%, in 9 min), and paracetamol (80%, in 180 min), respectively. The kinetic model study proposed that the first-order model showed a better fit than the zero- and second-order for the photocatalytic decolorization of RhB dye. XRD analysis of 0.2 AgBr/β-MnO2 before and after recycling confirms the high stability of the catalyst. HPLC results showed that no detectable by-products are produced through the decomposition of paracetamol. Interestingly, 0.2 AgBr/β-MnO2 nanocomposites showed visible light-induced anticancer activity against A549 cancer cell lines. The mechanistic degradation pathway has been proposed using the involvement of active species like superoxide radicals (-•O2) and photoinduced holes (h+). The proposed work focuses on synthesizing effective photocatalysts in a less hazardous environment with superior biological activity.
Collapse
|
18
|
Zhong W, Fu W, Sun S, Wang L, Liu H, Wang J. Characterization of TiO 2 and an as-prepared TiO 2/SiO 2 composite and their photocatalytic performance for the reduction of low-concentration N-NO 3- in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40585-40598. [PMID: 35084675 DOI: 10.1007/s11356-022-18793-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Excessive N-NO3- water pollution has become a widespread and serious problem that threatens human and ecosystem health. Here, a TiO2/SiO2 composite photocatalyst was prepared via the sol-gel/hydrothermal method. TiO2 and TiO2/SiO2 were characterized by X-ray diffraction (XRD), UV-Vis differential reflectance spectroscopy (DRS), Fourier infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Afterward, the photocatalytic performance of TiO2 and TiO2/SiO2 to reduce low nitrate concentrations (30 mgN L-1) under UV light was evaluated and the effects of different factors on this process were investigated, after which the reaction conditions were optimized. Removal rates of up to 99.93% were achieved at a hole scavenger (formic acid) concentration of 0.6 mL L-1, a CO2 flow rate of 0.1 m3 h-1, and a TiO2 concentration of 0.9 g L-1. In contrast, TiO2/SiO2 at a 1.4 g L-1 concentration and a TiO2 load rate of 40% achieved a removal rate of 83.48%, but with more than 98% of nitrogen generation rate. NO2- and NH4+ were the minor products, whereas N2 was the main product.
Collapse
Affiliation(s)
- Wanzhen Zhong
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huaihao Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Junzhi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, China
| |
Collapse
|
19
|
You X, Wu L, Wang D, Xue Z, Zhao M, Wang X, Liu Q, Tang N. Preparation of C 3N 4/montmorillonite composite photocatalyst for effective removal of organic pollutants. ENVIRONMENTAL TECHNOLOGY 2022; 43:1513-1521. [PMID: 33086988 DOI: 10.1080/09593330.2020.1841303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Due to the good photocatalytic performance, which ensures the decomposition of pollutants under light, g-C3N4 is considered as an ideal photocatalytic material. Montmorillonite has a high adsorption capacity and layered structure, which has positive effects on increasing the specific surface area of g-C3N4 and avoid its polymerization agglomeration. In this paper, montmorillonite was used as carrier for g-C3N4 to obtain a new photocatalytic composite g-C3N4/Mt. Then the morphological and (micro)structural properties were characterized. The well-characterized materials were evaluated for the photocatalytic activity in degradation of methylene blue and Bisphenol A. The effects of the mass fraction of g-C3N4, light irradiation time, and pollutant concentration on the photocatalytic performance of g-C3N4/Mt composites were studied. Under the optimal experimental plan, the rate of photocatalytic degradation can reach to 99.3% within 120 min. Through the MS spectrum, it can be found that methylene blue molecule were catalysed and degraded into many harmless substances with low-molecular weight. Finally, based on the obtained reaction products, the mechanism by which the pollutants are removed was proposed. This study provides a new strategy to improve the photocatalysis ability of g-C3N4, which is of great significance for a sustainable pollution treatment.
