1
|
Jenkin D, Makinson R, Sanders H, Sampson A, Platt A, Tran N, Dinesh T, Mabbett R, Lawrie A, Quaddy J, Poulton I, Berrie E, Cicconi P, Lambe T. Safety and immunogenicity of a bivalent Ebola virus and Sudan virus ChAdOx1 vectored vaccine in adults in the UK: an open-label, non-randomised, first-in-human, phase 1 clinical trial. THE LANCET. MICROBE 2025; 6:101022. [PMID: 39922207 DOI: 10.1016/j.lanmic.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Four Orthoebolavirus species can cause Ebola disease, with Ebola virus (species Orthoebolavirus zairense) and Sudan virus (species Orthoebolavirus sudanense) responsible for the majority of outbreaks and cases. No vaccines have been approved against orthoebolaviruses other than Ebola virus. We aimed to evaluate the safety and immunogenicity of a non-replicating single-adenoviral vaccine (ChAdOx1 biEBOV) encoding both Ebola virus and Sudan virus glycoproteins. METHODS In this open-label, non-randomised, first-in-human, phase 1, dose-escalation clinical trial of ChAdOx1 biEBOV, participants aged 18-55 years without clinically significant medical comorbidities or previous adenovirus vaccine exposure were recruited at a single site (Oxford, UK). Participants were non-randomly enrolled to a low-dose group (5 × 10⁹ viral particles [vp] of ChAdOx1 biEBOV), a medium-dose group (2·5 × 101⁰ vp), and a high-dose group (5 × 101⁰ vp). All doses were administered intramuscularly. After recruitment of all participants, the protocol was amended so that a subgroup from the high-dose group received a second high dose of vaccine 12 weeks after the first dose. Primary outcome measures were assessment of solicited adverse events for 7 days after vaccinations, unsolicited adverse events for 28 days after vaccinations, changes in clinical laboratory measures within 28 days after vaccination, and serious adverse events and adverse events of special interest for the study duration. Secondary outcomes were assessment of humoral and cellular immunity to Ebola virus and Sudan virus glycoprotein. This study is registered with ClinicalTrials.gov, NCT05079750. FINDINGS Between Nov 11, 2021, and April 7, 2022, 40 individuals attended the trial screening visit, of whom 26 were enrolled (six in the low-dose group, six in the medium-dose group, and 14 in the high-dose group). Seven participants in the high-dose group received one vaccine dose and seven received two vaccine doses. Local solicited adverse events were reported by 17 (65%) of 26 participants after dose 1 and five (71%) of seven after dose 2. Systemic solicited adverse events were reported by 23 (88%) participants after dose 1 and five (71%) after dose 2. All solicited adverse events were mild or moderate, with no severe events reported. No serious adverse reactions were reported. Unsolicited adverse events related to vaccination were mostly mild or moderate and short-lived, such as joint pain or upper respiratory symptoms. One adverse event of special interest, thrombocytopenia, occurred transiently in one participant in the high-dose group. Rapidly resolving lymphopenia was common at the early post-vaccination timepoint. A single 5 × 101⁰ vp dose vaccination elicited seropositivity to Ebola virus in 14 (100%) participants in the high-dose group and elicited seropositivity to Sudan virus in 12 (86%) participants in the high-dose group; antibody titres were boosted in the two-dose group. INTERPRETATION Our results suggest that the ChAdOx1 biEBOV vaccine was safe and well tolerated. Safety and tolerability data are consistent with other vaccines using the same vaccine backbone. A single 5 × 101⁰ vp dose of the vaccine was immunogenic, generating binding antibodies against both Ebola virus and Sudan virus glycoproteins, with antibody responses boosted in the subgroup receiving a second immunisation. Future research should focus on approaches to enhance antibody responses and to elicit neutralising antibodies to Sudan virus. FUNDING UK Research and Innovation.
Collapse
Affiliation(s)
| | | | - Helen Sanders
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | | | | | - Nguyen Tran
- Jenner Institute, University of Oxford, Oxford, UK
| | - Tanya Dinesh
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | | | | | - Jack Quaddy
- Jenner Institute, University of Oxford, Oxford, UK
| | - Ian Poulton
- Jenner Institute, University of Oxford, Oxford, UK
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, UK
| | | | - Teresa Lambe
- Oxford Vaccine Group, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Vaman RS, Kumar MS, Jeyashree K, Periasami A, Abdulkader RS, Murhekar M. Association between COVID-19 Vaccination (ChAdOx1-S) and Thromboembolic, Thrombocytopenic, Hemorrhagic Events: A Systematic Review and Meta-analysis of Analytical Epidemiological Studies. Indian J Community Med 2024; 49:571-578. [PMID: 39291113 PMCID: PMC11404420 DOI: 10.4103/ijcm.ijcm_676_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/26/2024] [Indexed: 09/19/2024] Open
Abstract
We conducted a systematic review of analytical epidemiological studies to assess the association between ChAdOx1-S vaccination and thromboembolic, thrombocytopenic, and hemorrhagic events. We searched Medline, Embase, Google Scholar, WHO-COVID-19 database, and medRxiv for studies evaluating the association between ChAdOx1-S and vascular events. Primary outcomes of interest were cerebral venous sinus thrombosis, peripheral venous thrombosis (PVT), and thrombocytopenia. Two independent reviewers screened for eligible studies, extracted data, and assessed the risk of bias. The DerSimonian-Laird random effects model was used to pool the incidence rate ratios (IRRs) separately for the first and second doses. Heterogeneity was assessed using I2 statistics. Twenty studies were included, of which 11 were self-controlled case series, and nine were cohort studies (254 million participants). Pooling of 17 studies showed a higher risk of cerebrovascular thrombosis (IRR = 3.5, 95% CI = 2.2-5.4, I2 = 79%), PVT (IRR = 2.0, 95% CI = 1.1-3.5, I2 = 95%) and thrombocytopenia (IRR = 1.6, 95% CI = 1.4-1.9, I2 = 93%) among those who received ChAdOx1-S vaccination as compared to controls. No increased risk was seen after the second dose or for secondary outcomes. There is moderate-to-high certainty of the evidence for the increased risk of cerebral venous sinus thrombosis, PVT, and thrombocytopenia following the first dose of the ChAdOx1-S vaccine. Systematic Review Registration: PROSPERO CRD42022372768.
