1
|
Strydom N, van Wijk RC, Wang Q, Ernest JP, Chaba L, Li Z, Nuermberger EL, Savic RM. Selection and prioritization of candidate combination regimens for the treatment of tuberculosis. Sci Transl Med 2025; 17:eadi4000. [PMID: 39908348 DOI: 10.1126/scitranslmed.adi4000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Accelerated tuberculosis drug discovery has increased the number of plausible multidrug regimens. Testing every drug combination in vivo is impractical, and varied experimental conditions make it challenging to compare results between experiments. Using published treatment efficacy data from a mouse tuberculosis model treated with candidate combination regimens, we trained and externally validated integrative mathematical models to predict relapse in mice and to rank both previously experimentally studied and unstudied regimens by their sterilization potential. We generated 18 datasets of 18 candidate regimens (comprising 11 drugs of six classes, including fluoroquinolone, nitroimidazole, diarylquinolines, and oxazolidinones), with 2965 relapse and 1544 colony-forming unit (CFU) observations for analysis. Statistical and machine learning techniques were applied to predict the probability of relapse in mice. The locked down mathematical model had an area under the receiver operating characteristic curve (AUROC) of 0.910 and showed that bacterial kill measured by longitudinal CFU cannot account for relapse alone and that sterilization is drug dependent. The diarylquinolines had the highest predicted sterilizing activity in the mouse model, and the addition of pyrazinamide to drug regimens provided the shortest estimated tuberculosis treatment duration to cure in mice. The mathematical model predicted the effect of treatment combinations, and these predictions were validated by conducting 11 experiments on previously unstudied regimens, achieving an AUROC of 0.829. We surmise that the next generation of tuberculosis drugs are highly effective at treatment shortening and suggest that there are several promising three- and four-drug regimens that should be advanced to clinical trials.
Collapse
Affiliation(s)
- Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rob C van Wijk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linda Chaba
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ziran Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Dufault SM, Davies GR, Svensson EM, Sloan DJ, McCallum AD, Patel A, Van Brantegem P, Denti P, Phillips PPJ. Analysis of time-to-positivity data in tuberculosis treatment studies: Identifying a new limit of quantification. Int J Antimicrob Agents 2025; 65:107404. [PMID: 39653087 DOI: 10.1016/j.ijantimicag.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND The BACTEC Mycobacteria Growth Indicator Tube (MGIT) machine is the standard globally for detecting viable mycobacteria in patients' sputum. Samples are observed for no longer than 42 days, at which point the sample is declared 'negative' for tuberculosis (TB). This time to detection of bacterial growth, referred to as time-to-positivity (TTP), is increasingly of interest, not solely as a diagnostic tool but also as a continuous biomarker wherein change in TTP can be used for comparing the bactericidal activity of different TB treatments. However, as a continuous measure, there are oddities in the distribution of TTP values observed, particularly at higher values. METHODS We explored whether there is evidence to suggest setting an upper limit of quantification for modeling purposes (ULOQM) lower than the diagnostic limit of detection (LOD) using data from several TB-PACTS randomized clinical trials and PanACEA MAMS-TB. RESULTS Across all trials, less than 7.1% of weekly samples returned TTP measurements between 25 and 42 days. Further, the relative absolute prediction error (%) was highest in this range. When modelling with ULOQMs of 25 and 30 days, estimator precision improved for 23 of 25 regimen-level slopes compared to models using the LOD. Discrimination between regimens based on Bayesian posteriors also improved. CONCLUSIONS Although TTP measurements between 25 days and the diagnostic LOD may be important for diagnostic purposes, TTP values in this range may not contribute meaningfully to its use as a quantitative measure, particularly when assessing treatment response, and may lead to underpowered clinical trials.
Collapse
Affiliation(s)
- Suzanne M Dufault
- Division of Biostatistics, University of California, San Francisco, San Francisco, California, USA; UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA.
| | - Geraint R Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Elin M Svensson
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Derek J Sloan
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Andrew D McCallum
- Department of Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anu Patel
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Pieter Van Brantegem
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Patrick P J Phillips
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA; Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Chen RH, Nguyen TA, Kim HY, Stocker SL, Alffenaar JWC. Saliva-based point-of-care assay to measure the concentration of pyrazinamide using a mobile UV spectrophotometer. J Antimicrob Chemother 2025; 80:254-261. [PMID: 39508356 PMCID: PMC11695902 DOI: 10.1093/jac/dkae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Pyrazinamide, one of the first-line antituberculosis drugs, displays variability in drug exposure that is associated with treatment response. A simple, low-cost assay may be helpful to optimize treatment. This study aimed to develop and validate a point-of-care assay to quantify the concentration of pyrazinamide in saliva. METHODS All measurements were conducted using the nano-volume drop function on the mobile ultraviolet (UV) spectrophotometer (NP80, Implen, Germany). Assay development involved applying second derivative spectroscopy in combination with the Savitzky-Golay filter between wavelengths of 200-300 nm to increase spectral resolution. Assay validation included assessing selectivity, linearity, accuracy, precision, carry-over and matrix effects. Specificity was also analysed by evaluating the impact of co-administered medications on pyrazinamide results. Sample stability was measured at various temperatures up to 40°C. RESULTS The calibration curve (7.5-200 mg/L) was linear (R2 = 0.9991). The overall accuracy (bias%) and precision (CV%) ranged from -0.66% to 5.15%, and 0.56% to 4.95%, respectively. Carry-over and matrix effects were both acceptable with a bias% of <±4% and CV% of <7.5%. Commonly co-administered medications displayed negligible interferences. Levofloxacin displayed analytical interference (bias% = -10.21%) at pyrazinamide concentrations < 25 mg/L, but this will have little clinical implications. Pyrazinamide was considered stable in saliva after 7 days in all storage conditions with a CV% of <6.5% and bias% of <±10.5% for both low- and high-quality control concentrations. CONCLUSIONS A saliva-based assay for pyrazinamide has been successfully developed and validated using the mobile UV spectrophotometer.
Collapse
Affiliation(s)
- Ricky Hao Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Thi Anh Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
| | - Sophie L Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- St Vincent’s Clinical Campus, School of Clinical Medicine, The University of New South Wales, Darlinghurst, NSW, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Dillon NA, Lamont EA, Rather MA, Baughn AD. Oxidative stress drives potent bactericidal activity of pyrazinamide against Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628853. [PMID: 39763714 PMCID: PMC11702753 DOI: 10.1101/2024.12.17.628853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Pyrazinamide (PZA) is a critical component of tuberculosis first-line therapy due to its ability to kill both growing and non-replicating drug-tolerant populations of Mycobacterium tuberculosis within the host. Recent evidence indicates that PZA acts through disruption of coenzyme A synthesis under conditions that promote cellular stress. In contrast to its bactericidal action in vivo, PZA shows weak bacteriostatic activity against M. tuberculosis in axenic culture. While the basis for this striking difference between in vivo and in vitro PZA activity has yet to be resolved, recent studies have highlighted an important role for cell-mediated immunity in PZA efficacy. These observations suggest that host-derived antimicrobial activity may contribute to the bactericidal action of PZA within the host environment. In this study we show that the active form of PZA, pyrazinoic acid (POA), synergizes with the bactericidal activity of host-derived reactive oxygen species (ROS). We determined that POA can promote increased cellular oxidative damage and enhanced killing of M. tuberculosis. Further, we find that the thiol oxidant diamide is also able to potentiate PZA activity, implicating thiol oxidation as a key driver of PZA susceptibility. Using a macrophage infection model, we demonstrate the essentiality of interferon-γ induced ROS production for PZA mediated clearance of M. tuberculosis. Based on these observations, we propose that the in vivo sterilizing activity of PZA can be mediated through its synergistic interaction with the host oxidative burst leading to collateral disruption of coenzyme A metabolism. These findings will enable discovery efforts to identify novel host- and microbe-directed approaches to bolster PZA efficacy.
Collapse
Affiliation(s)
- Nicholas A. Dillon
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Elise A. Lamont
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Muzafar A. Rather
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
5
|
Sonawane NG, Thakur A, Pillai AKS, Sharma A, Gunjal AP, Sharma K. Recent Cutting-Edge Designing Strategies for Mtb-DHFR Inhibitors as Antitubercular Agents. Chem Biol Drug Des 2024; 104:e70027. [PMID: 39660864 DOI: 10.1111/cbdd.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Tuberculosis (TB) is an obstinate and infectious disease requiring a relatively longer treatment duration than other bacterial infections. The current treatment regime is prolonged and cumbersome, with adverse effects, often leading to nonadherence. The upsurge in TB's multidrug-resistant and extensively drug-resistant strains with evolved resistance to existing drugs has compounded the problems. The last two decades witnessed unprecedented progress in developing TB drugs with better efficacy and reduced toxicity. Of late, inhibitors targeting the dihydrofolate reductase (DHFR) enzyme were being explored and developed as antitubercular drugs. A plethora of diverse molecular cores, such as pteridines, diamino heterocycles, diamino triazoles, and nontraditional cores, were developed recently as Mtb-DHFR targets. Besides the characteristic binding pockets of Mtb-DHFR, an extended hydrophilic binding pocket was also studied for intermolecular interactions with the designed compounds to assess the enzyme specificity. In this study, prominent DHFR inhibitors developed in the last two decades were reported. Key features of the designed compounds, such as the structural similarities with existing pharmacophores, interactions with binding pockets, enzyme selectivity and specificity, and percentage of inhibition, were evaluated. The authors hope the study will help streamline the pharmacological pipeline of Mtb-DHFR inhibitors and bring the investigators one step closer to success.
Collapse
Affiliation(s)
- Nitin Govind Sonawane
- Department of Chemistry, School of Engineering, Amrita Vidyapeetham, Bengaluru, India
| | - Amrita Thakur
- Department of Chemistry, School of Engineering, Amrita Vidyapeetham, Bengaluru, India
| | | | - Ajay Sharma
- Department of Pharmacognosy, SPS, DPSRU, New Delhi, India
| | - Amol Pandurang Gunjal
- Department of Chemistry, School of Engineering, Amrita Vidyapeetham, Bengaluru, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
6
|
Burman W, Horsburgh CR, Johnston J. Predictable excess hepatotoxicity in the SimpliciTB trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:e727. [PMID: 39481423 DOI: 10.1016/s1473-3099(24)00598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024]
Affiliation(s)
- William Burman
- Public Health Institute, Denver Health, Denver, CO 80218, USA.
| | | | | |
Collapse
|
7
|
Cevik M, Beumont M, Sun E, Sloan DJ, Gillespie SH. Predictable excess hepatotoxicity in the SimpliciTB trial - Authors' reply. THE LANCET. INFECTIOUS DISEASES 2024; 24:e728. [PMID: 39481422 DOI: 10.1016/s1473-3099(24)00718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Affiliation(s)
- Muge Cevik
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK.
