1
|
Moutsoglou D, Ramakrishnan P, Vaughn BP. Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights. Gut Microbes 2025; 17:2477255. [PMID: 40062406 PMCID: PMC11901402 DOI: 10.1080/19490976.2025.2477255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Nagayama M, Gogokhia L, Longman RS. Precision microbiota therapy for IBD: premise and promise. Gut Microbes 2025; 17:2489067. [PMID: 40190259 PMCID: PMC11980506 DOI: 10.1080/19490976.2025.2489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a spectrum of chronic inflammatory diseases of the intestine that includes subtypes of ulcerative colitis (UC) and Crohn's Disease (CD) and currently has no cure. While IBD results from a complex interplay between genetic, environmental, and immunological factors, sequencing advances over the last 10-15 years revealed signature changes in gut microbiota that contribute to the pathogenesis of IBD. These findings highlight IBD as a disease target for microbiome-based therapies, with the potential to treat the underlying microbial pathogenesis and provide adjuvant therapy to the emerging spectrum of advanced therapies for IBD. Building on the success of fecal microbiota transplantation (FMT) for Clostridioides difficile infection, therapies targeting gut microbiota have emerged as promising approaches for treating IBD; however, unique aspects of IBD pathogenesis highlight the need for more precision in the approach to microbiome therapeutics that leverage aspects of recipient and donor selection, diet and xenobiotics, and strain-specific interactions to enhance the efficacy and safety of IBD therapy. This review focuses on both pre-clinical and clinical studies that support the premise for microbial therapeutics for IBD and aims to provide a framework for the development of precision microbiome therapeutics to optimize clinical outcomes for patients with IBD.
Collapse
Affiliation(s)
- Manabu Nagayama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lasha Gogokhia
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Faith JJ. Assessing live microbial therapeutic transmission. Gut Microbes 2025; 17:2447836. [PMID: 39746875 DOI: 10.1080/19490976.2024.2447836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent Clostridioides difficile infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology. Broad and correct usage of strain detection methods is essential to this advancement. This article describes strain detection approaches, where they are best applied, what data they require, and clinical trial designs that are best suited to their application.
Collapse
Affiliation(s)
- Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Magier SJ, Morley TS, Kelly CR. Optimizing Therapeutic Potential of Fecal Transplant in Inflammatory Bowel Disease. Gastroenterol Clin North Am 2025; 54:277-293. [PMID: 40348488 DOI: 10.1016/j.gtc.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract influenced by genetic, environmental, immune, and microbial factors. Reduced gut microbial diversity and elevated proinflammatory bacteria levels in IBD disrupt mucosal immunity, barrier function, and inflammatory pathways. Fecal microbiota transplantation (FMT) is a potential therapy to restore microbial balance. Studies suggest that FMT may induce remission in mild-to-moderate ulcerative colitis but show limited efficacy in Crohn's disease and pouchitis. Donor microbiota colonization correlates with remission, but varied study designs challenge findings. Further research is required to standardize FMT protocols, optimize donor selection, and ensure long-term safety.
Collapse
Affiliation(s)
- Samantha J Magier
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas S Morley
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Colleen R Kelly
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Sartor RB. Beyond Random Fecal Microbial Transplants: Next Generation Personalized Approaches to Normalize Dysbiotic Microbiota for Treating IBD. Gastroenterol Clin North Am 2025; 54:333-350. [PMID: 40348491 DOI: 10.1016/j.gtc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
This review and commentary outline the strong rationale for normalizing the abnormal microbiota of patients with ulcerative colitis, Crohn's disease, and pouchitis and focus on strategies to improve current variable outcomes of fecal microbial transplant (FMT) in ulcerative colitis. Applying lessons from successful FMT therapy of recurrent Clostridioides difficile and insights from basic scientific understanding of host/microbial interactions provide strategies to enhance clinical outcomes in IBD. We outline promising approaches to develop novel-defined consortia of live biotherapeutic products and combination treatments to improve current results and to optimize and personalize treatment approaches in individual patients and disease subsets.
Collapse
Affiliation(s)
- R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina - Chapel Hill, Chapel Hill, NC 27517, USA; Department of Microbiology & Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina - Chapel Hill, Chapel Hill, NC 27517, USA.
| |
Collapse
|
6
|
Fu M, Wang QW, Liu YR, Chen SJ. The role of the three major intestinal barriers in ulcerative colitis in the elderly. Ageing Res Rev 2025; 108:102752. [PMID: 40210198 DOI: 10.1016/j.arr.2025.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
With the unprecedented pace of global population aging, there has been a parallel epidemiological shift marked by increasing incidence rates of ulcerative colitis (UC) in geriatric populations, imposing a substantial disease burden on healthcare systems globally. The etiopathogenesis of UC in the elderly remains poorly delineated, while current therapeutic strategies require further optimization to accommodate the unique pathophysiological characteristics of elderly patients. This review systematically elucidates the three barrier dysfunction - encompassing the gut microbiota ecosystem, mucosal epithelial integrity, and immunoregulatory network - that collectively drives UC pathogenesis during biological senescence. We emphasize the therapeutic potential of barrier-targeted interventions, particularly highlighting emerging modalities including fecal microbiota transplantation, intestinal organoid regeneration techniques, mesenchymal stem cell-mediated immunomodulation, and precision-engineered Chimeric Antigen Receptor T-cell therapies. Through this multidimensional analysis, we propose a paradigm-shifting approach to UC management in the elderly, advocating for the development of tailored and evidence-based therapeutic interventions that address the complex interplay between age-related biological changes and intestinal barrier homeostasis in elderly patients.
