1
|
Stonebraker JR, Pace RG, Gallins PJ, Dang H, Aksit M, Faino AV, Gordon WW, MacParland S, Bamshad MJ, Gibson RL, Cutting GR, Durie PR, Wright FA, Zhou YH, Blackman SM, O’Neal WK, Ling SC, Knowles MR. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis. Hepatology 2024; 80:1012-1025. [PMID: 38536042 PMCID: PMC11427593 DOI: 10.1097/hep.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.
Collapse
Affiliation(s)
- Jaclyn R. Stonebraker
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Paul J. Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - M.A. Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - William W. Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Ronald L. Gibson
- Center for Respiratory Biology & Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, 98105, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | | | - Fred A. Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Scott M. Blackman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Simon C. Ling
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
2
|
Green N, Chan C, Ooi CY. The gastrointestinal microbiome, small bowel bacterial overgrowth, and microbiome modulators in cystic fibrosis. Pediatr Pulmonol 2024; 59 Suppl 1:S70-S80. [PMID: 39105345 DOI: 10.1002/ppul.26913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 08/07/2024]
Abstract
People with cystic fibrosis (pwCF) have an altered gastrointestinal microbiome. These individuals also demonstrate propensity toward developing small intestinal bacterial overgrowth (SIBO). The dysbiosis present has intestinal and extraintestinal implications, including potential links with the higher rates of gastrointestinal malignancies described in CF. Given these implications, there is growing interest in therapeutic options for microbiome modulation. Alternative therapies, including probiotics and prebiotics, and current CF transmembrane conductance regulator gene modulators are promising interventions for ameliorating gut microbiome dysfunction in pwCF. This article will characterize and discuss the current state of knowledge and expert opinions on gut dysbiosis and SIBO in the context of CF, before reviewing the current evidence supporting gut microbial modulating therapies in CF.
Collapse
Affiliation(s)
- Nicole Green
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Christopher Chan
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
3
|
Zhao X, Wu X, Hu Q, Yao J, Yang Y, Wan M, Tang W. Yinchenhao Decoction Protects Against Acute Liver Injury in Mice With Biliary Acute Pancreatitis by Regulating the Gut Microflora-Bile Acids-Liver Axis. Gastroenterol Res Pract 2024; 2024:8882667. [PMID: 38966598 PMCID: PMC11223911 DOI: 10.1155/2024/8882667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims: Acute liver injury (ALI) often follows biliary acute pancreatitis (BAP), but the exact cause and effective treatment are unknown. The aim of this study was to investigate the role of the gut microflora-bile acids-liver axis in BAP-ALI in mice and to assess the potential therapeutic effects of Yinchenhao decoction (YCHD), a traditional Chinese herbal medicine formula, on BAP-ALI. Methods: Male C57BL/6 mice were allocated into three groups: negative control (NC), BAP model, and YCHD treatment groups. The severity of BAP-ALI, intrahepatic bile acid levels, and the gut microbiota were assessed 24 h after BAP-ALI induction in mice. Results: Our findings demonstrated that treatment with YCHD significantly ameliorated the severity of BAP-ALI, as evidenced by the mitigation of hepatic histopathological changes and a reduction in liver serum enzyme levels. Moreover, YCHD alleviated intrahepatic cholestasis and modified the composition of bile acids, as indicated by a notable increase in conjugated bile acids. Additionally, 16S rDNA sequencing analysis of the gut microbiome revealed distinct alterations in the richness and composition of the microbiome in BAP-ALI mice compared to those in control mice. YCHD treatment effectively improved the intestinal flora disorders induced by BAP-ALI. Spearman's correlation analysis revealed a significant association between the distinct compositional characteristics of the intestinal microbiota and the intrahepatic bile acid concentration. Conclusions: These findings imply a potential link between gut microbiota dysbiosis and intrahepatic cholestasis in BAP-ALI mice and suggest that YCHD treatment may confer protection against BAP-ALI via the gut microflora-bile acids-liver axis.