Collapse
Affiliation(s)
- Raman S Vaman
- Scholar, ICMR-School of Public Health, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Muthusamy S Kumar
- Scientist C, ICMR-School of Public Health, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Kathiresan Jeyashree
- Scientist E, ICMR-School of Public Health, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Ashok Periasami
- Scholar, ICMR-School of Public Health, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Rizwan S Abdulkader
- Scientist D, ICMR-School of Public Health, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Manoj Murhekar
- Scientist G, ICMR-School of Public Health, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Lloyd PC, Lufkin B, Moll K, Ogilvie RP, McMahill-Walraven CN, Beachler DC, Kelman JA, Shi X, Hobbi S, Amend KL, Djibo DA, Shangguan S, Shoaibi A, Sheng M, Secora A, Zhou CK, Kowarski L, Chillarige Y, Forshee RA, Anderson SA, Muthuri S, Seeger JD, Kline A, Reich C, MaCurdy T, Wong HL. Incidence rates of thrombosis with thrombocytopenia syndrome (TTS) among adults in United States commercial and Medicare claims databases, 2017-2020. Vaccine 2024; 42:2004-2010. [PMID: 38388240 DOI: 10.1016/j.vaccine.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Increased risk of thrombosis with thrombocytopenia syndrome (TTS) following adenovirus vector-based COVID-19 vaccinations has been identified in passive surveillance systems. TTS incidence rates (IRs) in the United States (U.S.) are needed to contextualize reports following COVID-19 vaccination. METHODS We estimated annual and monthly IRs of overall TTS, common site TTS, and unusual site TTS for adults aged 18-64 years in Carelon Research and MarketScan commercial claims (2017-Oct 2020), CVS Health and Optum commercial claims (2019-Oct 2020), and adults aged ≥ 65 years using CMS Medicare claims (2019-Oct 2020); IRs were stratified by age, sex, and race/ethnicity (CMS Medicare). RESULTS Across data sources, annual IRs for overall TTS were similar between Jan-Dec 2019 and Jan-Oct 2020. Rates were higher in Medicare (IRs: 370.72 and 365.63 per 100,000 person-years for 2019 and 2020, respectively) than commercial data sources (MarketScan IRs: 24.21 and 24.06 per 100,000 person-years; Optum IRs: 32.60 and 31.29 per 100,000 person-years; Carelon Research IRs: 24.46 and 26.16 per 100,000 person-years; CVS Health IRs: 30.31 and 30.25 per 100,000 person-years). Across years and databases, common site TTS IRs increased with age and were higher among males. Among adults aged ≥ 65 years, the common site TTS IR was highest among non-Hispanic black adults. Annual unusual site TTS IRs ranged between 2.02 and 3.04 (commercial) and 12.49 (Medicare) per 100,000 person-years for Jan-Dec 2019; IRs ranged between 1.53 and 2.67 (commercial) and 11.57 (Medicare) per 100,000 person-years for Jan-Oct 2020. Unusual site TTS IRs were higher in males and increased with age in commercial data sources; among adults aged ≥ 65 years, IRs decreased with age and were highest among non-Hispanic American Indian/Alaska native adults. CONCLUSION TTS IRs were generally similar across years, higher for males, and increased with age. These rates may contribute to surveillance of post-vaccination TTS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cindy Ke Zhou
- US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | - Thomas MaCurdy
- Acumen LLC, Burlingame, CA, USA; Department of Economics, Stanford University, Stanford, CA, USA
| | - Hui Lee Wong
- US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
4
|
Zhang Y, Bissola AL, Treverton J, Hack M, Lychacz M, Kwok S, Arnold A, Nazy I. Vaccine-Induced Immune Thrombotic Thrombocytopenia: Clinicopathologic Features and New Perspectives on Anti-PF4 Antibody-Mediated Disorders. J Clin Med 2024; 13:1012. [PMID: 38398325 PMCID: PMC10889051 DOI: 10.3390/jcm13041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet severe adverse complication first identified during the global vaccination effort against SARS-CoV-2 infection, predominantly observed following administration of the ChAdOx1-S (Oxford-AstraZeneca) and Ad26.CoV2.S (Johnson & Johnson/Janssen) adenoviral vector-based vaccines. Unlike other anti-platelet factor 4 (PF4) antibody-mediated disorders, such as heparin-induced thrombocytopenia (HIT), VITT arises with the development of platelet-activating anti-PF4 antibodies 4-42 days post-vaccination, typically featuring thrombocytopenia and thrombosis at unusual sites. AIM To explore the unique properties, pathogenic mechanisms, and long-term persistence of VITT antibodies in patients, in comparison with other anti-PF4 antibody-mediated disorders. DISCUSSION This review highlights the complexity of VITT as it differs in antibody behavior and clinical presentation from other anti-PF4-mediated disorders, including the high incidence rate of cerebral venous sinus thrombosis (CVST) and the persistence of anti-PF4 antibodies, necessitating a re-evaluation of long-term patient care strategies. The nature of VITT antibodies and the underlying mechanisms triggering their production remain largely unknown. CONCLUSION The rise in awareness and subsequent prompt recognition of VITT is paramount in reducing mortality. As vaccination campaigns continue, understanding the role of adenoviral vector-based vaccines in VITT antibody production is crucial, not only for its immediate clinical implications, but also for developing safer vaccines in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Anna-Lise Bissola
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jared Treverton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Michael Hack
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Mark Lychacz
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sarah Kwok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Addi Arnold
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5A5, Canada;
| | - Ishac Nazy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Ulaszewska M, Merelie S, Sebastian S, Lambe T. Preclinical immunogenicity of an adenovirus-vectored vaccine for herpes zoster. Hum Vaccin Immunother 2023; 19:2175558. [PMID: 36785938 PMCID: PMC10026912 DOI: 10.1080/21645515.2023.2175558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Herpes zoster (HZ) results from waning immunity following childhood infection with varicella zoster virus (VZV) but is preventable by vaccination with recombinant HZ vaccine or live HZ vaccine (two doses or one dose, respectively). Vaccine efficacy declines with age, live HZ vaccine is contraindicated in immunosuppressed individuals, and severe local reactogenicity of recombinant HZ vaccine is seen in up to 20% of older adults, indicating a potential need for new vaccines. Nonreplicating chimpanzee adenovirus (ChAd) vectors combine potent immunogenicity with well-established reactogenicity and safety profiles. We evaluated the cellular and humoral immunogenicity of ChAdOx1 encoding VZV envelope glycoprotein E (ChAdOx1-VZVgE) in mice using IFN-γ ELISpot, flow cytometry with intracellular cytokine staining, and ELISA. In outbred CD-1 mice, one dose of ChAdOx1-VZVgE (1 × 107 infectious units) elicited higher gE-specific T cell responses than two doses of recombinant HZ vaccine (1 µg) or one dose of live HZ vaccine (1.3 × 103 plaque-forming units). Antibody responses were higher with two doses of recombinant HZ vaccine than with two doses of ChAdOx1-VZVgE or one dose of live HZ vaccine. ChAdOx1-VZVgE boosted T cell and antibody responses following live HZ vaccine priming. The frequencies of polyfunctional CD4+ and CD8+ T cells expressing more than one cytokine (IFN-γ, TNF-α and IL-2) were higher with ChAdOx1-VZVgE than with the conventional vaccines. Results were similar in young and aged BALB/c mice. These findings support the clinical development of ChAdOx1-VZVgE for prevention of HZ in adults aged 50 years or over, including those who have already received conventional vaccines.