| | | | | | - Derek J Sloan
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Stephen H Gillespie
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| |
Collapse
|
8
|
Wang M, Tian M, Xu D, Zhao Q, Wang H. Clinical effect of MRZE chemotherapy combined with cluster nursing intervention in the treatment of patients with pulmonary tuberculosis and its influence on the levels of inflammatory factors and CT signs. Biotechnol Genet Eng Rev 2024; 40:2520-2534. [PMID: 37042342 DOI: 10.1080/02648725.2023.2200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
The study aimed to analyze the clinical effect of MRZE chemotherapy combined with cluster nursing intervention and treatment of pulmonary tuberculosis patients and its influence on CT signs. A total of 94 patients treated in our hospital from March 2020 to October 2021 were selected as the research object. Both groups were treated with MRZE chemotherapy regimen. Patients in the control group received routine nursing mode on this basis, and patients in the observation group received cluster nursing on the basis of the control group. The clinical efficacy, adverse reactions, compliance and nursing satisfaction, detection rate of immune function pulmonary oxygen index and pulmonary function CT signs and the level of inflammatory factors before and after nursing were compared between the two groups. The total effective rate of the observation group was significantly higher than that of the control group. The compliance rate and nursing satisfaction of the observation group were significantly higher than those of the control group. The differences of adverse reactions between the observation and control groups were statistically significant. After nursing, the scores of tuberculosis prevention and control of tuberculosis infection route, tuberculosis symptoms, tuberculosis policy and tuberculosis infection awareness in the observation group were significantly higher than those in the control group, and the differences were statistically significant. MRZE chemotherapy combined with cluster nursing intervention model for pulmonary tuberculosis patients can effectively improve the treatment compliance and nursing satisfaction of patients, and it is worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Mei Wang
- Department of PIVAS, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Miaoyan Tian
- Department of Pharmacy, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Dan Xu
- Department of PICC Outpatient, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Qiang Zhao
- Department of Trauma Orthopedics, Zhangqiu District People's Hospital, Jinan, China
| | - Haiyang Wang
- Department of Thoracic (V), North Hospital of Qingdao Central Hospital, Qingdao, China
| |
Collapse
|
9
|
Ashwath P, Osiecki P, Weiner D, Via LE, Sarathy JP. Role of DNA Double-Strand Break Formation in Gyrase Inhibitor-Mediated Killing of Nonreplicating Persistent Mycobacterium tuberculosis in Caseum. ACS Infect Dis 2024; 10:3631-3639. [PMID: 39315541 PMCID: PMC11474946 DOI: 10.1021/acsinfecdis.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Tuberculosis is the leading cause of mortality by infectious agents worldwide. The necrotic debris, known as caseum, which accumulates in the center of pulmonary lesions and cavities is home to nonreplicating drug-tolerant Mycobacterium tuberculosis that presents a significant hurdle to achieving a fast and durable cure. Fluoroquinolones such as moxifloxacin are highly effective at killing this nonreplicating persistent bacterial population and boosting TB lesion sterilization. Fluoroquinolones target bacterial DNA gyrase, which catalyzes the negative supercoiling of DNA and relaxes supercoils ahead of replication forks. In this study, we investigated the potency of several other classes of gyrase inhibitors against M. tuberculosis in different states of replication. In contrast to fluoroquinolones, many other gyrase inhibitors kill only replicating bacterial cultures but produce negligible cidal activity against M. tuberculosis in ex vivo rabbit caseum. We demonstrate that while these inhibitors are capable of inhibiting M. tuberculosis gyrase DNA supercoiling activity, fluoroquinolones are unique in their ability to cleave double-stranded DNA at low micromolar concentrations. We hypothesize that double-strand break formation is an important driver of gyrase inhibitor-mediated bactericidal potency against nonreplicating persistent M. tuberculosis populations in the host. This study provides general insight into the lesion sterilization potential of different gyrase inhibitor classes and informs the development of more effective chemotherapeutic options against persistent mycobacterial infections.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Center
for Discovery and Innovation, Hackensack
Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Paulina Osiecki
- Center
for Discovery and Innovation, Hackensack
Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Danielle Weiner
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, 33 North Drive, Bethesda, Maryland 20892, United States
- Tuberculosis
Imaging Program (TBIP), Division of Intramural Research, NIAID, NIH, 33 North Drive, Building 33, Bethesda, Maryland 20892, United States
| | - Laura E. Via
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, 33 North Drive, Bethesda, Maryland 20892, United States
- Tuberculosis
Imaging Program (TBIP), Division of Intramural Research, NIAID, NIH, 33 North Drive, Building 33, Bethesda, Maryland 20892, United States
| | - Jansy P. Sarathy
- Center
for Discovery and Innovation, Hackensack
Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Department
of Medical Sciences, Hackensack Meridian
School of Medicine, 123
Metro Blvd, Nutley 07110 New Jersey, United
States
| |
Collapse
|
10
|
Goh JJN, Wang Q, Zhang N, de Castro Suarez N, Bustion AE, Nuermberger EL, Savic R. Prospectively predicting BPaMZ phase IIb/III trial outcomes using a translational mouse-to-human platform. Antimicrob Agents Chemother 2024; 68:e0061524. [PMID: 39287403 PMCID: PMC11459968 DOI: 10.1128/aac.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Despite known treatments, tuberculosis (TB) remains the world's top infectious killer, highlighting the pressing need for new drug regimens. To prioritize the most efficacious drugs for clinical testing, we previously developed a PK-PD translational platform with bacterial dynamics that reliably predicted short-term monotherapy outcomes in Phase IIa trials from preclinical mouse studies. In this study, we extended our platform to include PK-PD models that account for drug-drug interactions in combination regimens and bacterial regrowth in our bacterial dynamics model to predict cure at the end of treatment and relapse 6 months post-treatment. The Phase III STAND trial testing a new regimen comprised of pretomanid (Pa), moxifloxacin (M), and pyrazinamide (Z) (PaMZ) was suspended after a separate ongoing trial (NC-005) suggested that adding bedaquiline (B) to the PaMZ regimen would improve efficacy. To forecast if the addition of B would, indeed, benefit the PaMZ regimen, we applied an extended translational platform to both regimens. We predicted currently available short- and long-term clinical data well for drug combinations related to BPaMZ. We predicted the addition of B to PaMZ to shorten treatment duration by 2 months and to have similar bacteriological success to standard HRZE treatment (considering only treatment success but not withdrawal from side effects and other adverse events), both at the end of treatment for treatment efficacy and 6 months after treatment has ended in relapse prevention. Using BPaMZ as a case study, we have demonstrated our translational platform can predict Phase II and III outcomes prior to actual trials, allowing us to better prioritize the regimens most likely to succeed.
Collapse
Affiliation(s)
- Janice J. N. Goh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Niurys de Castro Suarez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Annamarie E. Bustion
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rada Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Gavras N, Schluger NW. QT Prolongation Associated with Administration of Bedaquiline, a Novel Anti-Tuberculosis Drug. Cardiol Rev 2024:00045415-990000000-00342. [PMID: 39377599 DOI: 10.1097/crd.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Bedaquiline is a diarylquinoline compound that has recently been introduced and approved for use in the treatment of multidrug-resistant tuberculosis (MDR-TB). Its mechanism of action is inhibition of adenosine triphosphate-synthase. In combination with other antibiotics, bedaquiline-containing regimens administered for 6 months achieve cure rates of roughly 90%, in contrast to the previously used, 24-month-long WHO-recommended regimens for the treatment of MDR-TB. However, since its introduction, concerns have been raised about its effects on QT prolongation and its safety in routine clinical use. We reviewed the published experience regarding bedaquiline use, QT prolongation, and adverse cardiac events when the drug was used alone or in combination. Overall, data are reassuring that bedaquiline use in clinical practice is not associated with an excess of cardiac deaths or other clinically meaningful cardiac events. This review provides reassurance and support for the continued use of bedaquiline in the treatment of MDR-TB.
Collapse
Affiliation(s)
- Nicholas Gavras
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | | |
Collapse
|
12
|
Deng G, Fu L. A bedaquiline, pretomanid, moxifloxacin, and pyrazinamide regimen for drug-susceptible and drug-resistant tuberculosis. THE LANCET. INFECTIOUS DISEASES 2024; 24:940-941. [PMID: 38768618 DOI: 10.1016/s1473-3099(24)00257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Guofang Deng
- Pulmonary Diseases Department, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China; National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Liang Fu
- Pulmonary Diseases Department, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China; National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China.
| |
Collapse
|
13
|
Cevik M, Thompson LC, Upton C, Rolla VC, Malahleha M, Mmbaga B, Ngubane N, Abu Bakar Z, Rassool M, Variava E, Dawson R, Staples S, Lalloo U, Louw C, Conradie F, Eristavi M, Samoilova A, Skornyakov SN, Ntinginya NE, Haraka F, Praygod G, Mayanja-Kizza H, Caoili J, Balanag V, Dalcolmo MP, McHugh T, Hunt R, Solanki P, Bateson A, Crook AM, Fabiane S, Timm J, Sun E, Spigelman M, Sloan DJ, Gillespie SH. Bedaquiline-pretomanid-moxifloxacin-pyrazinamide for drug-sensitive and drug-resistant pulmonary tuberculosis treatment: a phase 2c, open-label, multicentre, partially randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1003-1014. [PMID: 38768617 DOI: 10.1016/s1473-3099(24)00223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The current tuberculosis (TB) drug development pipeline is being re-populated with candidates, including nitroimidazoles such as pretomanid, that exhibit a potential to shorten TB therapy by exerting a bactericidal effect on non-replicating bacilli. Based on results from preclinical and early clinical studies, a four-drug combination of bedaquiline, pretomanid, moxifloxacin, and pyrazinamide (BPaMZ) regimen was identified with treatment-shortening potential for both drug-susceptible (DS) and drug-resistant (DR) TB. This trial aimed to determine the safety and efficacy of BPaMZ. We compared 4 months of BPaMZ to the standard 6 months of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) in DS-TB. 6 months of BPaMZ was assessed in DR-TB. METHODS SimpliciTB was a partially randomised, phase 2c, open-label, clinical trial, recruiting participants at 26 sites in eight countries. Participants aged 18 years or older with pulmonary TB who were sputum smear positive for acid-fast bacilli were eligible for enrolment. Participants with DS-TB had Mycobacterium tuberculosis with sensitivity to rifampicin and isoniazid. Participants with DR-TB had M tuberculosis with resistance to rifampicin, isoniazid, or both. Participants with DS-TB were randomly allocated in a 1:1 ratio, stratified by HIV status and cavitation on chest radiograph, using balanced block randomisation with a fixed block size of four. The primary efficacy endpoint was time to sputum culture-negative status by 8 weeks; the key secondary endpoint was unfavourable outcome at week 52. A non-inferiority margin of 12% was chosen for the key secondary outcome. Safety and tolerability outcomes are presented as descriptive analyses. The efficacy analysis population contained patients who received at least one dose of medication and who had efficacy data available and had no major protocol violations. The safety population contained patients who received at least one dose of medication. This study is registered with ClinicalTrials.gov (NCT03338621) and is completed. FINDINGS Between July 30, 2018, and March 2, 2020, 455 participants were enrolled and received at least one dose of study treatment. 324 (71%) participants were male and 131 (29%) participants were female. 303 participants with DS-TB were randomly assigned to 4 months of BPaMZ (n=150) or HRZE (n=153). In a modified intention-to-treat (mITT) analysis, by week 8, 122 (84%) of 145 and 70 (47%) of 148 participants were culture-negative on 4 months of BPaMZ and HRZE, respectively, with a hazard ratio for earlier negative status of 2·93 (95% CI 2·17-3·96; p<0·0001). Median time to negative culture (TTN) was 6 weeks (IQR 4-8) on 4 months of BPaMZ and 11 weeks (6-12) on HRZE. 86% of participants with DR-TB receiving 6 months of BPaMZ (n=152) reached culture-negative status by week 8, with a median TTN of 5 weeks (IQR 3-7). At week 52, 120 (83%) of 144, 134 (93%) of 144, and 111 (83%) of 133 on 4 months of BPaMZ, HRZE, and 6 months of BPaMZ had favourable outcomes, respectively. Despite bacteriological efficacy, 4 months of BPaMZ did not meet the non-inferiority margin for the key secondary endpoint in the pre-defined mITT population due to higher withdrawal rates for adverse hepatic events. Non-inferiority was demonstrated in the per-protocol population confirming the effect of withdrawals with 4 months of BPaMZ. At least one liver-related treatment-emergent adverse effect (TEAE) occurred among 45 (30%) participants on 4 months of BPaMZ, 38 (25%) on HRZE, and 33 (22%) on 6 months of BPaMZ. Serious liver-related TEAEs were reported by 20 participants overall; 11 (7%) among those on 4 months of BPaMZ, one (1%) on HRZE, and eight (5%) on 6 months of BPaMZ. The most common reasons for discontinuation of trial treatment were hepatotoxicity (ten participants [2%]), increased hepatic enzymes (nine participants [2%]), QTcF prolongation (three participants [1%]), and hypersensitivity (two participants [<1%]). INTERPRETATION For DS-TB, BPaMZ successfully met the primary efficacy endpoint of sputum culture conversion. The regimen did not meet the key secondary efficacy endpoint due to adverse events resulting in treatment withdrawal. Our study demonstrated the potential for treatment-shortening efficacy of the BPaMZ regimen for DS-TB and DR-TB, providing clinical validation of a murine model widely used to identify such regimens. It also highlights that novel, treatment-shortening TB treatment regimens require an acceptable toxicity and tolerability profile with minimal monitoring in low-resource and high-burden settings. The increased risk of unpredictable severe hepatic adverse events with 4 months of BPaMZ would be a considerable obstacle to implementation of this regimen in settings with high burdens of TB with limited infrastructure for close surveillance of liver biochemistry. Future research should focus on improving the preclinical and early clinical detection and mitigation of safety issues together and further efforts to optimise shorter treatments. FUNDING TB Alliance.