Collapse
Affiliation(s)
- Xianlin Zhao
- West China Center of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan University, Chengdu 610041, China
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Xiajia Wu
- West China School of MedicineSichuan University, Chengdu 610041, China
- Institute of Respiratory Health and MultimorbidityWest China HospitalSichuan University, Chengdu 610041, China
| | - Qian Hu
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Jiaqi Yao
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Yue Yang
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan University, Chengdu 610041, China
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Wenfu Tang
- West China Center of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan University, Chengdu 610041, China
- West China School of MedicineSichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mathew B, Tripathi G, Gautam V, Bindal V, Sharma N, Yadav M, Pandey S, Sharma N, Gupta AC, Bhat SH, Saini AK, Sood V, Lal BB, Alam S, Khanna R, Maras JS. Circulating bacterial peptides and linked metabolomic signatures are indicative of early mortality in pediatric cirrhosis. Hepatol Commun 2024; 8:e0440. [PMID: 38836842 PMCID: PMC11155604 DOI: 10.1097/hc9.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.
Collapse
Affiliation(s)
- Babu Mathew
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaurav Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vipul Gautam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vasundhra Bindal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nupur Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Yadav
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sushmita Pandey
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Neha Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Abhishak C. Gupta
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sadam H. Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akhilesh K. Saini
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
5
|
Duong JT, Pope CE, Hayden HS, Miller C, Salipante SJ, Rowe SM, Solomon GM, Nichols D, Hoffman LR, Narkewicz MR, Green N. Alterations in the fecal microbiota in patients with advanced cystic fibrosis liver disease after 6 months of elexacaftor/tezacaftor/ivacaftor. J Cyst Fibros 2024; 23:490-498. [PMID: 38448281 PMCID: PMC11182717 DOI: 10.1016/j.jcf.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Cystic fibrosis associated liver disease (CFLD) carries a significant disease burden with no effective preventive therapies. According to the gut-liver axis hypothesis for CFLD pathogenesis, dysbiosis and increased intestinal inflammation and permeability permit pathogenic bacterial translocation into the portal circulation, leading to hepatic inflammation and fibrosis. Evaluating the effect of CFTR (cystic fibrosis transmembrane conductance regulator) modulation with elexacaftor/tezacaftor/ivacaftor (ETI) may help determine the role of CFTR in CFLD and increase understanding of CFLD pathogenesis, which is critical for developing therapies. We aimed to characterize the fecal microbiota in participants with CF with and without advanced CFLD (aCFLD) before and after ETI. METHODS This is an ancillary analysis of stool samples from participants ages ≥12 y/o enrolled in PROMISE (NCT04038047). Included participants had aCFLD (cirrhosis with or without portal hypertension, or non-cirrhotic portal hypertension) or CF without liver disease (CFnoLD). Fecal microbiota were defined by shotgun metagenomic sequencing at baseline and 1 and 6 months post-ETI. RESULTS We analyzed 93 samples from 34 participants (11 aCFLD and 23 CFnoLD). Compared to CFnoLD, aCFLD had significantly higher baseline relative abundances of potential pathogens Streptococcus salivarius and Veillonella parvula. Four of 11 aCFLD participants had an initially abnormal fecal calprotectin that normalized 6 months post-ETI, correlating with a significant decrease in S. salivarius and a trend towards decreasing V. parvula. CONCLUSIONS These results support an association between dysbiosis and intestinal inflammation in CFLD with improvements in both post-ETI, lending further support to the gut-liver axis in aCFLD.
