1
|
Huang Q, Qadri SF, Bian H, Yi X, Lin C, Yang X, Zhu X, Lin H, Yan H, Chang X, Sun X, Ma S, Wu Q, Zeng H, Hu X, Zheng Y, Yki-Järvinen H, Gao X, Tang H, Xia M. A metabolome-derived score predicts metabolic dysfunction-associated steatohepatitis and mortality from liver disease. J Hepatol 2025; 82:781-793. [PMID: 39423864 DOI: 10.1016/j.jhep.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with a >10-fold increase in liver-related mortality. However, biomarkers predicting both MASH and mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are missing. We developed a metabolome-derived prediction score for MASH and examined whether it predicts mortality in Chinese and European cohorts. METHODS The MASH prediction score was developed using a multi-step machine learning strategy, based on 44 clinical parameters and 250 serum metabolites measured by proton nuclear magnetic resonance in 311 Chinese adults undergoing a liver biopsy. External validation was conducted in a Finnish liver biopsy cohort (n = 305). We investigated associations of the score with all-cause and cause-specific mortality in the population-based Shanghai Changfeng study (n = 5,893) and the UK biobank (n = 111,673). RESULTS A total of 24 clinical parameters and 194 serum metabolites were significantly associated with MASH in the Chinese liver biopsy cohort. The final MASH score included BMI, aspartate aminotransferase, tyrosine, and the phospholipid-to-total lipid ratio in VLDL. The score identified patients with MASH with AUROCs of 0.87 (95% CI 0.83-0.91) and 0.81 (95% CI 0.75-0.88) in the Chinese and Finnish cohorts, with high negative predictive values. Participants with a high or intermediate risk of MASH based on the score had a markedly higher risk of MASLD-related mortality than those with a low risk in Chinese (hazard ratio 23.19; 95% CI 4.80-111.97) and European (hazard ratio 20.15; 95% CI 10.95-37.11) individuals after 7.2 and 12.6 years of follow-up, respectively. The MASH prediction score was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related mortality. CONCLUSION The metabolome-derived MASH prediction score accurately predicts risk of MASH and MASLD-related mortality in both Chinese and European individuals. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with more than a 10-fold increase in liver-related death. However, biomarkers predicting not only MASH, but also death due to liver disease, are missing. We established a MASH prediction score based on 44 clinical parameters and 250 serum metabolites using a machine learning strategy. This metabolome-derived MASH prediction score could accurately identify patients with MASH among both Chinese and Finnish individuals, and it was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related death in the general population. Thus, the new MASH prediction score is a useful tool for identifying individuals with a markedly increased risk of serious liver-related outcomes among at-risk and general populations.
Collapse
Affiliation(s)
- Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Sami F Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoxuan Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinyu Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Iakovleva V, de Jong YP. Gene-based therapies for steatotic liver disease. Mol Ther 2025:S1525-0016(25)00298-9. [PMID: 40254880 DOI: 10.1016/j.ymthe.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Advances in nucleic acid delivery have positioned the liver as a key target for gene therapy, with adeno-associated virus vectors showing long-term effectiveness in treating hemophilia. Steatotic liver disease (SLD), the most common liver condition globally, primarily results from metabolic dysfunction-associated and alcohol-associated liver diseases. In some individuals, SLD progresses from simple steatosis to steatohepatitis, cirrhosis, and eventually hepatocellular carcinoma, driven by a complex interplay of genetic, metabolic, and environmental factors. Genetic variations in various lipid metabolism-related genes, such as patatin-like phospholipase domain-containing protein 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), and mitochondrial amidoxime-reducing component 1 (MTARC1), impact the progression of SLD and offer promising therapeutic targets. This review largely focuses on genes identified through clinical association studies, as they are more likely to be effective and safe for therapeutic intervention. While preclinical research continues to deepen our understanding of genetic factors, early-stage clinical trials involving gene-based SLD therapies, including transient antisense and small-molecule approaches, are helping prioritize therapeutic targets. Meanwhile, hepatocyte gene editing technologies are advancing rapidly, offering alternatives to transient methods. As such, gene-based therapies show significant potential for preventing the progression of SLD and enhancing long-term liver health.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
3
|
Alkhouri N, Cheuk-Fung Yip T, Castera L, Takawy M, Adams LA, Verma N, Arab JP, Jafri SM, Zhong B, Dubourg J, Chen VL, Singal AK, Díaz LA, Dunn N, Nadeem R, Wai-Sun Wong V, Abdelmalek MF, Wang Z, Duseja A, Almahanna Y, Omeish HA, Ye J, Harrison SA, Cristiu J, Arrese M, Robert S, Lai-Hung Wong G, Bajunayd A, Shao C, Kubina M, Dunn W. ALADDIN: A Machine Learning Approach to Enhance the Prediction of Significant Fibrosis or Higher in Metabolic Dysfunction-Associated Steatotic Liver Disease. Am J Gastroenterol 2025:00000434-990000000-01660. [PMID: 40146016 DOI: 10.14309/ajg.0000000000003432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION The recent US Food and Drug Administration approval of resmetirom for treating metabolic dysfunction-associated steatohepatitis in patients necessitates patient selection for significant fibrosis or higher (≥F2). No existing vibration-controlled transient elastography (VCTE) algorithm targets ≥F2. METHODS The mAchine Learning ADvanceD fibrosis and rIsk metabolic dysfunction-associated steatohepatitis Novel predictor (ALADDIN) study addressed this gap by introducing a machine-learning-based web calculator that estimates the likelihood of significant fibrosis using routine laboratory parameters with and without VCTE. Our study included a training set of 827 patients, a testing set of 504 patients with biopsy-confirmed metabolic dysfunction-associated steatotic liver disease from 6 centers, and an external validation set of 1,299 patients from 9 centers. Five algorithms were compared using area under the curve (AUC) in the test set: ElasticNet, random forest, gradient boosting machines, XGBoost, and neural networks. The top 3 (random forest, gradient boosting machines, and XGBoost) formed an ensemble model. RESULTS In the external validation set, the ALADDIN-F2-VCTE model, using routine laboratory parameters with VCTE (AUC 0.791, 95% confidence interval [CI]: 0.764-0.819), outperformed VCTE alone (0.745, 95% CI 0.717-0.772, P < 0.0001), FibroScan-aspartate aminotransferase (0.710, 0.679-0.748, P < 0.0001), and Agile-3 model (0.740, 0.710-0.770, P < 0.0001) regarding the AUC, decision curve analysis, and calibration. The ALADDIN-F2-Lab model, using routine laboratory parameters without VCTE, achieved an AUC of 0.706 (95% CI: 0.668-0.749) and outperformed Fibrosis-4, steatosis-associated fibrosis estimator, and LiverRisk scores. DISCUSSION Along with the steatosis-associated fibrosis estimator model developed to target significant fibrosis or higher, ALADDIN-F2-VCTE ( https://aihepatology.shinyapps.io/ALADDIN1 ) uniquely supports a refined noninvasive approach to patient selection for resmetirom without the need for liver biopsy. In addition, ALADDIN-F2-Lab ( https://aihepatology.shinyapps.io/ALADDIN2 ) offers an effective alternative when VCTE is unavailable.
Collapse
Affiliation(s)
- Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, Arizona, USA
| | - Terry Cheuk-Fung Yip
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Laurent Castera
- Université Paris-Cité, Department of Hepatology, Hospital Beaujon, AP-HP, Inserm UMR 1149, Clichy, France
| | - Marina Takawy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Washington, Australia
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashwani K Singal
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky, USA
| | - Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | | | - Rida Nadeem
- Department of Hepatology, Arizona Liver Health, Chandler, Arizona, USA
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhengyi Wang
- Medical School, University of Western Australia, Perth, Washington, Australia
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yousef Almahanna
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Haya A Omeish
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Jessica Cristiu
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sage Robert
- Department of Gastroenterology, University of Kansas Medical Center, Kansas, USA
| | - Grace Lai-Hung Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Amani Bajunayd
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Congxiang Shao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Matthew Kubina
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Winston Dunn
- Department of Gastroenterology, University of Kansas Medical Center, Kansas, USA
| |
Collapse
|
4
|
Truong E, Alnimer L, Gornbein JA, Yang JD, Alkhouri N, Harrison SA, Noureddin M. Agile 3+ and 4 Scores Accurately Predict Major Adverse Liver Outcomes, Liver Transplant, Progression of MELD Score, the Development of Hepatocellular Carcinoma, and Death in NAFLD. Dig Dis Sci 2025:10.1007/s10620-025-08850-1. [PMID: 40126753 DOI: 10.1007/s10620-025-08850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/04/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Based on liver stiffness measurement by vibration controlled transient elastography (LSM by VCTE), the Agile 3+ and 4 are novel noninvasive scores that accurately identify advanced fibrosis (≥ F3) and cirrhosis (F4), respectively. We investigated and compared the Agile 3+ and 4 scores' performances in predicting adverse events to LSM alone, FIB-4 and Fibroscan-AST (FAST) score. METHOD This retrospective analysis included NAFLD patients with LSM by VCTE and laboratory testing from a tertiary care center from 2013 to 2022. Adverse events were defined as major adverse liver outcomes (MALO), hepatocellular carcinoma, liver transplant, and death. MALO was defined as ascites, hepatic encephalopathy, or esophageal variceal bleeding. We used the Cox proportional hazard rate model and the Harrell's concordance (C) statistic to compare predictive performances. RESULTS 733 total subjects with median follow-up of 27.0 months were included. Average age was 58.1 years and 32.8% had type 2 diabetes. Average alanine aminotransferase was 46.6 IU/L, aspartate aminotransferase: 34.5 IU/L, albumin: 4.4 g/dL, and platelets: 241.1 × 109/L. Fourteen subjects had 21 adverse outcomes, including 10 MALO, 5 HCC, 4 liver transplants, 3 progression of MELD score, and 6 deaths. Agile 3+ and 4 respectively had the highest C stats of 0.911 (C stat SE 0.028) and 0.909 (C stat SE 0.029) compared to LSM (C stat 0.857, C stat SE 0.045), FIB-4 (C stat 0.843, C stat SE 0.037) or FAST (C stat 0.703, C stat SE 0.085). CONCLUSION The Agile 3+ and 4 scores had the highest likelihood of accurately predicting adverse outcomes including MALO and death compared to LSM alone, FIB-4 or FAST score.
Collapse
Affiliation(s)
- Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lynna Alnimer
- Division of Gastroenterology, Henry Ford Providence Hospital, Michigan State University/College of Human Medicine, Southfield, MI, USA
| | - Jeffrey A Gornbein
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, 1155 Dairy Ashford Suite 200, Houston, TX, 77079, USA.
