1
|
Wang L, Lin Z, Lin Y, Wu Q, Zhong G, Chen L. Metformin and Risks of Aortic Aneurysm and Aortic Dissection: A Mendelian Randomization Study. Rev Cardiovasc Med 2025; 26:27734. [PMID: 40351677 PMCID: PMC12059729 DOI: 10.31083/rcm27734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 05/14/2025] Open
Abstract
Background Previous research has suggested that metformin may inhibit the dilation of an abdominal aortic aneurysm (AAA); however, these findings are controversial. Additionally, limited reporting exists on the relationships between metformin and thoracic aortic aneurysm (TAA) and aortic dissection (AD). Therefore, this study aimed to assess the potential relationship between metformin and the risk of aortic aneurysm (AA)/AD using the Mendelian randomization (MR) analysis. Methods Genome-wide association studies and FinnGen summary data were utilized for the MR analysis. The causal relationship between metformin and AA/AD was primarily assessed using the inverse-variance weighted (IVW) method. Sensitivity analyses were conducted to detect heterogeneity and pleiotropy. Results The results indicated a negative correlation between metformin treatment and the risk of both AA and AD, with odds ratios(ORs) reported as follows: OR = 0.010, 95% confidence interval (CI):0.000-0.212, p = 0.003 for AA, OR = 0.004, 95% CI: 0.000-0.220, p = 0.007 for abdominal aortic aneurysm (AAA); OR = 0.017, 95% CI: 0.000-0.815, p = 0.039 for thoracic aortic aneurysm (TAA); and OR = 0.001, 95% CI: 0.000-0.531, p = 0.032 for AD using the IVW method. These findings suggested that metformin might act as a protective factor against the occurrence of AA/AD. Furthermore, sensitivity analyses validated the robustness of these findings. Conclusions This MR analysis identified a potential genetic causal relationship between metformin use and the risks of AA/AD, suggesting that metformin could serve as a protective agent in decreasing the incidences of these conditions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, 350000 Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, 350000 Fuzhou, Fujian, China
| | - Ziyan Lin
- Union College of Clinical Medicine, Fujian Medical University, 350000 Fuzhou, Fujian, China
| | - Yuzuo Lin
- Union College of Clinical Medicine, Fujian Medical University, 350000 Fuzhou, Fujian, China
| | - Qingtong Wu
- Union College of Clinical Medicine, Fujian Medical University, 350000 Fuzhou, Fujian, China
| | - Guodong Zhong
- Department of Pathology, Fujian Province Second People’s Hospital: The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, 350000 Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, 350000 Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, 350000 Fuzhou, Fujian, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350000 Fuzhou, Fujian, China
| |
Collapse
|
2
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
3
|
Mascarenhas L, Downey M, Schwartz G, Adabag S. Antiarrhythmic effects of metformin. Heart Rhythm O2 2024; 5:310-320. [PMID: 38840768 PMCID: PMC11148504 DOI: 10.1016/j.hroo.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Atrial fibrillation/flutter (AF) is a major public health problem and is associated with stroke, heart failure, dementia, and death. It is estimated that 20%-30% of Americans will develop AF at some point in their life. Current medications to prevent AF have limited efficacy and significant adverse effects. Newer and safer therapies to prevent AF are needed. Ventricular arrhythmias are less prevalent than AF but may have significant consequences including sudden cardiac death. Metformin is the most prescribed, first-line medication for treatment of diabetes mellitus (DM). It decreases hepatic glucose production but also reduces inflammation and oxidative stress. Experimental studies have shown that metformin improves metabolic, electrical, and histologic risk factors associated with AF and ventricular arrhythmias. Furthermore, in large clinical observational studies, metformin has been associated with a reduced risk of AF in people with DM. These data suggest that metformin may have antiarrhythmic properties and may be a candidate to be repurposed as a medication to prevent cardiac arrhythmias. In this article, we review the clinical observational and experimental evidence for the association between metformin and cardiac arrhythmias. We also discuss the potential antiarrhythmic mechanisms underlying this association. Repurposing a well-tolerated, safe, and inexpensive medication to prevent cardiac arrhythmias has significant positive public health implications.
Collapse
Affiliation(s)
- Lorraine Mascarenhas
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Michael Downey
- Department of Cardiology, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Gregory Schwartz
- Cardiology Section, Rocky Mountain Regional VA Medical Center and University of Colorado School of Medicine, Aurora, Colorado
| | - Selcuk Adabag
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Cardiology, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Saraiva IE, Hamahata N, Huang DT, Kane-Gill SL, Rivosecchi RM, Shiva S, Nolin TD, Chen X, Minturn J, Chang CCH, Li X, Kellum J, Gómez H. Metformin for sepsis-associated AKI: a protocol for the Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI). BMJ Open 2024; 14:e081120. [PMID: 38688665 PMCID: PMC11086423 DOI: 10.1136/bmjopen-2023-081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common complication of sepsis associated with increased risk of death. Preclinical data and observational human studies suggest that activation of AMP-activated protein kinase, an ubiquitous master regulator of energy that can limit mitochondrial injury, with metformin may protect against sepsis-associated AKI (SA-AKI) and mortality. The Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI) aims to evaluate the safety and feasibility of enteral metformin in patients with sepsis at risk of developing SA-AKI. METHODS AND ANALYSIS Blind, randomised, placebo-controlled clinical trial in a single-centre, quaternary teaching hospital in the USA. We will enrol adult patients (18 years of age or older) within 48 hours of meeting Sepsis-3 criteria, admitted to intensive care unit, with oral or enteral access. Patients will be randomised 1:1:1 to low-dose metformin (500 mg two times per day), high-dose metformin (1000 mg two times per day) or placebo for 5 days. Primary safety outcome will be the proportion of metformin-associated serious adverse events. Feasibility assessment will be based on acceptability by patients and clinicians, and by enrolment rate. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board. All patients or surrogates will provide written consent prior to enrolment and any study intervention. Metformin is a widely available, inexpensive medication with a long track record for safety, which if effective would be accessible and easy to deploy. We describe the study methods using the Standard Protocol Items for Randomized Trials framework and discuss key design features and methodological decisions. LiMiT AKI will investigate the feasibility and safety of metformin in critically ill patients with sepsis at risk of SA-AKI, in preparation for a future large-scale efficacy study. Main results will be published as soon as available after final analysis. TRIAL REGISTRATION NUMBER NCT05900284.
Collapse
Affiliation(s)
- Ivan E Saraiva
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natsumi Hamahata
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David T Huang
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sandra L Kane-Gill
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Ryan M Rivosecchi
- Department of Pharmacy, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas D Nolin
- Department of Pharmacy & Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinlei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Minturn
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chung-Chou H Chang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaotong Li
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - John Kellum
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
6
|
Metformin Acutely Mitigates Oxidative Stress in Human Atrial Tissue: A Pilot Study in Overweight Non-Diabetic Cardiac Patients. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122058. [PMID: 36556423 PMCID: PMC9785172 DOI: 10.3390/life12122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Metformin, the first-line drug in type 2 diabetes mellitus, elicits cardiovascular protection also in obese patients via pleiotropic effects, among which the anti-oxidant is one of the most investigated. The aim of the present study was to assess whether metformin can acutely mitigate oxidative stress in atrial tissue harvested from overweight non-diabetic patients. Right atrial appendage samples were harvested during open-heart surgery and used for the evaluation of reactive oxygen species (ROS) production by means of confocal microscopy (superoxide anion) and spectrophotometry (hydrogen peroxide). Experiments were performed after acute incubation with metformin (10 µM) in the presence vs. absence of angiotensin II (AII, 100 nM), lipopolysaccharide (LPS, 1 μg/mL), and high glucose (Gluc, 400 mg/dL). Stimulation with AII, LPS, and high Gluc increased ROS production. The magnitude of oxidative stress correlated with several echocardiographic parameters. Metformin applied in the lowest therapeutic concentration (10 µM) was able to decrease ROS generation in stimulated but also non-stimulated atrial samples. In conclusion, in a pilot group of overweight non-diabetic cardiac patients, acute incubation with metformin at a clinically relevant dose alleviated oxidative stress both in basal conditions and conditions that mimicked the activation of the renin-angiotensin-aldosterone system, acute inflammation, and uncontrolled hyperglycemia.
Collapse
|
7
|
Denessen EJ, Heuts S, Daemen JH, van Doorn WP, Vroemen WH, Sels JW, Segers P, Van‘t Hof AW, Maessen JG, Bekers O, Van Der Horst IC, Mingels AM. High-Sensitivity Cardiac Troponin I and T Kinetics Differ following Coronary Bypass Surgery: A Systematic Review and Meta-Analysis. Clin Chem 2022; 68:1564-1575. [DOI: 10.1093/clinchem/hvac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Cardiac troponin I and T are both used for diagnosing myocardial infarction (MI) after coronary artery bypass grafting (CABG), also known as type 5 MI (MI-5). Different MI-5 definitions have been formulated, using multiples of the 99th percentile upper reference limit (10×, 35×, or 70× URL), with or without supporting evidence. These definitions are arbitrarily chosen based on conventional assays and do not differentiate between troponin I and T. We therefore investigated the kinetics of high-sensitivity cardiac troponin I (hs-cTnI) and T (hs-cTnT) following CABG.
Methods
A systematic search was applied to MEDLINE and EMBASE databases including the search terms “coronary artery bypass grafting” AND “high-sensitivity cardiac troponin.” Studies reporting hs-cTnI or hs-cTnT on at least 2 different time points were included. Troponin concentrations were extracted and normalized to the assay-specific URL.