Collapse
Affiliation(s)
- Marta Ulaszewska
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Merelie
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Teresa Lambe
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Raadsen MP, Visser C, Lavell AHA, van de Munckhof AAGA, Coutinho JM, de Maat MPM, GeurtsvanKessel CH, Amsterdam UMC COVID-19 S3/HCW Study Group, Bomers MK, Haagmans BL, van Gorp ECM, Porcelijn L, Kruip MJHA. Transient Autoreactive PF4 and Antiphospholipid Antibodies in COVID-19 Vaccine Recipients. Vaccines (Basel) 2023; 11:1851. [PMID: 38140254 PMCID: PMC10747426 DOI: 10.3390/vaccines11121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare autoimmune condition associated with recombinant adenovirus (rAV)-based COVID-19 vaccines. It is thought to arise from autoantibodies targeting platelet factor 4 (aPF4), triggered by vaccine-induced inflammation and the formation of neo-antigenic complexes between PF4 and the rAV vector. To investigate the specific induction of aPF4 by rAV-based vaccines, we examined sera from rAV vaccine recipients (AZD1222, AD26.COV2.S) and messenger RNA (mRNA) based (mRNA-1273, BNT162b2) COVID-19 vaccine recipients. We compared the antibody fold change (FC) for aPF4 and for antiphospholipid antibodies (aPL) of rAV to mRNA vaccine recipients. We combined two biobanks of Dutch healthcare workers and matched rAV-vaccinated individuals to mRNA-vaccinated controls, based on age, sex and prior history of COVID-19 (AZD1222: 37, Ad26.COV2.S: 35, mRNA-1273: 47, BNT162b2: 26). We found no significant differences in aPF4 FCs after the first (0.99 vs. 1.08, mean difference (MD) = -0.11 (95% CI -0.23 to 0.057)) and second doses of AZD1222 (0.99 vs. 1.10, MD = -0.11 (95% CI -0.31 to 0.10)) and after a single dose of Ad26.COV2.S compared to mRNA-based vaccines (1.01 vs. 0.99, MD = 0.026 (95% CI -0.13 to 0.18)). The mean FCs for the aPL in rAV-based vaccine recipients were similar to those in mRNA-based vaccines. No correlation was observed between post-vaccination aPF4 levels and vaccine type (mean aPF difference -0.070 (95% CI -0.14 to 0.002) mRNA vs. rAV). In summary, our study indicates that rAV and mRNA-based COVID-19 vaccines do not substantially elevate aPF4 levels in healthy individuals.
Collapse
Affiliation(s)
- Matthijs P. Raadsen
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | - Chantal Visser
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.V.); (M.P.M.d.M.)
| | - A. H. Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.H.A.L.); (M.K.B.)
- Amsterdam Institute for Infection & Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Anita A. G. A. van de Munckhof
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.A.G.A.v.d.M.); (J.M.C.)
| | - Jonathan M. Coutinho
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.A.G.A.v.d.M.); (J.M.C.)
| | - Moniek P. M. de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.V.); (M.P.M.d.M.)
| | - Corine H. GeurtsvanKessel
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | | | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.H.A.L.); (M.K.B.)
- Amsterdam Institute for Infection & Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands;
| | - Marieke J. H. A. Kruip
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.V.); (M.P.M.d.M.)
| |
Collapse
|
7
|
Aid M, Stephenson KE, Collier ARY, Nkolola JP, Michael JV, McKenzie SE, Barouch DH. Activation of coagulation and proinflammatory pathways in thrombosis with thrombocytopenia syndrome and following COVID-19 vaccination. Nat Commun 2023; 14:6703. [PMID: 37872311 PMCID: PMC10593859 DOI: 10.1038/s41467-023-42559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Thrombosis with thrombocytopenia syndrome (TTS) is a rare but potentially severe adverse event following immunization with adenovirus vector-based COVID-19 vaccines such as Ad26.COV2.S (Janssen) and ChAdOx1 (AstraZeneca). However, no case of TTS has been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States. Here we utilize transcriptomic and proteomic profiling to compare individuals who receive two doses of Ad26.COV2.S with those vaccinated with BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induces transient activation of platelet and coagulation and innate immune pathways that resolve by day 7; by contrast, patients with TTS show robust upregulation of these pathways on days 15-19 following initial Ad26.COV2.S vaccination. Meanwhile, a second immunization or a reduced initial dose of Ad26.COV2.S induces lower activation of these pathways than does the full initial dose. Our data suggest a role of coagulation and proinflammatory pathways in TTS pathogenesis, which may help optimize vaccination regimens to reduce TTS risk.
Collapse
Affiliation(s)
- Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-Ris Y Collier
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - James V Michael
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Silk SE, Kalinga WF, Mtaka IM, Lilolime NS, Mpina M, Milando F, Ahmed S, Diouf A, Mkwepu F, Simon B, Athumani T, Rashid M, Mohammed L, Lweno O, Ali AM, Nyaulingo G, Mwalimu B, Mswata S, Mwamlima TG, Barrett JR, Wang LT, Themistocleous Y, King LDW, Hodgson SH, Payne RO, Nielsen CM, Lawrie AM, Nugent FL, Cho JS, Long CA, Miura K, Draper SJ, Minassian AM, Olotu AI. Superior antibody immunogenicity of a viral-vectored RH5 blood-stage malaria vaccine in Tanzanian infants as compared to adults. MED 2023; 4:668-686.e7. [PMID: 37572659 DOI: 10.1016/j.medj.2023.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING Medical Research Council, London, UK.