- Lynda K. and David M. Underwood Center for Digestive Disorders, Department of Medicine, J.C. Walter Jr. Transplant Center, Sherrie & Alan Conover Center for Liver Disease & Transplantation, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, USA.
| |
Collapse
|
5
|
Wu Y, Han Y, Zheng L, Liu L, Li W, Zhang F. Validation of the diagnostic accuracy of the acFibroMASH index for at-risk MASH in patients with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2025; 25:196. [PMID: 40128689 PMCID: PMC11931867 DOI: 10.1186/s12876-025-03781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE The objective of this study was to validate the diagnostic accuracy of the acFibroMASH index in a population of metabolic dysfunction-associated steatotic liver disease (MASLD) patients with at-risk metabolic dysfunction-associated steatohepatitis (MASH) and to compare it with other scoring systems. METHODS 394 patients with biopsy-proven MASLD were retrospectively enrolled. The patients were divided into the at-risk MASH (NAFLD activity score ≥ 4 and significant fibrosis) group (n = 103) and the non-at-risk MASH group (n = 291). The diagnostic performance of the acFibroMASH index was compared to that of fibroScan-aspartate aminotransferase (FAST) and other noninvasive fibrosis scores by plotting the receiver operating characteristic curve (ROC), including the area under the curve (AUC), sensitivity, and specificity. Cut-offs of the acFibroMASH index for sensitivity (≥ 0.90) and specificity (≥ 0.90) were obtained in our cohort. RESULTS The AUC of the acFibroMASH index in assessing at-risk MASH was 0.780, while the AUC of FAST was 0.770. The comparison of acFibroMASH with FAST showed no significant difference (P = 0.542). When the cut-off value for acFibroMASH was < 0.15, 95.5% of at-risk MASH patients could be excluded in 89 patients correctly. Conversely, when the cut-off value was set at > 0.39, 49.3% of at-risk MASH patients could be diagnosed in 140 patients correctly. When the NPV was set at 0.900, the critical value for exclusion was determined to be 0.23, with a sensitivity of 0.835 and a specificity of 0.526. CONCLUSION This study validated the efficacy of the acFibroMASH index in predicting at-risk MASH in a population of MASLD patients, demonstrating comparable performance to that of the FAST. The acFibroMASH index may provide a valuable clinical basis for screening and identifying at-risk MASH in primary care settings.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Pathology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Liming Zheng
- Clinical Laboratory, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213001, China.
| | - Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213001, China.
| |
Collapse
|
6
|
Diaz LA, Arab JP, Idalsoaga F, Perelli J, Vega J, Dirchwolf M, Carreño J, Samith B, Valério C, Moreira RO, Acevedo M, Brahm J, Hernández N, Gadano A, Oliveira CP, Arrese M, Castro-Narro G, Pessoa MG. Updated recommendations for the management of metabolic dysfunction-associated steatotic liver disease (MASLD) by the Latin American working group. Ann Hepatol 2025:101903. [PMID: 40089151 DOI: 10.1016/j.aohep.2025.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the leading causes of chronic liver disease globally. Based on the 2023 definition, MASLD is characterized by the presence of metabolic dysfunction and limited alcohol consumption (<140 grams/week for women, <210 grams/week for men). Given the significant burden of MASLD in Latin America, this guidance was developed by the Latin American Association for the Study of the Liver (ALEH) Working Group to address key aspects of its clinical assessment and therapeutic strategies. In Latin America, ultrasonography is recommended as the initial screening tool for hepatic steatosis due to its accessibility, while Fibrosis-4 (FIB-4) is preferred for fibrosis risk stratification, with further evaluation using more specific techniques (i.e., vibration-controlled transient elastography or Enhanced Liver Fibrosis [ELF] test). A Mediterranean diet is advised for all MASLD patients, with a target of 7-10% weight loss for those with excess weight. Complete alcohol abstinence is recommended for patients with significant fibrosis, and smoking cessation is encouraged regardless of fibrosis stage. Pharmacological options should be tailored based on the presence of steatohepatitis, liver fibrosis, excess weight, and diabetes, including resmetirom, incretin-based therapies, pioglitazone, and sodium-glucose cotransporter-2 inhibitors. Bariatric surgery may be considered for MASLD patients with obesity unresponsive to lifestyle and medical interventions. Hepatocellular carcinoma screening is advised for all cirrhotic patients, with consideration given to those with advanced fibrosis based on individual risk. Finally, routine cardiovascular risk assessment and proper diabetes prevention and management remain crucial for all patients with MASLD.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Javiera Perelli
- Unidad de Diabetes y Nutrición Clínica, Clínica Universidad de los Andes, Santiago, Chile
| | - Javier Vega
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Javiera Carreño
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile
| | - Bárbara Samith
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cynthia Valério
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil; Faculdade de Medicina de Valença, Centro Universitário de Valença, Valença, RJ, Brasil; Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Mónica Acevedo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Brahm
- Unidad de Gastroenterología, Clínica Universidad de los Andes, Santiago, Chile
| | - Nelia Hernández
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Adrian Gadano
- Liver Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Department of Research, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Claudia P Oliveira
- Gastroenterology Department, Hospital das Clínicas (LIM07) HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile
| | - Graciela Castro-Narro
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico; Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Mario G Pessoa
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Gastroenterology Department, Hospital das Clínicas (LIM07) HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
7
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Lv Z, Yong JK, Liu Y, Zhou Y, Pan Y, Xiang X, Li L, Wang Y, Zhao Y, Liu Z, Zhang Z, Xia Q, Feng H. A blood-based PT-LIFE (Pediatric Liver Transplantation-LIver Fibrosis Evaluation) biomarker panel for noninvasive evaluation of pediatric liver fibrosis after liver transplantation: A prospective derivation and validation study. Am J Transplant 2025; 25:501-515. [PMID: 39447750 DOI: 10.1016/j.ajt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Allograft fibrosis is increasingly detected in graft biopsies as the postoperative period extends, potentially emerging as a pivotal determinant of long-term graft function and graft survival among pediatric recipients. Currently, there is a paucity of noninvasive diagnostic tools capable of identifying allograft fibrosis in pediatric recipients of liver transplants. This study involved 507 pediatric liver transplant patients and developed a novel blood-based diagnostic assay, Pediatric Liver Transplantation-Liver Fibrosis Evaluation (PT-LIFE), to noninvasively distinguish allograft fibrosis using blood samples, clinical data, and biopsy outcomes. The PT-LIFE assay was derived from a matrix of 23 variables and validated in 2 independent cohorts. It integrates 3 biomarkers (LECT2, YKL-40, FBLN3) with an area under the receiver operating characteristic curve of 0.91. In the pooled analysis, a PT-LIFE score lower than 0.12 identified liver allograft fibrosis semiquantitative scores 0 to 2 with a sensitivity of 91.9%, whereas scores above 0.29 indicated liver allograft fibrosis semiquantitative scores 3 to 6, with a specificity of 88.4%. The PT-LIFE assay presents as a promising noninvasive diagnostic tool for the detection of allograft fibrosis in pediatric liver transplant recipients.
Collapse
Affiliation(s)
- Zicheng Lv
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - June-Kong Yong
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhou
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Yixiao Pan
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Xuelin Xiang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Linman Li
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Yuanhao Wang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Zebing Liu
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Zijie Zhang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China.
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China.
| |
Collapse
|
9
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Stefanakis K, Mingrone G, George J, Mantzoros CS. Accurate non-invasive detection of MASH with fibrosis F2-F3 using a lightweight machine learning model with minimal clinical and metabolomic variables. Metabolism 2025; 163:156082. [PMID: 39566717 DOI: 10.1016/j.metabol.2024.156082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND There are no known non-invasive tests (NITs) designed for accurately detecting metabolic dysfunction-associated steatohepatitis (MASH) with liver fibrosis stages F2-F3, excluding cirrhosis-the FDA-defined range for prescribing Resmetirom and other drugs in clinical trials. We aimed to validate and re-optimize known NITs, and most importantly to develop new machine learning (ML)-based NITs to accurately detect MASH F2-F3. METHODS Clinical and metabolomic data were collected from 443 patients across three countries and two clinic types (metabolic surgery, gastroenterology/hepatology) covering the entire spectrum of biopsy-proven MASH, including cirrhosis and healthy controls. Three novel types of ML models were developed using a categorical gradient boosting machine pipeline under a classic 4:1 split and a secondary independent validation analysis. These were compared with twenty-three biomarker, imaging, and algorithm-based NITs with both known and re-optimized cutoffs for MASH F2-F3. RESULTS The NAFLD (Non-Alcoholic Fatty Liver Disease) Fibrosis Score (NFS) at a - 1.455 cutoff attained an area under the receiver operating characteristic curve (AUC) of 0.59, the highest sensitivity (90.9 %), and a negative predictive value (NPV) of 87.2 %. FIB-4 risk stratification followed by elastography (8 kPa) had the best specificity (86.9 %) and positive predictive value (PPV) (63.3 %), with an AUC of 0.57. NFS followed by elastography improved the PPV to 65.3 % and AUC to 0.62. Re-optimized FibroScan-AST (FAST) at a 0.22 cutoff had the highest PPV (69.1 %). ML models using aminotransferases, metabolic syndrome components, BMI, and 3-ureidopropionate achieved an AUC of 0.89, which further increased to 0.91 following hyperparameter optimization and the addition of alpha-ketoglutarate. These new ML models outperformed all other NITs and displayed accuracy, sensitivity, specificity, PPV, and NPV up to 91.2 %, 85.3 %, 97.0 %, 92.4 %, and 90.7 % respectively. The models were reproduced and validated in a secondary sensitivity analysis, that used one of the cohorts as feature selection/training, and the rest as independent validation, likewise outperforming all other applicable NITs. CONCLUSIONS We report for the first time the diagnostic characteristics of non-invasive, metabolomics-based biomarker models to detect MASH with fibrosis F2-F3 required for Resmetirom treatment and inclusion in ongoing phase-III trials. These models may be used alone or in combination with other NITs to accurately determine treatment eligibility.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
11
|
Lam SM, Wang Z, Song JW, Shi Y, Liu WY, Wan LY, Duan K, Chua GH, Zhou Y, Wang G, Huang X, Wang Y, Wang FS, Zheng MH, Shui G. Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation. Cell Metab 2025; 37:69-86.e7. [PMID: 39500328 DOI: 10.1016/j.cmet.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025]
Abstract
There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (>F1, n = 324) from non-fibrosis (F0, n = 195), with an area under receiver operating characteristic curve (AUROC) at 0.775 (95% confidence interval [CI]: 0.735-0.816). Circulating sulfatides (SLs) emerged as central lipids distinctly associated with fibrosis pathogenesis in MASLD. Lipidomics analysis of lipoprotein fractions revealed a redistribution of circulating SLs from high-density lipoproteins (HDLs) onto low-density lipoproteins (LDLs) in MASLD fibrosis. We further verified that patient LDLs with reduced SL content triggered a smaller activation of type II natural killer T lymphocytes, compared with control LDLs. Our results suggest that hepatic crosstalk with systemic immunity mediated by lipoprotein metabolism underlies fibrosis progression at early-stage MASLD.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Yue Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-Yu Wan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Kaibo Duan
- Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Yingjuan Zhou
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China; Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Zhang X, Zheng MH, Liu D, Lin Y, Song SJ, Chu ESH, Liu D, Singh S, Berman M, Lau HCH, Gou H, Wong GLH, Zhang N, Yuan HY, Loomba R, Wong VWS, Yu J. A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis. Cell Metab 2025; 37:59-68.e3. [PMID: 39500327 DOI: 10.1016/j.cmet.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
The current diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe form, metabolic dysfunction-associated steatohepatitis (MASH), is suboptimal. Here, we recruited 700 individuals, including 184 from Hong Kong as a discovery cohort and 516 from San Diego, Wenzhou, and Hong Kong as three validation cohorts. A panel of 3 parameters (C-X-C motif chemokine ligand 10 [CXCL10], cytokeratin 18 fragments M30 [CK-18], and adjusted body mass index [BMI]) was formulated (termed N3-MASH), which discriminated patients with MASLD from healthy controls with an area under the receiver operating characteristic (AUROC) of 0.954. Among patients with MASLD, N3-MASH could identify patients with MASH with an AUROC of 0.823, achieving 90.0% specificity, 62.9% sensitivity, and 88.6% positive predictive value. The diagnostic performance of N3-MASH was confirmed in three validation cohorts with AUROC of 0.802, 0.805, and 0.823, respectively. Additionally, N3-MASH identifies patients with MASH improvement with an AUROC of 0.857. In summary, we developed a robust blood-based panel for the non-invasive diagnosis of MASH, which might help clinicians reduce unnecessary liver biopsies.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehua Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Sherlot Juan Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Eagle Siu-Hong Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Seema Singh
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, San Diego, CA, USA
| | - Michael Berman
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, San Diego, CA, USA
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Grace Lai-Hung Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Ni Zhang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, San Diego, CA, USA.