Results
For hs-cTnI and hs-cTnT, 17 (n = 1661 patients) and 15 studies (n = 2646 patients) were included, respectively. Preoperative hs-cTnI was 6.1× URL (95% confidence intervals: 4.9–7.2) and hs-cTnT 1.2× URL (0.9–1.4). Mean peak was reached 6–8 h postoperatively (126× URL, 99–153 and 45× URL, 29–61, respectively). Subanalysis of hs-cTnI illustrated assay-specific peak heights and kinetics, while subanalysis of surgical strategies revealed 3-fold higher hs-cTnI than hs-cTnT for on-pump CABG and 5-fold for off-pump CABG.
Conclusion
Postoperative hs-cTnI and hs-cTnT following CABG surpass most current diagnostic cutoff values. hs-cTnI was almost 3-fold higher than hs-cTnT, and appeared to be highly dependent on the assay used and surgical strategy. There is a need for assay-specific hs-cTnI and hs-cTnT cutoff values for accurate, timely identification of MI-5.
Collapse
Affiliation(s)
- Ellen J Denessen
- Central Diagnostic Laboratory, Maastricht University Medical Center+ , Maastricht , the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
| | - Samuel Heuts
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+ , Maastricht , the Netherlands
| | - Jean H Daemen
- Department of Surgery, Division of General Thoracic Surgery, Zuyderland Medical Center , Heerlen , the Netherlands
| | - William P van Doorn
- Central Diagnostic Laboratory, Maastricht University Medical Center+ , Maastricht , the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
| | - Wim H Vroemen
- Central Diagnostic Laboratory, Maastricht University Medical Center+ , Maastricht , the Netherlands
| | - Jan-Willem Sels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+ , Maastricht , the Netherlands
- Department of Cardiology, Maastricht University Medical Center+ , Maastricht , the Netherlands
| | - Patrique Segers
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+ , Maastricht , the Netherlands
| | - Arnoud W Van‘t Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
- Department of Cardiology, Maastricht University Medical Center+ , Maastricht , the Netherlands
- Department of Cardiology, Zuyderland Medical Center , Heerlen , the Netherlands
| | - Jos G Maessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+ , Maastricht , the Netherlands
| | - Otto Bekers
- Central Diagnostic Laboratory, Maastricht University Medical Center+ , Maastricht , the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
| | - Iwan C Van Der Horst
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+ , Maastricht , the Netherlands
| | - Alma M Mingels
- Central Diagnostic Laboratory, Maastricht University Medical Center+ , Maastricht , the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , the Netherlands
| |
Collapse
|
8
|
Zhang W, Li YY, Shang QH, Qi L, Sun MM, Chen G, An Y, Li JX, Jia WP, Sun ZA, Xu HB, Gao QM, Tang L, Wang XW, Zhang JY, Mu YM, Wang FS. Randomised controlled trial: effect of metformin add-on therapy on functional cure in entecavir-treated patients with chronic hepatitis B. Ann Hepatol 2022; 27:100745. [PMID: 35964909 DOI: 10.1016/j.aohep.2022.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatitis B surface antigen (HBsAg) clearance, indicating functional cure or resolved chronic hepatitis B (CHB), remains difficult to achieve via nucleos(t)ide analogue monotherapy. We investigated whether metformin add-on therapy could help achieve this goal in entecavir-treated patients with hepatitis B e antigen (HBeAg)-negative CHB. PATIENTS AND METHODS Patients with HBeAg-negative CHB who met eligibility criteria (entecavir treatment for > 12 months, HBsAg < 1000 IU/mL) were randomly assigned (1:1) to receive 24 weeks of either metformin (1000 mg, oral, once a day) or placebo (oral, once a day) add-on therapy. The group allocation was blinded for both patients and investigators. Efficacy and safety analyses were based on the intention-to-treat set. The primary outcome, serum HBsAg level (IU/mL) at weeks 24 and 36, was analysed using mixed models. RESULTS Sixty eligible patients were randomly assigned to the metformin (n = 29) and placebo (n = 31) groups. There was no substantial between-group difference in the HBsAg level at week 24 (adjusted mean difference 0.05, 95% confidence interval -0.04 to 0.13, p = 0.278) or week 36 (0.06, -0.03 to 0.15, p = 0.187), and no significant effect of group-by-time interaction on the HBsAg level throughout the trial (p = 0.814). The occurrence of total adverse events between the two groups was comparable (9 [31.0%] of 29 vs. 5 [16.1%] of 31, p = 0.227) and no patient experienced serious adverse events during the study. CONCLUSION Although it was safe, metformin add-on therapy did not accelerate HBsAg clearance in entecavir-treated patients with HBeAg-negative CHB.
Collapse
Affiliation(s)
- Wei Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Yuan-Yuan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing-Hua Shang
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Lin Qi
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Mi-Mi Sun
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Gang Chen
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Yong An
- Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Wang-Ping Jia
- Department of Wound Infection and Drug, Daping Hospital of Army Medical University, Chongqing 400042, China
| | - Zhong-An Sun
- Department of Endocrinology, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Hui-Bin Xu
- Medical Laboratory Center, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Qing-Mei Gao
- Department of Ultrasonography, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai'an 271000, Shandong, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Xiao-Wen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi-Ming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing 100853, China; Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
9
|
Yagyu H, Shimano H. Treatment of diabetes mellitus has borne much fruit in the prevention of cardiovascular disease. J Diabetes Investig 2022; 13:1472-1488. [PMID: 35638331 PMCID: PMC9434581 DOI: 10.1111/jdi.13859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular (CV) disease is the most alarming complication of diabetes mellitus (DM), and a strategy aiming at cardiovascular event prevention in diabetes mellitus has long been debated. Large landmark clinical trials have shown cardiovascular benefits of intensive glycemic control as a 'legacy effect' in newly diagnosed type 2 diabetes mellitus. In contrast, we have learned that excessive intervention aimed at strong glycemic control could cause unexpected cardiovascular death in patients who are resistant to treatments against hyperglycemia. It has also been shown that the comprehensive multifactorial intervention for cardiovascular risk factors that was advocated in the current guideline provided substantial cardiovascular event reduction. The impact of classical antidiabetic agents launched before 1990s on cardiovascular events is controversial. Although there are many clinical or observational studies assessing the impact of those agents on cardiovascular events, the conclusions are inconsistent owing to variable patient backgrounds and concomitant antidiabetic agents among the studies. Moreover, most of them were not large-scale, randomized, cardiovascular outcome trials. In contrast, GLP-1RA (glucagon-like peptide-1 receptor agonist) and SGLT2 (sodium-glucose cotransporter 2) inhibitors have demonstrated undeniable cardiovascular benefits in large-scale, randomized, controlled trials. Whereas GLP-1RAs decrease atherosclerotic disease, especially stroke, SGLT2 inhibitors mainly prevent heart failure. SGLT2 inhibitors are superior to GLP-1RAs with respect to hard renal outcomes. Therefore, it can be said that drugs such as GLP-1RAs and SGLT2 inhibitors that prevent cardiovascular events, in addition to their glucose-lowering effect, are incredible novel tools that we have gained for use in diabetic treatment.
Collapse
Affiliation(s)
- Hiroaki Yagyu
- Department of Endocrinology and Metabolism, Tsukuba University Hospital Mito Clinical Education and Training CenterMito Kyodo General HospitalMitoJapan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
10
|
Patient-derived microphysiological model identifies the therapeutic potential of metformin for thoracic aortic aneurysm. EBioMedicine 2022; 81:104080. [PMID: 35636318 PMCID: PMC9156889 DOI: 10.1016/j.ebiom.2022.104080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Thoracic aortic aneurysm (TAA) is the permanent dilation of the thoracic aortic wall that predisposes patients to lethal events such as aortic dissection or rupture, for which effective medical therapy remains scarce. Human-relevant microphysiological models serve as a promising tool in drug screening and discovery. Methods We developed a dynamic, rhythmically stretching, three-dimensional microphysiological model. Using patient-derived human aortic smooth muscle cells (HAoSMCs), we tested the biological features of the model and compared them with native aortic tissues. Drug testing was performed on the individualized TAA models, and the potentially effective drug was further tested using β-aminopropionitrile-treated mice and retrospective clinical data. Findings The HAoSMCs on the model recapitulated the expressions of many TAA-related genes in tissue. Phenotypic switching and mitochondrial dysfunction, two disease hallmarks of TAA, were highlighted on the microphysiological model: the TAA-derived HAoSMCs exhibited lower alpha-smooth muscle actin expression, lower mitochondrial membrane potential, lower oxygen consumption rate and higher superoxide accumulation than control cells, while these differences were not evidently reflected in two-dimensional culture flasks. Model-based drug testing demonstrated that metformin partially recovered contractile phenotype and mitochondrial function in TAA patients’ cells. Mouse experiment and clinical investigations also demonstrated better preserved aortic microstructure, higher nicotinamide adenine dinucleotide level and lower aortic diameter with metformin treatment. Interpretation These findings support the application of this human-relevant microphysiological model in studying personalized disease characteristics and facilitating drug discovery for TAA. Metformin may regulate contractile phenotypes and metabolic dysfunctions in diseased HAoSMCs and limit aortic dilation. Funding This work was supported by grants from National Key R&D Program of China (2018YFC1005002), National Natural Science Foundation of China (82070482, 81771971, 81772007, 51927805, and 21734003), the Science and Technology Commission of Shanghai Municipality (20ZR1411700, 18ZR1407000, 17JC1400200, and 20YF1406900), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and Shanghai Municipal Education Commission (Innovation Program 2017-01-07-00-07-E00027). Y.S.Z. was not supported by any of these funds; instead, the Brigham Research Institute is acknowledged.