Collapse
Affiliation(s)
- Jennifer T Duong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Francisco School of Medicine, San Francisco, CA, USA.
| | - Christopher E Pope
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Carson Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Steven M Rowe
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George M Solomon
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Nichols
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Lucas R Hoffman
- Department of Microbiology and Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael R Narkewicz
- Digestive Health Institute, Children's Hospital Colorado and Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado SOM, Aurora, CO, USA
| | - Nicole Green
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
6
|
Li T, Shao W, Wang Y, Zhou R, Yun Z, He Y, Wu Y. A two-sample mendelian randomization analysis investigates associations between gut microbiota and infertility. Sci Rep 2023; 13:11426. [PMID: 37454180 PMCID: PMC10349861 DOI: 10.1038/s41598-023-38624-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Observational studies have provided evidence of a correlation between alterations in gut microbiota composition and infertility. However, concrete proof supporting the causal relationship is still lacking. We performed a Mendelian randomization study to assess whether genetically gut microbiota composition influences the risk of infertility. The genetic data pertaining to gut microbiota were obtained from a genome-wide association study meta-analysis, which was conducted among 24 cohorts (18,340 participants) from the international MiBioGen consortium. By the primary method of assessing causality, we have identified 2 family taxa, 2 genus taxa, and 1 order taxa that were linked to a low risk of male infertility, while 1 genus taxa were associated with a high risk of male infertility. Furthermore, we have discovered 6 genus taxa, 1 phylum taxa, 1 class taxa, 1 order taxa, and 1 family taxa that were associated with a low risk of female infertility, while 1 genus taxa were linked to a high risk of female infertility. This study successfully confirmed that there was a causal link between gut microbiota and infertility. The identification of these specific strains through genetic prediction offers a valuable insight for early diagnosis, prevention, and treatment of infertility.
Collapse
Affiliation(s)
- Taozhi Li
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenbo Shao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhou
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhangjun Yun
- Beijing University of Chinese Medicine, Beijing, China
| | - Yalin He
- Chongqing Jiangjin District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yu Wu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Yang C, Yang L, Yang Y, Wan M, Xu D, Pan D, Sun G. Effects of flaxseed powder in improving non-alcoholic fatty liver by regulating gut microbiota-bile acids metabolic pathway through FXR/TGR5 mediating. Biomed Pharmacother 2023; 163:114864. [PMID: 37167728 DOI: 10.1016/j.biopha.2023.114864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is gradually becoming one of the most common and health-endangering diseases. Flaxseed powder (FLA) is rich in α-linolenic acid, dietary fiber, lignans, and other active ingredients, which have lipid-lowering and anti-inflammatory effects. Here, we investigated whether the FLA improves host metabolism by gut bacteria modulation and further bile acid modulation in mice fed a high-fat diet. At the end of the experiment, we found that FLA can significantly reduce the body weight, body fat content, and serum TG, LDL-C, and TNF-α levels of mice, and improve liver steatosis. FLA intervention has a significant effect on preventing and regulating the gut flora disturbance caused by HFD. FLA intervention affects bile acid metabolism in the intestine and causes significant changes in functional bile acids, which can play a lipid-lowering and anti-inflammatory role by activating the intestinal Fxr- Fgfr4-Cyp7a1 and Tgr5-Tlr4-Tnfα pathways.