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China.
| |
Collapse
|
13
|
Au K, Zheng MH, Lee WJ, Ghanem OM, Mahawar K, Shabbir A, le Roux CW, Targher G, Byrne CD, Yilmaz Y, Valenti L, Sebastiani G, Treeprasertsuk S, Hui HX, Sakran N, Neto MG, Kermansaravi M, Kow L, Seki Y, Tham KW, Dang J, Cohen RV, Stier C, AlSabah S, Oviedo RJ, Chiappetta S, Parmar C, Yang W. Resmetirom and Metabolic Dysfunction-Associated Steatohepatitis: Perspectives on Multidisciplinary Management from Global Healthcare Professionals. Curr Obes Rep 2024; 13:818-830. [PMID: 39110384 DOI: 10.1007/s13679-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
PURPOSE OF REVIEW The approval of resmetirom brings great hope to patients with metabolic dysfunction-associated steatohepatitis (MASH). The purpose of this review is to explore its impact on the global health environment. The implementation of multidisciplinary management MASH is proposed. RECENT FINDINGS Resmetirom has benefits in the treatment of MASH, and its safety and effectiveness have been studied. The adverse events (AEs) need to be noticed. To improve patient outcomes, a multimodal approach with medication such as resmetirom, combined with metabolic and bariatric surgery (MBS) and lifestyle interventions can be conducted. MASH, a liver disease linked with obesity, is a challenging global healthcare burden compounded by the absence of any approved pharmacotherapy. The recent conditional approval by the Food and Drug Administration (FDA) in the United States of resmetirom, an oral, liver-directed, thyroid hormone receptor beta-selective agonist, marks a significant milestone, offering a treatment option for adults with non-cirrhotic MASH and who have moderate to advanced liver fibrosis. This narrative review discusses the efficacy and safety of resmetirom and its role in the therapeutic landscape of MASH treatment. Despite the promising hepatoprotective effect of resmetirom on histological liver endpoints, its use need further research, particularly regarding ethnic differences, effectiveness and cost-effectiveness, production scalability, social acceptance and accessibility. In addition, integrating resmetirom with other multidisciplinary therapeutic approaches, including lifestyle changes and MBS, might further improve clinical liver-related and cardiometabolic outcomes of individuals with MASH. This review highlights the importance of a comprehensive treatment strategy, supporting continued innovation and collaborative research to refine treatment guidelines and consensus for managing MASH, thereby improving clinical patient outcomes in the growing global epidemic of MASH. Studies done to date have been relatively short and ongoing, the course of the disease is highly variable, the conditions of various patients vary, and given this complex clinical phenotype, it may take many years of clinical trials to show long-term benefits.
Collapse
Affiliation(s)
- Kahei Au
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Avenue West, Guangzhou, China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Wei-Jei Lee
- Medical Weight Loss Center, China Medical University Shinchu Hospital, Zhubei City, Taiwan
| | - Omar M Ghanem
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kamal Mahawar
- Department of Upper Gastrointestinal Surgery, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Asim Shabbir
- National University of Singapore, Singapore, Singapore
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | | | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nasser Sakran
- Department of General Surgery, Holy Family Hospital, Nazareth, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Manoel Galvao Neto
- Orlando Health Weight Loss and Bariatric Surgery Institute, Orlando, USA
- Mohak Bariatric and Robotic Center, Indore, India
| | - Mohammad Kermansaravi
- Department of Surgery, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Hazrat-E Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Lilian Kow
- Department GI Surgery, Flinders University South Australia, Adelaide, Australia
| | - Yosuke Seki
- Weight Loss and Metabolic Surgery Centre, Yotsuya Medical Cube, Tokyo, Japan
| | | | - Jerry Dang
- Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ricardo V Cohen
- The Center for Obesity and Diabetes, Hospital Alemao Oswaldo Cruz, Sao Paulo, Brazil
| | - Christine Stier
- Department of MBS and Bariatric Endoscopy, University Hospital Mannheim, Heidelberg University, Mannheim, Baden-Wuerttenberg, Germany
| | - Salman AlSabah
- Department of Surgery, Kuwait University, Kuwait, Kuwait
| | - Rodolfo J Oviedo
- Nacogdoches Medical Center, Nacogdoches, TX, USA
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Sonja Chiappetta
- Bariatric and Metabolic Surgery Unit, Department for General and Laparoscopic Surgery, Ospedale Evangelico Betania, Naples, Italy
| | - Chetan Parmar
- Department of Surgery, Whittington Hospital,, University College London, London, UK
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Avenue West, Guangzhou, China.
| |
Collapse
|
14
|
Lai M, Dillon ST, Gu X, Morhardt TL, Xu Y, Chan NY, Xiong B, Can H, Ngo LH, Jin L, Zhang X, Moreira CC, Leite NC, Villela-Nogueira CA, Otu HH, Schattenberg JM, Schuppan D, Afdhal NH, Libermann TA. Serum protein risk stratification score for diagnostic evaluation of metabolic dysfunction-associated steatohepatitis. Hepatol Commun 2024; 8:e0586. [PMID: 39621304 PMCID: PMC11608748 DOI: 10.1097/hc9.0000000000000586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/08/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Reliable, noninvasive tools to diagnose at-risk metabolic dysfunction-associated steatohepatitis (MASH) are urgently needed to improve management. We developed a risk stratification score incorporating proteomics-derived serum markers with clinical variables to identify high-risk patients with MASH (NAFLD activity score >4 and fibrosis score >2). METHODS In this 3-phase proteomic study of biopsy-proven metabolic dysfunction-associated steatotic fatty liver disease, we first developed a multi-protein predictor for discriminating NAFLD activity score >4 based on SOMAscan proteomics quantifying 1305 serum proteins from 57 US patients. Four key predictor proteins were verified by ELISA in the expanded US cohort (N = 168) and enhanced by adding clinical variables to create the 9-feature MASH Dx score, which predicted MASH and also high-risk MASH (F2+). The MASH Dx score was validated in 2 independent, external cohorts from Germany (N = 139) and Brazil (N = 177). RESULTS The discovery phase identified a 6-protein classifier that achieved an AUC of 0.93 for identifying MASH. Significant elevation of 4 proteins (THBS2, GDF15, SELE, and IGFBP7) was verified by ELISA in the expanded discovery and independently in the 2 external cohorts. MASH Dx score incorporated these proteins with established MASH risk factors (age, body mass index, ALT, diabetes, and hypertension) to achieve good discrimination between MASH and metabolic dysfunction-associated steatotic fatty liver disease without MASH (AUC: 0.87-discovery; 0.83-pooled external validation cohorts), with similar performance when evaluating high-risk MASH F2-4 (vs. MASH F0-1 and metabolic dysfunction-associated steatotic fatty liver disease without MASH). CONCLUSIONS The MASH Dx score offers the first reliable noninvasive approach combining novel, biologically plausible ELISA-based fibrosis markers and clinical parameters to detect high-risk MASH in patient cohorts from the United States, Brazil, and Europe.
Collapse
Affiliation(s)
- Michelle Lai
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simon T. Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xuesong Gu
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tina L. Morhardt
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Yuyan Xu
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Noel Y. Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Beibei Xiong
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Handan Can
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Long H. Ngo
- Harvard Medical School, Boston, Massachusetts, USA
- Divisions of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lina Jin
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Claudia C. Moreira
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalie C. Leite
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane A. Villela-Nogueira
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jörn M. Schattenberg
- Metabolic Liver Research Program, Department of Medicine, University Medical Center, Mainz, Germany
- Department of Internal Medicine II and University of the Saarland, University Medical Center Homburg, Homburg, Germany
| | - Detlef Schuppan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nezam H. Afdhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Anastasiou G, Stefanakis K, Hill MA, Mantzoros CS. Expanding diagnostic and therapeutic horizons for MASH: Comparison of the latest and conventional therapeutic approaches. Metabolism 2024; 161:156044. [PMID: 39362519 DOI: 10.1016/j.metabol.2024.156044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Georgia Anastasiou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Jo S, Kim JM, Li M, Kim HS, An YJ, Park S. TAT as a new marker and its use for noninvasive chemical biopsy in NASH diagnosis. Mol Med 2024; 30:232. [PMID: 39592957 PMCID: PMC11590374 DOI: 10.1186/s10020-024-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Early diagnosis of Nonalcoholic steatohepatitis (NASH) is crucial to prevent its progression to hepatocellular carcinoma, but its gold standard diagnosis still requires invasive biopsy. Here, a new marker-based noninvasive chemical biopsy approach is introduced that uses urine-secreted tyrosine metabolites. METHODS We first identified NASH-specific decrease in TAT expression, the first enzyme in the tyrosine degradation pathway (TDP), by employing exometabolome-transcriptome correlations, single-cell RNA -seq, and tissue staining on human NASH patient samples. A selective extrahepatic monitoring of the TAT activity was established by the chemical biopsy exploiting the enzyme's metabolic conversion of D2-tyrosine into D2-4HPP. The approach was applied to a NASH mouse model using the methionine-choline deficient diet, where urine D2-4HPP level was measured with a specific LC-MS detection, following oral administration of D2-tyrosine. RESULTS The noninvasive urine chemical biopsy approach could effectively differentiate NASH from normal mice (normal = 14, NASH = 15, p = 0.0054), correlated with the NASH pathology and TAT level decrease observed with immunostaining on the liver tissue. In addition, we showed that the diagnostic differentiation could be enhanced by measuring the downstream metabolites of TDP. The specificity of the TAT and the related TDP enzymes in NASH were also addressed in other settings employing high fat high fructose mouse NASH model and human obesity vs. NASH cohort. CONCLUSIONS Overall, we propose TAT and TDP as pathology-relevant markers for NASH and present the urine chemical biopsy as a noninvasive modality to evaluate the NASH-specific changes in urine that may help the NASH diagnosis.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minshu Li
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Cho Y. Evaluation of Liver Fibrosis through Noninvasive Tests in Steatotic Liver Disease. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:215-222. [PMID: 39582309 DOI: 10.4166/kjg.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
Liver fibrosis, a critical predictor of the prognosis of metabolic dysfunction-associated steatotic liver disease (MASLD), is traditionally diagnosed via biopsy. Nevertheless, non-invasive alternatives, such as serum biomarkers, vibration-controlled transient elastography, and magnetic resonance elastography, have become prominent because of the limitations of biopsies. Serum biomarkers, such as fibrosis-4 index and NFS Score, are also used widely, offering reliable diagnostic performance for advanced fibrosis. Vibration-controlled transient elastography and shear wave elastography provide further non-invasive evaluations with high diagnostic accuracy, particularly for advanced fibrosis, but the results may be affected by factors such as obesity. Magnetic resonance elastography, with superior diagnostic accuracy and operator independence, is a promising method, but its high cost and limited availability restrict its widespread use. Emerging algorithms, such as NIS4, FAST, or MAST score, have strong potential in identifying high-risk metabolic dysfunction-associated steatohepatitis patients. The integration of multiple non-invasive methods can optimize diagnostic accuracy, reducing the need for invasive biopsies while identifying patients at risk of liver-related complications. Further research is needed to refine these diagnostic tools and improve accessibility.