Collapse
Affiliation(s)
- Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Wilmina F Kalinga
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ivanny M Mtaka
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Nasoro S Lilolime
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Maximillian Mpina
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Florence Milando
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Saumu Ahmed
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Fatuma Mkwepu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Beatus Simon
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Thabit Athumani
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mohammed Rashid
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Latipha Mohammed
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Omary Lweno
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ali M Ali
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Gloria Nyaulingo
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Bakari Mwalimu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Mswata
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Tunu G Mwamlima
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Yrene Themistocleous
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Susanne H Hodgson
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Ruth O Payne
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Fay L Nugent
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
9
|
van de Munckhof A, Borhani-Haghighi A, Aaron S, Krzywicka K, van Kammen MS, Cordonnier C, Kleinig TJ, Field TS, Poli S, Lemmens R, Scutelnic A, Lindgren E, Duan J, Arslan Y, van Gorp ECM, Kremer Hovinga JA, Günther A, Jood K, Tatlisumak T, Putaala J, Heldner MR, Arnold M, de Sousa DA, Wasay M, Arauz A, Conforto AB, Ferro JM, Coutinho JM. Cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia in middle-income countries. Int J Stroke 2023; 18:1112-1120. [PMID: 37277922 PMCID: PMC10614174 DOI: 10.1177/17474930231182901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Adenovirus-based COVID-19 vaccines are extensively used in low- and middle-income countries (LMICs). Remarkably, cases of cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia (CVST-VITT) have rarely been reported from LMICs. AIMS We studied the frequency, manifestations, treatment, and outcomes of CVST-VITT in LMICs. METHODS We report data from an international registry on CVST after COVID-19 vaccination. VITT was classified according to the Pavord criteria. We compared CVST-VITT cases from LMICs to cases from high-income countries (HICs). RESULTS Until August 2022, 228 CVST cases were reported, of which 63 were from LMICs (all middle-income countries [MICs]: Brazil, China, India, Iran, Mexico, Pakistan, Turkey). Of these 63, 32 (51%) met the VITT criteria, compared to 103 of 165 (62%) from HICs. Only 5 of the 32 (16%) CVST-VITT cases from MICs had definite VITT, mostly because anti-platelet factor 4 antibodies were often not tested. The median age was 26 (interquartile range [IQR] 20-37) versus 47 (IQR 32-58) years, and the proportion of women was 25 of 32 (78%) versus 77 of 103 (75%) in MICs versus HICs, respectively. Patients from MICs were diagnosed later than patients from HICs (1/32 [3%] vs. 65/103 [63%] diagnosed before May 2021). Clinical manifestations, including intracranial hemorrhage, were largely similar as was intravenous immunoglobulin use. In-hospital mortality was lower in MICs (7/31 [23%, 95% confidence interval (CI) 11-40]) than in HICs (44/102 [43%, 95% CI 34-53], p = 0.039). CONCLUSIONS The number of CVST-VITT cases reported from LMICs was small despite the widespread use of adenoviral vaccines. Clinical manifestations and treatment of CVST-VITT cases were largely similar in MICs and HICs, while mortality was lower in patients from MICs.
Collapse
Affiliation(s)
- Anita van de Munckhof
- Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Katarzyna Krzywicka
- Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - Mayte Sánchez van Kammen
- Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience & Cognition, Lille, France
| | | | | | - Sven Poli
- University Hospital Tuebingen, Eberhard-Karls University, Tuebingen, Germany
| | | | - Adrian Scutelnic
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Erik Lindgren
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jiangang Duan
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yıldız Arslan
- Medicana İzmir International Hospital, Izmir, Turkey
| | | | | | | | - Katarina Jood
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Turgut Tatlisumak
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jukka Putaala
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mirjam R Heldner
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marcel Arnold
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | - Antonio Arauz
- National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - José M Ferro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Jonathan M Coutinho
- Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Cho H, Amarasinghe A, Takashima Y. Responding to COVID-19 vaccine-related safety events: WHO Western Pacific regional experience and lessons learned. Western Pac Surveill Response J 2023; 14:1-6. [PMID: 37492237 PMCID: PMC10363418 DOI: 10.5365/wpsar.2023.14.2.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Problem Novel vaccines were developed in an unprecedentedly short time in response to the global coronavirus disease (COVID-19) pandemic, which triggered concerns about the safety profiles of the new vaccines. This paper describes the actions and outcomes of three major adverse events of special interest (AESIs) reported in the World Health Organization's (WHO's) Western Pacific Region: anaphylaxis, thrombosis with thrombocytopenia syndrome (TTS) and post-vaccination death. Context During the large-scale introduction of various novel COVID-19 vaccines, robust monitoring of and response to COVID-19 vaccine safety events were critical. Action We developed and disseminated information sheets about anaphylaxis and TTS; provided tailor-made training for anaphylaxis monitoring and response, webinars about TTS and AESIs, and an algorithm to support decision-making about AESIs following immunization; as well as provided country-specific technical support for causality assessments, including for possible vaccination-related deaths. Outcome Each major vaccine event and situation of high concern was responded to appropriately and in a timely manner with comprehensive technical support from WHO. Our support activities have not only strengthened countries' capacities for vaccine safety surveillance and response, but also enabled countries to decrease the negative impact of these events on their immunization programmes and maintain the confidence of health-care professionals and the general population through proactive delivery of risk communications. Discussion This paper summarizes selected, major AESIs following COVID-19 vaccination and responses made by WHO's Regional Office for the Western Pacific to support countries. The examples of responses to vaccine safety events during the pandemic and unprecedented mass vaccination campaigns could be useful for countries to adopt, where applicable, to enhance their preparation for activities related to monitoring vaccine safety.
Collapse
Affiliation(s)
- Heeyoun Cho
- Vaccine-Preventable Diseases and Immunization, Division of Programs for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | - Ananda Amarasinghe
- Vaccine-Preventable Diseases and Immunization, Division of Programs for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | - Yoshihiro Takashima
- Vaccine-Preventable Diseases and Immunization, Division of Programs for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| |
Collapse
|
11
|
|
12
|
Cable J, Fauci A, Dowling WE, Günther S, Bente DA, Yadav PD, Madoff LC, Wang L, Arora RK, Van Kerkhove M, Chu MC, Jaenisch T, Epstein JH, Frost SDW, Bausch DG, Hensley LE, Bergeron É, Sitaras I, Gunn MD, Geisbert TW, Muñoz‐Fontela C, Krammer F, de Wit E, Nordenfelt P, Saphire EO, Gilbert SC, Corbett KS, Branco LM, Baize S, van Doremalen N, Krieger MA, Clemens SAC, Hesselink R, Hartman D. Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:209-225. [PMID: 36183296 PMCID: PMC9538336 DOI: 10.1111/nyas.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.