Collapse
|
11
|
An W, Kang JS. Effect of Metformin on Myocardial Injury Induced by Hepatic Ischemia-Reperfusion in Rats. Front Pharmacol 2022; 13:822743. [PMID: 35431970 PMCID: PMC9010783 DOI: 10.3389/fphar.2022.822743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background: There is no effective medication for treatment or prevention of hepatic ischemia-reperfusion (HIR) injury caused by liver transplantation and hepatectomy. This study aimed to investigate the therapeutic effects of metformin on HIR injury and related myocardial injury in rats.Methods: Wistar male rats were randomly divided into four groups: sham group, ischemia-reperfusion group, and IR group treated with metformin 150 mg/kg and 100 mg/kg. Wistar male rats were administered metformin 150 mg/kg, 100 mg/kg or saline 30 min pre-operative and underwent 15 min ischemia and 6 h reperfusion (n = 4).Results: Metformin significantly alleviates the injury caused by HIR. Administration of metformin resulted in a significant reduction in the serum levels of alanine transaminase and aspartate transaminase and the activity of malondialdehyde, creatine kinase-MB, and lactate dehydrogenase but maintained high catalase and superoxide dismutase activity. Metformin significantly inhibited the IR-induced elevation of tumor necrosis factor-α in liver and heart tissue.Conclusion: Metformin can alleviate hepatic and myocardial injury induced by IR by inhibiting oxidative stress.
Collapse
|
12
|
Li T, Providencia R, Jiang W, Liu M, Yu L, Gu C, Chang ACY, Ma H. Association of Metformin with the Mortality and Incidence of Cardiovascular Events in Patients with Pre-existing Cardiovascular Diseases. Drugs 2022; 82:311-322. [PMID: 35032305 DOI: 10.1007/s40265-021-01665-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Whether metformin reduces all-cause cardiovascular mortality and the incidence of cardiovascular events in patients with pre-existing cardiovascular diseases (CVD) remains inconclusive. Some randomised controlled trials (RCTs) and cohort studies have shown that metformin is associated with an increased risk of mortality and cardiovascular events. METHODS We conducted a pooling synthesis to assess the effects of metformin in all-cause cardiovascular mortality and incidence of cardiovascular events in patients with CVD. Studies published up to October 2021 in PubMed or Embase with a registration in PROSPERO (CRD42020189905) were collected. Both RCT and cohort studies were included. Hazard ratios (HR) with 95% CI were pooled across various trials using the random-effects model. RESULTS This study enrolled 35 published studies (in 14 publications) for qualitative synthesis and identified 33 studies (published in 26 publications) for quantitative analysis. We analysed a total of 61,704 patients, among them 58,271 patients were used to calculate all-cause mortality while 12,814 patients were used to calculate cardiovascular mortality. Compared with non-metformin control, metformin usage is associated with a reduction in all-cause mortality (HR: 0.90; 95% CI 0.83, 0.98; p = 0.01), cardiovascular mortality (HR: 0.89; 95% CI 0.85, 0.94; p < 0.0001), incidence of coronary revascularisation (HR: 0.79; 95% CI 0.64, 0.98; p = 0.03), and heart failure (HR: 0.90; 95% CI 0.87, 0.94; p < 0.0001) in patients with pre-existing cardiovascular diseases. CONCLUSION Metformin use is associated with a reduction in all-cause mortality, cardiovascular mortality, incidence of coronary revascularisation, and heart failure in patients with CVD; however, metformin usage was not associated with reduction in the incidence of myocardial infarction, angina, or stroke.
Collapse
Affiliation(s)
- Tian Li
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | | | - Wenhua Jiang
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 211125, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China.
| |
Collapse
|
13
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
14
|
Eriksson KE, Eidhagen F, Liska J, Franco-Cereceda A, Lundberg JO, Weitzberg E. Effects of inorganic nitrate on ischaemia-reperfusion injury after coronary artery bypass surgery. Br J Anaesth 2021; 127:547-555. [PMID: 34399982 PMCID: PMC8524391 DOI: 10.1016/j.bja.2021.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background Nitric oxide (NO) is an important signalling molecule in the cardiovascular system with protective properties in ischaemia–reperfusion injury. Inorganic nitrate, an oxidation product of endogenous NO production and a constituent in our diet, can be recycled back to bioactive NO. We investigated if preoperative administration of inorganic nitrate could reduce troponin T release and other plasma markers of injury to the heart, liver, kidney, and brain in patients undergoing cardiac surgery. Methods This single-centre, randomised, double-blind, placebo-controlled trial included 82 patients undergoing coronary artery bypass surgery with cardiopulmonary bypass. Oral sodium nitrate (700 mg×2) or placebo (NaCl) were administered before surgery. Biomarkers of ischaemia–reperfusion injury and plasma nitrate and nitrite were collected before and up to 72 h after surgery. Troponin T release was our predefined primary endpoint and biomarkers of renal, liver, and brain injury were secondary endpoints. Results Plasma concentrations of nitrate and nitrite were elevated in nitrate-treated patients compared with placebo. The 72-h release of troponin T did not differ between groups. Other plasma biomarkers of organ injury were also similar between groups. Blood loss was not a predefined outcome parameter, but perioperative bleeding was 18% less in nitrate-treated patients compared with controls. Conclusion Preoperative administration of inorganic nitrate did not influence troponin T release or other plasma biomarkers of organ injury in cardiac surgery. Clinical trial registration NCT01348971.
Collapse
Affiliation(s)
- Karin E Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.
| | - Fredrik Eidhagen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Stockholm Center for Spine Surgery (RKC), Stockholm, Sweden
| | - Jan Liska
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
16
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Pfeifer KJ, Selzer A, Mendez CE, Whinney CM, Rogers B, Simha V, Regan D, Urman RD, Mauck K. Preoperative Management of Endocrine, Hormonal, and Urologic Medications: Society for Perioperative Assessment and Quality Improvement (SPAQI) Consensus Statement. Mayo Clin Proc 2021; 96:1655-1669. [PMID: 33714600 DOI: 10.1016/j.mayocp.2020.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Perioperative medical management is challenging due to the rising complexity of patients presenting for surgical procedures. A key part of preoperative optimization is appropriate management of long-term medications, yet guidelines and consensus statements for perioperative medication management are lacking. Available resources utilize the recommendations derived from individual studies and do not include a multidisciplinary focus or formal consensus. The Society for Perioperative Assessment and Quality Improvement (SPAQI) identified a lack of authoritative clinical guidance as an opportunity to utilize its multidisciplinary membership to improve evidence-based perioperative care. SPAQI seeks to provide guidance on perioperative medication management that synthesizes available literature with expert consensus. The aim of this Consensus Statement is to provide practical guidance on the preoperative management of endocrine, hormonal, and urologic medications. A panel of experts with anesthesiology, perioperative medicine, hospital medicine, general internal medicine, and medical specialty experience was drawn together and identified the common medications in each of these categories. The authors then utilized a modified Delphi approach to critically review the literature and generate consensus recommendations.
Collapse
Affiliation(s)
- Kurt J Pfeifer
- Department of Medicine, Medical College of Wisconsin, Milwaukee.
| | - Angela Selzer
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora
| | - Carlos E Mendez
- Department of Medicine, Medical College of Wisconsin, Milwaukee
| | | | - Barbara Rogers
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus
| | - Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN
| | - Dennis Regan
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA
| | - Karen Mauck
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Rozier R, Paul R, Madji Hounoum B, Villa E, Mhaidly R, Chiche J, Verhoeyen E, Marchetti S, Vandenberghe A, Raucoules M, Carles M, Ricci JE. Pharmacological preconditioning protects from ischemia/reperfusion-induced apoptosis by modulating Bcl-xL expression through a ROS-dependent mechanism. FEBS J 2021; 288:3547-3569. [PMID: 33340237 DOI: 10.1111/febs.15675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a frequent perioperative threat, with numerous strategies developed to limit and/or prevent it. One interesting axis of research is the anesthetic preconditioning (APc) agent's hypothesis (such as sevoflurane, SEV). However, APc's mode of action is still poorly understood and volatile anesthetics used as preconditioning agents are often not well suited in clinical practice. Here, in vitro using H9C2 cells lines (in myeloblast state or differentiated toward cardiomyocytes) and in vivo in mice, we identified that SEV-induced APc is mediated by a mild induction of reactive oxygen species (ROS) that activates Akt and induces the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL), therefore protecting cardiomyocytes from I/R-induced death. Furthermore, we extended these results to human cardiomyocytes (derived from induced pluripotent stem - IPS - cells). Importantly, we demonstrated that this protective signaling pathway induced by SEV could be stimulated using the antidiabetic agent metformin (MET), suggesting the preconditioning properties of MET. Altogether, our study identified a signaling pathway allowing APc of cardiac injuries as well as a rational for the use of MET as a pharmacological preconditioning agent to prevent I/R injuries.