Collapse
Affiliation(s)
- Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
18
|
Kim BK. [Serological Markers to Assess Liver Fibrosis and Their Roles]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:195-200. [PMID: 39582306 DOI: 10.4166/kjg.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Chronic liver disease is a significant public health issue worldwide, with the degree of liver fibrosis and its progression significantly influencing the treatment and prognosis. A liver biopsy is the standard diagnostic method, but it is invasive and presents various issues. Therefore, numerous non-invasive diagnostic methods have been developed. Serum markers are categorized into indirect markers, which reflect liver damage, inflammation, or functional changes, and direct markers, which measure the components released into the bloodstream during fibrosis. In addition, various kinds of formulas that combined direct/indirect markers and demographic variables were developed and validated with encouraging outcomes. Nevertheless, despite their convenience, serum indicators require cautious interpretation because they are affected by a number of factors. More research will be needed to determine if the clinical course of chronic liver disease under a disease-specific treatment could be monitored appropriately using serological markers.
Collapse
Affiliation(s)
- Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
19
|
Wu Y, Zhou J, Zhang J, Li H. Cytokeratin 18 in nonalcoholic fatty liver disease: value and application. Expert Rev Mol Diagn 2024; 24:1009-1022. [PMID: 39387822 DOI: 10.1080/14737159.2024.2413941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is a common metabolism-related disease worldwide. Although studies have shown that some medications may be effective for treating NAFLD, they do not satisfy the medical requirements, and lifestyle changes are the most basic strategy. Thus, early detection of NAFLD and timely lifestyle interventions are highly important. AREAS COVERED The traditional diagnostic methods for NAFLD are limited by accuracy, cost, and security issues. Cytokeratin 18 (CK18), which is a marker of apoptosis and overall cell death, is an excellent biomarker for NAFLD. Liver fat accumulation in NAFLD triggers the activation of caspases, which increases the CK18 cleavage and its release into the blood. CK18 can help diagnose different stages of NAFLD, especially the nonalcoholic steatohepatitis (NASH) stage. In evaluating the efficacy of the NAFLD treatment and predicting the risk of NAFLD-related diseases, CK18 plays a significant role. EXPERT OPINION CK18 can non-invasively monitor the pathological conditions of NAFLD patients and provide new hope for the early diagnosis of NAFLD. Adding CK18 to the NAFLD diagnostic criteria that are widely used in clinical settings may be efficient for the detection of NAFLD and early effective intervention.
Collapse
Affiliation(s)
- Yuan Wu
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Hongshan Li
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
20
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU, on behalf of The Korean Association for the Study of the Liver (KASL). KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
22
|
Sergi CM. NAFLD (MASLD)/NASH (MASH): Does It Bother to Label at All? A Comprehensive Narrative Review. Int J Mol Sci 2024; 25:8462. [PMID: 39126031 PMCID: PMC11313354 DOI: 10.3390/ijms25158462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated steatotic liver disease (MASLD), is a liver condition that is linked to overweight, obesity, diabetes mellitus, and metabolic syndrome. Nonalcoholic steatohepatitis (NASH), or metabolic dysfunction-associated steatohepatitis (MASH), is a form of NAFLD/MASLD that progresses over time. While steatosis is a prominent histological characteristic and recognizable grossly and microscopically, liver biopsies of individuals with NASH/MASH may exhibit several other abnormalities, such as mononuclear inflammation in the portal and lobular regions, hepatocellular damage characterized by ballooning and programmed cell death (apoptosis), misfolded hepatocytic protein inclusions (Mallory-Denk bodies, MDBs), megamitochondria as hyaline inclusions, and fibrosis. Ballooning hepatocellular damage remains the defining feature of NASH/MASH. The fibrosis pattern is characterized by the initial expression of perisinusoidal fibrosis ("chicken wire") and fibrosis surrounding the central veins. Children may have an alternative form of progressive NAFLD/MASLD characterized by steatosis, inflammation, and fibrosis, mainly in Rappaport zone 1 of the liver acinus. To identify, synthesize, and analyze the scientific knowledge produced regarding the implications of using a score for evaluating NAFLD/MASLD in a comprehensive narrative review. The search for articles was conducted between 1 January 2000 and 31 December 2023, on the PubMed/MEDLINE, Scopus, Web of Science, and Cochrane databases. This search was complemented by a gray search, including internet browsers (e.g., Google) and textbooks. The following research question guided the study: "What are the basic data on using a score for evaluating NAFLD/MASLD?" All stages of the selection process were carried out by the single author. Of the 1783 articles found, 75 were included in the sample for analysis, which was implemented with an additional 25 articles from references and gray literature. The studies analyzed indicated the beneficial effects of scoring liver biopsies. Although similarity between alcoholic steatohepatitis (ASH) and NASH/MASH occurs, some patterns of hepatocellular damage seen in alcoholic disease of the liver do not happen in NASH/MASH, including cholestatic featuring steatohepatitis, alcoholic foamy degeneration, and sclerosing predominant hyaline necrosis. Generally, neutrophilic-rich cellular infiltrates, prominent hyaline inclusions and MDBs, cholestasis, and obvious pericellular sinusoidal fibrosis should favor the diagnosis of alcohol-induced hepatocellular injury over NASH/MASH. Multiple grading and staging methods are available for implementation in investigations and clinical trials, each possessing merits and drawbacks. The systems primarily used are the Brunt, the NASH CRN (NASH Clinical Research Network), and the SAF (steatosis, activity, and fibrosis) systems. Clinical investigations have utilized several approaches to link laboratory and demographic observations with histology findings with optimal platforms for clinical trials of rapidly commercialized drugs. It is promising that machine learning procedures (artificial intelligence) may be critical for developing new platforms to evaluate the benefits of current and future drug formulations.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Department of Laboratory Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada; ; Tel.: +1-613-737-7600 (ext. 2427); Fax: +1-613-738-4837
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
23
|
Tincopa MA, Loomba R. Noninvasive Tests to Assess Fibrosis and Disease Severity in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:287-299. [PMID: 38981691 DOI: 10.1055/s-0044-1788277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Risk of disease progression and clinical outcomes in metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with fibrosis stage and presence of "at-risk metabolic dysfunction-associated steatohepatitis (MASH)." Although liver biopsy is considered the gold standard to diagnose MASH and stage of fibrosis, biopsy is infrequently performed in clinical practice and has associated sampling error, lack of interrater reliability, and risk for procedural complications. Noninvasive tests (NITs) are routinely used in clinical practice for risk stratification of patients with MASLD. Several NITs are being developed for detecting "at-risk MASH" and cirrhosis. Clinical care guidelines apply NITs to identify patients needing subspecialty referral. With recently approved Food and Drug Administration treatment for MASH and additional emerging pharmacotherapy, NITs will identify patients who will most benefit from treatment, monitor treatment response, and assess risk for long-term clinical outcomes. In this review, we examine the performance of NITs to detect "at-risk MASH," fibrosis stage, response to treatment, and risk of clinical outcomes in MASLD and MASH.
Collapse
Affiliation(s)
- Monica A Tincopa
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California at San Diego, La Jolla, California
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California at San Diego, La Jolla, California
- School of Public Health, University of California at San Diego, La Jolla, California
| |
Collapse
|
24
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
25
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
26
|
Zhang F, Han Y, Zheng L, Bao Z, Liu L, Li W. Association between chitinase-3-like protein 1 and metabolic-associated fatty liver disease in patients with type 2 diabetes mellitus. Ir J Med Sci 2024; 193:1843-1853. [PMID: 38520612 DOI: 10.1007/s11845-024-03671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Early identification of liver fibrosis is essential for the prognosis of metabolic-associated fatty liver disease (MAFLD), particularly in type 2 diabetes mellitus (T2DM) patients. Here, we explored the association of chitinase-3-like protein 1 (CHI3L1) and liver fibrosis in T2DM-MAFLD patients. METHODS Liver fibrosis was staged in T2DM-MAFLD patients, and a liver stiffness measurement (LSM) of ≥ 8 kPa was used to differentiate between non-significant (NSLF) and significant liver fibrosis (SLF) subgroups. The two subgroups were compared for serum CHI3L1 and other parameters. Linear correlation, logistic regression, and restricted cubic spline (RCS) analyses were performed to evaluate the association between CHI3L1 and liver fibrosis. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of CHI3L1. RESULTS Among T2DM-MAFLD, SLF patients had higher CHI3L1 compared to NSLF patients. CHI3L1 was found to be positively correlated with LSM. Multivariate logistic regression analysis suggested that CHI3L1 may be a potential independent risk factor for SLF. Further stratified analysis indicated that the odds ratios of SLF in the high CHI3L1 group were higher than in the low CHI3L1 group in the subgroups. RCS analysis suggested an increasing trend in the incidence of significant fibrosis with the rising level of CHI3L1. The area under the ROC curve for detecting significant fibrosis was 0.749 (95% CI: 0.668-0.829). CONCLUSIONS Serum CHI3L1 demonstrates an association with significant liver fibrosis. High serum levels of CHI3L1 may indicate the existence of significant liver fibrosis in T2DM-MAFLD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Liming Zheng
- Clinical Laboratory, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Zuowei Bao
- Department of Ultrasonography, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| |
Collapse
|
27
|
Castera L, Garteiser P, Laouenan C, Vidal-Trécan T, Vallet-Pichard A, Manchon P, Paradis V, Czernichow S, Roulot D, Larger E, Pol S, Bedossa P, Correas JM, Valla D, Gautier JF, Van Beers BE. Prospective head-to-head comparison of non-invasive scores for diagnosis of fibrotic MASH in patients with type 2 diabetes. J Hepatol 2024; 81:195-206. [PMID: 38548067 DOI: 10.1016/j.jhep.2024.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND & AIMS Non-invasive scores have been proposed to identify patients with fibrotic, metabolic dysfunction-associated steatohepatitis (MASH), who are at the highest risk of progression to complications of cirrhosis and may benefit from pharmacologic treatments. However, data in patients with type 2 diabetes (T2DM) are lacking. The aim of this multicenter prospective study was to perform a head-to-head comparison of FAST (FibroScan-aspartate aminotransferase [AST]), MAST (MRI-AST), MEFIB (magnetic resonance elastography [MRE] plus FIB-4), and FNI (fibrotic NASH index) for detecting fibrotic MASH in patients with T2DM. METHODS A total of 330 outpatients with T2DM and biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) from the QUID-NASH study (NCT03634098), who underwent FibroScan, MRI-proton density fat fraction and MRE at the time of liver biopsy were studied. The main outcome was fibrotic MASH, defined as NAS ≥4 (with at least one point for each parameter) and fibrosis stage ≥2 (centrally reviewed). RESULTS All data for score comparisons were available for 245 patients (median age 59 years, 65% male, median BMI 31 kg/m2; fibrotic MASH in 39%). FAST and MAST had similar accuracy (AUROCs 0.81 vs. 0.79, p = 0.41) but outperformed FNI (0.74; p = 0.01) and MEFIB (0.68; p <0.0001). When using original cut-offs, MAST outperformed FAST, MEFIB and FNI when comparing the percentage of correctly classified patients, in whom liver biopsy would be avoided (69% vs. 48%, 46%, 39%, respectively; p <0.001). When using cut-offs specific to our population, FAST outperformed FNI and MAST (56% vs. 40%, and 38%, respectively; p <0.001). CONCLUSION Our findings show that FAST, MAST, MEFIB and FNI are accurate non-invasive tools to identify patients with T2DM and fibrotic MASH in secondary/tertiary diabetes clinics. Cut-offs adapted to the T2DM population should be considered. IMPACT AND IMPLICATIONS Among patients with type 2 diabetes (T2DM), identifying those with metabolic dysfunction-associated steatohepatitis and significant fibrosis, who are the most at risk of developing clinical liver-related outcomes and who may benefit from pharmacologic treatments, is an unmet need. In this prospective multicenter study, we compared four non-invasive scores, three based on imaging (MRI or ultrasound technologies) and one on laboratory blood tests, for this purpose, using original and study-specific cut-offs. Our findings show that FAST, MAST, MEFIB and FNI are accurate non-invasive tools to identify patients with T2DM and fibrotic MASH in secondary/tertiary diabetes clinics. Cut-offs adapted to the T2DM population should be considered. TRIAL REGISTRATION NUMBER NCT03634098.