Collapse
Affiliation(s)
- Muge Cevik
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews, UK.
| | | | | | | | | | | | | | | | | | | | - Rodney Dawson
- University of Cape Town Lung Institute, Cape Town, South Africa
| | | | | | - Cheryl Louw
- Madibeng Centre for Research, Brits, South Africa
| | - Francesca Conradie
- Reproductive Health and HIV Research Unit (RHRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Marika Eristavi
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Anastasia Samoilova
- Research Institute of Phthisiopulmonology of IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey N Skornyakov
- Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, Yekaterinburg, Russia
| | | | | | | | | | - Janice Caoili
- Tropical Disease Foundation, Makati City, Manila, Philippines
| | | | | | - Timothy McHugh
- UCL Centre for Clinical Microbiology, University College London, London, UK
| | - Robert Hunt
- UCL Centre for Clinical Microbiology, University College London, London, UK
| | - Priya Solanki
- UCL Centre for Clinical Microbiology, University College London, London, UK
| | - Anna Bateson
- UCL Centre for Clinical Microbiology, University College London, London, UK
| | - Angela M Crook
- MRC Clinical Trials Unit, University College London, London, UK
| | - Stella Fabiane
- MRC Clinical Trials Unit, University College London, London, UK
| | | | | | | | - Derek J Sloan
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews, UK
| | - Stephen H Gillespie
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
14
|
Zainabadi K, Vilbrun SC, Mathurin LD, Walsh KF, Pape JW, Fitzgerald DW, Lee MH. A Bedaquiline, Pyrazinamide, Levofloxacin, Linezolid, and Clofazimine Second-line Regimen for Tuberculosis Displays Similar Early Bactericidal Activity as the Standard Rifampin-Based First-line Regimen. J Infect Dis 2024; 230:e447-e456. [PMID: 38060827 PMCID: PMC11326837 DOI: 10.1093/infdis/jiad564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND In 2018 the World Health Organization recommended a switch to an all oral bedaquiline-based second-line regimen for treatment of drug-resistant tuberculosis (DR-TB). How these new second-line regimens fare in comparison to first-line regimens for treatment of drug-sensitive tuberculosis (DS-TB) is not well known. METHODS In this study, we contemporaneously enrolled subjects with DS-TB (n = 31) or DR-TB (n = 23) and assessed their response to therapy with first-line (rifampin, isoniazid, ethambutol, pyrazinamide) or second-line (bedaquiline, pyrazinamide, levofloxacin, linezolid, clofazimine) regimens, respectively. RESULTS We found that the early bactericidal activity of first- and second-line regimens was similar during the first 2 weeks of therapy as determined by BACTEC MGIT, colony-forming units, and a liquid limiting dilution assay capable of detecting differentially detectable/culturable Mycobacterium tuberculosis. Furthermore, an identical percentage (77.8%) of subjects from the DS-TB and DR-TB cohorts converted to culture negative after 2 months of therapy. CONCLUSIONS Despite presenting with more advanced disease at time of treatment, subjects with DR-TB receiving an all oral bedaquiline-based second-line treatment regimen displayed a similar microbiological response to therapy as subjects with DS-TB receiving a first-line treatment regimen.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Center for Global Health, Weill Cornell Medicine, NewYork, New York
| | | | | | - Kathleen Frances Walsh
- Center for Global Health, Weill Cornell Medicine, NewYork, New York
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jean William Pape
- Center for Global Health, Weill Cornell Medicine, NewYork, New York
- Les Centres GHESKIO, Port-au-Prince, Haiti
| | | | - Myung Hee Lee
- Center for Global Health, Weill Cornell Medicine, NewYork, New York
| |
Collapse
|
15
|
Dufault SM, Davies GR, Svensson EM, Sloan DJ, McCallum AD, Patel A, Van Brantegem P, Denti P, Phillips PPJ. Analysis of time-to-positivity data in tuberculosis treatment studies: Identifying a new limit of quantification. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306879. [PMID: 38766235 PMCID: PMC11100935 DOI: 10.1101/2024.05.06.24306879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The BACTEC Mycobacteria Growth Indicator Tube (MGIT) machine is the standard globally for detecting viable mycobacteria in patients' sputum. Samples are observed for no longer than 42 days, at which point the sample is declared "negative" for tuberculosis (TB). This time to detection of bacterial growth, referred to as time-to-positivity (TTP), is increasingly of interest not solely as a diagnostic tool, but as a continuous biomarker wherein change in TTP over time can be used for comparing the bactericidal activity of different TB treatments. However, as a continuous measure, there are oddities in the distribution of TTP values observed, particularly at higher values. We explored whether there is evidence to suggest setting an upper limit of quantification (ULOQM) lower than the diagnostic limit of detection (LOD) using data from several TB-PACTS randomized clinical trials and PanACEA MAMS-TB. Across all trials, less than 7.1% of all weekly samples returned TTP measurements between 25 and 42 days. Further, the relative absolute prediction error (%) was highest in this range. When modeling with ULOQMs of 25 and 30 days, the precision in estimation improved for 23 of 25 regimen-level slopes as compared to models using the diagnostic LOD while also improving the discrimination between regimens based on Bayesian posteriors. While TTP measurements between 25 days and the diagnostic LOD may be important for diagnostic purposes, TTP values in this range may not contribute meaningfully to its use as a quantitative measure, particularly when assessing treatment response, and may lead to under-powered clinical trials.
Collapse
Affiliation(s)
- Suzanne M. Dufault
- Division of Biostatistics, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
| | - Geraint R. Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Elin M. Svensson
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Derek J. Sloan
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Andrew D. McCallum
- Department of Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anu Patel
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California, USA
| | - Pieter Van Brantegem
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Paulo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Patrick P. J. Phillips
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
16
|
Budak M, Via LE, Weiner DM, Barry CE, Nanda P, Michael G, Mdluli K, Kirschner D. A systematic efficacy analysis of tuberculosis treatment with BPaL-containing regimens using a multiscale modeling approach. CPT Pharmacometrics Syst Pharmacol 2024; 13:673-685. [PMID: 38404200 PMCID: PMC11015080 DOI: 10.1002/psp4.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Tuberculosis (TB) is a life-threatening infectious disease. The standard treatment is up to 90% effective; however, it requires the administration of four antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol [HRZE]) over long time periods. This harsh treatment process causes adherence issues for patients because of the long treatment times and a myriad of adverse effects. Therefore, the World Health Organization has focused goals of shortening standard treatment regimens for TB in their End TB Strategy efforts, which aim to reduce TB-related deaths by 95% by 2035. For this purpose, many novel and promising combination antibiotics are being explored that have recently been discovered, such as the bedaquiline, pretomanid, and linezolid (BPaL) regimen. As a result, testing the number of possible combinations with all possible novel regimens is beyond the limit of experimental resources. In this study, we present a unique framework that uses a primate granuloma modeling approach to screen many combination regimens that are currently under clinical and experimental exploration and assesses their efficacies to inform future studies. We tested well-studied regimens such as HRZE and BPaL to evaluate the validity and accuracy of our framework. We also simulated additional promising combination regimens that have not been sufficiently studied clinically or experimentally, and we provide a pipeline for regimen ranking based on their efficacies in granulomas. Furthermore, we showed a correlation between simulation rankings and new marmoset data rankings, providing evidence for the credibility of our framework. This framework can be adapted to any TB regimen and can rank any number of single or combination regimens.
Collapse
Affiliation(s)
- Maral Budak
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious Diseases (NIAID)BethesdaMarylandUSA
- Tuberculosis Imaging Program, Division of Intramural ResearchNIAIDBethesdaMarylandUSA
| | - Danielle M. Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious Diseases (NIAID)BethesdaMarylandUSA
- Tuberculosis Imaging Program, Division of Intramural ResearchNIAIDBethesdaMarylandUSA
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious Diseases (NIAID)BethesdaMarylandUSA
- Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular MedicineObservatoryRepublic of South Africa
- Department of MedicineUniversity of Cape TownObservatoryRepublic of South Africa
| | - Pariksheet Nanda
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Gabrielle Michael
- Molecular, Cellular and Developmental BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Khisimuzi Mdluli
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | - Denise Kirschner
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
17
|
Abdillah AH, Rangkuti AAM, Pangestu D, Az-Zahra S, Supiono S. Efficacy and safety of quinolones as potential first line therapy in pulmonary tuberculosis: a meta-analysis. Folia Med (Plovdiv) 2024; 66:26-34. [PMID: 38426462 DOI: 10.3897/folmed.66.e115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Tuberculosis is an infectious disease that continues to plague the world today, causing concerns due to its high mortality rate. The therapy regimens used for the treatment of tuberculosis today have demonstrated high efficacy and safety, potentially reducing the disease's burden, but the use of some standardized medications has caused many resistances to emerge. Over the last decade, researchers have been looking for suitable alternatives, with quinolones emerging as the most promising candidate due to their efficacy, safety, and availability. However, their efficacy as a first-line treatment remains debatable.
Collapse
|
18
|
Ur Rehman O, Fatima E, Ali A, Akram U, Nashwan A, Yunus F. Efficacy and safety of bedaquiline containing regimens in patients of drug-resistant tuberculosis: An updated systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis 2024; 34:100405. [PMID: 38152568 PMCID: PMC10750101 DOI: 10.1016/j.jctube.2023.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis and leads to serious complications if left untreated. Some strains of Mycobacterium tuberculosis are multi-drug resistant and require treatment with newer drugs. Bedaquiline based treatment regimens have been used in patients who are diagnosed with drug resistant tuberculosis. The aim of this study is to assess the efficacy and safety profile of bedaquiline-based treatment regimens using a systematic review of existing literature and meta-analysis. METHODS In this study, an electronic search was carried out on PubMed, ScienceDirect, and Cochrane library to find relevant literature from March 2021 onwards. Random-effects model was used to assess pooled treatment success rate and 95 % CIs. p-value of <0.05 was suggestive of publication bias. The review is registered with PROSPERO: CRD42023432748. RESULTS A total of 543 articles were retrieved by database searching, out of which 12 new studies met the inclusion criteria. The total number of articles included in the review was 41 including 36 observational studies (having a total of 9,934 patients) and 5 experimental studies (having a total of 468 patients). The pooled treatment success rate was 76.9 % (95 % CI, 72.9-80.4) in the observational studies and 81.7 % (95 % CI, 67.2-90.7) in the experimental studies. Further subgroup analysis was done on the basis of treatment regimens containing bedaquiline only and treatment regimens containing bedaquiline and delamanid. The pooled treatment success rate in the studies consisting of patients who were treated with regimens containing bedaquiline only was 78.4 % (95 % CI, 74.2-82.1) and 73.6 % (95 % CI, 64.6-81.0) in studies consisting of patients who were treated with regimens containing bedaquiline and delamanid. There was no evidence of publication bias. CONCLUSIONS In patients of drug resistant tuberculosis having highly resistant strains of Mycobacterium tuberculosis undergoing treatment with bedaquiline-based regimen demonstrate high rates of culture conversion and treatment success. Moreover, the safety profile of bedaquiline-based regimens is well-established in all studies.