Collapse
Affiliation(s)
- Romain Rozier
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Blandine Madji Hounoum
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Elodie Villa
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rana Mhaidly
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Els Verhoeyen
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Sandrine Marchetti
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ashaina Vandenberghe
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Marc Raucoules
- Anesthésie Réanimation, Centre Hospitalier Universitaire, Nice, France
| | - Michel Carles
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France.,Anesthésie Réanimation, Centre Hospitalier Universitaire, Nice, France.,Réanimation, Faculté des Antilles, Centre Hospitalier Universitaire, Guadeloupe, France
| | - Jean-Ehrland Ricci
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
19
|
Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, Falcão‐Pires I, Bell R, Zuurbier CJ, Pagliaro P, Hausenloy DJ. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol 2020; 177:5312-5335. [PMID: 31985828 PMCID: PMC7680002 DOI: 10.1111/bph.14993] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic patients are at increased risk of developing coronary artery disease and experience worse clinical outcomes following acute myocardial infarction. Novel therapeutic strategies are required to protect the myocardium against the effects of acute ischaemia-reperfusion injury (IRI). These include one or more brief cycles of non-lethal ischaemia and reperfusion prior to the ischaemic event (ischaemic preconditioning [IPC]) or at the onset of reperfusion (ischaemic postconditioning [IPost]) either to the heart or to extracardiac organs (remote ischaemic conditioning [RIC]). Studies suggest that the diabetic heart is resistant to cardioprotective strategies, although clinical evidence is lacking. We overview the available animal models of diabetes, investigating acute myocardial IRI and cardioprotection, experiments investigating the effects of hyperglycaemia on susceptibility to acute myocardial IRI, the response of the diabetic heart to cardioprotective strategies e.g. IPC, IPost and RIC. Finally we highlight the effects of anti-hyperglycaemic agents on susceptibility to acute myocardial IRI and cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Manuela Aragno
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Luc Bertrand
- Division of CardiologyCliniques Universitaires Saint‐LucBrusselsBelgium
- Pole of Cardiovascular Research, Institut de Recherche Experimetnale et CliniqueUCLouvainBrusselsBelgium
| | - Antigone Lazou
- School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Ines Falcão‐Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Robert Bell
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam UMCUniversity of Amsterdam, Cardiovascular SciencesAmsterdamThe Netherlands
| | - Pasquale Pagliaro
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Derek J. Hausenloy
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular and Metabolic Disorders ProgramDuke–NUS Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cardiovascular Research Center, College of Medical and Health SciencesAsia UniversityTaiwan
| |
Collapse
|
20
|
Nantsupawat T, Wongcharoen W, Chattipakorn SC, Chattipakorn N. Effects of metformin on atrial and ventricular arrhythmias: evidence from cell to patient. Cardiovasc Diabetol 2020; 19:198. [PMID: 33234131 PMCID: PMC7687769 DOI: 10.1186/s12933-020-01176-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022] Open
Abstract
Metformin has been shown to have various cardiovascular benefits beyond its antihyperglycemic effects, including a reduction in stroke, heart failure, myocardial infarction, cardiovascular death, and all-cause mortality. However, the roles of metformin in cardiac arrhythmias are still unclear. It has been shown that metformin was associated with decreased incidence of atrial fibrillation in diabetic patients with and without myocardial infarction. This could be due to the effects of metformin on preventing the structural and electrical remodeling of left atrium via attenuating intracellular reactive oxygen species, activating 5′ adenosine monophosphate-activated protein kinase, improving calcium homeostasis, attenuating inflammation, increasing connexin-43 gap junction expression, and restoring small conductance calcium-activated potassium channels current. For ventricular arrhythmias, in vivo reports demonstrated that activation of 5′ adenosine monophosphate-activated protein kinase and phosphorylated connexin-43 by metformin played a key role in ischemic ventricular arrhythmias reduction. However, metformin failed to show anti-ventricular arrhythmia benefits in clinical trials. In this review, in vitro and in vivo reports regarding the effects of metformin on both atrial arrhythmias and ventricular arrhythmias are comprehensively summarized and presented. Consistent and controversial findings from clinical trials are also summarized and discussed. Due to limited numbers of reports, further studies are needed to elucidate the mechanisms and effects of metformin on cardiac arrhythmias. Furthermore, randomized controlled trials are needed to clarify effects of metformin on cardiac arrhythmias in human.
Collapse
Affiliation(s)
- Teerapat Nantsupawat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
21
|
Lin CS, Chang CC, Yeh CC, Chang YC, Chen TL, Liao CC. Outcomes after surgery in patients with diabetes who used metformin: a retrospective cohort study based on a real-world database. BMJ Open Diabetes Res Care 2020; 8:e001351. [PMID: 33257420 PMCID: PMC7705543 DOI: 10.1136/bmjdrc-2020-001351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Limited information was available regarding the perioperative outcomes in patients with and without use of metformin. This study aims to evaluate the complications and mortality after major surgery in patients with diabetes who use metformin. RESEARCH DESIGN AND METHODS Using a real-world database of Taiwan's National Health Insurance from 2008 to 2013, we conducted a matched cohort study of 91 356 patients with diabetes aged >20 years who used metformin and later underwent major surgery. Using a propensity score-matching technique adjusted for sociodemographic characteristics, medical condition, surgery type, and anesthesia type, 91 356 controls who underwent surgery but did not use metformin were selected. Logistic regression was used to calculate the ORs with 95% CIs for postoperative complications and 30-day mortality associated with metformin use. RESULTS Patients who used metformin had a lower risk of postoperative septicemia (OR 0.94, 95% CI 0.90 to 0.98), acute renal failure (OR 0.87, 95% CI 0.79 to 0.96), and 30-day mortality (OR 0.79, 95% CI 0.71 to 0.88) compared with patients who did not use metformin, in both sexes and in every age group. Metformin users who underwent surgery also had a decreased risk of postoperative intensive care unit admission (OR 0.60, 95% CI 0.59 to 0.62) and lower medical expenditures (p<0.0001) than non-use controls. CONCLUSIONS Among patients with diabetes, those who used metformin and underwent major surgery had a lower risk of complications and mortality compared with non-users. Further randomized clinical trials are needed to show direct evidence of how metformin improves perioperative outcomes.
Collapse
Affiliation(s)
- Chao-Shun Lin
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Chau Chang
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chieh Yeh
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Surgery, University of Illinois, Chicago, Illinois, USA
| | - Yi-Cheng Chang
- Division of Endocrinology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Liang Chen
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chang Liao
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Schubert M, Hansen S, Leefmann J, Guan K. Repurposing Antidiabetic Drugs for Cardiovascular Disease. Front Physiol 2020; 11:568632. [PMID: 33041865 PMCID: PMC7522553 DOI: 10.3389/fphys.2020.568632] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic diseases and diabetes represent an increasing global challenge for human health care. As associated with a strongly elevated risk of developing atherosclerosis, kidney failure and death from myocardial infarction or stroke, the treatment of diabetes requires a more effective approach than lowering blood glucose levels. This review summarizes the evidence for the cardioprotective benefits induced by antidiabetic agents, including sodium-glucose cotransporter 2 inhibitor (SGLT2i) and glucagon-like peptide-1 receptor agonist (GLP1-RA), along with sometimes conversely discussed effects of dipeptidyl peptidase-4 inhibitor (DPP4i) and metformin in patients with high cardiovascular risk with or without type 2 diabetes. Moreover, the proposed mechanisms of the different drugs are described based on the results of preclinical studies. Recent cardiovascular outcome trials unexpectedly confirmed a beneficial effect of GLP-1RA and SGLT2i in type 2 diabetes patients with high cardiovascular risk and with standard care, which was independent of glycaemic control. These results triggered a plethora of studies to clarify the underlying mechanisms and the relevance of these effects. Taken together, the available data strongly highlight the potential of repurposing the original antidiabetics GLP1-RA and SGLT2i to improve cardiovascular outcome even in non-diabetic patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Sinah Hansen
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Julian Leefmann
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Huijink TM, Venema LH, Posma RA, de Vries NJ, Westerkamp AC, Ottens PJ, Touw DJ, Nijsten MW, Leuvenink HGD. Metformin Preconditioning and Postconditioning to Reduce Ischemia Reperfusion Injury in an Isolated Ex Vivo Rat and Porcine Kidney Normothermic Machine Perfusion Model. Clin Transl Sci 2020; 14:222-230. [PMID: 32702185 PMCID: PMC7877823 DOI: 10.1111/cts.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin may act renoprotective prior to kidney transplantation by reducing ischemia-reperfusion injury (IRI). This study examined whether metformin preconditioning and postconditioning during ex vivo normothermic machine perfusion (NMP) of rat and porcine kidneys affect IRI. In the rat study, saline or 300 mg/kg metformin was administered orally twice on the day before nephrectomy. After 15 minutes of warm ischemia, kidneys were preserved with static cold storage for 24 hours. Thereafter, 90 minutes of NMP was performed with the addition of saline or metformin (30 or 300 mg/L). In the porcine study, after 30 minutes of warm ischemia, kidneys were preserved for 3 hours with oxygenated hypothermic machine perfusion. Subsequently, increasing doses of metformin were added during 4 hours of NMP. Metformin preconditioning of rat kidneys led to decreased injury perfusate biomarkers and reduced proteinuria. Postconditioning of rat kidneys resulted, dose-dependently, in less tubular cell necrosis and vacuolation. Heat shock protein 70 expression was increased in metformin-treated porcine kidneys. In all studies, creatinine clearance was not affected. In conclusion, both metformin preconditioning and postconditioning can be done safely and improved rat and porcine kidney quality. Because the effects are minor, it is unknown which strategy might result in improved organ quality after transplantation.