Collapse
Affiliation(s)
- Laurent Castera
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service d'hépatologie, AP-HP, Hôpital Beaujon, F-92110 Clichy-la-Garenne, France.
| | | | - Cédric Laouenan
- Université Paris Cité, UMR1137 (IAME), Inserm, F-75018 Paris, France; (DEBRC), APHP, Hôpital Bichat, Paris, France
| | - Tiphaine Vidal-Trécan
- Centre Universitaire du Diabète et de ses Complications, AP-HP, Hôpital Lariboisière, F-75010 Paris, France
| | | | | | - Valérie Paradis
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service d'anatomie et de cytologie pathologiques, AP-HP, Hôpital Beaujon, 792110 Clichy-la-Garenne, France
| | - Sébastien Czernichow
- INSERM UMR-S1151, CNRS UMR-S8253, Immediab lab, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France; Service de nutrition, centre spécialisé Obésité, APHP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Dominique Roulot
- Université Paris-Est, U955, Inserm, F-94000 Créteil, France; Unité d'hépatologie, AP-HP, Hôpital Avicenne, 93000 Bobigny, France
| | - Etienne Larger
- Université Paris Cité, Institut Cochin, U1016, Inserm, F-75014 Paris, France; Service de diabétologie, AP-HP, Groupe hospitalier Cochin, F-75014 Paris, France
| | - Stanislas Pol
- Service d'hépatologie, AP-HP, Groupe hospitalier Cochin, F-75014 Paris, France; Université Paris Cité, Institut Cochin, U1016, Inserm, F-75014 Paris, France
| | - Pierre Bedossa
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Liverpat, F-75116 Paris, France
| | - Jean-Michel Correas
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, Paris, France; Service d'Imagerie Adulte, AP-HP, Hôpital Necker Enfants Malades, F-75015 Paris, France
| | - Dominique Valla
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service d'hépatologie, AP-HP, Hôpital Beaujon, F-92110 Clichy-la-Garenne, France
| | - Jean-François Gautier
- Centre Universitaire du Diabète et de ses Complications, AP-HP, Hôpital Lariboisière, F-75010 Paris, France; INSERM UMR-S1151, CNRS UMR-S8253, Immediab lab, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Bernard E Van Beers
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service de Radiologie, AP-HP, Hôpital Beaujon, F-92110 Clichy-la-Garenne, France
| |
Collapse
|
28
|
Mózes FE, Lee JA, Vali Y, Selvaraj EA, Jayaswal ANA, Boursier J, de Lédinghen V, Lupșor-Platon M, Yilmaz Y, Chan WK, Mahadeva S, Karlas T, Wiegand J, Shalimar, Tsochatzis E, Liguori A, Wong VWS, Lee DH, Holleboom AG, van Dijk AM, Mak AL, Hagström H, Akbari C, Hirooka M, Lee DH, Kim W, Okanoue T, Shima T, Nakajima A, Yoneda M, Thuluvath PJ, Li F, Berzigotti A, Mendoza YP, Noureddin M, Truong E, Fournier-Poizat C, Geier A, Tuthill T, Yunis C, Anstee QM, Harrison SA, Bossuyt PM, Pavlides M. Diagnostic accuracy of non-invasive tests to screen for at-risk MASH-An individual participant data meta-analysis. Liver Int 2024; 44:1872-1885. [PMID: 38573034 DOI: 10.1111/liv.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 02/07/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND & AIMS There is a need to reduce the screen failure rate (SFR) in metabolic dysfunction-associated steatohepatitis (MASH) clinical trials (MASH+F2-3; MASH+F4) and identify people with high-risk MASH (MASH+F2-4) in clinical practice. We aimed to evaluate non-invasive tests (NITs) screening approaches for these target conditions. METHODS This was an individual participant data meta-analysis for the performance of NITs against liver biopsy for MASH+F2-4, MASH+F2-3 and MASH+F4. Index tests were the FibroScan-AST (FAST) score, liver stiffness measured using vibration-controlled transient elastography (LSM-VCTE), the fibrosis-4 score (FIB-4) and the NAFLD fibrosis score (NFS). Area under the receiver operating characteristics curve (AUROC) and thresholds including those that achieved 34% SFR were reported. RESULTS We included 2281 unique cases. The prevalence of MASH+F2-4, MASH+F2-3 and MASH+F4 was 31%, 24% and 7%, respectively. Area under the receiver operating characteristics curves for MASH+F2-4 were .78, .75, .68 and .57 for FAST, LSM-VCTE, FIB-4 and NFS. Area under the receiver operating characteristics curves for MASH+F2-3 were .73, .67, .60, .58 for FAST, LSM-VCTE, FIB-4 and NFS. Area under the receiver operating characteristics curves for MASH+F4 were .79, .84, .81, .76 for FAST, LSM-VCTE, FIB-4 and NFS. The sequential combination of FIB-4 and LSM-VCTE for the detection of MASH+F2-3 with threshold of .7 and 3.48, and 5.9 and 20 kPa achieved SFR of 67% and sensitivity of 60%, detecting 15 true positive cases from a theoretical group of 100 participants at the prevalence of 24%. CONCLUSIONS Sequential combinations of NITs do not compromise diagnostic performance and may reduce resource utilisation through the need of fewer LSM-VCTE examinations.
Collapse
Affiliation(s)
- Ferenc E Mózes
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, OCMR, University of Oxford, Oxford, UK
| | - Jenny A Lee
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Emmanuel A Selvaraj
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, OCMR, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | - Arjun N A Jayaswal
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, OCMR, University of Oxford, Oxford, UK
| | - Jérôme Boursier
- Laboratoire HIFIH, UPRES EA 3859, SFR ICAT 4208, Université d'Angers, Angers, France
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Victor de Lédinghen
- Centre d'Investigation de la Fibrose Hépatique, Hôpital Haut-Lévêque, Bordeaux University Hospital, Pessac, France
- INSERM1312, Bordeaux University, Bordeaux, France
| | - Monica Lupșor-Platon
- Department of Medical Imaging, Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology "Prof.Dr. Octavian Fodor", Cluj-Napoca, Romania
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sanjiv Mahadeva
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas Karlas
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Wiegand
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Emmanouil Tsochatzis
- Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, UK
| | - Antonio Liguori
- Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, UK
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Dae Ho Lee
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marieke van Dijk
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannes Hagström
- Division of Liver and Pancreatic diseases, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Akbari
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Touon, Ehime, Japan
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Paul J Thuluvath
- Institute of Digestive Health and Liver Diseases, Mercy Medical Center, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Li
- Institute of Digestive Health and Liver Diseases, Mercy Medical Center, Baltimore, Maryland, USA
| | - Annalisa Berzigotti
- Department for Visceral Medicine and Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Yuly P Mendoza
- Department for Visceral Medicine and Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences (GHS), University of Bern, Bern, Switzerland
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Andreas Geier
- Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Tuthill
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Carla Yunis
- Clinical Development and Operations, Global Product Development, Pfizer, Inc, Lake Mary, Florida, USA
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Stephen A Harrison
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, OCMR, University of Oxford, Oxford, UK
| | - Patrick M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Pavlides
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, OCMR, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Thakral N, Desalegn H, Diaz LA, Cabrera D, Loomba R, Arrese M, Arab JP. A Precision Medicine Guided Approach to the Utilization of Biomarkers in MASLD. Semin Liver Dis 2024; 44:273-286. [PMID: 38991536 DOI: 10.1055/a-2364-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The new nomenclature of metabolic dysfunction-associated steatotic liver disease (MASLD) emphasizes a positive diagnosis based on cardiometabolic risk factors. This definition is not only less stigmatizing but also allows for subclassification and stratification, thereby addressing the heterogeneity of what was historically referred to as nonalcoholic fatty liver disease. The heterogeneity within this spectrum is influenced by several factors which include but are not limited to demographic/dietary factors, the amount of alcohol use and drinking patterns, metabolic status, gut microbiome, genetic predisposition together with epigenetic factors. The net effect of this dynamic and intricate system-level interaction is reflected in the phenotypic presentation of MASLD. Therefore, the application of precision medicine in this scenario aims at complex phenotyping with consequent individual risk prediction, development of individualized preventive strategies, and improvements in the clinical trial designs. In this review, we aim to highlight the importance of precision medicine approaches in MASLD, including the use of novel biomarkers of disease, and its subsequent utilization in future study designs.
Collapse
Affiliation(s)
- Nimish Thakral
- Division of Gastroenterology and Hepatology, University of Kentucky, Lexington, Kentucky
| | - Hailemichael Desalegn
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Escuela de Medicina, Facultad de Ciencias Medicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California San Diego, San Diego, California
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
30
|
Loomba R, Hartman ML, Lawitz EJ, Vuppalanchi R, Boursier J, Bugianesi E, Yoneda M, Behling C, Cummings OW, Tang Y, Brouwers B, Robins DA, Nikooie A, Bunck MC, Haupt A, Sanyal AJ. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N Engl J Med 2024; 391:299-310. [PMID: 38856224 DOI: 10.1056/nejmoa2401943] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease associated with liver-related complications and death. The efficacy and safety of tirzepatide, an agonist of the glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptors, in patients with MASH and moderate or severe fibrosis is unclear. METHODS We conducted a phase 2, dose-finding, multicenter, double-blind, randomized, placebo-controlled trial involving participants with biopsy-confirmed MASH and stage F2 or F3 (moderate or severe) fibrosis. Participants were randomly assigned to receive once-weekly subcutaneous tirzepatide (5 mg, 10 mg, or 15 mg) or placebo for 52 weeks. The primary end point was resolution of MASH without worsening of fibrosis at 52 weeks. A key secondary end point was an improvement (decrease) of at least one fibrosis stage without worsening of MASH. RESULTS Among 190 participants who had undergone randomization, 157 had liver-biopsy results at week 52 that could be evaluated, with missing values imputed under the assumption that they would follow the pattern of results in the placebo group. The percentage of participants who met the criteria for resolution of MASH without worsening of fibrosis was 10% in the placebo group, 44% in the 5-mg tirzepatide group (difference vs. placebo, 34 percentage points; 95% confidence interval [CI], 17 to 50), 56% in the 10-mg tirzepatide group (difference, 46 percentage points; 95% CI, 29 to 62), and 62% in the 15-mg tirzepatide group (difference, 53 percentage points; 95% CI, 37 to 69) (P<0.001 for all three comparisons). The percentage of participants who had an improvement of at least one fibrosis stage without worsening of MASH was 30% in the placebo group, 55% in the 5-mg tirzepatide group (difference vs. placebo, 25 percentage points; 95% CI, 5 to 46), 51% in the 10-mg tirzepatide group (difference, 22 percentage points; 95% CI, 1 to 42), and 51% in the 15-mg tirzepatide group (difference, 21 percentage points; 95% CI, 1 to 42). The most common adverse events in the tirzepatide groups were gastrointestinal events, and most were mild or moderate in severity. CONCLUSIONS In this phase 2 trial involving participants with MASH and moderate or severe fibrosis, treatment with tirzepatide for 52 weeks was more effective than placebo with respect to resolution of MASH without worsening of fibrosis. Larger and longer trials are needed to further assess the efficacy and safety of tirzepatide for the treatment of MASH. (Funded by Eli Lilly; SYNERGY-NASH ClinicalTrials.gov number, NCT04166773.).