Collapse
Affiliation(s)
- Min Fu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ya-Ru Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shu-Jie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
7
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Kamath S, Bryant RV, Costello SP, Day AS, Forbes B, Haifer C, Hold G, Kelly CR, Li A, Pakuwal E, Stringer A, Tucker EC, Wardill HR, Joyce P. Translational strategies for oral delivery of faecal microbiota transplantation. Gut 2025:gutjnl-2025-335077. [PMID: 40301116 DOI: 10.1136/gutjnl-2025-335077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy for Clostridioides difficile infections and shows promise for various GI and systemic diseases. However, the poor patient acceptability and accessibility of 'conventional' FMT, typically administered via colonoscopies or enemas, hinders its widespread clinical adoption, particularly for chronic conditions. Oral administration of FMT (OralFMT) overcomes these limitations, yet faces distinct challenges, including a significant capsule burden, palatability concerns and poor microbial viability during gastric transit. This review provides a comprehensive analysis of emerging strategies that aim to advance OralFMT by: (1) refining processing technologies (eg, lyophilisation) that enable manufacturing of low-volume FMT formulations for reducing capsule burden and (2) developing delivery technologies that improve organoleptic acceptability and safeguard the microbiota for targeted colonic release. These advancements present opportunities for OralFMT to expand its therapeutic scope, beyond C. difficile infections, towards chronic GI conditions requiring frequent dosing regimens. While this review primarily focuses on optimising OralFMT delivery, it is important to contextualise these advancements within the broader shift towards defined microbial consortia. Live biotherapeutic products (LBPs) offer an alternative approach, yet the interplay between OralFMT and LBPs in clinical practice remains unresolved. We postulate that continued innovation in OralFMT and LBPs via a multidisciplinary approach can further increase therapeutic efficacy and scalability by enabling disease site targeting, co-delivery of therapeutic compounds and overcoming colonisation resistance. Realising these goals positions OralFMT as a cornerstone of personalised care across a range of diseases rooted in microbiome health.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert V Bryant
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Alice S Day
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | - Craig Haifer
- Department of Gastroenterology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anna Li
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evance Pakuwal
- Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea Stringer
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emily C Tucker
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Infectious Diseases Unit, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Hannah Rose Wardill
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul Joyce
- University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Kamlárová A, Kvaková M, Ambro Ľ, Link R, Bertková I, Hertelyová Z, Janíčko M, Hijová E, Štofilová J. Improvement of the inflammation-damaged intestinal barrier and modulation of the gut microbiota in ulcerative colitis after FMT in the SHIME® model. BMC Complement Med Ther 2025; 25:145. [PMID: 40259351 PMCID: PMC12013018 DOI: 10.1186/s12906-025-04889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) seems to be a promising approach in ulcerative colitis (UC) management with the aim of repopulating a patient's dysbiotic microbiota with beneficial bacteria and restore its metabolic activity to its healthy characteristics. Metabolites present after FMT may improve the function and integrity of the intestinal barrier, reduce inflammation, and thus induce remission in an UC patient. In this study we evaluated whether the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model may be a suitable non-invasive alternative for studying and modifying the dysbiotic microbiota in UC by FMT application. METHODS SHIME® model was used to investigate microbial and metabolic changes in the gut microbiota of UC patient induced by FMT application. FMT-modified metabolites from SHIME® were applied to an in vitro model of the intestinal barrier (differentiated Caco-2 and HT-29-MTX-E12 cell lines) compromised by pro-inflammatory cytokines to study the effect of FMT on the intestinal barrier. RESULTS Qualitative and quantitative microbial analyses showed that FMT increased the diversity and variability of the microbiota in UC patient associated with a significant increase in total bacteria, Bacteroidota and Lactobacillus, as well as an increase in butyrate levels. In addition, an increase in the relative abundance of some important species such as Faecalibacterium prausnitzii and Bifidobacterium longum was observed, and there was also an enrichment of the microbiota with new species such as Blautia obeum, Roseburia faecis, Bifidobacterium adolescentis, Fusicatenibacter saccharivorans and Eubacterium rectale. Furthermore, microbial metabolites modulated by FMT from the SHIME® model prevented intestinal barrier damage and inhibited interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) secretion when cell barriers were pretreated with FMT medium for 24 h. In summary, this study confirmed that a single dose of FMT beneficially modulated the composition and metabolic activity of the UC microbiota in the SHIME® model. CONCLUSIONS FMT favorably modulates the gut microbiota of UC patient cultured in the SHIME® model. FMT-modulated SHIME-derived microbial metabolites improve intact and inflamed intestinal barrier properties in vitro. Repeated applications are necessary to maintain the beneficial effect of FMT in SHIME® model.
Collapse
Affiliation(s)
- Anna Kamlárová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Monika Kvaková
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ľuboš Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenna 5, Košice, 040 01, Slovakia
| | - René Link
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Izabela Bertková
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Martin Janíčko
- 2nd Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Emília Hijová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Jana Štofilová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia.
| |
Collapse
|
10
|
Fehily SR, Wright EK, Basnayake C, Wilson-O'Brien AL, Stanley A, Marks EP, Russell EE, Hamilton AL, Bryant RV, Costello SP, Kamm MA. Faecal microbiota transplantation in Crohn's disease: an Australian randomised placebo-controlled trial protocol. BMJ Open 2025; 15:e094714. [PMID: 40254304 PMCID: PMC12010309 DOI: 10.1136/bmjopen-2024-094714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/22/2025] Open
Abstract
INTRODUCTION The enteric microbiota drives inflammation in Crohn's disease. Yet, there are no placebo controlled trials evaluating the efficacy and safety of faecal microbiota transplantation (FMT) in inducing and maintaining remission in patients with active Crohn's disease. The Microbial Restoration (MIRO) study aims to establish this evidence. METHODS AND ANALYSIS At two specialist inflammatory bowel disease centres, 120 enrolled patients will have a 3-week period of diet optimisation (removal of ultra-processed foods) together with a 7-day course of antibiotics (to facilitate subsequent FMT engraftment). Patients will then be stratified to upper gut (for disease proximal to the splenic flexure) or lower gut (distal to the splenic flexure) disease. Patients will then be randomised in a 2:1 ratio to receive anaerobically prepared stool or placebo for 8 weeks either by gastroscopy, or colonoscopy and enemas. Clinical response at 8 weeks (Crohn's Disease Activity Index (CDAI) reduction ≥100 points or to <150 points) is the primary outcome measure. Non-responders to placebo and partial responders to FMT (CDAI decrease <100 but >70) receive FMT for weeks 8-16.Patients achieving clinical response from FMT after 8 or 16 weeks will be randomised in a 1:1 ratio to either a 44-week maintenance phase of FMT or placebo. Patients will receive FMT from one donor throughout the study.The MIRO study will establish whether FMT is an effective and safe therapy to induce and maintain remission in patients with active Crohn's disease. ETHICS AND DISSEMINATION Ethical approval has been received by the St Vincent's Hospital Melbourne Human Research Ethics Committee (HREC-A 084/21). The results will be disseminated in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT04970446; Registered on 20 July 2021.