Collapse
Affiliation(s)
- Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Leonie H Venema
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rene A Posma
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nynke J de Vries
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrie C Westerkamp
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Petra J Ottens
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Gelosa P, Castiglioni L, Camera M, Sironi L. Drug repurposing in cardiovascular diseases: Opportunity or hopeless dream? Biochem Pharmacol 2020; 177:113894. [DOI: 10.1016/j.bcp.2020.113894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
|
25
|
Infante T, Del Viscovo L, De Rimini ML, Padula S, Caso P, Napoli C. Network Medicine: A Clinical Approach for Precision Medicine and Personalized Therapy in Coronary Heart Disease. J Atheroscler Thromb 2020; 27:279-302. [PMID: 31723086 PMCID: PMC7192819 DOI: 10.5551/jat.52407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Early identification of coronary atherosclerotic pathogenic mechanisms is useful for predicting the risk of coronary heart disease (CHD) and future cardiac events. Epigenome changes may clarify a significant fraction of this "missing hereditability", thus offering novel potential biomarkers for prevention and care of CHD. The rapidly growing disciplines of systems biology and network science are now poised to meet the fields of precision medicine and personalized therapy. Network medicine integrates standard clinical recording and non-invasive, advanced cardiac imaging tools with epigenetics into deep learning for in-depth CHD molecular phenotyping. This approach could potentially explore developing novel drugs from natural compounds (i.e. polyphenols, folic acid) and repurposing current drugs, such as statins and metformin. Several clinical trials have exploited epigenetic tags and epigenetic sensitive drugs both in primary and secondary prevention. Due to their stability in plasma and easiness of detection, many ongoing clinical trials are focused on the evaluation of circulating miRNAs (e.g. miR-8059 and miR-320a) in blood, in association with imaging parameters such as coronary calcifications and stenosis degree detected by coronary computed tomography angiography (CCTA), or functional parameters provided by FFR/CT and PET/CT. Although epigenetic modifications have also been prioritized through network based approaches, the whole set of molecular interactions (interactome) in CHD is still under investigation for primary prevention strategies.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca Del Viscovo
- Department of Precision Medicine, Section of Diagnostic Imaging, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Sergio Padula
- Department of Cardiology, A.O.R.N. Dei Colli, Monaldi Hospital, Naples, Italy
| | - Pio Caso
- Department of Cardiology, A.O.R.N. Dei Colli, Monaldi Hospital, Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| |
Collapse
|
26
|
Posma RA, Frøslev T, Jespersen B, van der Horst ICC, Touw DJ, Thomsen RW, Nijsten MW, Christiansen CF. Prognostic impact of elevated lactate levels on mortality in critically ill patients with and without preadmission metformin treatment: a Danish registry-based cohort study. Ann Intensive Care 2020; 10:36. [PMID: 32219580 PMCID: PMC7098407 DOI: 10.1186/s13613-020-00652-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lactate is a robust prognostic marker for the outcome of critically ill patients. Several small studies reported that metformin users have higher lactate levels at ICU admission without a concomitant increase in mortality. However, this has not been investigated in a larger cohort. We aimed to determine whether the association between lactate levels around ICU admission and mortality is different in metformin users compared to metformin nonusers. METHODS This cohort study included patients admitted to ICUs in northern Denmark between January 2010 and August 2017 with any circulating lactate measured around ICU admission, which was defined as 12 h before until 6 h after admission. The association between the mean of the lactate levels measured during this period and 30-day mortality was determined for metformin users and nonusers by modelling restricted cubic splines obtained from a Cox regression model. RESULTS Of 37,293 included patients, 3183 (9%) used metformin. The median (interquartile range) lactate level was 1.8 (1.2-3.2) in metformin users and 1.6 (1.0-2.7) mmol/L in metformin nonusers. Lactate levels were strongly associated with mortality for both metformin users and nonusers. However, the association of lactate with mortality was different for metformin users, with a lower mortality rate in metformin users than in nonusers when admitted with similar lactate levels. This was observed over the whole range of lactate levels, and consequently, the relation of lactate with mortality was shifted rightwards for metformin users. CONCLUSION In this large observational cohort of critically ill patients, early lactate levels were strongly associated with mortality. Irrespective of the degree of hyperlactataemia, similar lactate levels were associated with a lower mortality rate in metformin users compared with metformin nonusers. Therefore, lactate levels around ICU admission should be interpreted according to metformin use.
Collapse
Affiliation(s)
- Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands. .,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Trine Frøslev
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Iwan C C van der Horst
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht University, Maastricht, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Reimar W Thomsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
27
|
Higgins L, Palee S, Chattipakorn SC, Chattipakorn N. Effects of metformin on the heart with ischaemia-reperfusion injury: Evidence of its benefits from in vitro, in vivo and clinical reports. Eur J Pharmacol 2019; 858:172489. [PMID: 31233747 DOI: 10.1016/j.ejphar.2019.172489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023]
Abstract
Ischaemia reperfusion (I/R) injury following myocardial infarction reperfusion therapy is a phenomenon that results in further loss of cardiomyocytes and cardiac contractility. Among the potential therapeutics to counter cardiac I/R injury, the antidiabetic drug metformin has shown promising experimental results. This review encompasses evidence available from studies of metformin's protective effects on the heart following cardiac I/R in vitro, ex vivo and in vivo, alongside clinical trials. Experimental data describes potential mechanisms of metformin, including activation of AMPK, an energy sensing kinase with many downstream effects. Suggested effects include upregulation of superoxide dismutases (SODs), which reduce oxidative stress and improve mitochondrial function. Additionally, metformin demonstrates anti-apoptotic effects, most likely by inhibiting mitochondrial permeability transition pore (mPTP) opening, and anti-inflammatory effects, by JNK inhibition. Recent reports of metformin's role in modulating complex I activity of the electron transport chain following cardiac I/R are also presented and discussed. Furthermore, clinical reports present mixed findings, suggesting that beneficial effects may depend on dosage, timing and condition of patients receiving metformin treatment. Conclusively there is an increased need for prospective, placebo-controlled clinical studies to confirm the mechanisms and to demonstrate that metformin is a suitable and safe drug for treatment of cardiac I/R injury.
Collapse
Affiliation(s)
- Louis Higgins
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, England, UK
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
28
|
Abstract
With the increasing age of the general population, medical conditions necessitating a surgical intervention will increase. Concomitant with advanced age, the prevalence of type 2 diabetes mellitus will also increase. These patients have a two- to three-fold higher risk of occurrence of cardiovascular events and are at higher risk of perioperative myocardial ischemia. This review will discuss recent advances in the field of perioperative cardioprotection and focus specifically on strategies that have aimed to protect the diabetic and the aged myocardium. This review will not deal with potential putative cardioprotective effects of opioids and anesthetic agents, as this is a very broad area that would necessitate a dedicated overview.
Collapse
Affiliation(s)
- Mona Momeni
- Department of Anesthesiology & Acute Medicine, Cliniques universitaires Saint Luc, Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Avenue Hippocrate, Brussels, 1200, Belgium
| | - Stefan De Hert
- Department of Anesthesiology & Perioperative Medicine, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugger H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, González A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Rena G, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39:4243-4254. [PMID: 30295797 PMCID: PMC6302261 DOI: 10.1093/eurheartj/ehy596] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité—Universitätsmedizin, Berlin, Germany
| | - Jean-Sebastien Hulot
- Paris Cardiovascular Research Center PARCC, INSERM UMR970, CIC 1418, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Walter J Paulus
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Rossignol
- Inserm, Centre d’Investigations Cliniques—Plurithématique 14-33, Inserm U1116, CHRU Nancy, Université de Lorraine, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Antoni Bayes-Genis
- Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Heiko Bugger
- Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francesco Cosentino
- Department of Medicine Solna, Cardiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Alessandra Dei Cas
- Department of Medicine and Surgery, Endocrinology and Metabolism, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona and CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Martin Huelsmann
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Cardiovascular Research Centre, Royal Brompton Hospital; National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Graham Rena
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giuseppe Rosano
- Cardiovascular Clinical Academic Group, St George's Hospitals NHS Trust University of London, London, UK
- IRCCS San Raffaele Roma, Rome, Italy
| | - Bart Staels
- University of Lille—EGID, Lille, France
- Inserm, U1011, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Hospital CHU Lille, Lille, France
| | - Linda W van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Dimitrios Farmakis
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Belgium
| |
Collapse
|
30
|
Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW, Coronel R, Weber NC, Zuurbier CJ. Direct Cardiac Actions of Sodium Glucose Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart Failure in Diabetic Patients. Front Physiol 2018; 9:1575. [PMID: 30519189 PMCID: PMC6259641 DOI: 10.3389/fphys.2018.01575] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) are the first antidiabetic compounds that effectively reduce heart failure hospitalization and cardiovascular death in type 2 diabetics. Being explicitly designed to inhibit SGLT2 in the kidney, SGLT2i have lately been investigated for their off-target cardiac actions. Here, we review the direct effects of SGLT2i Empagliflozin (Empa), Dapagliflozin (Dapa), and Canagliflozin (Cana) on various cardiac cell types and cardiac function, and how these may contribute to the cardiovascular benefits observed in large clinical trials. SGLT2i impaired the Na+/H+ exchanger 1 (NHE-1), reduced cytosolic [Ca2+] and [Na+] and increased mitochondrial [Ca2+] in healthy cardiomyocytes. Empa, one of the best studied SGLT2i, maintained cell viability and ATP content following hypoxia/reoxygenation in cardiomyocytes and endothelial cells. SGLT2i recovered vasoreactivity of hyperglycemic and TNF-α-stimulated aortic rings and of hyperglycemic endothelial cells. Anti-inflammatory actions of Cana in IL-1β-treated HUVEC and of Dapa in LPS-treated cardiofibroblast were mediated by AMPK activation. In isolated mouse hearts, Empa and Cana, but not Dapa, induced vasodilation. In ischemia-reperfusion studies of the isolated heart, Empa delayed contracture development during ischemia and increased mitochondrial respiration post-ischemia. Direct cardiac effects of SGLT2i target well-known drivers of diabetes and heart failure (elevated cardiac cytosolic [Ca2+] and [Na+], activated NHE-1, elevated inflammation, impaired vasorelaxation, and reduced AMPK activity). These cardiac effects may contribute to the large beneficial clinical effects of these antidiabetic drugs.