Collapse
Affiliation(s)
- Xujia You
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Limei Wu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Deqiang Wang
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Zhichao Xue
- School of Science, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Mingyu Zhao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Xiaolong Wang
- Procurement and Bidding Office, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Qingxin Liu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Ning Tang
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| |
Collapse
|
20
|
Zhong W, Xu J, Wang P, Zhu B, Fan J, Yu H. Novel core-shell Ag@AgSe nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63969-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Jin X, Tang X, Li H, Tang X, Li J, Zhong J, Zhang S, Ma D. Visible-light driven efficient elimination of organic hazardous and Cr (VI) over BiOCl modified by Chinese Baijiu distillers’ grain-based biochar. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Xu J, Gao D, Yu H, Wang P, Zhu B, Wang L, Fan J. Palladium-copper nanodot as novel H2-evolution cocatalyst: Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63830-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Li J, Wu C, Li J, Dong B, Zhao L, Wang S. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63875-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Zhang J, Pan ZH, Yang Y, Wang PF, Pei CY, Chen W, Huang GB. Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63801-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C 3N 4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:294. [PMID: 35055311 PMCID: PMC8779993 DOI: 10.3390/nano12020294] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4, such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g-C3N4-metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g-C3N4-metal-oxide-based heterojunctions.
Collapse
Affiliation(s)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
26
|
Wang X, Li T, ZHU PENGFEI, Jin Z. Synergistic effect of MoO2/CeO2 S-scheme heterojunction on carbon rods for enhanced photocatalytic hydrogen evolution. Dalton Trans 2022; 51:2912-2922. [DOI: 10.1039/d1dt03605j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation efficiency of photogenerated carriers is a key factor affecting photocatalytic hydrogen evolution activity. However, loading precious metals is a cost problem, so this work introduces cheap carbon rods...
Collapse
|
27
|
Qaraah FA, Mahyoub SA, Hezam A, Qaraah A, Drmosh QA, Xiu G. Construction of 3D flowers-like O-doped g-C3N4-[N-doped Nb2O5/C] heterostructure with direct S-scheme charge transport and highly improved visible-light-driven photocatalytic efficiency. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64106-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Wang W, Li X, Deng F, Liu J, Gao X, Huang J, Xu J, Feng Z, Chen Z, Han L. Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Sun Q, Hou P, Wu S, Yu L, Dong L. The enhanced photocatalytic activity of Ag-Fe2O3-TiO2 performed in Z-scheme route associated with localized surface plasmon resonance effect. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Zhao B, Gao D, Liu Y, Fan J, Yu H. Cyano group-enriched crystalline graphitic carbon nitride photocatalyst: Ethyl acetate-induced improved ordered structure and efficient hydrogen-evolution activity. J Colloid Interface Sci 2021; 608:1268-1277. [PMID: 34739990 DOI: 10.1016/j.jcis.2021.10.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023]
Abstract
The molten salt-assisted route is one of the most important methods to improve the crystallinity of conventionally disordered bulk graphitic carbon nitride (g-C3N4). However, the residual potassium ions from potassium chloride/lithium chloride molten salt can greatly impact the ordered structure of g-C3N4 and serve as the recombination centers of photoinduced carriers, causing limited photocatalytic hydrogen-evolution performance. In this article, the ethyl acetate-mediated method is first developed to not only further improve the ordered structure of traditional crystalline g-C3N4, but also produce more cyano groups for preparing highly efficient g-C3N4 photocatalysts. Herein, the ethyl acetate can gradually hydrolyze to produce hydrogen ions, which can promote the more ordered sheet-like structure and more cyano groups by effective removal of residual potassium ions in the traditional crystalline g-C3N4, leading to the formation of