Collapse
Affiliation(s)
- Sasha R Fehily
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chamara Basnayake
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy L Wilson-O'Brien
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Annalise Stanley
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elise P Marks
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erin E Russell
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy L Hamilton
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert V Bryant
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Sam P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Gefen R, Dourado J, Emile SH, Wignakumar A, Rogers P, Aeschbacher P, Garoufalia Z, Horesh N, Wexner SD. Fecal microbiota transplantation for patients with ulcerative colitis: a systematic review and meta-analysis of randomized control trials. Tech Coloproctol 2025; 29:103. [PMID: 40246750 PMCID: PMC12006273 DOI: 10.1007/s10151-025-03113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/30/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has been shown to restore gut microbiome composition with an acceptable safety profile. FMT in inflammatory bowel disease, specifically ulcerative colitis (UC), has been investigated. We aimed to assess the efficacy of FMT in inducing UC remission. METHODS PubMed, Scopus, Google Scholar, and clinicaltrials.gov were searched for randomized control trials that assessed FMT in inducing UC remission. The primary outcome was combined clinical and endoscopic remission. Secondary outcomes were clinical remission, endoscopic remission, post-treatment overall adverse events, and colitis. Sensitivity analyses, meta-regression, bias assessment, and grading of certainty of evidence were performed. RESULTS A total of 14 studies including 600 patients (55.8% male; median age 40.7 years) were assessed. FMT was used in 299 patients and associated with significantly higher odds of combined clinical and endoscopic remission (OR 2.25, 95% CI 1.54, 3.3; p < 0.0001), clinical remission (OR 2.02, 95% CI 1.4, 2.93; p = 0.0002), and endoscopic remission (OR 1.95, 95% CI 1.17, 3.28; p = 0.011). The odds of post-treatment overall adverse events (OR 1.24, 95% CI 0.79, 1.95; p = 0.34) and colitis (OR 0.85, 95% CI 0.52, 1.93; p = 0.512) were similar between groups. Compared with baseline, FMT was more effective when biologics (OR 2.71), steroids (OR 2.27), or methotrexate (OR 3.07) were used as pre-FMT treatment. Oral delivery of FMT (OR 3.15) and pooled donors (OR 3.32) led to higher odds of remission. On meta-regression, pooled donors and methotrexate pre-treatment were associated with an increased likelihood of remission. CONCLUSIONS FMT is promising in inducing UC remission. Administration of medical treatments before FMT may help achieve higher remission rates. Current evidence shows that oral delivery of FMT and multidonor FMT may confer better results.
Collapse
Affiliation(s)
- R Gefen
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Department of General Surgery Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Dourado
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - S H Emile
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Colorectal Surgery Unit, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - A Wignakumar
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - P Rogers
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - P Aeschbacher
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Z Garoufalia
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - N Horesh
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Department of Surgery and Transplantations, Sheba Medical Center, Ramat Gan, Israel
| | - S D Wexner
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA.
| |
Collapse
|
12
|
Wu X, Li Y, Li P, Lu G, Wu J, Wang Z, Wen Q, Cui B, Wang J, Zhang F. Structural Variations in Ulcerative Colitis-associated Escherichia coli Reduce Fructose Utilization and Aggravate Inflammation Under High-Fructose Diet. Gastroenterology 2025:S0016-5085(25)00635-3. [PMID: 40250773 DOI: 10.1053/j.gastro.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND AND AIMS Structural variations (SVs) have significant effects on microbial phenotypes. The underlying mechanism of functional changes caused by gut microbial SVs in the development of ulcerative colitis (UC) need further investigation. METHODS We performed long-read (Oxford Nanopore Technology-based) and short-read (Illumina-based) metagenomic sequencing on stool samples from 93 patients with UC and 100 healthy controls (HCs) and analyzed microbial SVs. A total of 648 Escherichia coli strains from fecal samples of patients with UC (UC-strains) and HCs (HC-strains) were isolated. SV-associated scrK gene deletion was verified via whole-genome sequencing or targeted polymerase chain reaction. Then, representative UC-strains, HC-strains, and scrK-knockout E coli were used for the in vitro and in vivo experiments to investigate the effects of specific SVs in E coli on fructose utilization ability and colitis. RESULTS E coli in UC with the highest fold change had SV-affected functional differences on fructose metabolism to that of HCs. The fructose utilization gene deletion was common in UC-strains, ostensibly reducing fructose utilization in vitro and leading to fructose-dependent aggravation of colitis in murine models. UC-strains and HC-strains induced comparable colitis under low fructose. However, high fructose exacerbated colitis severity exclusively in UC-strain-colonized mice, with elevated intestinal fructose residues, significant microbiome/metabolome changes, increased inflammation, and gut barrier disruption. These changes were mechanistically dependent on the deletion of the fructose utilization gene scrK. CONCLUSIONS SV-caused difference in fructose utilization and proinflammatory properties in E coli from patients with UC influence the development of UC, emphasizing the importance of fine-scale metagenomic studies in disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuejuan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaochen Lu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianyu Wu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheyu Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Randolph NK, Salerno M, Klein H, Diaz-Campos D, van Balen JC, Winston JA. Preparation of Fecal Microbiota Transplantation Products for Companion Animals. PLoS One 2025; 20:e0319161. [PMID: 40203217 PMCID: PMC11981653 DOI: 10.1371/journal.pone.0319161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/28/2025] [Indexed: 04/11/2025] Open
Abstract