Collapse
Affiliation(s)
- Laween Uthman
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Antonius Baartscheer
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Cees A Schumacher
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Jan W T Fiolet
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Marius C Kuschma
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Ruben Coronel
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| |
Collapse
|
31
|
Nazer RI, Abalhassan MF, Alburikan KA. Liver enzyme trends in patients taking uninterrupted metformin before and after coronary surgery. Cardiovasc Diagn Ther 2018; 8:469-479. [PMID: 30214862 DOI: 10.21037/cdt.2018.05.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Metformin is an oral antidiabetic agent belonging to the biguanide class of antidiabetics. Possible novel applications for metformin in cardiovascular disease might exist. The aim of this study was to verify a possible association between pre-operative metformin administration and protection against ischemia-induced liver injury in diabetic patients undergoing coronary artery bypass grafting (CABG) surgery. Methods A retrospective case-control series was conducted at a single center. Two hundred consecutive diabetic patients underwent isolated on-pump CABG during a 12-month span (July 2015 - July 2016). Metformin was uninterrupted in patients who took this drug prior to CABG; 68 patients were metformin users (34%) while 132 patients were taking other antidiabetic agents (66%). Liver enzymes and other organ markers were consecutively recorded daily for 7 days after surgery and expressed as medians with interquartile range (IQR). Results Both the metformin and non-metformin group of patients had similar pre-operative demographic characteristics. The median (IQR) post-operative cardiac enzyme creatinine kinase (CK) MB fraction was significantly lower in the metformin group [46.4 U/L (35.8-66.5) vs. 66.5 U/L (44-94.5), P=0.005]. Total bilirubin [0.58 (0.48-0.82) mg/dL vs. 0.67 (0.56-0.95) mg/dL, P=0.021], the transaminase aspartate aminotransferase (AST) [32.5 U/L (25.0-42.0) vs. 37.5 U/L (28.5-56), P=0.011], the transaminases alanine aminotransferase (ALT) [48.5 U/L (40.0-64.0) vs. 57.0 U/L (44.0-77.0), P=0.040] and lactate dehydrogenase (LDH) [320.0 U/L (273.5-367.2) vs. 356.5 U/L (289.5-427), P=0.014] were significantly lower in the metformin group. No differences were noted in clinical outcomes. Conclusions In this limited retrospective study, the diabetic patients who took metformin before and after undergoing CABG appeared to have a reduced post-operative surge in the total bilirubin and transaminase liver enzymes. Metformin's role in mitigating oxidative stress in liver cells might explain this observation. Further experimental studies are warranted to verify this possible effect.
Collapse
Affiliation(s)
- Rakan I Nazer
- Department of Cardiac Science, King Fahad Cardiac Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed F Abalhassan
- Department of Cardiac Science, King Fahad Cardiac Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Khalid A Alburikan
- Department of Cardiac Science, King Fahad Cardiac Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Hulst AH, Polderman JAW, Ouweneel E, Pijl AJ, Hollmann MW, DeVries JH, Preckel B, Hermanides J. Peri-operative continuation of metformin does not improve glycaemic control in patients with type 2 diabetes: A randomized controlled trial. Diabetes Obes Metab 2018; 20:749-752. [PMID: 28940961 DOI: 10.1111/dom.13118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 11/26/2022]
Abstract
Historically, metformin was withheld before surgery for fear of metformin-associated lactic acidosis. Currently, however, this risk is deemed to be low and guidelines have moved towards the continuation of metformin. We hypothesized that continuing metformin peri-operatively would lower postoperative serum glucose level without an effect on plasma lactate levels. We performed a single-blind multicentre randomized controlled trial in people with type 2 diabetes mellitus scheduled for non-cardiac surgery and continued (MF+ group) or withheld (MF- group) metformin before surgery. The main outcome measures were the differences in peri-operative plasma glucose and lactate levels. We randomized 70 patients (37 MF+ group and 33 MF- group) with type 2 diabetes mellitus. Postoperative glucose levels were similar in the MF+ and the MF- groups (8.2 ± 1.8 vs 8.3 ± 2.3 mmol/L P = .95) Although preoperative lactate levels were slightly higher in the MF+ group compared with the MF- group (1.5 vs 1.2 mmol/L; P = .02), the postoperative lactate levels were not significantly different (1.2 vs 1.0 mmol/L; P = .18). In conclusion, continuation of metformin during elective non-cardiac surgery does not improve glucose control or raise lactate levels to a clinically relevant degree.
Collapse
Affiliation(s)
- A H Hulst
- Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J A W Polderman
- Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - E Ouweneel
- Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A J Pijl
- Department of Anaesthesiology, Medical Centre Slotervaart, Amsterdam, The Netherlands
| | - M W Hollmann
- Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J H DeVries
- Department of Internal Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - B Preckel
- Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J Hermanides
- Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Hulst AH, Hermanides J, Hans DeVries J, Preckel B. In response to: Metformin for the management of peri-operative hyperglycaemia. Diabetes Obes Metab 2018; 20:755. [PMID: 29152830 DOI: 10.1111/dom.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Abraham H Hulst
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Hermanides
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Hans DeVries
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Speirs C, Williams JJL, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol Res 2017; 128:88-100. [PMID: 29037480 DOI: 10.1016/j.phrs.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.
Collapse
Affiliation(s)
- Claire Speirs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kirsten Riches
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
35
|
Andersen LW. Lactate Elevation During and After Major Cardiac Surgery in Adults: A Review of Etiology, Prognostic Value, and Management. Anesth Analg 2017; 125:743-752. [PMID: 28277327 DOI: 10.1213/ane.0000000000001928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Elevated lactate is a common occurrence after cardiac surgery. This review summarizes the literature on the complex etiology of lactate elevation during and after cardiac surgery, including considerations of oxygen delivery, oxygen utilization, increased metabolism, lactate clearance, medications and fluids, and postoperative complications. Second, the association between lactate and a variety of outcomes are described, and the prognostic role of lactate is critically assessed. Despite the fact that elevated lactate is strongly associated with many important outcomes, including postoperative complications, length of stay, and mortality, little is known about the optimal management of postoperative patients with lactate elevations. This review ends with an assessment of the limited literature on this subject.
Collapse
Affiliation(s)
- Lars W Andersen
- From the *Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark; †Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; ‡Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark; and §Department of Medicine, Regional Hospital Holstebro, Aarhus University, Holstebro, Denmark
| |
Collapse
|
36
|
Hesen NA, Riksen NP, Aalders B, Brouwer MAE, Ritskes-Hoitinga M, El Messaoudi S, Wever KE. A systematic review and meta-analysis of the protective effects of metformin in experimental myocardial infarction. PLoS One 2017; 12:e0183664. [PMID: 28832637 PMCID: PMC5568412 DOI: 10.1371/journal.pone.0183664] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
Metformin improves cardiovascular prognosis in patients with diabetes mellitus, compared to alternative glucose-lowering drugs, despite similar glycemic control. Direct cardiovascular protective properties have therefore been proposed, and studied in preclinical models of myocardial infarction. We now aim to critically assess the quality and outcome of these studies. We present a systematic review, quality assessment and meta-analysis of the effect of metformin in animal studies of experimental myocardial infarction. Through a comprehensive search in Pubmed and EMBASE, we identified 27 studies, 11 reporting on ex vivo experiments and 18 reporting on in vivo experiments. The primary endpoint infarct size as percentage of area at risk was significantly reduced by metformin in vivo (MD -18.11[-24.09,-12.14]) and ex vivo (MD -18.70[-25.39, -12.02]). Metformin improved the secondary endpoints left ventricular ejection fraction (LVEF) and left ventricular end systolic diameter. A borderline significant effect on mortality was observed, and there was no overall effect on cardiac hypertrophy. Subgroup analyses could be performed for comorbidity and timing of treatment (infarct size and mortality) and species and duration of ischemia (LVEF), but none of these variables accounted for significant amounts of heterogeneity. Reporting of possible sources of bias was extremely poor, including randomization (reported in 63%), blinding (33%), and sample size calculation (0%). As a result, risk of bias (assessed using SYRCLE’s risk of bias tool) was unclear in the vast majority of studies. We conclude that metformin limits infarct-size and improves cardiac function in animal models of myocardial infarction, but our confidence in the evidence is lowered by the unclear risk of bias and residual unexplained heterogeneity. We recommend an adequately powered, high quality confirmatory animal study to precede a randomized controlled trial of acute administration of metformin in patients undergoing reperfusion for acute myocardial infarction.
Collapse
Affiliation(s)
- Nienke A Hesen
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Nijmegen Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Aalders
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Nijmegen Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Merel Ritskes-Hoitinga
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Nijmegen Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saloua El Messaoudi
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberley E Wever
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Nijmegen Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis 2017; 27:657-669. [PMID: 28709719 DOI: 10.1016/j.numecd.2017.04.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metformin, the eldest and most widely used glucose lowering drug, is likely to be effective also on cardiac and vascular disease prevention. Nonetheless, uncertainty still exists with regard to its effects on the cardiovascular system as a whole and specifically on the myocardium, both at the organ and cellular levels. METHODS We reviewed the available data on the cardiac and vascular effects of metformin, encompassing both in vitro, either tissue or isolated organ, and in vivo studies in experimental animals and humans, as well as the evidence generated by major clinical trials. RESULTS At the cellular level metformin's produces both AMP-activated kinase (AMPK) dependent and independent effects. At the systemic level, possibly also through other pathways, this drug improves endothelial function, protects from oxidative stress and inflammation, and from the negative effects of angiotensin II. On the myocardium it attenuates ischemia-reperfusion injury and prevents adverse remodeling induced by humoral and hemodynamic factors. The effects on myocardial cell metabolism and contractile function being not evident at rest or in more advanced stages of cardiac dysfunction, could be relevant during transient ischemia, during an acute increase in workload and in the early stages of diabetic/hypertensive cardiomyopathy as confirmed by few small clinical trials and some observational studies. The overall evidence emerging from both clinical trials and real world registry is in favor of a protective effect of metformin with respect to both coronary events and progression to heart failure. CONCLUSIONS Given this potential, its efficacy and its safety (and also its low cost) metformin remains the central pillar of the therapy of diabetes.