Collapse
Affiliation(s)
- Rohit Loomba
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Mark L Hartman
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Eric J Lawitz
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Raj Vuppalanchi
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Jérôme Boursier
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Elisabetta Bugianesi
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Masato Yoneda
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Cynthia Behling
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Oscar W Cummings
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Yuanyuan Tang
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Bram Brouwers
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Deborah A Robins
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Amir Nikooie
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Mathijs C Bunck
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Axel Haupt
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Arun J Sanyal
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| |
Collapse
|
31
|
Sivakumar P, Saul M, Robinson D, King LE, Amin NB. SomaLogic proteomics reveals new biomarkers and provides mechanistic, clinical insights into Acetyl coA Carboxylase (ACC) inhibition in Non-alcoholic Steatohepatitis (NASH). Sci Rep 2024; 14:17072. [PMID: 39048608 PMCID: PMC11269579 DOI: 10.1038/s41598-024-67843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH. SomaSignal NASH probability scores and expression data for 7000+ analytes were analyzed to identify potential biomarkers associated with baseline clinical measures of NAFLD/NASH [Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] as well as biomarkers of treatment response to ACCi. SomaSignal NASH probability scores identified biopsy-proven/clinically defined NIT-based (Presumed) NASH classification of the cohort with > 70% agreement. Clesacostat-induced reduction in steatosis probability scores aligned with observed clinical reduction in hepatic steatosis based on MRI-PDFF. We identify a set of 69 analytes that robustly correlate with clinical measures of hepatic inflammation and steatosis (MRI-PDFF, ALT and AST), 27 of which were significantly reversed with ACC inhibition. Clesacostat treatment dramatically upregulated Wnt5a protein and Apolipoproteins C3 and E, with drug-induced changes significantly correlating to changes on MRI-PDFF. Our data demonstrate the utility of SomaLogic- analyte panel for diagnosis and treatment response in NAFLD/NASH and provide potential new mechanistic insights into liver steatosis reduction, inflammation and serum triglyceride elevation with ACC inhibition. (Clinical Trial Identifier: NCT03248882).
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- Translational Clinical Sciences, Pfizer Research and Development, 500 Arcola Road, Collegeville, PA, 19426, USA.
| | - Michelle Saul
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Douglas Robinson
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Lindsay E King
- Clinical Bioanalytics, Pfizer Research and Development, Cambridge, USA
| | - Neeta B Amin
- Internal Medicine, Pfizer Research and Development, Cambridge, USA
| |
Collapse
|
32
|
Hou A, Xu X, Zhang Y, He H, Feng Y, Fan W, Tan R, Gong L, Chen J. Excessive fatty acids activate PRMT5/MDM2/Drosha pathway to regulate miRNA biogenesis and lipid metabolism. Liver Int 2024; 44:1634-1650. [PMID: 38517158 DOI: 10.1111/liv.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Excessive fatty acids in the liver lead to the accumulation of lipotoxic lipids and then cellular stress to further evoke the related disease, like non-alcoholic fatty liver disease (NAFLD). As reported, fatty acid stimulation can cause some specific miRNA dysregulation, which caused us to investigate the relationship between miRNA biogenesis and fatty acid overload. METHODS Gene expression omnibus (GEO) dataset analysis, miRNA-seq, miRNA cleavage assay, RT-qPCR, western blotting, immunofluorescence and co-immunoprecipitation (co-IP) were used to reveal the change of miRNAs under pathological status and explore the relevant mechanism. High fat, high fructose, high cholesterol (HFHFrHC) diet-fed mice transfected with AAV2/8-shDrosha or AAV2/8-shPRMT5 were established to investigate the in vivo effects of Drosha or PRMT5 on NAFLD phenotype. RESULTS We discovered that the cleavage of miRNAs was inhibited by analysing miRNA contents and detecting some representative pri-miRNAs in multiple mouse and cell models, which was further verified by the reduction of the Microprocessor activity in the presence of palmitic acid (PA). In vitro, PA could induce Drosha, the core RNase III in the Microprocessor complex, degrading through the proteasome-mediated pathway, while in vivo, knockdown of Drosha significantly promoted NAFLD to develop to a more serious stage. Mechanistically, our results demonstrated that PA can increase the methyltransferase activity of PRMT5 to degrade Drosha through MDM2, a ubiquitin E3 ligase for Drosha. The above results indicated that PRMT5 may be a critical regulator in lipid metabolism during NAFLD, which was confirmed by the knocking down of PRMT5 improved aberrant lipid metabolism in vitro and in vivo. CONCLUSIONS We first demonstrated the relationship between miRNA dosage and NAFLD and proved that PA can activate the PRMT5-MDM2-Drosha signalling pathway to regulate miRNA biogenesis.
Collapse
Affiliation(s)
- Aijun Hou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Zhang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxiu He
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yihan Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenhui Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Zannad F, Sanyal AJ, Butler J, Ferreira JP, Girerd N, Miller V, Pandey A, Parikh CR, Ratziu V, Younossi ZM, Harrison SA. MASLD and MASH at the crossroads of hepatology trials and cardiorenal metabolic trials. J Intern Med 2024; 296:24-38. [PMID: 38738988 DOI: 10.1111/joim.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Steatotic liver disease (SLD) is a worldwide public health problem, causing considerable morbidity and mortality. Patients with SLD are at increased risk for major adverse cardiovascular (CV) events, type 2 diabetes mellitus and chronic kidney disease. Conversely, patients with cardiometabolic conditions have a high prevalence of SLD. In addition to epidemiological evidence linking many of these conditions, there is evidence of shared pathophysiological processes. In December 2022, a unique multi-stakeholder, multi-specialty meeting, called MOSAIC (Metabolic multi Organ Science Accelerating Innovation in Clinical Trials) was convened to foster collaboration across metabolic, hepatology, nephrology and CV disorders. One of the goals of the meeting was to consider approaches to drug development that would speed regulatory approval of treatments for multiple disorders by combining liver and cardiorenal endpoints within a single study. Non-invasive tests, including biomarkers and imaging, are needed in hepatic and cardiorenal trials. They can be used as trial endpoints, to enrich trial populations, to diagnose and risk stratify patients and to assess treatment efficacy and safety. Although they are used in proof of concept and phase 2 trials, they are often not acceptable for regulatory approval of therapies. The challenge is defining the optimal combination of biomarkers, imaging and morbidity/mortality outcomes and ensuring that they are included in future trials while minimizing the burden on patients, trialists and trial sponsors. This paper provides an overview of some of the wide array of CV, liver and kidney measurements that were discussed at the MOSAIC meeting.
Collapse
Affiliation(s)
- Faiez Zannad
- Université de Lorraine, Inserm Clinical Investigation Center at Institut Lorrain du Coeur et des Vaisseaux, University Hospital of Nancy, Nancy, France
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA
- University of Mississippi, Jackson, Mississippi, USA
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department Surgery Physiology, University of Porto, Porto, Portugal
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Nicolas Girerd
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Veronica Miller
- Forum for Collaborative Research, Washington, District of Columbia, USA
- University of California Berkeley School of Public Health, Berkeley, California, USA
| | | | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vlad Ratziu
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Institute for Cardiometabolism and Nutrition, INSERM UMRS, Paris, France
| | | | - Stephen A Harrison
- Visiting Professor of Hepatology Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Hu X, Liu W, Liu J, Wang B, Qin X. Research advances in serum chitinase-3-like protein 1 in liver fibrosis. Front Med (Lausanne) 2024; 11:1372434. [PMID: 38962736 PMCID: PMC11219575 DOI: 10.3389/fmed.2024.1372434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
While liver fibrosis remains a serious, progressive, chronic liver disease, and factors causing damage persist, liver fibrosis may develop into cirrhosis and liver cancer. However, short-term liver fibrosis is reversible. Therefore, an early diagnosis of liver fibrosis in the reversible transition phase is important for effective treatment of liver diseases. Chitinase-3-like protein 1 (CHI3L1), an inflammatory response factor that participates in various biological processes and is abundant in liver tissue, holds promise as a potential biomarker for liver diseases. Here, we aimed to review research developments regarding serum CHI3L1 in relation to the pathophysiology and diagnosis of liver fibrosis of various etiologies, providing a reference for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Xingwei Hu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Wenhan Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Bojian Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| |
Collapse
|
35
|
EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 2024; 17:374-444. [PMID: 38852583 PMCID: PMC11299976 DOI: 10.1159/000539371] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
36
|
Noureddin N, Copur-Dahi N, Loomba R. Monitoring disease progression in metabolic dysfunction-associated steatotic liver disease. Aliment Pharmacol Ther 2024; 59 Suppl 1:S41-S51. [PMID: 38813822 PMCID: PMC11141723 DOI: 10.1111/apt.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Its prevalence is increasing with the epidemic of obesity and metabolic syndrome. MASLD progression into metabolic dysfunction-associated steatohepatitis (MASH) and advanced fibrosis may lead to decompensated cirrhosis and development of liver-related events, hepatocellular carcinoma and death. Monitoring disease progression is critical in decreasing morbidity, mortality, need for transplant and economic burden. Assessing for treatment response once FDA-approved medications are available is still an unmet clinical need. AIMS To explore the most up-to-date literature on testing used for monitoring disease progression and treatment response METHODS: We searched PubMed from inception to 15 August 2023, using the following MeSH terms: 'MASLD', 'Metabolic dysfunction-associated steatotic liver disease', 'MASH', 'metabolic dysfunction-associated steatohepatitis', 'Non-Alcoholic Fatty Liver Disease', 'NAFLD', 'non-alcoholic steatohepatitis', 'NASH', 'Biomarkers', 'clinical trial'. Articles were also identified through searches of the authors' files. The final reference list was generated based on originality and relevance to this review's broad scope, considering only papers published in English. RESULTS We have cited 101 references in this review detailing methods to monitor MASLD disease progression and treatment response. CONCLUSION Various biomarkers can be used in different care settings to monitor disease progression. Further research is needed to validate noninvasive tests more effectively.
Collapse
Affiliation(s)
- Nabil Noureddin
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Nedret Copur-Dahi
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Chan WK, Petta S, Noureddin M, Goh GBB, Wong VWS. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S23-S40. [PMID: 38813831 DOI: 10.1111/apt.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease and an important cause of cirrhosis and hepatocellular carcinoma. It is strongly associated with type 2 diabetes and obesity. Because of the huge number of patients at risk of MASLD, it is imperative to use non-invasive tests appropriately. AIMS To provide a narrative review on the performance and limitations of non-invasive tests, with a special emphasis on the impact of diabetes and obesity. METHODS We searched PubMed and Cochrane databases for articles published from 1990 to August 2023. RESULTS Abdominal ultrasonography remains the primary method to diagnose hepatic steatosis, while magnetic resonance imaging proton density fat fraction is currently the gold standard to quantify steatosis. Simple fibrosis scores such as the Fibrosis-4 index are well suited as initial assessment in primary care and non-hepatology settings to rule out advanced fibrosis and future risk of liver-related complications. However, because of its low positive predictive value, an abnormal test should be followed by specific blood (e.g. Enhanced Liver Fibrosis score) or imaging biomarkers (e.g. vibration-controlled transient elastography and magnetic resonance elastography) of fibrosis. Some non-invasive tests of fibrosis appear to be less accurate in patients with diabetes. Obesity also affects the performance of abdominal ultrasonography and transient elastography, whereas magnetic resonance imaging may not be feasible in some patients with severe obesity. CONCLUSIONS This article highlights issues surrounding the clinical application of non-invasive tests for MASLD in patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Palermo, Italy
- Department of Economics and Statistics, University of Palermo, Palermo, Italy
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas, USA
| | - George Boon Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Tobaruela-Resola AL, Riezu-Boj JI, Milagro FI, Mogna-Pelaez P, Herrero JI, Elorz M, Benito-Boillos A, Tur JA, Martínez JA, Abete I, Zulet MA. Multipanel Approach including miRNAs, Inflammatory Markers, and Depressive Symptoms for Metabolic Dysfunction-Associated Steatotic Liver Disease Diagnosis during 2-Year Nutritional Intervention. Nutrients 2024; 16:1547. [PMID: 38892481 PMCID: PMC11174705 DOI: 10.3390/nu16111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a prevalence of 30% of adults globally, is considered a multifactorial disease. There is a lack of effective non-invasive methods for accurate diagnosis and monitoring. Therefore, this study aimed to explore associations between changes in circulating miRNA levels, inflammatory markers, and depressive symptoms with hepatic variables in MASLD subjects and their combined potential to predict the disease after following a dietary intervention. Biochemical markers, body composition, circulating miRNAs and hepatic and psychological status of 55 subjects with MASLD with obesity and overweight from the FLiO study were evaluated by undergoing a 6-, 12- and 24-month nutritional intervention. The highest accuracy values of combined panels to predict the disease were identified after 24 months. A combination panel that included changes in liver stiffness, high-density lipoprotein cholesterol (HDL-c), body mass index (BMI), depressive symptoms, and triglycerides (TG) yielded an AUC of 0.90. Another panel that included changes in hepatic fat content, total cholesterol (TC), miR15b-3p, TG, and depressive symptoms revealed an AUC of 0.89. These findings identify non-invasive biomarker panels including circulating miRNAs, inflammatory markers, depressive symptoms and other metabolic variables for predicting MASLD presence and emphasize the importance of precision nutrition in MASLD management and the sustained adherence to healthy lifestyle patterns.