Collapse
Affiliation(s)
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Dennis A. Bente
- University of Texas Medical BranchGalveston National LaboratoryGalvestonTexasUSA
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Pragya Dhruv Yadav
- Indian Council of Medical Research‐National Institute of VirologyPuneIndia
| | - Lawrence C. Madoff
- Department of MedicineUniversity of Massachusetts Chan School of MedicineWorcesterMassachusettsUSA
| | | | - Rahul K. Arora
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | | | - May C. Chu
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | - Thomas Jaenisch
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | | | | | | | - Lisa E. Hensley
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL)MonroviaLiberia
- Division of Clinical ResearchNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High‐Consequence Pathogens and PathologyCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michael D. Gunn
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Thomas W. Geisbert
- University of ManitobaWinnipegManitobaCanada
- Galveston National Laboratory and Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - César Muñoz‐Fontela
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Florian Krammer
- Department of Microbiology and Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Sarah C. Gilbert
- Pandemic Sciences Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Kizzmekia S. Corbett
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | | - Sylvain Baize
- Unité de Biologie des Infections Virales EmergentesInstitut PasteurLyonFrance
- Centre International de Recherche en Infectiologie (CIRI)LyonFrance
- INSERM, Ecole Normale Supérieure de LyonUniversité de LyonLyonFrance
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Marco A. Krieger
- Laboratory for Applied Science and Technology in Health, Carlos Chagas InstituteOswaldo Cruz Foundation ‐ ParanáCuritibaBrazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio‐Chagas)Oswaldo Cruz Foundation ‐ Rio de JaneiroRio de JaneiroBrazil
| | - Sue Ann Costa Clemens
- Oxford Vaccine GroupOxford UniversityOxfordUK
- Institute for Global HealthUniversity of SienaSienaItaly
| | - Renske Hesselink
- Coalition for Epidemic Preparedness Innovations (CEPI)OsloNorway
| | - Dan Hartman
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| |
Collapse
|
13
|
Buoninfante A, Andeweg A, Baker AT, Borad M, Crawford N, Dogné JM, Garcia-Azorin D, Greinacher A, Helfand R, Hviid A, Kochanek S, López-Fauqued M, Nazy I, Padmanabhan A, Pavord S, Prieto-Alhambra D, Tran H, Wandel Liminga U, Cavaleri M. Understanding thrombosis with thrombocytopenia syndrome after COVID-19 vaccination. NPJ Vaccines 2022; 7:141. [PMID: 36351906 PMCID: PMC9643955 DOI: 10.1038/s41541-022-00569-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Alessandra Buoninfante
- grid.452397.eHealth Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, the Netherlands
| | - Arno Andeweg
- grid.452397.eHealth Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, the Netherlands
| | - Alexander T. Baker
- grid.417468.80000 0000 8875 6339Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ 85054 USA ,grid.5600.30000 0001 0807 5670Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK
| | - Mitesh Borad
- grid.417467.70000 0004 0443 9942Mayo Clinic Cancer Center, Phoenix, AZ 85054 USA
| | - Nigel Crawford
- grid.1008.90000 0001 2179 088XRoyal Children’s Hospital, Murdoch Children’s Research Institute, Department Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| | - Jean-Michel Dogné
- grid.6520.10000 0001 2242 8479Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium ,grid.452397.eEMA Pharmacovigilance Risk Assessment Committee member, Amsterdam, The Netherlands
| | - David Garcia-Azorin
- grid.411057.60000 0000 9274 367XDepartment of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Andreas Greinacher
- grid.5603.0Department of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rita Helfand
- grid.416738.f0000 0001 2163 0069National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, USA ,grid.3575.40000000121633745WHO’s Global Advisory Committee on Vaccine Safety, WHO, Geneva, Switzerland
| | - Anders Hviid
- grid.5254.60000 0001 0674 042XPharmacovigilance Research Center, Department of Drug Development and Clinical Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.6203.70000 0004 0417 4147Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Stefan Kochanek
- grid.6582.90000 0004 1936 9748Department of Gene Therapy, University of Ulm, Ulm, Germany
| | - Marta López-Fauqued
- grid.452397.eVaccines and Therapies for Infectious Diseases, European Medicines Agency, Amsterdam, the Netherlands
| | - Ishac Nazy
- grid.25073.330000 0004 1936 8227McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON Canada
| | - Anand Padmanabhan
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Sue Pavord
- grid.410556.30000 0001 0440 1440Department Hematology, Oxford University Hospitals NHS Foundation Trust, Oxfordshire, UK
| | - Daniel Prieto-Alhambra
- grid.4991.50000 0004 1936 8948Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDROMS), University of Oxford, Oxford, UK ,grid.5645.2000000040459992XDepartment of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Huyen Tran
- grid.1623.60000 0004 0432 511XDepartment of Clinical Haematology, The Alfred Hospital, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Ulla Wandel Liminga
- grid.452397.eEMA Pharmacovigilance Risk Assessment Committee member, Amsterdam, The Netherlands ,grid.415001.10000 0004 0475 6278Medical Products Agency, Uppsala, Sweden
| | - Marco Cavaleri
- grid.452397.eHealth Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, the Netherlands ,grid.452397.eEMA Emergency Task Force Chair, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Jenkin D, Ritchie AJ, Aboagye J, Fedosyuk S, Thorley L, Provstgaad-Morys S, Sanders H, Bellamy D, Makinson R, Xiang ZQ, Bolam E, Tarrant R, Ramos Lopez F, Platt A, Poulton I, Green C, Ertl HCJ, Ewer KJ, Douglas AD. Safety and immunogenicity of a simian-adenovirus-vectored rabies vaccine: an open-label, non-randomised, dose-escalation, first-in-human, single-centre, phase 1 clinical trial. THE LANCET. MICROBE 2022; 3:e663-e671. [PMID: 35907430 PMCID: PMC7614839 DOI: 10.1016/s2666-5247(22)00126-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rabies kills around 60 000 people each year. ChAdOx2 RabG, a simian adenovirus-vectored rabies vaccine candidate, might have potential to provide low-cost single-dose pre-exposure rabies prophylaxis. This first-in-human study aimed to evaluate its safety and immunogenicity in healthy adults. METHODS We did a single-centre phase 1 study of ChAdOx2 RabG, administered as a single intramuscular dose, with non-randomised open-label dose escalation at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Healthy adults were sequentially allocated to groups receiving low (5 × 109 viral particles), middle (2·5 × 1010 viral particles), and high doses (5 x 1010 viral particles) of ChAdOx2 RabG and were followed up to day 56 after vaccination. The primary objective was to assess safety. The secondary objective was to assess immunogenicity with the internationally standardised rabies virus neutralising antibody assay. In an optional follow-up phase 1 year after enrolment, we measured antibody maintenance then administered a licensed rabies vaccine (to simulate post-exposure prophylaxis) and measured recall responses. The trial is registered with ClinicalTrials.gov, NCT04162600, and is now closed to new participants. FINDINGS Between Jan 2 and Oct 28, 2020, 12 adults received low (n=3), middle (n=3), and high doses (n=6) of ChAdOx2 RabG. Participants reported predominantly mild-to-moderate reactogenicity. There were no serious adverse events. Virus neutralising antibody concentrations exceeded the recognised correlate of protection (0·5 IU/mL) in three middle-dose recipients and six high-dose recipients within 56 days of vaccination (median 18·0 IU/mL). The median peak virus neutralising antibody concentrations within 56 days were 0·7 IU/mL (range 0·0-54·0 IU/mL) for the low-dose group, 18·0 IU/mL (0·7-18·0 IU/mL) for the middle-dose group, and 18·0 IU/mL (6·0-486·0 IU/mL) for the high-dose group. Nine participants returned for the additional follow-up after 1 year. Of these nine participants, virus neutralising antibody titres of more than 0·5 IU/mL were maintained in six of seven who had received middle-dose or high-dose ChAdOx2 RabG. Within 7 days of administration of the first dose of a licensed rabies vaccine, nine participants had virus neutralising antibody titres of more than 0·5 IU/mL. INTERPRETATION In this study, ChAdOx2 RabG showed an acceptable safety and tolerability profile and encouraging immunogenicity, supporting further clinical evaluation. FUNDING UK Medical Research Council and Engineering and Physical Sciences Research Council.