Collapse
Affiliation(s)
- Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Min Wan
- Rongxiang Community Health Service Center, Wuxi 214000, China
| | - Dengfeng Xu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Diagnostic and Molecular Portraits of Microbiome and Metabolomics of Short-Chain Fatty Acids and Bile acids in Liver Disease. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
10
|
Chen J, Vitetta L, Henson JD, Hall S. Intestinal Dysbiosis, the Tryptophan Pathway and Nonalcoholic Steatohepatitis. Int J Tryptophan Res 2022; 15:11786469211070533. [PMID: 35153490 PMCID: PMC8829707 DOI: 10.1177/11786469211070533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) progresses from simple steatosis to steatohepatitis (NASH), which may then progress to the development of cirrhosis and hepatocarcinoma. NASH is characterized by both steatosis and inflammation. Control of inflammation in NASH is a key step for the prevention of disease progression to severe sequalae. Intestinal dysbiosis has been recognized to be an important causal factor in the pathogenesis of NASH, involving both the accumulation of lipids and aggravation of inflammation. The effects of gut dysbiosis are mediated by adverse shifts of various intestinal commensal bacterial genera and their associated metabolites such as butyrate, tryptophan, and bile acids. In this review, we focus on the roles of tryptophan and its metabolites in NASH in association with intestinal dysbiosis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Jiezhong Chen
- Research Department, Medlab Clinical, Sydney, NSW, Australia
| | - Luis Vitetta
- Research Department, Medlab Clinical, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jeremy D Henson
- Research Department, Medlab Clinical, Sydney, NSW, Australia
- Faculty of Medicine, Prince of Wales Clinical School, The University of New South Wales, Sydney, NSW, Australia
| | - Sean Hall
- Research Department, Medlab Clinical, Sydney, NSW, Australia
| |
Collapse
|
11
|
Thavamani A, Salem I, Sferra TJ, Sankararaman S. Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites 2021; 11:123. [PMID: 33671639 PMCID: PMC7926988 DOI: 10.3390/metabo11020123] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal, multisystemic genetic disorder in Caucasians. Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) protein are responsible for impairment of epithelial anionic transport, leading to impaired fluid regulation and pH imbalance across multiple organs. Gastrointestinal (GI) manifestations in CF may begin in utero and continue throughout the life, resulting in a chronic state of an altered intestinal milieu. Inherent dysfunction of CFTR leads to dysbiosis of the gut. This state of dysbiosis is further perpetuated by acquired factors such as use of antibiotics for recurrent pulmonary exacerbations. Since the gastrointestinal microbiome and their metabolites play a vital role in nutrition, metabolic, inflammatory, and immune functions, the gut dysbiosis will in turn impact various manifestations of CF-both GI and extra-GI. This review focuses on the consequences of gut dysbiosis and its metabolic implications on CF disease and possible ways to restore homeostasis.
Collapse
Affiliation(s)
- Aravind Thavamani
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Iman Salem
- Center for Medial Mycology, Case Western Reserve University School of Medicine, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Thomas J. Sferra
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| |
Collapse
|
12
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
13
|
Castillo-Dela Cruz P, Wanek AG, Kumar P, An X, Elsegeiny W, Horne W, Fitch A, Burr AHP, Gopalakrishna KP, Chen K, Methé BA, Canna SW, Hand TW, Kolls JK. Intestinal IL-17R Signaling Constrains IL-18-Driven Liver Inflammation by the Regulation of Microbiome-Derived Products. Cell Rep 2020; 29:2270-2283.e7. [PMID: 31747600 PMCID: PMC6886715 DOI: 10.1016/j.celrep.2019.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin (IL)-17 signaling to the intestinal epithelium regulates the intestinal microbiome. Given the reported links between intestinal dysbiosis, bacterial translocation, and liver disease, we hypothesize that intestinal IL-17R signaling plays a critical role in mitigating hepatic inflammation. To test this, we study intestinal epithelium-specific IL-17RA-deficient mice in an immune-driven hepatitis model. At the naive state, these mice exhibit microbiome dysbiosis and increased translocation of bacterial products (CpG DNA), which drives liver IL-18 production. Upon disease induction, absence of enteric IL-17RA signaling exacerbates hepatitis and hepatocyte cell death. IL-18 is necessary for disease exacerbation and is associated with increased activated hepatic lymphocytes based on Ifng and Fasl expression. Thus, intestinal IL-17R regulates translocation of TLR9 ligands and constrains susceptibility to hepatitis. These data connect enteric Th17 signaling and the microbiome in hepatitis, with broader implications on the effects of impaired intestinal immunity and subsequent release of microbial products observed in other extra-intestinal pathologies. Castillo-dela Cruz et al. describe a unique protective role of intestinal IL-17RA in hepatitis. Disruption of intestinal IL-17RA signaling results in microbiome dysbiosis and translocation of bacterial products, specifically unmethylated CpG DNA, to the liver. This promotes IL-18 production and subsequent lymphocyte activation and cell death to exacerbate liver inflammation.