Collapse
Affiliation(s)
- L Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - A Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
38
|
Two-year follow-up of 4 months metformin treatment vs. placebo in ST-elevation myocardial infarction: data from the GIPS-III RCT. Clin Res Cardiol 2017; 106:939-946. [PMID: 28755285 PMCID: PMC5696505 DOI: 10.1007/s00392-017-1140-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
Objectives Preclinical and clinical studies suggested cardioprotective effects of metformin treatment. In the GIPS-III trial, 4 months of metformin treatment did not improve left ventricular ejection fraction in patients presenting with ST-elevation myocardial infarction (STEMI). Here, we report the 2-year follow-up results. Methods Between January 2011 and May 2013, 379 STEMI patients without diabetes undergoing primary percutaneous coronary intervention were randomized to a 4-month treatment with metformin (500 mg twice daily) (N = 191) or placebo (N = 188) in the University Medical Center Groningen. Two-year follow-up data was collected to determine its effect on predefined secondary endpoints: the incidence of major adverse cardiac events (MACE), its individual components, all-cause mortality, and new-onset diabetes. Results For all 379 patients all-cause mortality data were available. For seven patients (2%) follow-up data on MACE was limited, ranging from 129 to 577 days. All others completed the 2-year follow-up visit. Incidence of MACE was 11 (5.8%) in metformin and 6 (3.2%) in placebo treated patients [hazard ratio (HR) 1.84, confidence interval (CI) 0.68–4.97, P = 0.22]. Three patients died in the metformin group and one in the placebo treatment group. Individual components of MACE were also comparable between both groups. New-onset diabetes mellitus was 34 (17.8%) in metformin and 32 (17.0%) in placebo treated patients (odds ratio 1.15, CI 0.66–1.98, P = 0.84). After multivariable adjustment the incidence of MACE was comparable between the treatment groups (HR 1.02, CI 0.10–10.78, P = 0.99). Conclusions Four months metformin treatment initiated at the time of hospitalization in STEMI patients without diabetes did not exert beneficial long-term effects. Trial registration clinicaltrials.gov Identifier: NCT01217307. Electronic supplementary material The online version of this article (doi:10.1007/s00392-017-1140-z) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Nazer RI, Alburikan KA. Metformin is not associated with lactic acidosis in patients with diabetes undergoing coronary artery bypass graft surgery: a case control study. BMC Pharmacol Toxicol 2017; 18:38. [PMID: 28558845 PMCID: PMC5450408 DOI: 10.1186/s40360-017-0145-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metformin associated lactic acidosis (MALA) is a rare but lethal complication. There is no consensus regarding when to stop and resume metformin in patients who undergo coronary artery bypass grafting (CABG). This study aimed to determine if uninterrupted metformin administration in patients with diabetes undergoing CABG increases the risk of lactic acidosis. METHODS Over a span of 12 months (2015-2016), 127 patients with type 2 diabetes underwent isolated CABG. Of those, 41 patients (32%) continued taking metformin and 86 patients (68%) took other antidiabetic agents. Patients taking metformin took the drug until the day of surgery and resumed taking it 3 h after extubation. RESULTS There were no differences in clinical outcomes or complications between groups. Serial measurement of cardiac, liver, and kidney biomarkers were similar between groups. The mean peak lactic acid level was significantly higher in the non-metformin users (5.4 ± 2.6 vs. 7.4 ± 4.1 mmol/l; P = 0.001). Multivariable logistic regression analysis identified the need for vasopressor administration as an independent predictor of lactic acidosis (odds ratio: 7.3, 95% confidence interval: 2.5-20.6; P < 0.001). CONCLUSION In the absence of risk factors associated with persistent lactic acidosis, such as shock or acute kidney or liver injury, continued peri-operative metformin administration was not associated with the occurrence of lactic acidosis in patients undergoing CABG. Elevated lactic acid levels seem to be directly related to tissue anoxia caused by escalating vasopressor support after surgery.
Collapse
Affiliation(s)
- Rakan I. Nazer
- Department of Cardiac Science, King Fahad Cardiac Center, College of Medicine, King Saud University, KSU 3642, Riyadh, 12372-7143 Kingdom of Saudi Arabia
| | - Khalid A. Alburikan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Nederlof R, Weber NC, Juffermans NP, de Mol BAMJ, Hollmann MW, Preckel B, Zuurbier CJ. A randomized trial of remote ischemic preconditioning and control treatment for cardioprotection in sevoflurane-anesthetized CABG patients. BMC Anesthesiol 2017; 17:51. [PMID: 28356068 PMCID: PMC5372281 DOI: 10.1186/s12871-017-0330-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/24/2017] [Indexed: 01/29/2023] Open
Abstract
Background Remote ischemic preconditioning (RIPC) efficacy is debated. Possibly, because propofol, which has a RIPC-inhibiting action, is used in most RIPC trials. It has been suggested that clinical efficacy is, however, present with volatile anesthesia in the absence of propofol, although this is based on one phase 1 trial only. Therefore, in the present study we further explore the relation between RIPC and cardioprotection with perioperative anesthesia restricted to sevoflurane and fentanyl, in CABG patients without concomitant procedures. Methods In a single-center study, we aimed to randomize 46 patients to either RIPC (3x5 min inflation of a blood pressure cuff around the arm) or control treatment (deflated cuff around the arm). Blood samples were obtained before and after RIPC to evaluate potential RIPC-induced mediators (Interleukin (IL)-6, IL-10, Tumor Necrosis Factor-α, Macrophage Inhibitory Factor). An atrial tissue sample was obtained at cannulation of the appendix of the right atrium for determination of mitochondrial bound hexokinase II (mtHKII) and other survival proteins (Akt and AMP-activated protein kinase α). In blood samples taken before and 6, 12 and 24 h after surgery cardiac troponin T (cTnT) and C-reactive protein (CRP) were determined. Surgery was strictly performed under sevoflurane anesthesia (no propofol). Results We actually randomized 16 patients to control treatment and 13 patients to RIPC. The mean 24 h area under the curve (AUC) cTnT was 11.44 (standard deviation 4.66) in the control group and 10.90 (standard deviation 4.73) in the RIPC group (mean difference 0.54, 95% CI −3.06 to 4.13; p = 0.76). The mean 24 h AUC CRP was 1319 (standard deviation 92) in the control group and 1273 (standard deviation 141) in the RIPC group (mean difference 46.2, 95% CI −288 to 380; p = 0.78). RIPC was without effect on survival proteins in atrial tissue samples obtained before surgery (mitochondrial hexokinase, Akt and AMPK) and inflammatory mediators obtained before and immediately after RIPC (IL-6, IL-10, TNF-α, macrophage migration inhibitory factor). Conclusion Many factors can interfere with the outcome of RIPC. Trying to correct for this led to strict inclusion criteria, which, in combination with a decreased institutional frequency of CABG without concomitant procedures and a change in institutional anesthetic regimen away from volatile anesthetics towards total intravenous anesthesia, caused slow inclusion and halting of this trial after 3 years, before target inclusion could be reached. Therefore this study is underpowered to prove its primary goal that RIPC reduced AUC cTnT by < 25%. Nevertheless, we have shown that the effect of RIPC on 24 h AUC cTnT, in cardiac surgery with anesthesia during surgery restricted to sevoflurane/fentanyl (no propofol), was between a decrease of 27% and an increase of 36%. These findings are not in line with previous studies in this field. Trial registration The Netherlands Trial Register: NTR2915; Registered 25 Mei 2011.
Collapse
Affiliation(s)
- Rianne Nederlof
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Bas A M J de Mol
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands. .,Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Cheng B, Chen HC, Chou IW, Tang TWH, Hsieh PCH. Harnessing the early post-injury inflammatory responses for cardiac regeneration. J Biomed Sci 2017; 24:7. [PMID: 28086885 PMCID: PMC5237143 DOI: 10.1186/s12929-017-0315-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cardiac inflammation is considered by many as the main driving force in prolonging the pathological condition in the heart after myocardial infarction. Immediately after cardiac ischemic injury, neutrophils are the first innate immune cells recruited to the ischemic myocardium within the first 24 h. Once they have infiltrated the injured myocardium, neutrophils would then secret proteases that promote cardiac remodeling and chemokines that enhance the recruitment of monocytes from the spleen, in which the recruitment peaks at 72 h after myocardial infarction. Monocytes would transdifferentiate into macrophages after transmigrating into the infarct area. Both neutrophils and monocytes-derived macrophages are known to release proteases and cytokines that are detrimental to the surviving cardiomyocytes. Paradoxically, these inflammatory cells also play critical roles in repairing the injured myocardium. Depletion of either neutrophils or monocytes do not improve overall cardiac function after myocardial infarction. Instead, the left ventricular function is further impaired and cardiac fibrosis persists. Moreover, the inflammatory microenvironment created by the infiltrated neutrophils and monocytes-derived macrophages is essential for the recruitment of cardiac progenitor cells. Recent studies also suggest that treatment with anti-inflammatory drugs may cause cardiac dysfunction after injury. Indeed, clinical studies have shown that traditional ant-inflammatory strategies are ineffective to improve cardiac function after infarction. Thus, the focus should be on how to harness these inflammatory events to either improve the efficacy of the delivered drugs or to favor the recruitment of cardiac progenitor cells.