Collapse
Affiliation(s)
- Daniel Jenkin
- Jenner Institute, University of Oxford, Oxford, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | | | | | | | - Luke Thorley
- Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | | | - Zhi Quan Xiang
- Wistar Institute of Anatomy & Biology, Philadelphia, PA, USA
| | - Emma Bolam
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, UK
| | - Richard Tarrant
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, UK
| | - Fernando Ramos Lopez
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Abigail Platt
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Ian Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Catherine Green
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, UK
| | | | - Katie J Ewer
- Jenner Institute, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Ertl HCJ, Currie SL, Luber AD. Restricting use of adenovirus vector-based COVID vaccines could endanger public and global health. Front Immunol 2022; 13:985382. [PMID: 36091063 PMCID: PMC9454295 DOI: 10.3389/fimmu.2022.985382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Sue L. Currie
- Virion Therapeutics, LLC, Newark, DE, United States
- *Correspondence: Sue L. Currie,
| | | |
Collapse
|
16
|
Folegatti PM, Jenkin D, Morris S, Gilbert S, Kim D, Robertson JS, Smith ER, Martin E, Gurwith M, Chen RT, For the Benefit-Risk Assessment of VAccines by TechnolOgy Working Group BRAVATO, ex-V3SWG). Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022; 40:5248-5262. [PMID: 35715352 PMCID: PMC9194875 DOI: 10.1016/j.vaccine.2022.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.
Collapse
Affiliation(s)
| | | | | | | | - Denny Kim
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - James S. Robertson
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R. Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA,Corresponding author
| | - Emalee Martin
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T. Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
17
|
Laffan MA, Rees S, Yadavalli M, Ferstenberg LB, Kumar Shankar N, Medin J, Foskett N, Arnold M, Gomes da Silva H, Bhuyan P, Nord M. Thrombosis with thrombocytopenia after AZD1222 (ChAdOx1 nCov-19) vaccination: Case characteristics and associations. Vaccine 2022; 40:5585-5593. [PMID: 35989136 PMCID: PMC9388294 DOI: 10.1016/j.vaccine.2022.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
Abstract
Background Post-marketing surveillance for COVID-19 vaccines during the pandemic identified an extremely rare thrombosis with thrombocytopenia syndrome (TTS) reported post-vaccination, requiring further characterisation to improve diagnosis and management. Methods We searched the AstraZeneca Global Safety Database (through April 26, 2021) for cases with co-reported thrombocytopenia and thrombosis (using standardised MedDRA queries/high-level terms) following AZD1222 (ChAdOx1 nCoV-19). Cases were adjudicated by experts as ‘typical’,’possible’, ‘no’ or ‘unknown’ according to available TTS criteria. Additional confirmatory datasets (May 20–June 20, October 1–December 28) were evaluated. Findings We identified 573 reports, including 273 (47.6 %) ‘typical’ and 171 (29.8 %) ’possible’ TTS cases. Of these 444 cases, 275 (61.9 %) were female, median age was 50.0 years (IQR: 38.0–60.0). Cerebral venous sinus thrombosis was reported in 196 (44.1 %) cases, splanchnic venous thrombosis in 65 (14.6 %) and thromboses at multiple sites in 119 (26.8 %). Median time to onset was 12.0 days (IQR: 9.0–15.0). Comparison with a pre-pandemic reference population indicated higher rates of autoimmune disorders (13.8 %, 4.4 %), previous heparin therapy (7.4 %, 1.2 %), history of thrombosis (5.5 %, 1.4 %), and immune thrombocytopenia (6.1 %, 0.2 %). Fatality rate was 22.2 % (127/573) overall and 23.6 % (105/444) in ‘typical’/’possible’ TTS, which decreased from 39.0 % (60/154) in February/March to 15.5 % (45/290) in April. Overall patterns were similar in confirmatory datasets. Conclusions The reporting rate of ‘typical’/’possible’ TTS post first-dose vaccination in this dataset is 7.5 per million vaccinated persons; few cases were reported after subsequent doses, including booster doses. Peak reporting coincided with media-driven attention. Medical history differences versus a reference population indicate potentially unidentified risk factors. The decreasing fatality rate correlates with increasing awareness and publication of diagnostic/treatment guidelines. Adjudication was hindered by unreported parameters, and an algorithm was developed to classify potential TTS cases; comprehensive reporting could help further improve definition and management of this extremely rare syndrome.