Fecal microbiota transplantation (FMT) is increasingly utilized in small animal medicine for the treatment of a variety of gastrointestinal and non-gastrointestinal disorders. Despite proven clinical efficacy, there is no detailed protocol available for the preparation and storage of FMT products for veterinarians in a variety of clinical settings. Herein, the effect of processing technique on the microbial community structure was assessed with amplicon sequence analysis. Microbial viability was assessed with standard culture techniques using selective media. Given the fastidious nature of many intestinal microbes, colony forming units are considered surrogate viable microbes, representing a portion of potentially viable microbes. FMT products from four screened canine fecal donors and six screened feline fecal donors were processed aerobically according to a double centrifugation protocol adapted from the human medical literature. Fresh feces from an additional three screened canine fecal donors were used to evaluate the effect of cryopreservative, centrifugation, and short-term storage on microbial community structure and in vitro surrogate bacterial viability. Finally, fresh feces from a third group of three screened canine and three screened feline fecal donors were used to evaluate the long-term in vitro surrogate bacterial viability of three frozen and lyophilized FMT products. Microbiota analysis revealed that each canine fecal donor has a unique microbial profile. Processing of canine and feline feces for FMT does not significantly alter the overall microbial community structure. The addition of cryopreservatives and lyopreservatives significantly improved long-term viability, up to 6 months, for frozen and lyophilized FMT products compared to unprocessed raw feces with no cryopreservative. These results prove the practicality of this approach for FMT preparation in veterinary medicine and provide a detailed protocol for researchers and companion animal practitioners. Future in vivo research is needed to evaluate how the preparation and microbial viability of FMT impacts the recipient's microbial community and clinical outcomes across multiple disease phenotypes.
Collapse
Affiliation(s)
- Nina K. Randolph
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew Salerno
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Hannah Klein
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
| | - Joany C. van Balen
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
14
|
Ishikawa D, Watanabe H, Nomura K, Zhang X, Maruyama T, Odakura R, Koma M, Shibuya T, Osada T, Fukuda S, Nakahara T, Terauchi J, Nagahara A, Yamada T. Patient-donor similarity and donor-derived species contribute to the outcome of fecal microbiota transplantation for ulcerative colitis. J Crohns Colitis 2025; 19:jjaf054. [PMID: 40168084 DOI: 10.1093/ecco-jcc/jjaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Indexed: 04/03/2025]
Abstract
BACKGROUND AND AIMS Clinical applications of fecal microbiota transplantation (FMT) for treating ulcerative colitis (UC) have shown promising results. However, whether the beneficial effects of FMT are due to the transfer and colonization of donor-derived species in patients remains unclear. Here, we investigated the factors affecting the efficacy of the administration of triple antibiotics (A-FMT) and the criteria for appropriate donor and patient-donor matching. METHODS Ninety-seven patients with active UC who were enrolled between March 2014 and October 2019 underwent FMT. The clinical features were assessed based on a reduction in Lichtiger's clinical activity index 4 weeks after A-FMT, with long-term responders (LTR) defined as those with no increase or intensification within 12 months after A-FMT. Microbiome analysis was performed on 147 fecal samples (pre-A-FMT, post-A-FMT, and donor) from 49 patient-donor combinations that were assigned using the one-patient-to-one-donor strategy. RESULTS Of the 97 patients, 61 achieved a clinical response, and of those, 35 were classified as having clinical remission. The efficacy of A-FMT was affected by UC severity and previous administration of steroids (P = .027), immunosuppressants (P = .049), and biologics (P = .029). Effective donors were rich in taxa such as Bacteroidota, which are lost in UC, and the abundances of "patient-origin" and "new-amplicon sequence variant" taxa were significantly lower in Responders compared to Nonresponders (Remission; P = .03, LTR; P = .05). "Donor-derived" amplicon sequence variant sequences, Oscillospiraceae UCG-002 and Alistipes, were significantly enriched in Responders (P < .05). Our results showed that the taxonomic composition of patients and the similarity of Bacteroides and butyric-acid-producing bacteria in the patient-donor microbiota significantly influenced A-FMT efficacy (P < .05). CONCLUSIONS This study provides important insights for developing patient-tailored FMT-based therapies for UC.
Collapse
Affiliation(s)
- Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Hikaru Watanabe
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
| | - Kei Nomura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Takafumi Maruyama
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Rina Odakura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Masao Koma
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Fukuda
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | | | | | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | | |
Collapse
|
15
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
16
|
Zhang Y, Wang L, Peng L. The Role of Intestinal Fungi in the Pathogenesis and Treatment of Ulcerative Colitis. Microorganisms 2025; 13:794. [PMID: 40284630 PMCID: PMC12029736 DOI: 10.3390/microorganisms13040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely associated with dysbiosis of the gut microbiome, encompassing not only bacterial communities but also fungal populations. Despite the growing recognition of the gut microbiome's role in UC pathogenesis, the contribution of intestinal fungi has only recently garnered significant attention. In this review, we comprehensively examine the characteristics of intestinal fungi in both healthy individuals and UC patients, elucidating their role in disease pathogenesis and their interactions with bacterial communities. Additionally, we explore the impact of intestinal fungi on disease severity and therapeutic responses in UC. Furthermore, we evaluate the therapeutic potential of antifungal agents, probiotics, and fecal microbiota transplantation (FMT) in UC management, emphasizing the critical role of fungi in these treatment modalities. Future research should prioritize elucidating the multifunctional roles of fungi in UC pathogenesis and their implications for treatment strategies. Moreover, the identification of fungal biomarkers associated with FMT efficacy could pave the way for precision medicine approaches in FMT, offering novel insights into personalized therapeutic interventions for UC.