cyano group-enriched crystalline g-C3N4 photocatalysts (CC-CN). As a result, the resultant CC-CN displays the remarkably enhanced photocatalytic hydrogen-evolution performance (295.30 µmol h-1 with an apparent quantum efficiency about 12.61%), in comparison to the bulk g-C3N4 (14.97 µmol h-1) and traditional crystalline g-C3N4 (24.60 µmol h-1). The great improvement of photocatalytic performance can mainly be ascribed to the synergism of improved ordered structure and abundant cyano groups, namely, the efficient transfer and separation of photoinduced charges as well as excellent interfacial hydrogen-generation reaction, respectively. The present work may deliver new strategies to prepare other high-crystalline photocatalysts with great efficiency.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Duoduo Gao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yongping Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, PR China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
32
|
Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63765-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Zhang S, Ou X, Yang X, Wang D, Zhang C. Preparation and properties of Al3+-doped BiVO4 semiconductor photocatalyst. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Li F, Yue X, Zhou H, Fan J, Xiang Q. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63776-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Wang S, Liu D, Yu J, Zhang X, Zhao P, Ren Z, Sun Y, Li M, Han S. Photocatalytic Penicillin Degradation Performance and the Mechanism of the Fragmented TiO 2 Modified by CdS Quantum Dots. ACS OMEGA 2021; 6:18178-18189. [PMID: 34308049 PMCID: PMC8296572 DOI: 10.1021/acsomega.1c02079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
In this study, a novel method was adopted to construct a CdS-TiO2 heterostructure to degrade penicillin under sunlight. A potato extract was used during the synthesis process of CdS QDs as a stabilizer and a modifier. The CdS-TiO2 composite with a heterostructure delivers high photocatalytic degradation efficiency. In detail, 0.6 mg/mL of CdS-TiO2 can successfully decompose penicillin after 2 h, and 5‰ CdS-TiO2 shows the optimal degradation efficiency with the degradation rate reaching 88%. Furthermore, the underlying mechanisms of the penicillin decomposition reaction were investigated by the EPR test and trapping experiment. It was found that the high photocatalytic degradation efficiency was attributed to the heterojunction of CdS-TiO2, which successfully suppresses the recombination of the conduction band of CdS and the valence band of TiO2. Moreover, it was confirmed that the reaction is the O2-consuming process, and introducing O2 can greatly accelerate the generation of a superoxide radical during the photocatalytic degradation process, which eventually improves the degradation of penicillin and shortens the degradation time. Finally, this work provides the possible penicillin degradation pathways, which will inspire the researchers to explore and design novel photocatalysts in the field of wastewater treatment in the future.
Collapse
|
36
|
Yan K, Mu C, Meng L, Fei Z, Dyson PJ. Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. NANOSCALE ADVANCES 2021; 3:3708-3729. [PMID: 36133016 PMCID: PMC9419292 DOI: 10.1039/d1na00257k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Bacterial infections and transmission threaten human health and well-being. Graphite carbon nitride (g-C3N4), a promising photocatalytic antibacterial nanomaterial, has attracted increasing attention to combat bacterial transmission, due to the outstanding stability, high efficiency and environmental sustainability of this material. However, the antibacterial efficiency of g-C3N4 is affected by several factors, including its specific surface area, rapid electron/hole recombination processes and optical absorption properties. To improve the efficiency of the antibacterial properties of g-C3N4 and extend its range of applications, various nanocomposites have been prepared and evaluated. In this review, the advances in amplifying the photocatalytic antibacterial efficiency of g-C3N4-based nanocomposites is discussed, including different topologies, noble metal decoration, non-noble metal doping and heterojunction construction. The enhancement mechanisms and synergistic effects in g-C3N4-based nanocomposites are highlighted. The remaining challenges and future perspectives of antibacterial g-C3N4-based nanocomposites are also discussed.