Collapse
Affiliation(s)
- Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
| | - José I. Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| | - Paola Mogna-Pelaez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
| | - José I. Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Liver Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122 Palma, Spain
| | - J. Alfredo Martínez
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| | - M. Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| |
Collapse
|
39
|
Tincopa MA, Anstee QM, Loomba R. New and emerging treatments for metabolic dysfunction-associated steatohepatitis. Cell Metab 2024; 36:912-926. [PMID: 38608696 DOI: 10.1016/j.cmet.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading etiology of chronic liver disease worldwide, with increasing incidence and prevalence in the setting of the obesity epidemic. MASH is also a leading indication for liver transplantation, given its associated risk of progression to end-stage liver disease. A key challenge in managing MASH is the lack of approved pharmacotherapy. In its absence, lifestyle interventions with a focus on healthy nutrition and regular physical activity have been the cornerstone of therapy. Real-world efficacy and sustainability of lifestyle interventions are low, however. Pharmacotherapy development for MASH is emerging with promising data from several agents with different mechanisms of action (MOAs) in phase 3 clinical trials. In this review, we highlight ongoing challenges and potential solutions in drug development for MASH and provide an overview of available data from emerging therapies across multiple MOAs.
Collapse
Affiliation(s)
- Monica A Tincopa
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA; School of Public Health, University of California, San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
40
|
Ciardullo S, Muraca E, Vergani M, Invernizzi P, Perseghin G. Advancements in pharmacological treatment of NAFLD/MASLD: a focus on metabolic and liver-targeted interventions. Gastroenterol Rep (Oxf) 2024; 12:goae029. [PMID: 38681750 PMCID: PMC11052658 DOI: 10.1093/gastro/goae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024] Open
Abstract
In the present narrative review, we have summarized evidence on the pharmacological treatment of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction-associated steatotic liver disease (MASLD). We start by reviewing the epidemiology of the condition and its close association with obesity and type 2 diabetes. We then discuss how randomized-controlled trials are performed following guidance from regulatory agencies, including differences and similarities between requirements of the US Food and Drug Administration and the European Medicine Agency. Difficulties and hurdles related to limitations of liver biopsy, a large number of screening failures in recruiting patients, as well as unpredictable response rates in the placebo group are evaluated. Finally, we recapitulate the strategies employed for potential drug treatments of this orphan condition. The first is to repurpose drugs that originally targeted T2DM and/or obesity, such as pioglitazone, glucagon-like peptide 1 receptor agonists (liraglutide and semaglutide), multi-agonists (tirzepatide and retatrutide), and sodium-glucose transporter 2 inhibitors. The second is to develop drugs specifically targeting NAFLD/MASLD. Among those, we focused on resmetirom, fibroblast growth factor 21 analogs, and lanifibranor, as they are currently in Phase 3 of their clinical trial development. While many failures have characterized the field of pharmacological treatment of NAFLD/MASLD in the past, it is likely that approval of the first treatments is near. As occurs in many chronic conditions, combination therapy might lead to better outcomes. In the case of non-alcoholic steatohepatitis, we speculate that drugs treating underlying metabolic co-morbidities might play a bigger role in the earlier stages of disease, while liver-targeting molecules will become vital in patients with more advanced disease in terms of inflammation and fibrosis.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Emanuele Muraca
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
| | - Michela Vergani
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER) San Gerardo Hospital, Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
41
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
42
|
Kounatidis D, Vallianou NG, Geladari E, Panoilia MP, Daskou A, Stratigou T, Karampela I, Tsilingiris D, Dalamaga M. NAFLD in the 21st Century: Current Knowledge Regarding Its Pathogenesis, Diagnosis and Therapeutics. Biomedicines 2024; 12:826. [PMID: 38672181 PMCID: PMC11048710 DOI: 10.3390/biomedicines12040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health issue worldwide. It is the most common liver disease in Western countries, andits global prevalence is estimated to be up to 35%. However, its diagnosis may be elusive, because liver biopsy is relatively rarely performed and usually only in advanced stages of the disease. Therefore, several non-invasive scores may be applied to more easily diagnose and monitor NAFLD. In this review, we discuss the various biomarkers and imaging scores that could be useful in diagnosing and managing NAFLD. Despite the fact that general measures, such as abstinence from alcohol and modulation of other cardiovascular disease risk factors, should be applied, the mainstay of prevention and management is weight loss. Bariatric surgery may be suggested as a means to confront NAFLD. In addition, pharmacological treatment with GLP-1 analogues or the GIP agonist tirzepatide may be advisable. In this review, we focus on the utility of GLP-1 analogues and GIP agonists in lowering body weight, their pharmaceutical potential, and their safety profile, as already evidenced inanimal and human studies. We also elaborate on other options, such as the use of vitamin E, probiotics, especially next-generation probiotics, and prebiotics in this context. Finally, we explore future perspectives regarding the administration of GLP-1 analogues, GIP agonists, and probiotics/prebiotics as a means to prevent and combat NAFLD. The newest drugs pegozafermin and resmetiron, which seem to be very promising, arealso discussed.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 1 Sismanogliou str, 15126 Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45–47Ipsilantou str, 10676 Athens, Greece
| | - Maria Paraskevi Panoilia
- First Department of Internal Medicine, Sismanogleio General Hospital, 1 Sismanogliou str, 15126 Athens, Greece
| | - Anna Daskou
- First Department of Internal Medicine, Sismanogleio General Hospital, 1 Sismanogliou str, 15126 Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45–47Ipsilantou str, 10676 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Demokritus University of Thrace, 68100 Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece;
| |
Collapse
|
43
|
Maya-Miles D, Ampuero J, Martí-Aguado D, Conthe A, Gallego-Durán R. MASLD biomarkers: Are we facing a new era? GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:393-396. [PMID: 38355096 DOI: 10.1016/j.gastrohep.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Affiliation(s)
- Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Sevilla, Spain; Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Sevilla, Spain; Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain; Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - David Martí-Aguado
- Servicio de Aparato Digestivo, Hospital Clínico Universitario de Valencia, INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Andrés Conthe
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain; Sección de Hepatología, Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Sevilla, Spain; Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain.
| |
Collapse
|
44
|
Anstee QM, Magnanensi J, Hajji Y, Caron A, Majd Z, Rosenquist C, Hum DW, Staels B, Connelly MA, Loomba R, Harrison SA, Ratziu V, Sanyal AJ. Impact of age on NIS2+™ and other non-invasive blood tests for the evaluation of liver disease and detection of at-risk MASH. JHEP Rep 2024; 6:101011. [PMID: 38463540 PMCID: PMC10920708 DOI: 10.1016/j.jhepr.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024] Open
Abstract
Background & Aims Robust performance of non-invasive tests (NITs) across ages is critical to assess liver disease among patients with metabolic dysfunction-associated liver disease (MASLD). We evaluated the impact of age on the performance of NIS2+™ vs. other NITs. Methods An analysis cohort (N = 1,926) with biopsy-proven MASLD was selected among individuals screened for the phase III RESOLVE-IT clinical trial and divided into ≤45, 46-55, 56-64, and ≥65 years groups. To avoid potential confounding effects, a well-balanced cohort (n = 708; n = 177/age group) was obtained by applying a propensity score-matching algorithm to the analysis cohort. Baseline values of biomarkers and NITs were compared across age groups using one-way ANOVA, and the impact of age and histology were compared through three-way ANOVA. The impact of age on NIT performance for the detection of at-risk metabolic dysfunction-associated steatohepatitis (MASH; MASLD activity score [MAS] ≥4 and fibrosis stage [F] ≥2) was also evaluated. Results Age did not affect the distributions of NIS2+™ and APRI (aspartate aminotransferase-to-platelet ratio index), but significantly (p <0.0001) impacted those of NFS (NAFLD fibrosis score), FIB-4 (Fibrosis-4 index), and Enhanced Liver Fibrosis (ELF™) score. NIS2+™ was the only NIT on which fibrosis and MAS exerted a moderate to large effect. While the impact of fibrosis on APRI was moderate, that of MAS was low. The impact of age on FIB-4 and NFS was larger than that of fibrosis. NIS2+™ exhibited the highest AUROC values for detecting at-risk MASH across age groups, with stable performances irrespective of cut-offs. Conclusions NIS2+™ was not significantly impacted by age and was sensitive to both fibrosis and MAS grade, demonstrating a robust performance to rule in/out at-risk MASH with fixed cut-offs. Impact and Implications While metabolic dysfunction-associated steatotic liver disease (MASLD) can affect individuals of all ages, patient age could represent an important confounding factor when interpreting non-invasive test (NIT) results, highlighting the need for reliable and efficient NITs that are not impacted by age and that could be interpreted with fixed cut-offs, irrespective of patient age. We report the impact of age on different well-established NITs - among those tested, only two panels, NIS2+™ and APRI, were not impacted by age and can be used and interpreted independently of patient age. NIS2+™ was also sensitive to both fibrosis and MAS, further confirming its efficiency for the detection of the composite endpoint of at-risk MASH and its potential as a valuable candidate for large-scale implementation in clinical practice and clinical trials.