Collapse
Affiliation(s)
- Yujing Zhang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lin Wang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lihua Peng
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
| |
Collapse
|
17
|
Murgiano M, Bartocci B, Puca P, di Vincenzo F, Del Gaudio A, Papa A, Cammarota G, Gasbarrini A, Scaldaferri F, Lopetuso LR. Gut Microbiota Modulation in IBD: From the Old Paradigm to Revolutionary Tools. Int J Mol Sci 2025; 26:3059. [PMID: 40243712 PMCID: PMC11988433 DOI: 10.3390/ijms26073059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders primarily comprising two main conditions: ulcerative colitis and Crohn's disease. The gut microbiota's role in driving inflammation in IBD has garnered significant attention, yet the precise mechanisms through which the microbiota influences IBD pathogenesis remain largely unclear. Given the limited therapeutic options for IBD, alternative microbiota-targeted therapies-including prebiotics, probiotics, postbiotics, and symbiotics-have been proposed. While these approaches have shown promising results, microbiota modulation is still mainly considered an adjunct therapy to conventional treatments, with a demonstrated impact on patients' quality of life. Fecal microbiota transplantation (FMT), already approved for treating Clostridioides difficile infection, represents the first in a series of innovative microbiota-based therapies under investigation. Microbial biotherapeutics are emerging as personalized and cutting-edge tools for IBD management, encompassing next-generation probiotics, bacterial consortia, bacteriophages, engineered probiotics, direct metabolic pathway modulation, and nanotherapeutics. This review explores microbial modulation as a therapeutic strategy for IBDs, highlighting current approaches and examining promising tools under development to better understand their potential clinical applications in managing intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Federica di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Alfredo Papa
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Rome, Italy
| |
Collapse
|
18
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Hauser G, Benjak Horvat I, Rajilić-Stojanović M, Krznarić-Zrnić I, Kukla M, Aljinović-Vučić V, Mikolašević I. Intestinal Microbiota Modulation by Fecal Microbiota Transplantation in Nonalcoholic Fatty Liver Disease. Biomedicines 2025; 13:779. [PMID: 40299326 PMCID: PMC12024620 DOI: 10.3390/biomedicines13040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Numerous factors are involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), which are responsible for its development and progression as an independent entity, but also thanks to their simultaneous action. This is explained by the hypothesis of multiple parallel hits. These factors are insulin resistance, lipid metabolism alteration, oxidative stress, endoplasmic reticulum stress, inflammatory cytokine liberation, gut microbiota dysbiosis or gut-liver axis activation. This is a systematic review which has an aim to show the connection between intestinal microbiota and the role of its disbalance in the development of NAFLD. The gut microbiota is made from a wide spectrum of microorganisms that has a systemic impact on human health, with a well-documented role in digestion, energy metabolism, the stimulation of the immune system, synthesis of essential nutrients, etc. It has been shown that dysbiosis is associated with all three stages of chronic liver disease. Thus, the modulation of the gut microbiota has attracted research interest as a novel therapeutic approach for the management of NAFLD patients. The modification of microbiota can be achieved by substantial diet modification and the application of probiotics or prebiotics, while the most radical effects are observed by fecal microbiota transplantation (FMT). Given the results of FMT in the context of metabolic syndrome (MetS) and NAFLD in animal models and scarce pilot studies on humans, FMT seems to be a promising treatment option that could reverse intestinal dysbiosis and thereby influence the course of NAFLD.
Collapse
Affiliation(s)
- Goran Hauser
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Indira Benjak Horvat
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- County Hospital Varaždin, 42000 Varaždin, Croatia
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering & Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Irena Krznarić-Zrnić
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
| | - Michail Kukla
- Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 31-121 Cracow, Poland;
- Department of Endoscopy, University Hospital in Cracow, 30-688 Cracow, Poland
- 1st Infectious Diseases Ward, Gromkowski Regional Specialist Hospital, Wroclaw, 5 Koszarowa St., 50-149 Wroclaw, Poland
| | - Vedrana Aljinović-Vučić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Medical Affairs Department, Jadran Galenski Laboratorij d.d., 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
20
|
Sun J, Song S, Liu J, Chen F, Li X, Wu G. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. NPJ Biofilms Microbiomes 2025; 11:43. [PMID: 40069181 PMCID: PMC11897378 DOI: 10.1038/s41522-025-00678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
In order to decipher the relationship between gut microbiota imbalance and cancer, this paper reviewed the role of intestinal microbiota in anticancer therapy and related mechanisms, discussed the current research status of gut microbiota as a biomarker of cancer, and finally summarized the reasonable means of regulating gut microbiota to assist cancer therapy. Overall, our study reveals that the gut microbiota can serve as a potential target for improving cancer management.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyan Song
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahua Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
21
|
Turjeman S, Rozera T, Elinav E, Ianiro G, Koren O. From big data and experimental models to clinical trials: Iterative strategies in microbiome research. Cell 2025; 188:1178-1197. [PMID: 40054445 DOI: 10.1016/j.cell.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025]
Abstract
Microbiome research has expanded significantly in the last two decades, yet translating findings into clinical applications remains challenging. This perspective discusses the persistent issue of correlational studies in microbiome research and proposes an iterative method leveraging in silico, in vitro, ex vivo, and in vivo studies toward successful preclinical and clinical trials. The evolution of research methodologies, including the shift from small cohort studies to large-scale, multi-cohort, and even "meta-cohort" analyses, has been facilitated by advancements in sequencing technologies, providing researchers with tools to examine multiple health phenotypes within a single study. The integration of multi-omics approaches-such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics-provides a comprehensive understanding of host-microbe interactions and serves as a robust hypothesis generator for downstream in vitro and in vivo research. These hypotheses must then be rigorously tested, first with proof-of-concept experiments to clarify the causative effects of the microbiota, and then with the goal of deep mechanistic understanding. Only following these two phases can preclinical studies be conducted with the goal of translation into the clinic. We highlight the importance of combining traditional microbiological techniques with big-data approaches, underscoring the necessity of iterative experiments in diverse model systems to enhance the translational potential of microbiome research.