Collapse
Affiliation(s)
- Kai Yan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lingjie Meng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
37
|
Li S, Liu W, Zhao S, Li Y, Chen K. Enhanced Photocatalytic Performance of NiS
2
/
g
‐C
3
N
4
/SnS
2
by Improving the Charge Diffusion on Both Valence Band and Conduction Band of Carbon Nitride. ChemistrySelect 2021. [DOI: 10.1002/slct.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shengfu Li
- School of Materials Science & Engineering Beijing Institute of Technology 5 South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Wei Liu
- School of Materials Science & Engineering Beijing Institute of Technology 5 South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Siwei Zhao
- School of Materials Science & Engineering Beijing Institute of Technology 5 South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Yi Li
- School of Materials Science & Engineering Beijing Institute of Technology 5 South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Kun Chen
- School of Materials Science & Engineering Beijing Institute of Technology 5 South Street, Zhongguancun, Haidian District Beijing 100081 China
| |
Collapse
|
38
|
Double S-scheme AgBr heterojunction co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Wang Z, Lin Z, Shen S, Zhong W, Cao S. Advances in designing heterojunction photocatalytic materials. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63698-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Zhou M, Jing L, Dong M, Lan Y, Xu Y, Wei W, Wang D, Xue Z, Jiang D, Xie J. Novel broad-spectrum-driven g-C 3N 4 with oxygen-linked band and porous defect for photodegradation of bisphenol A, 2-mercaptophenthiazole and ciprofloxacin. CHEMOSPHERE 2021; 268:128839. [PMID: 33228986 DOI: 10.1016/j.chemosphere.2020.128839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Abundant active oxygen free radicals could efficiently remove refractory organic pollutants. In previous research, the original carbon nitride can form more hydrogen peroxide, however, owing to the limitation of its band structure, the original carbon nitride cannot decompose the hydrogen peroxide to generate more active oxygen free radicals. Herein, this work reports a simple bottom-up synthesis method, which synthesize a broad-spectrum-response carbon nitride (CN-CA) with oxygen-linked band and porous defect structure, while adjusting the band structure, and the introduction of the oxygen-linked band structure can also decompose the hydrogen peroxide produced by the original carbon nitride to form more active oxygen free radicals. Instrumental characterization and analysis of experimental results revealed the important role of oxygen-linked band and porous defects in adjusting the CN-CA energy band structure and improving its visible light absorption. The optimal CN-CA displays an outstanding photocatalytic degradation ability, that degradation rate of bisphenol A (BPA) reaches 99.8% within 150 min, the reaction rate constant of which is 6.77 times higher than that of pure g-C3N4, as also demonstrated with 2-mercaptophenthiazole (MBT) and ciprofloxacin (CIP). Meanwhile, the excellent degradation performance under blue LED (450-462 nm) and green LED (510-520 nm) exhibits the broad-spectrum characteristics of CN-CA. The degradation pathways of BPA and MBT were analyzed via HPLC-MS. Moreover, the primary active species were detected as O2-, OH and h+ based on the trapping experiments and ESR. This research provides a new strategy for g-C3N4 modified by porous defects and oxygen-linked band structure for environmental remediation.
Collapse
Affiliation(s)
- Minjing Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Liquan Jing
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - MingXiang Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Ying Lan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Duidui Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Di Jiang
- Jiangsu Institute of Scientific and Technical Information, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Jimin Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
41
|
Kuila SK, Gorai DK, Gupta B, Gupta AK, Tiwary CS, Kundu TK. Lanthanum ions decorated 2-dimensional g-C 3N 4 for ciprofloxacin photodegradation. CHEMOSPHERE 2021; 268:128780. [PMID: 33187655 DOI: 10.1016/j.chemosphere.2020.128780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 05/25/2023]
Abstract
The low band gap energy and high surface area two-dimensional materials allow it to tune its basic properties using surface decoration. Here, La3+ are decorated on two-dimensional graphitic carbon nitride using a simple and easily scalable chemisorption process with an adsorption capacity of 657.32 mg g-1. In the X-ray diffraction (XRD) study, the positive slope of the W-H plot elucidates the tensile strain generation (0.103) in La3+ ions decorated 2D-g-C3N4 (La3+-2D-g-C3N4). The high-resolution transmission electron microscope (HR-TEM) study and the higher ID/IG ratio (0.82) in the Raman spectroscopy study confirm the more defects intensification in La3+-2D-g-C3N4. The reduction in band gap energy for La3+-2D-g-C3N4 (from 2.83 eV to 2.21 eV) has shown a good correspondence with the band structures study as obtained from the DFT study. In the DFT study, the significant contributions of N atoms in charge transfer validate the N 1s findings from the X-ray photoelectron spectroscopy (XPS) study for La3+-2D-g-C3N4. La3+-2D-g-C3N4 shows the photodegradation efficiency (93%) of ciprofloxacin under UV irradiation, which is superior to pristine 2D-g-C3N4 (82%) as well as other g-C3N4 based nanocatalysts. Also, La3+ decoration results in enhancement (32.3%) in photodegradation kinetics rate. The degradation and kinetics studies in the presence of different scavengers ensure that the O2- and OH- radicals are mostly responsible for the ciprofloxacin photodegradation. The Liquid chromatographic-mass spectroscopy and the high-performance liquid chromatography studies confirm the photodegradation. The reusability of La3+-2D-g-C3N4 is tested up to the fifth cycle. FTIR and UV-visible absorption spectroscopy confirm the stability of the used photocatalyst.