Collapse
Affiliation(s)
- Patricia Castillo-Dela Cruz
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alanna G Wanek
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Xiaojing An
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Adam Fitch
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ansen H P Burr
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kathyayini P Gopalakrishna
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA
| | - Kong Chen
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Barbara A Methé
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Scott W Canna
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy W Hand
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
14
|
Nobs SP, Tuganbaev T, Elinav E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep 2019; 20:embr.201847129. [PMID: 30877136 DOI: 10.15252/embr.201847129] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Host-microbiome interactions constitute key determinants of host physiology, while their dysregulation is implicated in a wide range of human diseases. The microbiome undergoes diurnal variation in composition and function, and this in turn drives oscillations in host gene expression and functions. In this review, we discuss the newest developments in understanding circadian host-microbiome interplays, and how they may be relevant in health and disease contexts. We summarize the molecular mechanisms by which the microbiome influences host function in a diurnal manner, and inversely describe how the host orchestrates circadian rhythmicity of the microbiome. Furthermore, we highlight the future perspectives and challenges in studying this new and exciting facet of host-microbiome interactions. Finally, we illustrate how the elucidation of the microbiome chronobiology may pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Timur Tuganbaev
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Update on pathogenesis, diagnostics and therapy of nonalcoholic fatty liver disease in children. Clin Exp Hepatol 2019; 5:11-21. [PMID: 30915402 PMCID: PMC6431091 DOI: 10.5114/ceh.2019.83152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents the most common cause of chronic liver disease. Increasing prevalence of NAFLD in children may be the cause of unfavorable metabolic implications and development of end stage liver disease. NAFLD is a “multiple-hit” disease mediated by several metabolic, environmental, genetic and microbiological mechanisms. Additionally, lipotoxicity, oxidative stress and inflammation predispose to progressive liver damage. According to current guidelines, liver biopsy is an imperfect gold standard for NAFLD diagnosis, but due to its invasive character its use is limited in children and it should be performed only in children who need exclusion of coexisting diseases. Noninvasive methods should be preferred and current research is focused on serum markers and novel imaging or elastographic techniques. Therapeutic approaches for NAFLD are currently focused on lifestyle modification, insulin resistance, dyslipidemia, oxidative stress and the gut microbiome. However, a number of clinical studies on novel therapeutic molecules are ongoing.
Collapse
|
16
|
Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Radovanovic Spurnic A, Gmizic I, Stevanovic O, Djordjevic V, Lekic N, Russo E, Amedei A. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int J Mol Sci 2019; 20:395. [PMID: 30658519 PMCID: PMC6358912 DOI: 10.3390/ijms20020395] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid scientific interest in gut microbiota (GM) has coincided with a global increase in the prevalence of infectious and non-infectivous liver diseases. GM, which is also called "the new virtual metabolic organ", makes axis with a number of extraintestinal organs, such as kidneys, brain, cardiovascular, and the bone system. The gut-liver axis has attracted greater attention in recent years. GM communication is bi-directional and involves endocrine and immunological mechanisms. In this way, gut-dysbiosis and composition of "ancient" microbiota could be linked to pathogenesis of numerous chronic liver diseases such as chronic hepatitis B (CHB), chronic hepatitis C (CHC), alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), development of liver cirrhosis, and hepatocellular carcinoma (HCC). In this paper, we discuss the current evidence supporting a GM role in the management of different chronic liver diseases and potential new therapeutic GM targets, like fecal transplantation, antibiotics, probiotics, prebiotics, and symbiotics. We conclude that population-level shifts in GM could play a regulatory role in the gut-liver axis and, consequently, etiopathogenesis of chronic liver diseases. This could have a positive impact on future therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Milosevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Ankica Vujovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Aleksandra Barac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Marina Djelic
- Faculty of Medicine, Universisty of Belgrade; Institute of Medical Physiology "Rihard Burijan", 11000 Belgrade, Serbia.