Collapse
Affiliation(s)
- Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, DKFZ, Heidelberg, Germany
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Zou B, Liu S, Dong C, Shen H, Lv Y, He J, Li X, Ruan M, Huang Z, Shu S. Fecal microbiota transplantation restores gut microbiota diversity in children with active Crohn's disease: a prospective trial. J Transl Med 2025; 23:288. [PMID: 40050917 PMCID: PMC11887145 DOI: 10.1186/s12967-024-05832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Clinical data on oral fecal microbiota transplantation (FMT), a promising therapy for Crohn's disease (CD), are limited. Herein, we determined the short-term safety and feasibility of FMT for pediatric patients with active CD. METHODS In this open-label, parallel-group, single-center prospective trial, patients with active CD were treated with oral FMT capsules combined with partial enteral nutrition (PEN) (80%). The control group comprised pediatric patients with active CD treated with PEN (80%) and immunosuppressants. Thirty-three patients (11.6 ± 1.82 years)-17 in the capsule and 16 in the control groups-were analyzed. Data regarding the adverse events, clinical reactions, intestinal microbiome composition, and biomarker parameters were collected and compared post-treatment. RESULTS At week 10, the clinical and endoscopic remission rates did not differ between the two groups. By week 10, the mean fecal calprotectin level, C-reactive protein level, erythrocyte sedimentation rate, simple endoscopic score for CD, and pediatric CD activity index decreased significantly in the capsule group (all P < 0.05). The main adverse event was mild-to-moderate constipation. Core functional genera, Agathobacter, Akkermansia, Roseburia, Blautia, Subdoligranulum, and Faecalibacterium, were lacking pre-treatment. Post-treatment, the implantation rates of these core functional genera increased significantly, which positively correlated with the anti-inflammatory factor, interleukin (IL)-10, and negatively correlated with the pro-inflammatory factor, IL-6. The combination of these six functional genera distinguished healthy children from those with CD (area under the curve = 0.96). CONCLUSIONS Oral FMT capsules combined with PEN (80%) could be an effective therapy for children with active CD. The six core functional genera identified here may be candidate biomarkers for identifying children with CD. TRIAL REGISTRATION ClinicalTrials.gov, retrospectively registered, ID# NCT05321758, NCT05321745, date of registration: 2022-04-04.
Collapse
Affiliation(s)
- Biao Zou
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Shengxuan Liu
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Chen Dong
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, 430030, Hubei, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, 430030, Hubei, China
| | - Jiayi He
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xuesong Li
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Mengling Ruan
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhihua Huang
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Sainan Shu
- Pediatric Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
23
|
Caenepeel C, Deleu S, Vazquez Castellanos JF, Arnauts K, Braekeleire S, Machiels K, Baert F, Mana F, Pouillon L, Hindryckx P, Lobaton T, Louis E, Franchimont D, Verstockt B, Ferrante M, Sabino J, Vieira-Silva S, Falony G, Raes J, Vermeire S. Rigorous Donor Selection for Fecal Microbiota Transplantation in Active Ulcerative Colitis: Key Lessons From a Randomized Controlled Trial Halted for Futility. Clin Gastroenterol Hepatol 2025; 23:621-631.e7. [PMID: 38788915 DOI: 10.1016/j.cgh.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND & AIMS Rigorous donor preselection on microbiota level, strict anaerobic processing, and repeated fecal microbiota transplantation (FMT) administration were hypothesized to improve FMT induction of remission in ulcerative colitis (UC). METHODS The RESTORE-UC trial was a multi-centric, double-blind, sham-controlled, randomized trial. Patients with moderate to severe UC (defined by total Mayo 4-10) were randomly allocated to receive 4 anaerobic-prepared allogenic or autologous donor FMTs. Allogenic donor material was selected after a rigorous screening based on microbial cell count, enterotype, and the abundance of specific genera. The primary endpoint was steroid-free clinical remission (total Mayo ≤2, no sub-score >1) at week 8. A pre-planned futility analysis was performed after 66% (n = 72) of intended inclusions (n = 108). Quantitative microbiome profiling (n = 44) was performed at weeks 0 and 8. RESULTS In total, 72 patients were included, of which 66 received at least 1 FMT (allogenic FMT, n = 30 and autologous FMT, n = 36). At week 8, respectively, 3 and 5 patients reached the primary endpoint of steroid-free clinical remission (P = .72), indicating no treatment difference of at least 5% in favor of allogenic FMT. Hence, the study was stopped due to futility. Microbiome analysis showed numerically more enterotype transitions upon allogenic FMT compared with autologous FMT, and more transitions were observed when patients were treated with a different enterotype than their own at baseline (P = .01). Primary response was associated with lower total Mayo scores, lower bacterial cell counts, and higher Bacteroides 2 prevalence at baseline. CONCLUSION The RESTORE-UC trial did not meet its primary endpoint of increased steroid-free clinical remission at week 8. Further research should additionally consider patient selection, sterilized sham-control, increased frequency, density, and viability of FMT prior to administration. CLINICALTRIALS gov, Number: NCT03110289.