Collapse
Affiliation(s)
- Saikat Kumar Kuila
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, India, 721302
| | - Deepak Kumar Gorai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, India, 721302
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, West Bengal, India, 721302
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, India, 721302
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, India, 721302
| | - Tarun Kumar Kundu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, India, 721302.
| |
Collapse
|
42
|
Yu F, Wang Z, Zhang S, Wu W, Ye H, Ding H, Gong X, Hua J. Construction of polymeric carbon nitride and dibenzothiophene dioxide-based intramolecular donor-acceptor conjugated copolymers for photocatalytic H 2 evolution. NANOSCALE ADVANCES 2021; 3:1699-1707. [PMID: 36132554 PMCID: PMC9417475 DOI: 10.1039/d0na01011a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Polymeric carbon nitride (g-C3N4) has succeeded as a striking visible-light photocatalyst for solar-to-hydrogen energy conversion, owing to its economical attribute and high stability. However, due to the lack of sufficient solar-light absorption and rapid photo-generated carrier recombination, the photocatalytic activity of raw g-C3N4 is still unsatisfactory. Herein, new intramolecular g-C3N4-based donor-acceptor (D-A) conjugated copolymers have been readily synthesized by a nucleophilic substitution/condensation reaction between urea and 3,7-dihydroxydibenzo[b,d]thiophene 5,5-dioxide (SO), which is strategically used to improve the photocatalytic hydrogen evolution performance. The experimental results demonstrate that CNSO-X not only improves light utilization, but also accelerates the spatial separation efficiency of the photogenerated electron-hole pairs and increases the wettability with the introduction of SO. In addition, the adsorption energy barrier of CNSO-X to H* has a significant reduction via theoretical calculation. As expected, the CNSO-20 realizes the best photocatalytic H2 evolution activity of 251 μmol h-1 (50 mg photocatalyst, almost 8.5 times higher than that of pure CN) with an apparent quantum yield of 10.16% at 420 nm, which surpasses most strategies for the organic molecular copolymerization of carbon nitride. Therefore, this strategy opens up a novel avenue to develop highly efficient g-C3N4 based photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Fengtao Yu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shicong Zhang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wenjun Wu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Haonan Ye
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Haoran Ding
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
43
|
Lin B, Li S, Peng Y, Chen Z, Wang X. MOF-derived core/shell C-TiO 2/CoTiO 3 type II heterojunction for efficient photocatalytic removal of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124675. [PMID: 33302187 DOI: 10.1016/j.jhazmat.2020.124675] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
A novel core/shell C-TiO2/CoTiO3 type II heterojunction was successfully synthesized via a direct calcination method by using MIL-125/Co core-shell nanocakes as a sacrificial template and precursor. In the calcination process, the organic ligand in MIL-125 acts as an in-situ carbon doping source to form a carbon-doped TiO2 core (C-TiO2). At the same time, CoTiO3 nanoparticles are formed on the surface of C-TiO2 by an in-situ solid-state reaction between the C-TiO2 and Co2+ shell of MIL-125/Co. Due to such delicate core/shell structural features, carbon doping and type II heterojunctions, C-TiO2/CoTiO3 core/shell composites can effectively harvest visible light, facilitate the interfacial separation and suppress the recombination of photogenerated electron-hole pairs, leading to the remarkable photocatalytic activity for removal of ciprofloxacin (CIP). In particular, C-TiO2/CoTiO3-3 exhibits the best photocatalytic degradation activity of CIP with a degradation efficiency of 99.6% and a total carbon content removal percentage of 76% under visible-light illumination for 120 min. In addition, the proposed photocatalytic mechanism study illustrated that the main radical species in the photocatalytic degradation of CIP using C-TiO2/CoTiO3 as the photocatalyst is •OH. This work provides a new approach and insight for synthesizing core/shell heterojunction-based photocatalysts for various applications.