Collapse
Affiliation(s)
- Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Abraish Ali
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | | | - Faryal Yunus
- Department of Pathology, Services Institute of Medical Sciences, Lahore, Pakistan
| |
Collapse
|
19
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
20
|
Reali F, Fochesato A, Kaddi C, Visintainer R, Watson S, Levi M, Dartois V, Azer K, Marchetti L. A minimal PBPK model to accelerate preclinical development of drugs against tuberculosis. Front Pharmacol 2024; 14:1272091. [PMID: 38239195 PMCID: PMC10794428 DOI: 10.3389/fphar.2023.1272091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: Understanding drug exposure at disease target sites is pivotal to profiling new drug candidates in terms of tolerability and efficacy. Such quantification is particularly tedious for anti-tuberculosis (TB) compounds as the heterogeneous pulmonary microenvironment due to the infection may alter lung permeability and affect drug disposition. Murine models have been a longstanding support in TB research so far and are here used as human surrogates to unveil the distribution of several anti-TB compounds at the site-of-action via a novel and centralized PBPK design framework. Methods: As an intermediate approach between data-driven pharmacokinetic (PK) models and whole-body physiologically based (PB) PK models, we propose a parsimonious framework for PK investigation (minimal PBPK approach) that retains key physiological processes involved in TB disease, while reducing computational costs and prior knowledge requirements. By lumping together pulmonary TB-unessential organs, our minimal PBPK model counts 9 equations compared to the 36 of published full models, accelerating the simulation more than 3-folds in Matlab 2022b. Results: The model has been successfully tested and validated against 11 anti-TB compounds-rifampicin, rifapentine, pyrazinamide, ethambutol, isoniazid, moxifloxacin, delamanid, pretomanid, bedaquiline, OPC-167832, GSK2556286 - showing robust predictability power in recapitulating PK dynamics in mice. Structural inspections on the proposed design have ensured global identifiability and listed free fraction in plasma and blood-to-plasma ratio as top sensitive parameters for PK metrics. The platform-oriented implementation allows fast comparison of the compounds in terms of exposure and target attainment. Discrepancies in plasma and lung levels for the latest BPaMZ and HPMZ regimens have been analyzed in terms of their impact on preclinical experiment design and on PK/PD indices. Conclusion: The framework we developed requires limited drug- and species-specific information to reconstruct accurate PK dynamics, delivering a unified viewpoint on anti-TB drug distribution at the site-of-action and a flexible fit-for-purpose tool to accelerate model-informed drug design pipelines and facilitate translation into the clinic.
Collapse
Affiliation(s)
- Federico Reali
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Anna Fochesato
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
- Department of Mathematics, University of Trento, Povo, Italy
| | - Chanchala Kaddi
- Gates Medical Research Institute, Cambridge, MD, United States
| | - Roberto Visintainer
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Shayne Watson
- Gates Medical Research Institute, Cambridge, MD, United States
| | - Micha Levi
- Gates Medical Research Institute, Cambridge, MD, United States
| | | | - Karim Azer
- Gates Medical Research Institute, Cambridge, MD, United States
| | - Luca Marchetti
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Italy
| |
Collapse
|
21
|
Simanjuntak AM, Daenansya R, Aflandhanti PM, Yovi I, Suyanto S, Anggraini5 D, Rosdiana D. Efficacy of pretomanid-containing regiments for drug-resistant tuberculosis: A systematic review and meta-analysis of clinical trials. NARRA J 2023; 3:e402. [PMID: 38455633 PMCID: PMC10919689 DOI: 10.52225/narra.v3i3.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/05/2023] [Indexed: 03/09/2024]
Abstract
Concerns regarding the rise of drug-resistant tuberculosis (DR-TB) infections and the need for new drugs with shorter treatment time and fewer side effects have been voiced by the World Health Organization (WHO). The WHO revised its guideline to treat multidrug resistant tuberculosis (MDR-TB) with a 6-month course of BPaLM (bedaquiline, pretomanid, linezolid and moxifloxacin) in 2022. However, a thorough study and meta-analysis of available evidence is required due to the limited confidence of the evidence confirming the effectiveness of pretomanid-containing regiments. The aim of this systematic review and meta-analysis was to evaluate the effectiveness of pretomanid-containing regiments in treating DR-TB patients. Data from six search engines were searched using inclusion criteria based on the PICOS framework. The keywords of pretomanid and tuberculosis or their alternatives were used. Using RoB2 Cochrane risk-of-bias tool for randomized clinical trials, data were independently extracted and the quality of the data was evaluated. Odds ratio (OR) and heterogeneity tests were used and the findings were presented in ORs and forest plots. A total of four studies with 237 patients was included in the final analysis and 204 (86%) patients had favorable outcome (cured) and 33 (14%) was not cured. Pretomanid-containing regimen (OR: 46.73; 95%CI: 11.76-185.7) and BPaLM/BPaL (OR: 41.67; 95%CI: 8.86-196.73) regimens were associated with favorable outcome (cured). This meta-analysis indicates that the pretomanid-containing regimen and the BPaLM/BPaL regimen could increase the chance to have favorable outcome in DR-TB patients.
Collapse
Affiliation(s)
- Arya M. Simanjuntak
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Department of Pulmonology and Respiratory Medicine, Arifin Achmad General Hospital, Pekanbaru, Indonesia
| | - Raehan Daenansya
- Medical School, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Putri M. Aflandhanti
- Medical School, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Indra Yovi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Department of Pulmonology and Respiratory Medicine, Arifin Achmad General Hospital, Pekanbaru, Indonesia
| | - Suyanto Suyanto
- Departement of Public Health, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Dewi Anggraini5
- Departement of Microbiology, Arifin Achmad General Hospital, Pekanbaru, Indonesia
| | - Dani Rosdiana
- Departement of Internal Medicine, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Departement of Internal Medicine, Arifin Achmad General Hospital, Pekanbaru, Indonesia
| |
Collapse
|
22
|
Berida T, McKee SR, Chatterjee S, Manning DL, Li W, Pandey P, Tripathi SK, Mreyoud Y, Smirnov A, Doerksen RJ, Jackson M, Ducho C, Stallings CL, Roy S. Discovery, Synthesis, and Optimization of 1,2,4-Triazolyl Pyridines Targeting Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2282-2298. [PMID: 37788674 PMCID: PMC10807233 DOI: 10.1021/acsinfecdis.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of Mycobacterium tuberculosis (Mtb) growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against Mtb. The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in Mtb and were bactericidal against Mtb during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound 20 and identified resistant isolates with mutations in genes required for coenzyme F420 biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F420-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F420-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Tomayo Berida
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shamba Chatterjee
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Destinee L Manning
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Siddharth Kaushal Tripathi
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sudeshna Roy
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
23
|
Joshi T, Nain P, Bhamra P, Kaur J. Favorable clinical outcomes and anti-mycobacterial efficacy of pretomanid in patients with highly resistant tuberculosis: A review. Indian J Tuberc 2023; 71 Suppl 1:S130-S135. [PMID: 39067944 DOI: 10.1016/j.ijtb.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 07/30/2024]
Abstract
Rising cases of drug resistance of mycobacterium species are one of the biggest concerns when the goal is to eradicate TB (Tuberculosis) from the world by the year 2030. A limited number of treatment options as MTB (Mycobacterium tuberculosis) is getting resistant to anti-mycobacterial drugs either due to a patient's non-compliance towards treatment regimen or if a patient is infected by drug-resistant species of MTB. This review aims to assess the effectiveness of pretomanid, a recently approved drug for the treatment of extensively drug-resistant TB. A thorough search of databases like PubMed, Cochrane library, CDC, Research Gate, and Google scholar was used in order to find case reports and clinical trials providing data on the efficacy of pretomanid in different drug regimens. According to research trials conducted, the drug appears to be efficacious, safe, and well-tolerable. Only headache was the most frequently observed adverse drug event, and a high dose-related increase in serum creatinine level was seen, which came to normal after the drug was discontinued.
Collapse
Affiliation(s)
- Tanishq Joshi
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Parminder Nain
- Department of Pharmacy Practice, CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar, Punjab 144020, India
| | - Prajwal Bhamra
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Jaspreet Kaur
- Department of Pharmacy Practice, CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar, Punjab 144020, India.
| |
Collapse
|
24
|
Timm J, Bateson A, Solanki P, Paleckyte A, Witney AA, Rofael SAD, Fabiane S, Olugbosi M, McHugh TD, Sun E. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002283. [PMID: 37851685 PMCID: PMC10584172 DOI: 10.1371/journal.pgph.0002283] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.
Collapse
Affiliation(s)
- Juliano Timm
- TB Alliance, New York City, New York, United States of America
| | - Anna Bateson
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Priya Solanki
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Ana Paleckyte
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Adam A. Witney
- Institute of Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Sylvia A. D. Rofael
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
- Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Stella Fabiane
- MRC Clinical Trials Unit at University College London, London, United Kingdom
| | | | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Eugene Sun
- TB Alliance, New York City, New York, United States of America
| |
Collapse
|
25
|
Nguyen TVA, Nguyen QH, Nguyen TNT, Anthony RM, Vu DH, Alffenaar JWC. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice. Int J Antimicrob Agents 2023; 62:106953. [PMID: 37595848 DOI: 10.1016/j.ijantimicag.2023.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/20/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Pretomanid (PA-824), a novel anti-tuberculosis (TB) nitroimidazoxazine, has been approved for multi-drug-resistant TB treatment for a few years. Pretomanid has been demonstrated to be highly active against Mycobacterium tuberculosis when combined with other anti-TB drugs. This review provides an update of the current knowledge on the modes of action, resistance mechanisms, emergence of drug resistance, and status of antimicrobial susceptibility testing for pretomanid and its relevance for clinical practice. Pretomanid resistance has been reported in in-vitro and animal models but not yet in clinical trials. Pretomanid-resistance-associated mutations have been reported in the fbiA, fbiB, fbiC, fbiD, ddn and fgd1 genes. However, understanding of in-vivo molecular resistance mechanisms remains limited, and complicates the development of accurate antimicrobial susceptibility testing methods for pretomanid. As such, no reference method for antimicrobial susceptibility testing of pretomanid has been established to guide clinical use. Further studies linking specific mutations, in-vitro susceptibility, drug exposure and resistance mechanisms to treatment failure with pretomanid should be prioritized.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Huy Nguyen
- LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Nam Tien Nguyen
- National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Richard M Anthony
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Dinh Hoa Vu
- National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Westmead Hospital, Sydney, Australia; Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia.