Collapse
Affiliation(s)
- Michael A Laffan
- Faculty of Medicine, Department of Immunology and Inflammation, Imperial College London, Room 5S5b, The Hammersmith Hospital, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | - Sue Rees
- Sue Rees Consultancy Ltd, Verulam Point, Station Way, St. Albans AL1 5HE, UK.
| | - Madhavi Yadavalli
- Patient Safety, Chief Medical Office, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA.
| | - Lisa Beth Ferstenberg
- Patient Safety, Chief Medical Office, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA.
| | - Nirmal Kumar Shankar
- Patient Safety, Chief Medical Office, R&D, AstraZeneca, India Pvt. Ltd, Rachenahalli, Outer Ring Road, Bangalore 560045, India.
| | - Jennie Medin
- BioPharmaceuticals Medical, AstraZeneca, Pepparedsleden 1, Mölndal SE431 83, Gothenburg, Sweden.
| | - Nadia Foskett
- BioPharmaceuticals Medical, AstraZeneca, Academy House 136 Hills Road, Cambridge CB2 8PA, UK.
| | - Matthew Arnold
- BioPharmaceuticals Medical, AstraZeneca, Granta Park, Cambridge CB21 6GP, UK.
| | - Hugo Gomes da Silva
- Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Rua Humberto Madeira 7 / 7A, 2730-097 Lisboa, Portugal.
| | - Prakash Bhuyan
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA.
| | - Magnus Nord
- Patient Safety, Chief Medical Office, R&D, AstraZeneca, Pepparedsleden 1, Mölndal SE431 83, Gothenburg, Sweden.
| |
Collapse
|
18
|
McCann N, O'Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol 2022; 77:102210. [PMID: 35643023 PMCID: PMC9612401 DOI: 10.1016/j.coi.2022.102210] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/06/2023]
Abstract
Over the past two years, the SARS-CoV-2 pandemic has highlighted the impact that emerging pathogens can have on global health. The development of new and effective vaccine technologies is vital in the fight against such threats. Viral vectors are a relatively new vaccine platform that relies on recombinant viruses to deliver selected immunogens into the host. In response to the SARS-CoV-2 pandemic, the development and subsequent rollout of adenoviral vector vaccines has shown the utility, impact, scalability and efficacy of this platform. Shown to elicit strong cellular and humoral immune responses in diverse populations, these vaccine vectors will be an important approach against infectious diseases in the future.
Collapse
Affiliation(s)
- Naina McCann
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
19
|
Chuenkitmongkol S, Solante R, Burhan E, Chariyalertsak S, Chiu NC, Do-Van D, Husin M, Hwang KP, Kiertiburanakul S, Kulkarni PS, Lee PI, Lobo RC, Nghia CH, Ong-Lim A, Sivasampu S, Suah JL, Tok PSK, Thwaites G. Expert Review on global real-world vaccine effectiveness against SARS-CoV-2. Expert Rev Vaccines 2022; 21:1255-1268. [PMID: 35748494 DOI: 10.1080/14760584.2022.2092472] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION COVID-19 vaccines have been highly effective in reducing morbidity and mortality during the pandemic. While primary series vaccination rates are generally high in Southeast Asian (SEA) countries, various factors have limited the rollout and impact of booster doses. AREAS COVERED We reviewed 79 studies in the publicly available International Vaccine Access Center (IVAC) VIEW-hub platform on vaccine effectiveness (VE) after primary immunizations with two-dose schedules. VE data were reported for SARS-CoV-2 infection, COVID-19-related hospitalizations and deaths, and stratified across variants of concern (VOC), age, study design and prior SARS-CoV-2 infection for mRNA vaccines (BNT162b2, mRNA-1273 and combinations of both), vector vaccines (AstraZeneca, AZD1222 "Vaxzevria") and inactivated virus vaccines (CoronaVac). EXPERT OPINION The most-studied COVID-19 vaccines provide consistently high (>90%) protection against serious clinical outcomes like hospitalizations and deaths, regardless of variant. Additionally, this protection appears equivalent for mRNA vaccines and vector vaccines like AZD1222, as supported by our analysis of local Asian and relevant international data, and by insights from SEA experts. Given the continued impact of COVID-19 hospitalizations and deaths on healthcare systems worldwide, encouraging vaccination strategies that can reduce this burden is more relevant than attempting to prevent broader but milder infections with specific variants, including Omicron.
Collapse
Affiliation(s)
| | | | - Erlina Burhan
- Faculty of Medicine Universitas Indonesia, RSUP Persahabatan, Jakarta, Indonesia
| | | | | | - Dung Do-Van
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Masliyana Husin
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Kao-Pin Hwang
- China Medical University Children's Hospital, Taichung, Taiwan
| | | | | | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | - Anna Ong-Lim
- College of Medicine - Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Sheamini Sivasampu
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Jing Lian Suah
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Peter Seah Keng Tok
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, and The Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
20
|
Li G, Cappuccini F, Marchevsky NG, Aley PK, Aley R, Anslow R, Bibi S, Cathie K, Clutterbuck E, Faust SN, Feng S, Heath PT, Kerridge S, Lelliott A, Mujadidi Y, Ng KF, Rhead S, Roberts H, Robinson H, Roderick MR, Singh N, Smith D, Snape MD, Song R, Tang K, Yao A, Liu X, Lambe T, Pollard AJ. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in children aged 6-17 years: a preliminary report of COV006, a phase 2 single-blind, randomised, controlled trial. Lancet 2022; 399:2212-2225. [PMID: 35691324 PMCID: PMC9183219 DOI: 10.1016/s0140-6736(22)00770-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Vaccination of children and young people against SARS-CoV-2 is recommended in some countries. Scarce data have been published on immune responses induced by COVID-19 vaccines in people younger than 18 years compared with the same data that are available in adults. METHODS COV006 is a phase 2, single-blind, randomised, controlled trial of ChAdOx1 nCoV-19 (AZD1222) in children and adolescents at four trial sites in the UK. Healthy participants aged 6-17 years, who did not have a history of chronic respiratory conditions, laboratory-confirmed COVID-19, or previously received capsular group B meningococcal vaccine (the control), were randomly assigned to four groups (4:1:4:1) to receive two intramuscular doses of 5 × 1010 viral particles of ChAdOx1 nCoV-19 or control, 28 days or 84 days apart. Participants, clinical investigators, and the laboratory team were masked to treatment allocation. Study groups were stratified by age, and participants aged 12-17 years were enrolled before those aged 6-11 years. Due to the restrictions in the use of ChAdOx1 nCoV-19 in people younger than 30 years that were introduced during the study, only participants aged 12-17 years who were randomly assigned to the 28-day interval group had received their vaccinations at the intended interval (day 28). The remaining participants received their second dose at day 112. The primary outcome was assessment of safety and tolerability in the safety population, which included all participants who received at least one dose of the study drug. The secondary outcome was immunogenicity, which was assessed in participants who were seronegative to the nucleocapsid protein at baseline and received both prime and boost vaccine. This study is registered with ISRCTN (15638344). FINDINGS Between Feb 15 and April 2, 2021, 262 participants (150 [57%] participants aged 12-17 years and 112 [43%] aged 6-11 years; due to the change in the UK vaccination policy, the study terminated recruitment of the younger age group before the planned number of participants had been enrolled) were randomly assigned to receive vaccination with two doses of either ChAdOx1 nCoV-19 (n=211 [n=105 at day 28 and n=106 at day 84]) or control (n=51 [n=26 at day 28 and n=25 at day 84]). One participant in the ChAdOx1 nCoV-19 day 28 group in the younger age bracket withdrew their consent before receiving a first dose. Of the participants who received ChAdOx1 nCoV-19, 169 (80%) of 210 participants reported at least one solicited local or systemic adverse event up to 7 days following the first dose, and 146 (76%) of 193 participants following the second dose. No serious adverse events related to ChAdOx1 nCoV-19 administration were recorded by the data cutoff date on Oct 28, 2021. Of the participants who received at least one dose of ChAdOx1 nCoV-19, there were 128 unsolicited adverse events up to 28 days after vaccination reported by 83 (40%) of 210 participants. One participant aged 6-11 years receiving ChAdOx1 nCoV-19 reported a grade 4 fever of 40·2°C on day 1 following first vaccination, which resolved within 24 h. Pain and tenderness were the most common local solicited adverse events for all the ChAdOx1 nCoV-19 and capsular group B meningococcal groups following both doses. Of the 242 participants with available serostatus data, 14 (6%) were seropositive at baseline. Serostatus data were not available for 20 (8%) of 262 participants. Among seronegative participants who received ChAdOx1 nCoV-19, anti-SARS-CoV-2 IgG and pseudoneutralising antibody titres at day 28 after the second dose were higher in participants aged 12-17 years with a longer interval between doses (geometric means of 73 371 arbitrary units [AU]/mL [95% CI 58 685-91 733] and 299 half-maximal inhibitory concentration [IC50; 95% CI 230-390]) compared with those aged 12-17 years who received their vaccines 28 days apart (43 280 AU/mL [95% CI 35 852-52 246] and 150 IC50 [95% CI 116-194]). Humoral responses were higher in those aged 6-11 years than in those aged 12-17 years receiving their second dose at the same 112-day interval (geometric mean ratios 1·48 [95% CI 1·07-2·07] for anti-SARS-CoV-2 IgG and 2·96 [1·89-4·62] for pseudoneutralising antibody titres). Cellular responses peaked after a first dose of ChAdOx1 nCoV-19 across all age and interval groups and remained above baseline after a second vaccination. INTERPRETATION ChAdOx1 nCoV-19 is well tolerated and immunogenic in children aged 6-17 years, inducing concentrations of antibody that are similar to those associated with high efficacy in phase 3 studies in adults. No safety concerns were raised in this trial. FUNDING AstraZeneca and the UK Department of Health and Social Care through the UK National Institute for Health and Care Research.
Collapse
Affiliation(s)
- Grace Li
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Federica Cappuccini
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK; Jenner Institute, University of Oxford, Old Road Campus, Oxford, UK
| | - Natalie G Marchevsky
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Robert Aley
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Rachel Anslow
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Katrina Cathie
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Elizabeth Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Paul T Heath
- Vaccine Institute, St George's, University of London and St George's University Hospitals NHS Trust, London, UK
| | - Simon Kerridge
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Alice Lelliott
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Yama Mujadidi
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Khuen Foong Ng
- Bristol Royal Hospital for Children, University of Bristol, Bristol, UK
| | - Sarah Rhead
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Hannah Roberts
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Marion R Roderick
- Bristol Royal Hospital for Children, University of Bristol, Bristol, UK
| | - Nisha Singh
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - David Smith
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Rinn Song
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Karly Tang
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andy Yao
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
21
|
Garcia-Azorin D, Baykan B, Beghi E, Doheim MF, Fernandez-de-Las-Penas C, Gezegen H, Guekht A, Hoo FK, Santacatterina M, Sejvar J, Tamborska AA, Thakur KT, Westenberg E, Winkler AS, Frontera JA. Timing of headache after COVID-19 vaccines and its association with cerebrovascular events: An analysis of 41,700 VAERS reports. Cephalalgia 2022; 42:1207-1217. [PMID: 35514199 DOI: 10.1177/03331024221099231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Delayed-onset of headache seems a specific feature of cerebrovascular events after COVID-19 vaccines. METHODS All consecutive events reported to the United States Vaccine Adverse Reporting System following COVID-19 vaccines (1 January to 24 June 2021), were assessed. The timing of headache onset post-vaccination in subjects with and without concomitant cerebrovascular events, including cerebral venous thrombosis, ischemic stroke, and intracranial haemorrhage was analysed. The diagnostic accuracy in predicting concurrent cerebrovascular events of the guideline- proposed threshold of three-days from vaccination to headache onset was evaluated. RESULTS There were 314,610 events following 306,907,697 COVID-19 vaccine doses, including 41,700 headaches, and 178/41,700 (0.4%) cerebrovascular events. The median time between the vaccination and the headache onset was shorter in isolated headache (1 day vs. 4 (in cerebral venous thrombosis), 3 (in ischemic stroke), or 10 (in intracranial hemorrhage) days, all P < 0.001). Delayed onset of headache had an area under the curve of 0.83 (95% CI: 0.75-0.97) for cerebral venous thrombosis, 0.70 (95% CI: 0.63-76) for ischemic stroke and 0.76 (95% CI: 0.67-84) for intracranial hemorrhage, and >99% negative predictive value. CONCLUSION Headache following COVID-19 vaccination occurs within 1 day and is rarely associated with cerebrovascular events. Delayed onset of headache 3 days post-vaccination was an accurate diagnostic biomarker for the occurrence of a concomitant cerebrovascular events.
Collapse
Affiliation(s)
- David Garcia-Azorin
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ettore Beghi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mohamed F Doheim
- Department of Medicine, Alexandria University, Alexandria, Egypt
| | - Cesar Fernandez-de-Las-Penas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Hasim Gezegen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Fan Kee Hoo
- Department of Neurology, Faculty of Medicine & Health Sciences, Universiti Putra, Serdang, Selangor, Malasya
| | | | - James Sejvar
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arina A Tamborska
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Erica Westenberg
- Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andrea S Winkler
- Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Centre for Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Norway
| | - Jennifer A Frontera
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | | |
Collapse
|