Collapse
Affiliation(s)
- Biyun Lin
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, China
| | - Shanshan Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yannan Peng
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhihong Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, China.
| |
Collapse
|
44
|
Z-scheme TiO2/g-C3N4 composites prepared by hydrothermal assisted thermal polymerization with enhanced visible light photocatalytic activity. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04379-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Islam SE, Hang DR, Chen CH, Chou MMC, Liang CT, Sharma KH. Rational design of hetero-dimensional C-ZnO/MoS 2 nanocomposite anchored on 3D mesoporous carbon framework towards synergistically enhanced stability and efficient visible-light-driven photocatalytic activity. CHEMOSPHERE 2021; 266:129148. [PMID: 33310520 DOI: 10.1016/j.chemosphere.2020.129148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
For efficient solar energy harvesting, various engineering strategies to strengthen visible-light responsivity of ZnO photocatalyst is under intensive investigation. In this work, a new ternary C-ZnO/MoS2/mesoporous carbon nanocomposite was successfully prepared by a two-step solution-processed synthesis protocol. The ternary composite exhibits a well-interconnected 3D mesoporous microstructure assembled by carbon nanosheets, which is loaded with quasi 0D ZnO nanoparticles and 2D MoS2 nanosheets. The carbonaceous nanocomposites show enhanced visible-light-driven photocatalytic performance and high photo-corrosion resistance. The incorporation of carbon in the hybrid design has manifold benefits that drastically promotes the photoactivity and photostability. The significant enhancement in photodegradation activity of the hybrid catalysts can be ascribed to a few positive synergistic effects, such as increased surface area and active reaction sites, boosted surface charge utilization efficiency, and band-gap lowering. The high porosity of the distinct microstructure raises the dye adsorption within the material. Tailored interface/surface properties enable more effective mass transport and higher separation efficiency of photo-generated carriers. The modulated electronic structure leads to the narrowing of the ZnO optical bandgap. Meanwhile, coupling with carbon prevents ZnO from photo-corrosion. Our approach highlights the roles of carbon as structure directing and stabilizing agents as well as heteroatom in defect engineering for wide band-gap oxide materials. The rational material design of multivariate mixed-dimensional architecture also provides guiding insight for the advancement of heterogeneous photocatalyst materials with superior performance and durability. The presented engineering strategy would be a promising method for the preparation of nanomaterials supported on 3D carbon network with high porosity and visible-light-driven photocatalytic performance.