Collapse
Affiliation(s)
- Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Sara Deleu
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jorge Francisco Vazquez Castellanos
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; Center for Microbiology, VIB, Leuven, Belgium
| | - Kaline Arnauts
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sara Braekeleire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Filip Baert
- AZ Delta Roeselare, Department of Gastroenterology and Hepatology, Roeselare, Belgium
| | - Fazia Mana
- University Hospitals Brussels, Department of Gastroenterology and Hepatology, Brussels, Belgium
| | - Lieven Pouillon
- Imelda Hospital Bonheiden, Department of Gastroenterology and Hepatology, Bonheiden, Belgium
| | - Pieter Hindryckx
- Ghent University Hospital, Department of Gastroenterology, Ghent, Belgium
| | - Triana Lobaton
- Ghent University Hospital, Department of Gastroenterology, Ghent, Belgium; Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Edouard Louis
- Liège University Hospital, CHU Liège, Department of Gastroenterology and Hepatology, Liège, Belgium
| | - Denis Franchimont
- Erasmus Hospital Brussels, Department of Gastroenterology and Hepatology, Brussels, Belgium
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - João Sabino
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; Center for Microbiology, VIB, Leuven, Belgium; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; Center for Microbiology, VIB, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium.
| |
Collapse
|
24
|
Zhang L, Fu X, Li J, Xiao W, Xiong X, Lv H, Zhang Z, Ju J. Treatment of Acute Ulcerative Colitis with Zinc Hyaluronate in Mice. J Microbiol Biotechnol 2025; 35:e2408050. [PMID: 39947703 PMCID: PMC11876020 DOI: 10.4014/jmb.2408.08050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease arising from numerous factors, while UC patients face insufficient treatment options and a high incidence of adverse reactions to the current therapies. As a functional food additive, hyaluronic acid plays a certain role in intestinal repair. In this study, we constructed a mouse model of dextran sulfate sodium (DSS)-induced UC to examine the effects and underlying mechanisms of action of zinc hyaluronate (ZnHA) on the pathogenesis of UC. ZnHA effectively alleviated key clinical UC symptoms, such as weight loss, loose stools, and bloody stools. Mechanistically, ZnHA attenuated the expression of inflammatory factors, such as tumor necrosis factor-α, interleukin (IL)-6, and myeloperoxidase while upregulating the expression of IL-10. Furthermore, through intestinal flora and short-chain fatty acid analyses, ZnHA was found to promote propionic acid production by enriching beneficial bacteria. ZnHA simultaneously enhanced the expression of tight junction proteins, specifically ZO-1 and occludin, thereby restoring intestinal barrier function. Overall, our findings elucidate the therapeutic potential of ZnHA in treating acute UC by inhibiting intestinal inflammation and regulating flora, while also providing further theoretical support for development of hyaluronic acid to treat this disease.
Collapse
Affiliation(s)
- Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xuedan Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jiazheng Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Wan Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Xi Xiong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
25
|
Elmassry MM, Sugihara K, Chankhamjon P, Kim Y, Camacho FR, Wang S, Sugimoto Y, Chatterjee S, Chen LA, Kamada N, Donia MS. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. Cell Host Microbe 2025; 33:218-234.e12. [PMID: 39947133 DOI: 10.1016/j.chom.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025]
Abstract
Gut microbiome changes have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a meta-analysis of small molecule biosynthetic gene clusters (BGCs) in metagenomic samples of the gut microbiome from inflammatory bowel disease (IBD) patients and matched healthy subjects and identified two Clostridia-derived BGCs that are significantly associated with Crohn's disease (CD), a main IBD type. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the CD-enriched BGCs, which we subsequently detected in fecal samples from IBD patients. Finally, we show that the discovered molecules disrupt gut permeability and exacerbate disease in chemically or genetically susceptible mouse models of colitis. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of disease-relevant microbiome-host interactions.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francine R Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Seema Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
26
|
Lopetuso LR, Deleu S, Puca P, Abreu MT, Armuzzi A, Barbara G, Caprioli F, Chieng S, Costello SP, Damiani A, Danese S, Del Chierico F, D'Haens G, Dotan I, Facciotti F, Falony G, Fantini MC, Fiorino G, Gionchetti P, Godny L, Hart A, Kupčinskas J, Iqbal T, Laterza L, Lombardini L, Maharshak N, Marasco G, Masucci L, Papa A, Paramsothy S, Petito V, Piovani D, Pugliese D, Putignani L, Raes J, Ribaldone DG, Sanguinetti M, Savarino EV, Sokol H, Vetrano S, Ianiro G, Cammarota G, Cominelli F, Pizarro TT, Tilg H, Gasbarrini A, Vermeire S, Scaldaferri F. Guidance for Fecal Microbiota Transplantation Trials in Ulcerative Colitis: The Second ROME Consensus Conference. Inflamm Bowel Dis 2025:izaf013. [PMID: 39932857 DOI: 10.1093/ibd/izaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is emerging as a potential treatment modality for individuals living with inflammatory bowel disease (IBD). Despite its promise, the effectiveness of FMT for treating IBD, particularly for ulcerative colitis (UC), still requires thorough clinical investigation. Notwithstanding differences in methodologies, current studies demonstrate its potential for inducing remission in UC patients. Therefore, standardized and robust randomized clinical trials (RCTs) are needed to further support its efficacy for managing UC. The aim of the second Rome Consensus Conference was to address gaps and uncertainties identified in previous research regarding FMT and to offer a robust framework for future studies applied to the treatment of UC. METHODS Global experts in the field of clinical IBD, mucosal immunology, and microbiology (N = 48) gathered to address the need for standardized clinical trials in FMT investigation. The group focused on key issues, such as stool donation, donor selection, characterization of fecal biomass, potential administration routes, as well as the process of induction, maintenance, and endpoint readouts. RESULTS AND CONCLUSIONS The consensus achieved during this conference established standardization of methods and protocols to enhance the current quality of research, with the aim of eventual implementation of FMT in managing UC and the ultimate goal of improving patient outcomes.