| | - Milos Korac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Aleksandra Radovanovic Spurnic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Ivana Gmizic
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Olja Stevanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Vladimir Djordjevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic for Digestive Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Nebojsa Lekic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic for Digestive Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy.
| |
Collapse
|
17
|
D'Adamo E, Castorani V, Nobili V. The Liver in Children With Metabolic Syndrome. Front Endocrinol (Lausanne) 2019; 10:514. [PMID: 31428049 PMCID: PMC6687849 DOI: 10.3389/fendo.2019.00514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as an emerging health risk in obese children and adolescents. NAFLD represents a wide spectrum of liver conditions, ranging from asymptomatic steatosis to steatohepatitis. The growing prevalence of fatty liver disease in children is associated with an increased risk of metabolic and cardiovascular complications. NAFLD is considered the hepatic manifestation of Metabolic Syndrome (MetS) and several lines of evidence have reported that children with NAFLD present one or more features of MetS. The pathogenetic mechanisms explaining the interrelationships between fatty liver disease and MetS are not clearly understood. Altough central obesity and insulin resistance seem to represent the core of the pathophysiology in both diseases, genetic susceptibility and enviromental triggers are emerging as crucial components promoting the development of NAFLD and MetS in children. In the present review we have identified and summarizied studies discussing current pathogenetic data of the association between NAFLD and MetS in children.
Collapse
Affiliation(s)
- Ebe D'Adamo
- Department of Neonatology, University of Chieti, Chieti, Italy
- *Correspondence: Ebe D'Adamo
| | | | - Valerio Nobili
- Department of Pediatrics, University “La Sapienza”, Rome, Italy
- Hepatology, Gastroenterology and Nutrition Unit, IRCCS “Bambino Gesù” Children's Hospital, Rome, Italy
| |
Collapse
|
18
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
19
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide an overview of the current understanding of the pathophysiology, diagnosis and management of cystic fibrosis-liver disease (CFLD). RECENT FINDINGS CFLD has a variety of manifestations. Previously, it was thought that patients progressed from mild cholestatic disease to cirrhosis to decompensated cirrhosis with portal hypertension. Newer evidence suggests that some patients may develop cirrhosis while others develop noncirrhotic portal hypertension. Advances in our understanding of the pathophysiology of disease necessitate modifications to the current diagnostic criteria. Both fibroscan and noninvasive biomarkers can be used to identify patients with cirrhosis and portal hypertension. Ursodeoxycholic acid remains the mainstay of therapy despite a paucity of rigorous studies supporting its use. Novel therapeutic agents such as CF transmembrane conductance regulator (CFTR) modulators and potentiators are encouraging but need to be evaluated specifically in CFLD. SUMMARY A better understanding of the pathophysiology of disease is critical to developing more disease-specific diagnostics and therapeutics.
Collapse
|
20
|
Kobayashi T, Andoh A. Numerical analyses of intestinal microbiota by data mining. J Clin Biochem Nutr 2018; 62:124-131. [PMID: 29610551 PMCID: PMC5874238 DOI: 10.3164/jcbn.17-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The human intestinal microbiota has a close relationship with health control and causes of diseases, and a vast number of scientific papers on this topic have been published recently. Some progress has been made in identifying the causes or species of related microbiota, and successful results of data mining are reviewed here. Humans who are targets of a disease have their own individual characteristics, including various types of noise because of their individual life style and history. The quantitatively dominant bacterial species are not always deeply connected with a target disease. Instead of conventional simple comparisons of the statistical record, here the Gini-coefficient (i.e., evaluation of the uniformity of a group) was applied to minimize the effects of various types of noise in the data. A series of results were reviewed comparatively for normal daily life, disease and technical aspects of data mining. Some representative cases (i.e., heavy smokers, Crohn’s disease, coronary artery disease and prediction accuracy of diagnosis) are discussed in detail. In conclusion, data mining is useful for general diagnostic applications with reasonable cost and reproducibility.