| |
Collapse
|
26
|
Tong E, Wu Q, Chen Y, Liu Z, Zhang M, Zhu Y, Wu K, Pan J, Jiang J. The Efficacy and Safety of Bedaquiline in the Treatment of Pulmonary Tuberculosis Patients: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2023; 12:1389. [PMID: 37760686 PMCID: PMC10525131 DOI: 10.3390/antibiotics12091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bedaquiline (BDQ) has been designated as a Group A drug by the World Health Organization (WHO) for the management of multi-drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). This systematic review and meta-analysis aim to evaluate the efficacy and safety of BDQ-containing regimens for the treatment of patients with pulmonary TB. METHODS PubMed (MEDLINE), Elton B. Stephens Company (EBSCO) database, the Cochrane Register of Controlled Trials, and the China National Knowledge Infrastructure (CNKI) database were initially searched on 15 June 2022 and again on 20 March 2023. We included randomized controlled trials (RCTs) and non-randomized studies (NRSs) that administered BDQ to TB patients. The outcomes of interest were as follows: (1) efficacy, including the rate of sputum culture conversion at 8 weeks, 24 weeks, and during follow-up, as well as the rates of completion cure, death, treatment failure, and loss at follow-up and at the end of the treatment; and (2) safety, which encompassed the incidences of cardiotoxicity, hepatotoxicity, and grade 3-5 adverse events during the treatment period. RESULTS A total of 29 articles were included in this meta-analysis, representing 23,358 individuals. Patients who were treated with BDQ were compared with patients who were not exposed to BDQ. The use of BDQ-containing regimens demonstrated improved rates of sputum conversion in RCTs at 24 weeks (RR = 1.27, 95% CI: 1.10 to 1.46) and during follow-up (RR = 1.33, 95% CI: 1.06 to 1.66). Additionally, BDQ-containing regimens showed increased cure rates (RR = 1.60, 95% CI: 1.13 to 2.26) and decreased failure rates (RR = 0.56, 95% CI: 0.56 to 0.88). In NRSs, BDQ-containing regimens improved the sputum culture conversion rate during follow-up (RR = 1.53, 95% CI: 1.07 to 2.20), increased the rate of cure (RR = 1.86, 95% CI: 1.23 to 2.83), reduced deaths from all causes (RR = 0.68, 95% CI: 0.48 to 0.97), and reduced failure rates (RR = 0.57, 95% CI: 0.46 to 0.71). However, the use of BDQ-containing regimens was associated with increased incidences of cardiotoxicity (RR = 4.54, 95% CI: 1.74 to 11.87) and grade 3-5 adverse events (RR = 1.42, 95% CI: 1.17 to 1.73) in RCTs. NRSs also showed an association between BDQ-containing regimens and cardiotoxicity (RR = 6.00, 95% CI: 1.32 to 27.19). No significant differences were observed between intervention groups and control groups with respect to other outcomes. CONCLUSIONS Data from both RCTs and NRSs support the efficacy of BDQ for the treatment of pulmonary tuberculosis. However, the use of BDQ is associated with a higher incidence of cardiotoxicity and serious adverse events. Comparative data on efficacy and safety are limited, and further confirmation is required, due to potential bias and discrepancies in the available studies.
Collapse
Affiliation(s)
- Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou 311100, China
| | - Qian Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yiming Chen
- School of Public Health, Hangzhou Normal University, Hangzhou 311100, China
| | - Zhengwei Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Mingwu Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yelei Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Kunyang Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Junhang Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China
| |
Collapse
|
27
|
Cattaneo D, Torre A, Schiuma M, Civati A, Lazzarin S, Rizzardini G, Gori A, Antinori S, Gervasoni C. Management of Polypharmacy and Potential Drug-Drug Interactions in Patients with Mycobacterial Infection: A 1-Year Experience of a Multidisciplinary Outpatient Clinic. Antibiotics (Basel) 2023; 12:1171. [PMID: 37508267 PMCID: PMC10375959 DOI: 10.3390/antibiotics12071171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
In 2022, we opened an outpatient clinic for the management of polypharmacy and potential drug-drug interactions (pDDIs) in patients with mycobacterial infection (called GAP-MyTB). All patients who underwent a GAP-MyTB visit from March 2022 to March 2023 were included in this retrospective analysis. Fifty-two patients were included in the GAP-MyTB database. They were given 10.4 ± 3.7 drugs (2.8 ± 1.0 and 7.8 ± 3.9 were, respectively, antimycobacterial agents and co-medications). Overall, 262 pDDIs were identified and classified as red-flag (2%), orange-flag (72%), or yellow-flag (26%) types. The most frequent actions suggested after the GAP-MyTB assessment were to perform ECG (52%), therapeutic drug monitoring (TDM, 40%), and electrolyte monitoring (33%) among the diagnostic interventions and to reduce/stop proton pump inhibitors (37%), reduce/change statins (14%), and reduce anticholinergic burden (8%) among the pharmacologic interventions. The TDM of rifampicin revealed suboptimal exposure in 39% of patients that resulted in a TDM-guided dose increment (from 645 ± 101 to 793 ± 189 mg/day, p < 0.001). The high prevalence of polypharmacy and risk of pDDIs in patients with mycobacterial infection highlights the need for ongoing education on prescribing principles and the optimal management of individual patients. A multidisciplinary approach involving physicians and clinical pharmacologists could help achieve this goal.
Collapse
Affiliation(s)
- Dario Cattaneo
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Alessandro Torre
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Marco Schiuma
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Aurora Civati
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Samuel Lazzarin
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Giuliano Rizzardini
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Andrea Gori
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Spinello Antinori
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| | - Cristina Gervasoni
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milan, Italy
| |
Collapse
|
28
|
Cross GB, Sari IP, Kityo C, Lu Q, Pokharkar Y, Moorakonda RB, Thi HN, Do Q, Dalay VB, Gutierrez E, Balanag VM, Castillo RJ, Mugerwa H, Fanusi F, Kwan P, Chew KL, Paton NI. Rosuvastatin adjunctive therapy for rifampicin-susceptible pulmonary tuberculosis: a phase 2b, randomised, open-label, multicentre trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:847-855. [PMID: 36966799 DOI: 10.1016/s1473-3099(23)00067-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Shorter treatments are needed for drug-susceptible tuberculosis. Adjunctive statins increase bactericidal activity in preclinical tuberculosis models. We investigated the safety and efficacy of adjunctive rosuvastatin in people with tuberculosis. We tested the hypothesis that adjunctive rosuvastatin accelerates sputum culture conversion within the first 8 weeks of treatment of rifampicin-susceptible tuberculosis. METHODS This phase 2b, randomised, open-label, multicentre trial conducted in five hospitals or clinics in three countries with high tuberculosis burden (ie, the Philippines, Viet Nam, and Uganda) enrolled adult participants aged 18-75 years with sputum smear or Xpert MTB/RIF positive, rifampicin-susceptible tuberculosis who had received less than 7 days of previous tuberculosis treatment. Participants were randomly assigned via a web-based system to receive either 10 mg rosuvastatin once per day for 8 weeks plus standard tuberculosis therapy (rifampicin, isoniazid, pyrazinamide, and ethambutol; rosuvastatin group) or standard tuberculosis therapy alone (control group). Randomisation was stratified by trial site, history of diabetes, and HIV co-infection. Laboratory staff and central investigators involved in data cleaning and analysis were masked to treatment allocation, but study participants and site investigators were not. Both groups continued standard treatment to week 24. Sputum samples were collected once per week for the first 8 weeks after randomisation, and then at weeks 10, 12, and 24. The primary efficacy outcome was time to culture conversion (TTCC; days) in liquid culture by week 8, assessed in randomised participants who had microbiological confirmation of tuberculosis, took at least one dose of rosuvastatin, and who did not show resistance to rifampicin (modified intention-to-treat population), for which groups were compared with the Cox proportional hazards model. The main safety outcome was grade 3-5 adverse events by week 24, assessed in the intention-to-treat population, for which groups were compared with Fisher's exact test. All participants completed 24 weeks of follow-up. This trial is registered with ClinicalTrials.gov (NCT04504851). FINDINGS Between Sept 2, 2020, and Jan 14, 2021, 174 participants were screened and 137 were randomly assigned to the rosuvastatin group (70 participants) or control group (67 participants). In the modified intention-to-treat population of 135 participants, 102 (76%) were men and 33 (24%) were women. Median TTCC in liquid media was 42 days (95% CI 35-49) in the rosuvastatin group (68 participants) and 42 days (36-53) in the control group (67 participants; hazard ratio 1·30 [0·88-1·91], p=0·19). Grade 3-5 adverse events occurred in six (9%) of 70 in the rosuvastatin group (none were considered related to rosuvastatin) and four (6%) of 67 in the control group (p=0·75). There were no serious adverse events that were considered to be related to rosuvastatin. INTERPRETATION Adjunctive rosuvastatin at 10 mg once per day was safe but did not produce substantive benefits on culture conversion in the overall study population. Future trials could explore the safety and efficacy of higher doses of adjunctive rosuvastatin. FUNDING National Medical Research Council, Singapore.
Collapse
Affiliation(s)
- Gail B Cross
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore; Department of Medicine, National University Health Systems, Singapore.
| | - Intan P Sari
- Department of Medicine, National University Health Systems, Singapore
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Qingshu Lu
- Singapore Clinical Research Institute, Singapore
| | | | | | - Han-Nguyen Thi
- Respiratory Center, Viet Nam Military Medical University, Hanoi, Viet Nam
| | - Quyet Do
- Respiratory Center, Viet Nam Military Medical University, Hanoi, Viet Nam
| | - Victoria B Dalay
- De La Salle Medical and Health Sciences Institute, Manila, Philippines
| | | | | | | | | | - Felic Fanusi
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore
| | - Philip Kwan
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore
| | - Ka Lip Chew
- Department of Microbiology, National University Health Systems, Singapore
| | - Nicholas I Paton
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore; Department of Medicine, National University Health Systems, Singapore; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
29
|
Davies GR, Aston S. Update on drug treatments for multidrug resistant tuberculosis. Curr Opin Infect Dis 2023; 36:132-139. [PMID: 36718913 DOI: 10.1097/qco.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF THE REVIEW To describe important recent developments in the treatment of multidrug resistant tuberculosis (MDR-TB). RECENT FINDINGS In the last decade, novel and repurposed antituberculosis drugs have transformed MDR-TB treatment with improved rates of treatment success, better tolerability and safety and reduced duration. As recently as 2016, standard care relied on up to seven drugs for 24 months with treatment success no better than 70%. Seven drug shorter so-called "Bangladesh" style regimens subsequently achieved similar or better results at a duration of 9-12 months but concerns about first-line resistance additional to rifampicin hampered global uptake. After conditional approval in 2012, the novel agent bedaquiline was demonstrated to improve outcomes and reduce mortality when used in longer and shorter regimens, resulting in the replacement of injectable agents. In the last 2 years, clinical trials of all-oral 6-month three or four drug regimens containing bedaquiline, pretomanid and linezolid have shown superior efficacy against both longer and shorter traditional regimens, resulting in major changes in WHO guidance. SUMMARY Although some concerns around safety and emergent bedaquiline resistance remain to be fully addressed, 6-month all oral regimens promise to transform the treatment of people with MDR-TB worldwide.
Collapse
|
30
|
Shao G, Bao Z, Davies Forsman L, Paues J, Werngren J, Niward K, Schön T, Bruchfeld J, Alffenaar JW, Hu Y. Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients. Front Pharmacol 2023; 14:1022090. [PMID: 37050904 PMCID: PMC10083270 DOI: 10.3389/fphar.2023.1022090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to model the population pharmacokinetics as well as to evaluate the currently recommended dosage.Methodology: A bedaquiline population pharmacokinetic (PK) model was developed based on samples collected from the development cohort before and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h after drug intake on week 2 and week 4 of treatment. In a prospective validation cohort of patients with MDR-TB, treated with bedaquiline-containing standardized regimen, drug exposure was assessed using the developed population PK model and thresholds were identified by relating to 2-month and 6-month sputum culture conversion and final treatment outcome using classification and regression tree analysis. In an exploratory analysis by the probability of target attainment (PTA) analysis, we evaluated the recommended dosage at different MIC levels by Middlebrook 7H11 agar dilution (7H11).Results: Bedaquiline pharmacokinetic data from 55 patients with MDR-TB were best described by a three-compartment model with dual zero-order input. Body weight was a covariate of the clearance and the central volume of distribution, albumin was a covariate of the clearance. In the validation cohort, we enrolled 159 patients with MDR-TB. The 7H11 MIC mode (range) of bedaquiline was 0.06 mg (0.008–0.25 mg/L). The study participants with AUC0-24h/MIC above 175.5 had a higher probability of culture conversion after 2-month treatment (adjusted relative risk, aRR:16.4; 95%CI: 5.3–50.4). Similarly, those with AUC0-24h/MIC above 118.2 had a higher probability of culture conversion after 6-month treatment (aRR:20.1; 95%CI: 2.9–139.4), and those with AUC0-24h/MIC above 74.6 had a higher probability of successful treatment outcome (aRR:9.7; 95%CI: 1.5–64.8). Based on the identified thresholds, simulations showed that the WHO recommended dosage (400 mg once daily for 14 days followed by 200 mg thrice weekly) resulted in PTA >90% for the majority of isolates (94%; MICs ≤0.125 mg/L).Conclusion: We established a population PK model for bedaquiline in patients with MDR-TB in China. Based on the thresholds and MIC distribution derived in a clinical study, the recommended dosage of bedaquiline is sufficient for the treatment of MDR-TB.