Collapse
Affiliation(s)
- Sk Emdadul Islam
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Mitch M C Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| | - Krishna Hari Sharma
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
46
|
Li S, Wang P, Zhao H, Wang R, Jing R, Meng Z, Li W, Zhang Z, Liu Y, Zhang Q, Li Z. Fabrication of black phosphorus nanosheets/BiOBr visible light photocatalysts via the co-precipitation method. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117976] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Chen F, Huang S, Xu Y, Huang L, Wei W, Xu H, Li H. Novel ionic liquid modified carbon nitride fabricated by in situ pyrolysis of 1-butyl-3-methylimidazolium cyanamide to improve electronic structure for efficiently degradation of bisphenol A. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
A “Superaerophobic” Se-Doped CoS2 Porous Nanowires Array for Cost-Saving Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pursuit of low-cost and high-efficiency catalyst is imperative for the development and utilization of hydrogen energy. Heteroatomic doping which is conducive to the redistribution of electric density is one of the promising strategies to improve catalytic activity. Herein, the Se-doped CoS2 porous nanowires array with a superaerophobic surface was constructed on carbon fiber. Due to the electronic modulation and the unique superaerophobic structure, it showed improved hydrogen evolution activity and stability in urea-containing electrolyte. At a current density of 10 mA cm−2, the overpotentials are 188 mV for hydrogen evolution reaction (HER) and 1.46 V for urea oxidation reaction (UOR). When it was set as a cell, the voltage is low as 1.44 V. Meanwhile, the current densities of HER and UOR, as well as of cell remained basically unchanged after a continuous operation for 48 h. This work opens up a new idea for designing of cost-saving hydrogen evolution electrocatalysts.
Collapse
|
50
|
Zhu B, Song D, Jia T, Sun W, Wang D, Wang L, Guo J, Jin L, Zhang L, Tao H. Effective Visible Light-Driven Photocatalytic Degradation of Ciprofloxacin over Flower-like Fe 3O 4/Bi 2WO 6 Composites. ACS OMEGA 2021; 6:1647-1656. [PMID: 33490824 PMCID: PMC7818623 DOI: 10.1021/acsomega.0c05616] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 05/09/2023]
Abstract
Photocatalytic degradation of organic pollution is a vital path to deal with environmental problems. Here, a direct Z-scheme 2D/2D heterojunction of a Fe3O4/Bi2WO6 photocatalyst is fabricated for the degradation of ciprofloxacin by a self-assembly strategy. Furthermore, to characterize the morphology of the obtained composite photocatalysts, various kinds of characterization methods were employed like XRD, XPS, SEM, and TEM. It is indicated that the flower-like photocatalyst is composed of nanosheets. Comparable photocatalysts were prepared by controlling the hydrothermal temperature and the iron content. In the photocatalytic degradation of ciprofloxacin (CIP) in water, under visible light irradiation, FB-180 (synthesized at 180 °C with 4% iron content) presents approximately 99.7% degradation efficiency in only 15 min. Meanwhile, during photocatalytic degradation reactions, the Fe3O4/Bi2WO6 heterojunction also displayed excellent stability, which still kept above 90% degradation efficiency after five consecutive cycles. UV-Vis DRS and M-S analyses showed that the Fe3O4/Bi2WO6 catalyst has a strong visible light absorption capacity and the transfer pathway of photo-induced charge carriers. PL, EIS, and TPR showed that Fe3O4/Bi2WO6 has an efficient separation and transfer rate of the photo-generated carriers. ESR analysis proved that the superoxide radical (•O2 -) and hydroxyl radical (•OH) play a major role in the Fe3O4/Bi2WO6 photocatalytic system. This special 2D/2D heterojunction we proposed may have huge potential for marine pollution treatment by photocatalysis degradation with dramatically boosted activities.
Collapse
Affiliation(s)
- Baikang Zhu
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
- United
National-Local Engineering Laboratory of Oil & Gas Storage and
Transportation Technology, Zhoushan, Zhejiang 316022, China
| | - Debin Song
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Tianbo Jia
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wuyang Sun
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
- United
National-Local Engineering Laboratory of Oil & Gas Storage and
Transportation Technology, Zhoushan, Zhejiang 316022, China
| | - Dongguang Wang
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Luhui Wang
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jian Guo
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Linglei Jin
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lu Zhang
- Zhejiang
Petroleum&Chemical Co., Ltd., Zhoushan, Zhejiang 316021, China
| | - Hengcong Tao
- School
of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| |
Collapse
|