Collapse
Affiliation(s)
- Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, US
| | - Stephen A. Harrison
- Summit Clinical Research, San Antonio, TX, US
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, US
| |
Collapse
|
45
|
Wang JL, Jiang SW, Hu AR, Zhou AW, Hu T, Li HS, Fan Y, Lin K. Non-invasive diagnosis of non-alcoholic fatty liver disease: Current status and future perspective. Heliyon 2024; 10:e27325. [PMID: 38449611 PMCID: PMC10915413 DOI: 10.1016/j.heliyon.2024.e27325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease throughout the world. Hepatocellular carcinoma (HCC) and liver cirrhosis can result from nonalcoholic steatohepatitis (NASH), the severe stage of NAFLD progression. By some estimates, NAFLD affects almost one-third of the world's population, which is completely new and serious public health issue. Unfortunately, NAFLD is diagnosed by exclusion, and the gold standard for identifying NAFLD/NASH and reliably measuring liver fibrosis remains liver biopsy, which is an invasive, costly, time-consuming procedure and involves variable inter-observer diagnosis. With the progress of omics and imaging techniques, numerous non-invasive serological assays have been generated and developed. On the basis of these developments, non-invasive biomarkers and imaging techniques have been combined to increase diagnostic accuracy. This review provides information for the diagnosis and assessment of NAFLD/NASH in clinical practice going forward and may assist the clinician in making an early and accurate diagnosis and in proposing a cost-effective patient surveillance. We discuss newly identified and validated non-invasive diagnostic methods from biopsy-confirmed NAFLD patient studies and their implementation in clinical practice, encompassing NAFLD/NASH diagnosis and differentiation, fibrosis assessment, and disease progression monitoring. A series of tests, including 20-carboxy arachidonic acid (20-COOH AA) and 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2), were found to be potentially the most accurate non-invasive tests for diagnosing NAFLD. Additionally, the Three-dimensional magnetic resonance imaging (3D-MRE), combination of the FM-fibro index and Liver stiffness measurement (FM-fibro LSM index) and the machine learning algorithm (MLA) tests are more accurate than other tests in assessing liver fibrosis. However, it is essential to use bigger cohort studies to corroborate a number of non-invasive diagnostic tests with extremely elevated diagnostic values.
Collapse
Affiliation(s)
- Jia-Lan Wang
- Graduate School of Wenzhou Medical University, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Su-Wen Jiang
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ai-Rong Hu
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ai-Wu Zhou
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ting Hu
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Hong-Shan Li
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ying Fan
- School of Medicine, Shaoxing University, Shaoxing, 31200, Zhejiang Province, China
| | - Ken Lin
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang Province, China
| |
Collapse
|
46
|
Lai JCT, Wong VWS. Using NIS2+™ to identify at-risk MASH in clinical trials. J Hepatol 2024; 80:181-183. [PMID: 38013143 DOI: 10.1016/j.jhep.2023.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Jimmy Che-To Lai
- Medical Data Analytic Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytic Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Castagneto-Gissey L, Bornstein SR, Mingrone G. Can liquid biopsies for MASH help increase the penetration of metabolic surgery? A narrative review. Metabolism 2024; 151:155721. [PMID: 37923007 DOI: 10.1016/j.metabol.2023.155721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
This narrative review highlights current evidence on non-invasive tests to predict the presence or absence as well as the severity of metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition characterized by fat accumulation in the liver that affects 32 % of the world population. The most severe form of MASLD is MASH in which hepatocyte ballooning and inflammation are present together with steatosis; MASH is often associated with liver fibrosis. MASH diagnosis is determined by invasive liver biopsy. Hence, there is a critical need for non-invasive MASH tests. Plasma biomarkers for MASH diagnosis generally have low sensitivity (62-66 %), and specificity (78-82 %). Monocyte levels of Perilipin2 (PLIN2) predict MASH with an accuracy of 92-93 %, and sensitivity and specificity of 90-95 % and 88-100 %, respectively. This liquid biopsy test can facilitate the study of MASH prevalence in general populations and also monitor the effects of lifestyle, surgical, and pharmacological interventions. Without any FDA-approved MASH therapeutic, and with metabolic surgery markedly surpassing the efficacy of lifestyle modification, an accurate and reliable liquid biopsy could help more people choose surgery as a treatment for MASH.
Collapse
Affiliation(s)
| | - Stefan R Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom; Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
48
|
Ratziu V, Harrison SA, Hajji Y, Magnanensi J, Petit S, Majd Z, Delecroix E, Rosenquist C, Hum D, Staels B, Anstee QM, Sanyal AJ. NIS2+ TM as a screening tool to optimize patient selection in metabolic dysfunction-associated steatohepatitis clinical trials. J Hepatol 2024; 80:209-219. [PMID: 38061448 DOI: 10.1016/j.jhep.2023.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND & AIMS Strategies to reduce liver biopsy (LB) screen failures through better patient selection are needed for clinical trials. Standard fibrosis biomarkers were not derived to detect "at-risk" metabolic dysfunction-associated steatohepatitis (MASH; MASH with metabolic dysfunction-associated steatotic liver disease score ≥4 and fibrosis stage ≥2). We compared the performance of screening pathways that incorporate NIS2+™, an optimized version of the blood-based NIS4® technology designed to identify at-risk MASH, with those incorporating fibrosis (FIB)-4 within the RESOLVE-IT clinical trial (NCT02704403), aiming for optimized selection of patients for LB. METHODS A retrospective simulation analysis was conducted in the RESOLVE-IT screening pathway (RSP) cohort. LB failure rate (LBFR), number of patients needed to screen, and overall cost estimations of different pathways were calculated for a range of NIS2+™ and FIB-4 cut-offs and compared with those of the RSP, which relied on investigators' local practices. An analysis of potential recruitment bias based on histology, sex, age, or comorbidities was performed. RESULTS The analysis cohort included 1,929 patients, 765 (40%) with at-risk MASH. The NIS2+™ pathway resulted in a significantly lower LBFR (39%) compared with the FIB-4 pathway (58%) or the RSP (60%) when using cost-optimized cut-offs (NIS2+™, 0.53; FIB-4, 0.58). For every 1,000 inclusions, NIS2+™ significantly reduced unnecessary LBs (632 vs. 1,522; -58%) and screening costs (US$12.7 million vs. US$15.0 million) vs. the RSP, while the number of patients needed to screen increased moderately (3,220 to 4,033). NIS2+™ alone is better than FIB-4 alone or combined with FIB-4. CONCLUSIONS This analysis demonstrated that patient selection for LB using NIS2+™ significantly reduced unnecessary biopsies and screening costs, which could greatly improve the feasibility of MASH clinical trials. IMPACT AND IMPLICATIONS Simple and accurate non-invasive strategies to optimize the selection of patients who should be referred for liver biopsy for inclusion in MASH clinical trials is critical to reduce the high liver biopsy failure rates. While the use of the Fibrosis-4 index alone did not lead to a significant improvement of the screening process, selecting patients using NIS2+™, a recently developed optimization of the NIS4® technology for the detection of at-risk MASH, showed improved performance by simultaneously reducing liver biopsy failure rates and the overall cost of the trial, while maintaining the number of patients needed to screen at a manageable level and not generating any bias in included patients' characteristics. This makes NIS2+™ an accurate and reliable screening tool that could improve the recruitment of patients in future MASH clinical trials, and would lead to increased patient comfort and security, ensuring timely and cost-efficient trial completion.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France
| | - Stephen A Harrison
- Summit Clinical Research, San Antonio, TX, USA; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle Upon Tyne, UK
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
49
|
Makarenkov N, Yoel U, Haim Y, Pincu Y, Bhandarkar NS, Shalev A, Shelef I, Liberty IF, Ben-Arie G, Yardeni D, Rudich A, Etzion O, Veksler-Lublinsky I. Circulating isomiRs May Be Superior Biomarkers Compared to Their Corresponding miRNAs: A Pilot Biomarker Study of Using isomiR-Ome to Detect Coronary Calcium-Based Cardiovascular Risk in Patients with NAFLD. Int J Mol Sci 2024; 25:890. [PMID: 38255963 PMCID: PMC10815227 DOI: 10.3390/ijms25020890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Circulating miRNAs are increasingly being considered as biomarkers in various medical contexts, but the value of analyzing isomiRs (isoforms of canonical miRNA sequences) has not frequently been assessed. Here we hypothesize that an in-depth analysis of the full circulating miRNA landscape could identify specific isomiRs that are stronger biomarkers, compared to their corresponding miRNA, for identifying increased CV risk in patients with non-alcoholic fatty liver disease (NAFLD)-a clinical unmet need. Plasma miRNAs were sequenced with next-generation sequencing (NGS). Liver fat content was measured with magnetic-resonance spectrometry (MRS); CV risk was determined, beyond using traditional biomarkers, by a CT-based measurement of coronary artery calcium (CAC) score and the calculation of a CAC score-based CV-risk percentile (CAC-CV%). This pilot study included n = 13 patients, age > 45 years, with an MRS-measured liver fat content of ≥5% (wt/wt), and free of overt CVD. NGS identified 1103 miRNAs and 404,022 different isomiRs, of which 280 (25%) and 1418 (0.35%), respectively, passed an abundance threshold. Eighteen (sixteen/two) circulating miRNAs correlated positively/negatively, respectively, with CAC-CV%, nine of which also significantly discriminated between high/low CV risk through ROC-AUC analysis. IsomiR-ome analyses uncovered 67 isomiRs highly correlated (R ≥ 0.55) with CAC-CV%. Specific isomiRs of miRNAs 101-3p, 144-3p, 421, and 484 exhibited stronger associations with CAC-CV% compared to their corresponding miRNA. Additionally, while miRNAs 140-3p, 223-3p, 30e-5p, and 342-3p did not correlate with CAC-CV%, specific isomiRs with altered seed sequences exhibited a strong correlation with coronary atherosclerosis burden. Their predicted isomiRs-specific targets were uniquely enriched (compared to their canonical miRNA sequence) in CV Disease (CVD)-related pathways. Two of the isomiRs exhibited discriminative ROC-AUC, and another two showed a correlation with reverse cholesterol transport from cholesterol-loaded macrophages to ApoB-depleted plasma. In summary, we propose a pipeline for exploring circulating isomiR-ome as an approach to uncover novel and strong CVD biomarkers.
Collapse
Affiliation(s)
- Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- The Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Nikhil S. Bhandarkar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Aryeh Shalev
- Cardiology Department, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Idit F. Liberty
- Diabetes Clinic, Soroka University Medical Center, Beer-Sheva 84101, Israel;
| | - Gal Ben-Arie
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - David Yardeni
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Isana Veksler-Lublinsky
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
50
|
Lonardo A, Ballestri S, Mantovani A, Targher G, Bril F. Endpoints in NASH Clinical Trials: Are We Blind in One Eye? Metabolites 2024; 14:40. [PMID: 38248843 PMCID: PMC10820221 DOI: 10.3390/metabo14010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
This narrative review aims to illustrate the notion that nonalcoholic steatohepatitis (NASH), recently renamed metabolic dysfunction-associated steatohepatitis (MASH), is a systemic metabolic disorder featuring both adverse hepatic and extrahepatic outcomes. In recent years, several NASH trials have failed to identify effective pharmacological treatments and, therefore, lifestyle changes are the cornerstone of therapy for NASH. with this context, we analyze the epidemiological burden of NASH and the possible pathogenetic factors involved. These include genetic factors, insulin resistance, lipotoxicity, immuno-thrombosis, oxidative stress, reprogramming of hepatic metabolism, and hypoxia, all of which eventually culminate in low-grade chronic inflammation and increased risk of fibrosis progression. The possible explanations underlying the failure of NASH trials are also accurately examined. We conclude that the high heterogeneity of NASH, resulting from variable genetic backgrounds, exposure, and responses to different metabolic stresses, susceptibility to hepatocyte lipotoxicity, and differences in repair-response, calls for personalized medicine approaches involving research on noninvasive biomarkers. Future NASH trials should aim at achieving a complete assessment of systemic determinants, modifiers, and correlates of NASH, thus adopting a more holistic and unbiased approach, notably including cardiovascular-kidney-metabolic outcomes, without restricting therapeutic perspectives to histological surrogates of liver-related outcomes alone.
Collapse
Affiliation(s)
- Amedeo Lonardo
- AOU—Modena—Ospedale Civile di Baggiovara, 41126 Modena, Italy;
| | | | - Alessandro Mantovani
- Section of Endocrinology and Diabetes, Department of Medicine, University of Verona, Piazzale Stefani, 37126 Verona, Italy
| | - Giovanni Targher
- Department of Medicine, University of Verona, 37126 Verona, Italy;
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore—Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA;
| |
Collapse
|