Collapse
Affiliation(s)
- Toshio Kobayashi
- Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai-Shi, Miyagi 982-0215, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
21
|
Fighting Fatty Liver Diseases with Nutritional Interventions, Probiotics, Symbiotics, and Fecal Microbiota Transplantation (FMT). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1125:85-100. [DOI: 10.1007/5584_2018_318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Ye W, Narkewicz MR, Leung DH, Karnsakul W, Murray KF, Alonso EM, Magee JC, Schwarzenberg SJ, Weymann A, Molleston JP. Variceal Hemorrhage and Adverse Liver Outcomes in Patients With Cystic Fibrosis Cirrhosis. J Pediatr Gastroenterol Nutr 2018; 66:122-127. [PMID: 28906321 PMCID: PMC5745284 DOI: 10.1097/mpg.0000000000001728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Cirrhosis occurs in 5% to 10% of cystic fibrosis (CF) patients, often accompanied by portal hypertension. We analyzed 3 adverse liver outcomes, variceal bleeding (VB), liver transplant (LT), and liver-related death (LD), and risk factors for these in CF Foundation Patient Registry subjects with reported cirrhosis. METHODS We determined 10-year incidence rates for VB, LT, LD, and all-cause mortality (ACM), and examined risk factors using competing risk models and Cox-proportional hazard regression. RESULTS From 2003 to 2012, 943 participants (41% females, mean age 18.1 years) had newly reported cirrhosis; 24.7% required insulin, 85% had previous pseudomonas. Seventy-three subjects had reported VB: 38 with first VB and new cirrhosis reported simultaneously and 35 with VB after cirrhosis report. Ten-year cumulative VB, LT, and LD rates were 6.6% (95% confidence interval [CI]: 4.0, 9.1%), 9.9% (95% CI: 6.6%, 13.2%), and 6.9% (95% CI: 4.0%, 9.8%), respectively, with an ACM of 39.2% (95% CI: 30.8, 36.6%). ACM was not increased in subjects with VB compared to those without (hazard ratio [HR] 1.10, 95% CI: 0.59, 2.08). CF-related diabetes (HR: 3.141, 95% CI:1.56, 6.34) and VB (HR: 4.837, 95% CI: 2.33, 10.0) were associated with higher LT risk, whereas only worse lung function was associated with increased LD in multivariate analysis. Death rate among subjects with VB was 24% with LT and 20.4% with native liver. CONCLUSIONS VB is an uncommon complication of CF cirrhosis and can herald the diagnosis, but does not affect ACM. Adverse liver outcomes and ACM are frequent by 10 years after cirrhosis report.
Collapse
Affiliation(s)
- Wen Ye
- University of Michigan, Ann Arbor, MI
| | - Michael R Narkewicz
- Digestive Health Institute, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Daniel H Leung
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | | | - Karen F Murray
- Seattle Children's Hospital and University of Washington, Seattle, WA
| | | | | | | | | | - Jean P Molleston
- Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, IN
| |
Collapse
|
23
|
Peppelenbosch MP. Preface to "Gut microbiome in health and disease". Best Pract Res Clin Gastroenterol 2017; 31:605-606. [PMID: 29566902 DOI: 10.1016/j.bpg.2017.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Maikel P Peppelenbosch
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Li HL, Lu L, Wang XS, Qin LY, Wang P, Qiu SP, Wu H, Huang F, Zhang BB, Shi HL, Wu XJ. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Front Cell Infect Microbiol 2017; 7:455. [PMID: 29124041 PMCID: PMC5662589 DOI: 10.3389/fcimb.2017.00455] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Lu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Shuang Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Yue Qin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Ping Qiu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|