Collapse
Affiliation(s)
- Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - H C Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - I W Chou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.,Graduate Institute of Life Sciences, National Defence Medical Center, Taipei, 114, Taiwan
| | - Tony W H Tang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.,Program in Molecular Medicine, National Yang Ming University, Taipei, 112, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan. .,Graduate Institute of Life Sciences, National Defence Medical Center, Taipei, 114, Taiwan. .,Program in Molecular Medicine, National Yang Ming University, Taipei, 112, Taiwan. .,Graduate Institute of Medical Genomics and Proteomics, and Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
42
|
Maniar K, Moideen A, Mittal A, Patil A, Chakrabarti A, Banerjee D. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug? Pharmacol Res 2016; 117:103-128. [PMID: 27939359 DOI: 10.1016/j.phrs.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022]
Abstract
The most widely prescribed oral anti-diabetic agent today in the world today is a member of the biguanide class of drugs called metformin. Apart from its use in diabetes, it is currently being investigated for its potential use in many diseases such as cancer, cardiovascular diseases, Alzheimer's disease, obesity, comorbidities of diabetes such as retinopathy, nephropathy to name a few. Numerous in-vitro and in-vivo studies as well as clinical trials have been and are being conducted with a vast amount of literature being published every day. Numerous mechanisms for this drug have been proposed, but they have been unable to explain all the actions observed clinically. It is of interest that insulin has a stimulatory effect on cellular growth. Metformin sensitizes the insulin action but believed to be beneficial in cancer. Like -wise metformin is shown to have beneficial effects in opposite sets of pathological scenario looking from insulin sensitization point of view. This requires a comprehensive review of the disease conditions which are claimed to be affected by metformin therapy. Such a comprehensive review is presently lacking. In this review, we begin by examining the history of metformin before it became the most popular anti-diabetic medication today followed by a review of its relevant molecular mechanisms and important clinical trials in all areas where metformin has been studied and investigated till today. We also review novel mechanistic insight in metformin action in relation to microbiome and elaborate implications of such aspect in various disease states. Finally, we highlight the quandaries and suggest potential solutions which will help the researchers and physicians to channel their research and put this drug to better use.
Collapse
Affiliation(s)
- Kunal Maniar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amal Moideen
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Ankur Mittal
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amol Patil
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
43
|
Cheng B, Toh EKW, Chen KH, Chang YC, Hu CMJ, Wu HC, Chau LY, Chen P, Hsieh PCH. Biomimicking Platelet-Monocyte Interactions as a Novel Targeting Strategy for Heart Healing. Adv Healthc Mater 2016; 5:2686-2697. [PMID: 27592617 DOI: 10.1002/adhm.201600724] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 12/24/2022]
Abstract
In patients who survive myocardial infarction, many go on to develop congestive heart failure (CHF). Despite ongoing efforts to develop new approaches for postinfarction therapy, there are still no effective therapeutic options available to CHF patients. Currently, the delivery of cardioprotective drugs relies entirely on passive uptake via the enhanced permeability and retention (EPR) effect which occurs in proximity to the infarction site. However, in ischemic disease, unlike in cancer, the EPR effect only exists for a short duration postinfarction and thus insufficient for meaningful cardioprotection. Splenic monocytes are recruited to the heart in large numbers postinfarction, and are known to interact with platelets during circulation. Therefore, the strategy is to exploit this interaction by developing platelet-like proteoliposomes (PLPs), biomimicking platelet interactions with circulating monocytes. PLPs show strong binding affinity for monocytes but not for endothelial cells in vitro, mimicking normal platelet activity. Furthermore, intravital multiphoton imaging shows that comparing to plain liposomes, PLPs do not aggregate on uninjured endothelium but do accumulate at the injury site 72 h postinfarction. Importantly, PLPs enhance the targeting of anti-inflammatory drug, cobalt protoporphyrin, to the heart in an EPR-independent manner, which result in better therapeutic outcome.
Collapse
Affiliation(s)
- Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Elsie K W Toh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Kun-Hung Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan.
| |
Collapse
|
44
|
Ahmed FW, Rider R, Glanville M, Narayanan K, Razvi S, Weaver JU. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc Diabetol 2016; 15:116. [PMID: 27561827 PMCID: PMC5000450 DOI: 10.1186/s12933-016-0413-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Background Type 1 diabetes is associated with increased cardiovascular disease (CVD). Decreased endothelial progenitor cells (EPCs) number plays a pivotal role in reduced endothelial repair and development of CVD. We aimed to determine if cardioprotective effect of metformin is mediated by increasing circulating endothelial progenitor cells (cEPCs), pro-angiogenic cells (PACs) and decreasing circulating endothelial cells (cECs) count whilst maintaining unchanged glycemic control. Methods This study was an open label and parallel standard treatment study. Twenty-three type 1 diabetes patients without overt CVD were treated with metformin for 8 weeks (treatment group-TG). They were matched with nine type 1 diabetes patients on standard treatment (SG) and 23 age- and sex-matched healthy volunteers (HC). Insulin dose was adjusted to keep unchanged glycaemic control. cEPCs and cECs counts were determined by flow cytometry using surface markers CD45dimCD34+VEGFR-2+ and CD45dimCD133−CD34+CD144+ respectively. Peripheral blood mononuclear cells were cultured to assess changes in PACs number, function and colony forming units (CFU-Hill’s colonies). Results At baseline TG had lower cEPCs, PACs, CFU-Hills’ colonies and PACs adhesion versus HC (p < 0.001-all variables) and higher cECs versus HC (p = 0.03). Metformin improved cEPCs, PACs, CFU-Hill’s colonies number, cECs and PACs adhesion (p < 0.05-all variables) to levels seen in HC whilst HbA1c (one-way ANOVA p = 0.78) and glucose variability (average glucose, blood glucose standard deviation, mean amplitude of glycaemic excursion, continuous overall net glycaemic action and area under curve) remained unchanged. No changes were seen in any variables in SG. There was an inverse correlation between CFU-Hill’s colonies with cECs. Conclusions Metformin has potential cardio-protective effect through improving cEPCs, CFU-Hill’s colonies, cECs, PACs count and function independently of hypoglycaemic effect. This finding needs to be confirmed by long term cardiovascular outcome studies in type 1 diabetes. Trial registration ISRCTN26092132 Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0413-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fahad W Ahmed
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, UK.,Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle, NE2 4HH, UK
| | - Rachel Rider
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, UK
| | - Michael Glanville
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle, NE2 4HH, UK
| | | | - Salman Razvi
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jolanta U Weaver
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, UK. .,Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle, NE2 4HH, UK.
| |
Collapse
|
45
|
van den Berg TNAD, van Swieten HA, Vos JC, Verweij V, Wouterse AC, Deinum J, Morshuis WJ, Rongen GA, Riksen NP. Eplerenone does not limit ischemia-reperfusion injury in human myocardial tissue. Int J Cardiol 2016; 216:110-3. [PMID: 27149239 DOI: 10.1016/j.ijcard.2016.04.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- T N A Daniëlle van den Berg
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - H A van Swieten
- Department of Cardiothoracic Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - J C Vos
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - V Verweij
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - A C Wouterse
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - J Deinum
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - W J Morshuis
- Department of Cardiothoracic Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - G A Rongen
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Bakhashab S, Ahmed FW, Schulten HJ, Bashir A, Karim S, Al-Malki AL, Gari MA, Abuzenadah AM, Chaudhary AG, Alqahtani MH, Lary S, Ahmed F, Weaver JU. Metformin improves the angiogenic potential of human CD34⁺ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol 2016; 15:27. [PMID: 26861446 PMCID: PMC4748498 DOI: 10.1186/s12933-016-0344-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/26/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with diabetes mellitus (DM). To identify the most effective treatment for CVD, it is paramount to understand the mechanism behind cardioprotective therapies. Although metformin has been shown to reduce CVD in Type-2 DM clinical trials, the underlying mechanism remains unexplored. CD34(+) cell-based therapies offer a new treatment approach to CVD. The aim of this study was to investigate the effect of metformin on the angiogenic properties of CD34(+) cells under conditions mimicking acute myocardial infarction in diabetes. METHODS CD34(+) cells were cultured in 5.5 or 16.5 mmol/L glucose ± 0.01 mmol/L metformin and then additionally ± 4 % hypoxia. The paracrine function of CD34(+) cell-derived conditioned medium was assessed by measuring pro-inflammatory cytokines, vascular endothelial growth factor A (VEGFA), and using an in vitro tube formation assay for angiogenesis. Also, mRNA of CD34(+) cells was assayed by microarray and genes of interest were validated by qRT-PCR. RESULTS Metformin increased in vitro angiogenesis under hyperglycemia-hypoxia and augmented the expression of VEGFA. It also reduced the angiogenic-inhibitors, chemokine (C-X-C motif) ligand 10 (CXCL10) and tissue inhibitor of metalloproteinase 1 (TIMP1) mRNAs, which were upregulated under hyperglycemia-hypoxia. In addition metformin, increased expression of STEAP family member 4 (STEAP4) under euglycemia, indicating an anti-inflammatory effect. CONCLUSIONS Metformin has a dual effect by simultaneously increasing VEGFA and reducing CXCL10 and TIMP1 in CD34(+) cells in a model of the diabetic state combined with hypoxia. Therefore, these angiogenic inhibitors are promising therapeutic targets for CVD in diabetic patients. Moreover, our data are commensurate with a vascular protective effect of metformin and add to the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahad W Ahmed
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK.
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ayat Bashir
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Mamdooh A Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed H Alqahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sahira Lary
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jolanta U Weaver
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK.
| |
Collapse
|
47
|
Rongen GA. High Dose Meclizine Prevents Renal Ischemia–Reperfusion Injury in Healthy Male Mice. EBioMedicine 2015; 2:1012-3. [PMID: 26501091 PMCID: PMC4588439 DOI: 10.1016/j.ebiom.2015.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
van der Horst ICC, Nijsten MWN. Metformin in cardiac surgery: high expectations. Lancet Diabetes Endocrinol 2015; 3:581-2. [PMID: 26179505 DOI: 10.1016/s2213-8587(15)00209-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 02/08/2023]
Affiliation(s)
- Iwan C C van der Horst
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands.
| | - Maarten W N Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|