Collapse
Affiliation(s)
- Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People’s Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Jakob Paues
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Katarina Niward
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
- *Correspondence: Yi Hu,
| |
Collapse
|
31
|
Aguilar Diaz JM, Abulfathi AA, te Brake LHM, van Ingen J, Kuipers S, Magis-Escurra C, Raaijmakers J, Svensson EM, Boeree MJ. New and Repurposed Drugs for the Treatment of Active Tuberculosis: An Update for Clinicians. Respiration 2023; 102:83-100. [PMID: 36516792 PMCID: PMC9932851 DOI: 10.1159/000528274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Although tuberculosis (TB) is preventable and curable, the lengthy treatment (generally 6 months), poor patient adherence, high inter-individual variability in pharmacokinetics (PK), emergence of drug resistance, presence of comorbidities, and adverse drug reactions complicate TB therapy and drive the need for new drugs and/or regimens. Hence, new compounds are being developed, available drugs are repurposed, and the dosing of existing drugs is optimized, resulting in the largest drug development portfolio in TB history. This review highlights a selection of clinically available drug candidates that could be part of future TB regimens, including bedaquiline, delamanid, pretomanid, linezolid, clofazimine, optimized (high dose) rifampicin, rifapentine, and para-aminosalicylic acid. The review covers drug development history, preclinical data, PK, and current clinical development.
Collapse
Affiliation(s)
- Jessica M Aguilar Diaz
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, TB Expert Center Dekkerswald, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ahmed A Abulfathi
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, Lake Nona (Orlando), University of Florida, Gainesville, Florida, USA,Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lindsey HM te Brake
- Radboudumc Center for Infectious Diseases, Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, TB Expert Center Dekkerswald, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelmer Raaijmakers
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Radboudumc Center for Infectious Diseases, Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, TB Expert Center Dekkerswald, Radboud University Medical Center, Nijmegen, The Netherlands,*Martin J. Boeree,
| |
Collapse
|
32
|
Bossù G, Autore G, Bernardi L, Buonsenso D, Migliori GB, Esposito S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev Clin Pharmacol 2023; 16:5-15. [PMID: 36378271 DOI: 10.1080/17512433.2023.2148653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION According to the latest report from the World Health Organization (WHO), approximately 10.0 million people fell ill with tuberculosis (TB) in 2020, 12% of which were children aged under 15 years. There is very few experience on treatment of multi-drug resistant (MDR)-TB in pediatrics. AREAS COVERED The aim of this review is to analyze and summarize therapeutic options available for children experiencing MDR-TB. We also focused on management of MDR-TB prophylaxis. EXPERT OPINION The therapeutic management of children with MDR-TB or MDR-TB contacts is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. A close follow-up with a standardized timeline and a comprehensive assessment of clinical, laboratory, microbiologic and radiologic data is extremely important in these patients. Due to the complexity of their management, pediatric patients with confirmed or suspected MDR-TB should always be referred to a specialized center.
Collapse
Affiliation(s)
- Gianluca Bossù
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Autore
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bernardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri - IRCCS, Tradate, Italia
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
33
|
Pharmacodynamics and Bactericidal Activity of Combination Regimens in Pulmonary Tuberculosis: Application to Bedaquiline-Pretomanid-Pyrazinamide. Antimicrob Agents Chemother 2022; 66:e0089822. [PMID: 36377952 PMCID: PMC9765268 DOI: 10.1128/aac.00898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A critical barrier to codevelopment of tuberculosis (TB) regimens is a limited ability to identify optimal drug and dose combinations in early-phase clinical testing. While pharmacokinetic-pharmacodynamic (PKPD) target attainment is the primary tool for exposure-response optimization of TB drugs, the PD target is a static index that does not distinguish individual drug contributions to the efficacy of a multidrug combination. A PKPD model of bedaquiline-pretomanid-pyrazinamide (BPaZ) for the treatment of pulmonary TB was developed as part of a dynamic exposure-response approach to regimen development. The model describes a time course relationship between the drug concentrations in plasma and their individual as well as their combined effect on sputum bacillary load assessed by solid culture CFU counts and liquid culture time to positivity (TTP). The model parameters were estimated using data from the phase 2A studies NC-001-(J-M-Pa-Z) and NC-003-(C-J-Pa-Z). The results included a characterization of BPaZ activity as the most and least sensitive to changes in pyrazinamide and bedaquiline exposures, respectively, with antagonistic activity of BPa compensated by synergistic activity of BZ and PaZ. Simulations of the NC-003 study population with once-daily bedaquiline at 200 mg, pretomanid at 200 mg, and pyrazinamide at 1,500 mg showed BPaZ would require 3 months to attain liquid culture negativity in 90% of participants. These results for BPaZ were intended to be an example application with the general approach aimed at entirely novel drug combinations from a growing pipeline of new and repurposed TB drugs.
Collapse
|
34
|
Chang V, Phillips PPJ, Imperial MZ, Nahid P, Savic RM. A comparison of clinical development pathways to advance tuberculosis regimen development. BMC Infect Dis 2022; 22:920. [PMID: 36494644 PMCID: PMC9733404 DOI: 10.1186/s12879-022-07846-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Current tuberculosis (TB) regimen development pathways are slow and in urgent need of innovation. We investigated novel phase IIc and seamless phase II/III trials utilizing multi-arm multi-stage and Bayesian response adaptive randomization trial designs to select promising combination regimens in a platform adaptive trial. METHODS Clinical trial simulation tools were built using predictive and validated parametric survival models of time to culture conversion (intermediate endpoint) and time to TB-related unfavorable outcome (final endpoint). This integrative clinical trial simulation tool was used to explore and optimize design parameters for aforementioned trial designs. RESULTS Both multi-arm multi-stage and Bayesian response adaptive randomization designs were able to reliably graduate desirable regimens in ≥ 95% of trial simulations and reliably stop suboptimal regimens in ≥ 90% of trial simulations. Overall, adaptive phase IIc designs reduced patient enrollment by 17% and 25% with multi-arm multi-stage and Bayesian response adaptive randomization designs respectively compared to the conventional sequential approach, while seamless designs reduced study duration by 2.6 and 3.5 years respectively (typically ≥ 8.5 years for standard sequential approach). CONCLUSIONS In this study, we demonstrate that adaptive trial designs are suitable for TB regimen development, and we provide plausible design parameters for a platform adaptive trial. Ultimately trial design and specification of design parameters will depend on clinical trial objectives. To support decision-making for clinical trial designs in contemporary TB regimen development, we provide a flexible clinical trial simulation tool that can be used to explore and optimize design features and parameters.
Collapse
Affiliation(s)
- V Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA.
| | - P P J Phillips
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - M Z Imperial
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - P Nahid
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Fekadu G, Tolossa T, Turi E, Bekele F, Fetensa G. Pretomanid development and its clinical roles in treating tuberculosis. J Glob Antimicrob Resist 2022; 31:175-184. [PMID: 36087906 DOI: 10.1016/j.jgar.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of mortality worldwide. Despite the development of different antituberculosis drugs, managing resistant mycobacteria is still challenging. The discovery of novel drugs and new methods of targeted drug delivery have the potential to improve treatment outcomes, lower the duration of treatment, and reduce adverse events. Following bedaquiline and delamanid, pretomanid is the third medicine approved as part of a novel drug regimen for treating drug-resistant TB. It is a promising drug that has the capacity to shape TB treatment and achieve the End TB strategy set by the World Health Organization. The effectiveness of pretomanid has been reported in different observational and clinical studies. However, long-term safety data in humans are not yet available and the pretomanid-based regimen is recommended under an operational research framework that prohibits its wider and programmatic use. Further research is needed before pretomanid can be celebrated as a promising candidate for the treatment of different categories of TB and specific patients. This review covers the update on pretomanid development and its clinical roles in treating Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong; Department of Pharmacy, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia.
| | - Tadesse Tolossa
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia; Deakin Health Economics, Institute for Health Transformation, Deakin University, Geelong, Victoria
| | - Ebisa Turi
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia; Deakin Health Economics, Institute for Health Transformation, Deakin University, Geelong, Victoria
| | - Firomsa Bekele
- Department of Pharmacy, College of Health Science, Mattu University, Mattu, Ethiopia
| | - Getahun Fetensa
- Department of Nursing, School of Nursing and Midwifery, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia; Department of Health behaviour and Society, Faculty of Public Health, Jimma Medical Center, Jimma University, Ethiopia
| |
Collapse
|
36
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
37
|
Prasad R, Singh A, Gupta N. Can Pan-TB shorter regimens be a promising hope for ending TB in India by 2025 in ongoing COVID-19 era? Indian J Tuberc 2022; 69:377-382. [PMID: 36460365 PMCID: PMC9221684 DOI: 10.1016/j.ijtb.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Rajendra Prasad
- Department of Pulmonary Medicine, Era Medical College, Lucknow, Uttar Pradesh, India.
| | - Abhijeet Singh
- Department of Pulmonary & Critical Care Medicine, Fortis Hospital, Vasant Kunj, New Delhi, India
| | - Nikhil Gupta
- Department of Internal Medicine, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
38
|
Combination Therapy to Kill Mycobacterium tuberculosis in Its Nonreplicating Persister Phenotype. Antimicrob Agents Chemother 2022; 66:e0069522. [PMID: 36165631 PMCID: PMC9578415 DOI: 10.1128/aac.00695-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exists in various metabolic states, including a nonreplicating persister (NRP) phenotype which may affect response to therapy. We have adopted a model-informed strategy to accelerate discovery of effective Mtb treatment regimens and previously found pretomanid (PMD), moxifloxacin (MXF), and bedaquiline (BDQ) to readily kill logarithmic- and acid-phase Mtb. Here, we studied multiple concentrations of each drug in flask-based, time-kill studies against NRP Mtb in single-, two- and three-drug combinations, including the active M2 metabolite of BDQ. We used nonparametric population algorithms in the Pmetrics package for R to model the data and to simulate the 95% confidence interval of bacterial population decline due to the two-drug combination regimen of PMD + MXF and compared this to observed declines with three-drug regimens. PMD + MXF at concentrations equivalent to average or peak human concentrations effectively eradicated Mtb. Unlike other states for Mtb, we observed no sustained emergence of less susceptible isolates for any regimen. The addition of BDQ as a third drug significantly (P < 0.05) shortened time to total bacterial suppression by 3 days compared to the two-drug regimen, similar to our findings for Mtb in logarithmic or acid growth phases.
Collapse
|
39
|
Larkins-Ford J, Degefu YN, Van N, Sokolov A, Aldridge BB. Design principles to assemble drug combinations for effective tuberculosis therapy using interpretable pairwise drug response measurements. Cell Rep Med 2022; 3:100737. [PMID: 36084643 PMCID: PMC9512659 DOI: 10.1016/j.xcrm.2022.100737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
A challenge in tuberculosis treatment regimen design is the necessity to combine three or more antibiotics. We narrow the prohibitively large search space by breaking down high-order drug combinations into drug pair units. Using pairwise in vitro measurements, we train machine learning models to predict higher-order combination treatment outcomes in the relapsing BALB/c mouse model. Classifiers perform well and predict many of the >500 possible combinations among 12 antibiotics to be improved over bedaquiline + pretomanid + linezolid, a treatment-shortening regimen compared with the standard of care in mice. We reformulate classifiers as simple rulesets to reveal guiding principles of constructing combination therapies for both preclinical and clinical outcomes. One example ruleset combines a drug pair that is synergistic in a dormancy model with a pair that is potent in a cholesterol-rich growth environment. These rulesets are predictive, intuitive, and practical, thus enabling rational construction of drug combinations. Evaluate the large drug combination space for potential tuberculosis treatments In vitro 2-drug combination measurements predict 3–4 drug treatment outcomes in vivo Strongly synergistic, antagonistic, or potent drug pairs drive treatment outcome Simple rules articulate drug combination design principles for tuberculosis
Collapse
|
40
|
Lanni A, Borroni E, Iacobino A, Russo C, Gentile L, Fattorini L, Giannoni F. Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms 2022; 10:microorganisms10071421. [PMID: 35889140 PMCID: PMC9316547 DOI: 10.3390/microorganisms10071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may restrict Mab growth from actively replicating aerobic (A) to non-replicating hypoxic (H) stages, which are known to be extremely drug-tolerant. After the exposure of Mab A and H cells to drugs, killing was monitored by measuring colony-forming units (CFU) and regrowth in liquid medium (MGIT 960) of 1-day-old A cells (A1) and 5-day-old H cells (H5). Mab killing was defined as a lack of regrowth of drug-exposed cells in MGIT tubes after >50 days of incubation. Out of 18 drugs tested, 14-day treatments with bedaquiline-amikacin (BDQ-AMK)-containing three-drug combinations were very active against A1 + H5 cells. However, drug-tolerant cells (persisters) were not killed, as shown by CFU curves with typical bimodal trends. Instead, 56-day treatments with the nitrocompounds containing combinations BDQ-AMK-rifabutin-clarithromycin-nimorazole and BDQ-AMK-rifabutin-clarithromycin-metronidazole-colistin killed all A1 + H5 Mab cells in 42 and 56 days, respectively, as shown by lack of regrowth in agar and MGIT medium. Overall, these data indicated that Mab persisters may be killed by appropriate drug combinations.
Collapse
Affiliation(s)
- Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Cristina Russo
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Leonarda Gentile
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
- Correspondence: ; Tel.: +39-06-49902318; Fax: +39-06-49387112
| |
Collapse
|
41
|
Luo W, Huang Z, Xu D, Yang M, Zhu Y, Shen L, Chen S, Tao X, Bin W, Hu Y, Franzblau SG, Jiang N, Wei Y, Wei X, Ding CZ. Discovery and preclinical evaluations of JBD0131, a novel nitrodihydro-imidazooxazole anti-tuberculosis agent. Bioorg Med Chem Lett 2022; 72:128871. [PMID: 35777718 DOI: 10.1016/j.bmcl.2022.128871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022]
Abstract
Multidrug-resistant pulmonary tuberculosis (MDR-TB) is a major health problem worldwide. The treatment for MDR-TB requires medications for a long duration (up to 20-24 months) with second-line drugs resulting in unfavorable outcomes. Nitroimidazoles are promising antimycobacterial agents known to inhibit both aerobic and anaerobic mycobacterial activity. Delamanid and pretomanid are two nitroimidazoles approved by the regulatory agencies for MDR-TB treatment. However, both agents possess unsatisfactory absorption and QTc prolongation. In our search for a safer nitroimidazole, we discovered JBD0131 (2). It exhibited excellent anti-mycobacterial activity against M. tuberculosis H37Rv in vitro and in vivo, improved PK and absorption, reduced QT prolongation potential of delamanid. JBD0131 is currently in clinical development in China for pulmonary tuberculosis (CTR20202308).
Collapse
Affiliation(s)
- Wei Luo
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Zhigang Huang
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Deming Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Meng Yang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yusong Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Liang Shen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shuhui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xin Tao
- Changzhou Yinsheng Pharmacy Co., Ltd., Weitang Chemical Industry Zone, Changzhou 213000, China
| | - Wang Bin
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis, and Thoracic Tumor Research Institute, Beijing, China
| | - Yinghu Hu
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Ning Jiang
- Jumbo Drug Bank Co., Ltd., No.18, Section 2, Bio-city Middle Road, High-tech Zone, Chengdu, Sichuan 610000, China
| | - Yuquan Wei
- State Key Lab of Biotherapy, Sichuan University, No 17, The Third Renmin South Road, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Jumbo Drug Bank Co., Ltd., No.18, Section 2, Bio-city Middle Road, High-tech Zone, Chengdu, Sichuan 610000, China.
| | - Charles Z Ding
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|
42
|
Hatami H, Sotgiu G, Bostanghadiri N, Abadi SSD, Mesgarpour B, Goudarzi H, Migliori GB, Nasiri MJ. Bedaquiline-containing regimens and multidrug-resistant tuberculosis: a systematic review and meta-analysis. J Bras Pneumol 2022; 48:e20210384. [PMID: 35649043 PMCID: PMC8836629 DOI: 10.36416/1806-3756/e20210384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022] Open
Abstract
Objective: Multidrug-resistant tuberculosis (MDR-TB) is a life-threatening infectious disease. Treatment requires multiple antimicrobial agents used for extended periods of time. The present study sought to evaluate the treatment success rate of bedaquiline-based regimens in MDR-TB patients. Methods: This was a systematic review and meta-analysis of studies published up to March 15, 2021. The pooled treatment success rates and 95% CIs were assessed with the fixed-effect model or the random-effects model. Values of p < 0.05 were considered significant for publication bias. Results: A total of 2,679 articles were retrieved by database searching. Of those, 29 met the inclusion criteria. Of those, 25 were observational studies (including a total of 3,536 patients) and 4 were experimental studies (including a total of 440 patients). The pooled treatment success rate was 74.7% (95% CI, 69.8-79.0) in the observational studies and 86.1% (95% CI, 76.8-92.1; p = 0.00; I2 = 75%) in the experimental studies. There was no evidence of publication bias (p > 0.05). Conclusions: In patients with MDR-TB receiving bedaquiline, culture conversion and treatment success rates are high even in cases of extensive resistance.
Collapse
Affiliation(s)
- Hossein Hatami
- . Department of Public Health, School of Public Health and Safety; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giovanni Sotgiu
- . Unità di Epidemiologia Clinica e Statistica Medica, Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italia
| | - Narjess Bostanghadiri
- . Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahel Shafiee Dolat Abadi
- . Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bita Mesgarpour
- . Department of Public and International Affairs, National Institute for Medical Research Development - NIMAD - Tehran, Iran
| | - Hossein Goudarzi
- . Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Javad Nasiri
- . Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Boekelheide K, Olugbosi M, Nedelman J, Everitt D, Smith E, Betteridge M, Sun E, Spigelman M. Male reproductive hormones in patients treated with pretomanid. Int J Tuberc Lung Dis 2022; 26:558-565. [PMID: 35650700 PMCID: PMC9165738 DOI: 10.5588/ijtld.21.0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND: Pretomanid (Pa) is a nitroimidazole-class drug recently approved by the US Food and Drug Administration and other regulatory authorities as part of a regimen for treating highly drug-resistant pulmonary Mycobacterium tuberculosis infections. Studies in rodents identified the testis as a target organ of concern, which led to monitoring of reproductive hormones in >800 male patients enrolled in four clinical trials of Pa-containing regimens and the HRZE (isoniazid+rifampin+pyrazinamide+ethambutol) control regimen. METHODS: Serum hormone levels relevant to male reproductive health – follicle stimulating hormone (FSH), luteinizing hormone (LH), inhibin B (InhB) and total testosterone (T) – from the four clinical trials were summarized numerically and analyzed by repeated-measures modeling. RESULTS: Hormone levels generally behaved similarly in Pa-containing and HRZE arms. Relative to baseline, serum T and InhB levels generally increased at the end of treatment and follow-up. FSH and LH levels were variable, but were generally at or below baseline levels by follow-up. Before treatment, many patients were borderline hypogonadal, with T levels near the lower limits of the normal range. CONCLUSION: Changes in male hormones in four clinical trials studying patients with TB indicate that Pa-containing treatment was not associated with testicular toxicity but rather led to improvement in the underlying hypogonadism.
Collapse
Affiliation(s)
| | | | - J Nedelman
- TB Alliance, New York, NY, 4RTI International, Research Triangle Park, NC, USA
| | - D Everitt
- TB Alliance, New York, NY, 4RTI International, Research Triangle Park, NC, USA
| | - E Smith
- TB Alliance, New York, NY, 4RTI International, Research Triangle Park, NC, USA
| | - M Betteridge
- TB Alliance, New York, NY, 4RTI International, Research Triangle Park, NC, USA
| | - E Sun
- TB Alliance, New York, NY, 4RTI International, Research Triangle Park, NC, USA
| | - M Spigelman
- TB Alliance, New York, NY, 4RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
44
|
Liu Y, Tan Y, Wei G, Lu Z, Liu Y, Yang B, Hui AM, Li K. Safety and pharmacokinetic profile of pretomanid in healthy Chinese adults: Results of a phase I single dose escalation study. Pulm Pharmacol Ther 2022; 73-74:102132. [PMID: 35595003 DOI: 10.1016/j.pupt.2022.102132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
Abstract
We investigated the safety, tolerability and pharmacokinetic (PK) profile of pretomanid (formerly PA-824) in healthy Chinese volunteers. This was a single-center, double-blind, placebo-controlled, phase I dose escalation study, in which healthy volunteers were consecutively allocated to increasing pretomanid dose groups (50, 100, 200, 400, 600, 800, or 1000 mg) and randomized to receive pretomanid or matching placebo. The primary objective was to evaluate the safety, tolerability and PK profile of pretomanid. In total, 306 volunteers were screened, and 60 were assigned to treatment (pretomanid: n = 46, placebo: n = 14) of whom 83.3% were male, age ranged from 19 to 39 years and BMI ranged from 19.2 to 25.9 kg/m2. At least one adverse event (AE) was reported by 67.4% of subjects assigned to pretomanid and 50.0% of those who received placebo, there were no serious AEs or AEs leading to withdrawal. Drug-related events that occurred in ≥5% of participants assigned to pretomanid were proteinuria (26.1%), insignificant microscopic hematuria (15.2%), conjugated hyperbilirubinemia (6.5%), hyperbilirubinemia (6.5%) and elevated uric acid (6.5%). No relationship between pretomanid dose and AEs was observed. In the PK analysis (n = 46), maximum pretomanid plasma concentration was reached in a median of 4 h in all dose groups except 800 mg (12 h) and the plasma half-life ranged from 20.2 to 25.2 h. No dose proportionality was observed for maximum plasma concentration, or area under the plasma concentration curve. In conclusion, single pretomanid doses from 50 to 1000 mg were well tolerated in healthy Chinese participants and the PK profile was generally consistent with findings in non-Chinese populations.
Collapse
Affiliation(s)
- Yue Liu
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Beijing, China
| | - Yan Tan
- Global R&D Center, Shanghai Fosun Pharmaceutical Development, Co., Ltd, Shanghai, China
| | - Gang Wei
- Global R&D Center, Shanghai Fosun Pharmaceutical Development, Co., Ltd, Shanghai, China
| | - Zhifei Lu
- Global R&D Center, Shanghai Fosun Pharmaceutical Development, Co., Ltd, Shanghai, China
| | - Yazhou Liu
- Shenyang Hongqi Pharmaceutical Co., Ltd, Shenyang, China
| | - Bo Yang
- Shenyang Hongqi Pharmaceutical Co., Ltd, Shenyang, China
| | - Ai-Min Hui
- Global R&D Center, Shanghai Fosun Pharmaceutical Development, Co., Ltd, Shanghai, China.
| | - Kexin Li
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Drug Clinical Risk and Personalized Medication Evaluation, Beijing, China.
| |
Collapse
|
45
|
Effects of Bedaquiline on Antimicrobial Activity and Cytokine Secretion of Macrophages Infected with Multidrug-Resistant Mycobacterium tuberculosis Strains. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2703635. [PMID: 35449601 PMCID: PMC9017561 DOI: 10.1155/2022/2703635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Background Bedaquiline (Bdq) exerts bactericidal effects against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains, including multidrug-resistant M. tuberculosis strains (MDR-MTBs). However, few reported investigations exist regarding Bdq effects on MDR-MTBs-infected macrophages activities and cytokine secretion. Here, Bdq bactericidal activities against MDR-MTBs and related cellular immune mechanisms were explored. Methods Macrophages infected with MDR-MTBs or H37Rv received Bdq treatments (4 h/8 h/24 h/48 h) at 1 × the minimum inhibitory concentration (1 × MIC), 10 × MIC and 20 × MIC. Intracellular colony-forming units (CFUs) and culture supernatant IL-12/23 p40, TNF-α, IL-6, and IL-10 were determined using the Luminex® 200TM system. Normally distributed continuous data (mean ± standard deviation) were analyzed using t-test or F-test (SPSS 25.0, P < 0.05 deemed statistically significant). Results (1) 100% of Bdq-treated macrophages (all doses applied over 4–48 h) survived with 0% inhibition of proliferation observed. (2) Intracellular CFUs of Bdq-treated MDR-MTBs-infected macrophages decreased over 4–48 h of treatment, were lower than preadministration and control CFUs, decreased with increasing Bdq dose, and resembled H37Rv-infected group CFUs (48 h). (3) For MDR-MTBs-infected macrophages (various Bdq doses), IL-12/23 p40 levels resembled preadministration group levels and exceeded controls (4 h); TNF-α levels exceeded preadministration group levels (24 h/48 h) and controls (24 h); IL-12/23 p40 and TNF-α levels resembled H37Rv-infected group levels (4 h/8 h/24 h/48 h); IL-6 levels exceeded preadministration and H37Rv-infected group levels (24 h/48 h) and controls (24 h); IL-10 levels resembled preadministration and H37Rv-infected group levels (4 h/8 h/24 h/48 h) and were lower than controls (24 h/48 h); IL-12/23 p40 and IL-10 levels remained unchanged as intracellular CFUs changed, with IL-12/23 p40 levels exceeding controls (4 h) and IL-10 levels remaining lower than controls (24 h/48 h); TNF-α and IL-6 levels increased as intracellular CFUs decreased (24 h/48 h) and exceed controls (24 h). Conclusion Bdq was strongly bactericidal against intracellular MDR-MTBs and H37Rv in a time-dependent, concentration-dependent manner. Bdq potentially exerted immunomodulatory effects by inducing high-level Th1 cytokine expression (IL-12/23 p40, TNF-α) and low-level Th2 cytokine expression (IL-10).
Collapse
|
46
|
Qiao J, Cheng C, Feng J, Dai X, Xu F, Xia P. Analysis of efficacy and safety of linezolid-based chemotherapeutic regimens for postoperative multidrug-resistant spinal tuberculosis patients. Int J Infect Dis 2022; 118:264-269. [PMID: 35339715 DOI: 10.1016/j.ijid.2022.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The study aimed to explore the efficacy and safety of linezolid-based chemotherapeutic regimens for postoperative multidrug-resistant spinal tuberculosis patients. METHODS The randomized controlled study included 50 Mycobacterium tuberculosis culture or pathological confirmed multidrug resistant tuberculosis patients who received spinal surgery from January 2018 to February 2020. Twenty-five patients were assigned to the control group and the study group, respectively. Random number method was used for patients allocation and they were treated with levofloxacin, pyrazinamide, thiisonicotinamide enteric-coated tablet, amikacin sulfate injection, and sodium p-amino salicylate injection, accompanied linezolid or not. RESULTS The overall effective rate of the study group was higher than that of the control group (88.00% vs. 64.00%, P<0.05). The severity of pain at 3 and 6 months postoperatively was lower in the study group than that the control group (P<0.05). Postoperatively, the study group had higher bone graft fusion rate, shorter mean bone graft fusion time and higher paraspinal cyst absorption rate than the control group (P<0.05). Postoperatively, the study group had lower levels of PCT, ESR and CRP than the control group (P<0.05). All patients had normal hepatic and renal function, and no statistical difference of adverse effects between 2 groups were found. CONCLUSIONS Linezolid-based chemotherapeutic regimens can effectively treat postoperative multidrug-resistant spinal tuberculosis patients, but have higher rates of adverse reactions.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Orthopedics, Wuhan No.1 Hospital, Wuhan, China
| | - Chang Cheng
- Department of Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, China
| | - Jing Feng
- Department of Orthopedics, Wuhan No.1 Hospital, Wuhan, China
| | - Xiyong Dai
- Department of Surgery, Wuhan Pulmonary Hospital, Wuhan, China
| | - Feng Xu
- Department of Surgery, Wuhan Pulmonary Hospital, Wuhan, China
| | - Ping Xia
- Department of Orthopedics, The Central Hospital of Wuhan, Wuhan, China.
| |
Collapse
|
47
|
Novel Regimens of Bedaquiline-Pyrazinamide Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine Tuberculosis Models. Antimicrob Agents Chemother 2022; 66:e0239821. [PMID: 35315690 DOI: 10.1128/aac.02398-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent landmark trial showed a 4-month regimen of rifapentine, pyrazinamide, moxifloxacin, and isoniazid (PZMH) to be noninferior to the 6-month standard of care. Here, two murine models of tuberculosis were used to test whether novel regimens replacing rifapentine and isoniazid with bedaquiline and another drug would maintain or increase the sterilizing activity of the regimen. In BALB/c mice, replacing rifapentine in the PZM backbone with bedaquiline (i.e., BZM) significantly reduced both lung CFU counts after 1 month and the proportion of mice relapsing within 3 months after completing 1.5 months of treatment. The addition of rifabutin to BZM (BZMRb) further increased the sterilizing activity. In the C3HeB/FeJ mouse model characterized by caseating lung lesions, treatment with BZMRb resulted in significantly fewer relapses than PZMH after 2 months of treatment. A regimen combining the new DprE1 inhibitor OPC-167832 and delamanid (BZOD) also had superior bactericidal and sterilizing activity compared to PZM in BALB/c mice and was similar in efficacy to PZMH in C3HeB/FeJ mice. Thus, BZM represents a promising backbone for treatment-shortening regimens. Given the prohibitive drug-drug interactions between bedaquiline and rifampin or rifapentine, the BZMRb regimen represents the best opportunity to combine, in one regimen, the treatment-shortening potential of the rifamycin class with that of BZM and deserves high priority for evaluation in clinical trials. Other 4-drug BZM-based regimens and BZOD represent promising opportunities for extending the spectrum of treatment-shortening regimens to rifamycin- and fluoroquinolone-resistant tuberculosis.
Collapse
|
48
|
Saeed DK, Shakoor S, Razzak SA, Hasan Z, Sabzwari SF, Azizullah Z, Kanji A, Nasir A, Shafiq S, Ghanchi NK, Hasan R. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan. BMC Microbiol 2022; 22:62. [PMID: 35209842 PMCID: PMC8876534 DOI: 10.1186/s12866-022-02475-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the Rv0678, pepQ and atpE genes of Mycobacterium tuberculosis (MTB) have been reported to be associated with reduced antimycobacterial susceptibility to bedaquiline (BDQ). Resistance conferring mutations in treatment naïve MTB strains is likely to have implications for BDQ based new drug regimen that aim to shorten treatment duration. We therefore investigated the genetic basis of resistance to BDQ in MTB clinical isolates from BDQ naïve TB patients from Pakistan. In addition, mutations in genes associated with efflux pumps were investigated as an alternate mechanism of resistance. Methods Based on convenience sampling, we studied 48 MTB clinical isolates from BDQ naïve TB patients. These isolates (from our strain bank) included 38 MDR/pre-XDR/XDR (10 BDQ resistant, 8 BDQ intermediate and 20 BDQ susceptible) and 10 pan drug susceptible MTB isolates. All strains were subjected to whole genome sequencing and genomes were analysed to identify variants in Rv0678, pepQ, atpE, Rv1979c, mmpLS and mmpL5 and drug resistance associated efflux pump genes. Results Of the BDQ resistant and intermediate strains 44% (8/18) had variants in Rv0678 including; two reported mutations S63R/G, six previously unreported variants; L40F, R50Q and R107C and three frameshift mutations; G25fs, D64fs and D109fs. Variants in efflux pumps; Rv1273c (G462K), Rv0507c (R426H) and Rv1634c (E198R) were found to be present in drug resistant isolates including BDQ resistant and intermediate isolates. E198R in efflux pump gene Rv1634c was the most frequently occurring variant in BDQ resistant and intermediate isolates (n = 10). Conclusion We found RAVs in Rv0678 to be commonly associated with BDQ resistance. Further confirmation of the role of variants in efflux pump genes in resistance is required so that they may be incorporated in genome-based diagnostics for drug resistant MTB. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02475-4.
Collapse
Affiliation(s)
- Dania Khalid Saeed
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Safina Abdul Razzak
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Saba Faraz Sabzwari
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahida Azizullah
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Samreen Shafiq
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan. .,Faculty of Infectious and Tropical Diseases, London School Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
49
|
Espinosa-Pereiro J, Sánchez-Montalvá A, Aznar ML, Espiau M. MDR Tuberculosis Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:188. [PMID: 35208510 PMCID: PMC8878254 DOI: 10.3390/medicina58020188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant (MDR) tuberculosis (TB), resistant to isoniazid and rifampicin, continues to be one of the most important threats to controlling the TB epidemic. Over the last few years, there have been promising pharmacological advances in the paradigm of MDR TB treatment: new and repurposed drugs have shown excellent bactericidal and sterilizing activity against Mycobacterium tuberculosis and several all-oral short regimens to treat MDR TB have shown promising results. The purpose of this comprehensive review is to summarize the most important drugs currently used to treat MDR TB, the recommended regimens to treat MDR TB, and we also summarize new insights into the treatment of patients with MDR TB.
Collapse
Affiliation(s)
- Juan Espinosa-Pereiro
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Adrian Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Luisa Aznar
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Espiau
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain;
| |
Collapse
|
50
|
Pretomanid for tuberculosis treatment: an update for clinical purposes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100128. [PMID: 36105740 PMCID: PMC9461242 DOI: 10.1016/j.crphar.2022.100128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic determined a 10 years-set back in tuberculosis (TB) control programs. Recent advances in available therapies may help recover the time lost. While Linezolid (LZD) and Bedaquiline (BDQ), previously Group D second line drugs (SLDs) for TB, have been relocated to Group A, other drugs are currently being studied in regimens for drug resistant TB (DR-TB). Among these, Pretomanid (PA), a recently introduced antimycobacterial drug derived from nitroimidazole with both solid bactericidal and bacteriostatic effect, and with an excellent effectiveness and tolerability profile, is in the spotlight. Following promising data obtained from recently published and ongoing randomized controlled trials (RCTs), the World Health Organization (WHO) determined to include PA in its guidelines for the treatment of rifampicin-resistant (RR), multi drug resistant (MDR) and pre-extensively drug resistant TB (pre-XDR-TB) with BDQ, LZD and Moxifloxacine (MFX) in a 6-month regimen. Although further studies on the subject are needed, PA may also represent a treatment option for drug-susceptible TB (DS-TB), latent TB infection (LTBI) and non tuberculous mycobacteria (NTM). This narrative review aims to examine current implementation options and future possibilities for PA in the never-ending fight against TB.
Collapse
|