Collapse
Affiliation(s)
- Loris R Lopetuso
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Life Science, Health, and Health Professions, Link Campus University, Rome, Italy
| | - Sara Deleu
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Chronic Diseases, Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierluigi Puca
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Teresa Abreu
- Division of Gastroenterology, Department of Medicine, Crohn's and Colitis Center, University of Miami - Miller School of Medicine, Miami, FL, USA
| | - Alessandro Armuzzi
- IBD Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Rome, Italy
- IRCCS Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Siew Chieng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Samuel Paul Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Andrea Damiani
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
| | - Federica Facciotti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Gwen Falony
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Massimo Claudio Fantini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Gastroenterology Unit, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | | | - Paolo Gionchetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IBD Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna,, Italy
| | - Lihi Godny
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
| | - Ailsa Hart
- IBD Unit, St Mark's Hospital, Harrow, Middlesex, UK
| | - Juozas Kupčinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tariq Iqbal
- Microbiome Treatment Center, University of Birmingham, Birmingham, UK
| | - Lucrezia Laterza
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Letizia Lombardini
- Centro Nazionale Trapianti (CNT), Istituto Superiore di Sanità, Rome, Italy
| | - Nitsan Maharshak
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna,, Italy
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Papa
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudarshan Paramsothy
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, Australia
| | - Valentina Petito
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Daniela Pugliese
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Research Area of Immunology, Rheumatology and Infectious Diseases, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Gent, Belgium
| | | | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Harry Sokol
- INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
- Department of Gastroenterology, Saint Antoine Hospital, Paris, France
| | - Stefania Vetrano
- Laboratory of Gastrointestinal Immunopathology, Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gianluca Ianiro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, UOC di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Scienze Mediche e Chirurgiche, UOC di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Herbert Tilg
- Department of Gastroenterology, Saint Antoine Hospital, Paris, France
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, UOC di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Severine Vermeire
- Department of Chronic Diseases, Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Franco Scaldaferri
- IBD Unit, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
27
|
Rågård N, Baumwall SMD, Paaske SE, Hansen MM, Høyer KL, Mikkelsen S, Erikstrup C, Dahlerup JF, Hvas CL. Validation methods for encapsulated faecal microbiota transplantation: a scoping review. Therap Adv Gastroenterol 2025; 18:17562848251314820. [PMID: 39926318 PMCID: PMC11806493 DOI: 10.1177/17562848251314820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Faecal microbiota transplantation (FMT) is increasingly used for diseases associated with a disrupted intestinal microbiome, mainly Clostridioides difficile infection. Encapsulated FMT is a patient-friendly application method that improves accessibility and convenience. Capsule processing may be standardised, but validation protocols are warranted. This review aimed to describe published validation methods for encapsulated FMT. Original studies reporting using encapsulated faecal formulations were included, regardless of indication. Studies were excluded if they did not address processing and validation or used non-donor-derived content. We conducted a comprehensive scoping review, implementing a systematic search strategy in PubMed, Embase and Web of Science. Processing data and validation methods were registered during full-text analysis and combined to create an overview of approaches for assessing quality in encapsulated FMT processing. The searches identified 324 unique studies, of which 44 were included for data extraction and analysis. We identified eight validation covariables: donor selection, pre-processing, preservation, oxygen-sparing processing, microbial count, viability, engraftment and clinical effect outcomes, from which we constructed a model for quality assessment of encapsulated FMT that exhaustively categorised processing details and validation measures. Our model comprised three domains: (1) Processing (donor selection and processing protocol), (2) Content analysis (microbiota measures and dose measures) and (3) Clinical effect (engraftment and clinical outcomes). No studies presented a reproducible capsule protocol; their validation strategies were sparse and divergent. The validation of FMT capsules is heterogeneous, and processing requires relevant standardisation protocols, mainly focusing on capsule content. Future studies should report validation covariables to enable accurate comparative assessments of clinical effects.
Collapse
Affiliation(s)
- Nina Rågård
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sara Ellegaard Paaske
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Lundby Høyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Kucharski R, Sobocki BK, Stachowska E, Bulman N, Kalinowski L, Kaźmierczak-Siedlecka K. Dental problems and oral microbiome alterations in ulcerative colitis. Front Immunol 2025; 16:1502605. [PMID: 39975550 PMCID: PMC11836005 DOI: 10.3389/fimmu.2025.1502605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Ulcerative colitis is a chronic disease that has not well-established etiology. The role of microbial dysregulation in its pathogenesis has been recently highlighted. Overall, microbiome alterations concern the reduction of bacterial abundance and diversity, resulting in gut microbiome imbalance negatively affecting immunological aspects. There is a link between ulcerative colitis and the oral microbiome. The changes of oral microbiome are found at many levels, from gently dysbiotic composition to the presence of the main periodontal microbes. The analysis of oral microbiome can be a part of personalized medicine due to the fact that it is a potential biomarker. Patients with ulcerative colitis may manifest dental symptoms/problems, such as periodontitis (strongly related to the red-complex pathogens-Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and bacteria belonging to the other complexes, such as Fusobacterium nucleatum and Aggregatibacter actinomycetecomitans), dental caries, oral ulcerations, leukoplakia, halitosis, and others. Notably, the DMFT (Decayed, Missing, Filled Teeth) index is higher in these patients compared to healthy subjects. According to some data, oral lichen planus (which is a disease with an immunological background) can also be observed in ulcerative colitis patients. It seems that deep understanding of ulcerative colitis in association with oral microbiome, immunology, and dental manifestations may be crucial to provide complex treatment from a dental point of view.
Collapse
Affiliation(s)
- Robert Kucharski
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- Neodentica Dentistry Center, Gdansk, Poland
| | - Bartosz Kamil Sobocki
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nikola Bulman
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
29
|
Stallmach A. [The gastrointestinal microbiome - vision and mission]. Dtsch Med Wochenschr 2025; 150:157-162. [PMID: 39879970 DOI: 10.1055/a-2303-3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The gastrointestinal microbiome influences physiological functions and is altered in a variety of diseases. The causality of "dysbiosis" in the pathogenesis is not always proven; association studies are often involved. Patients with IBD, bacteria, fungi, bacteriophages, and archaea show disease-typical patterns associated with metabolome disturbances. Fecal microbiome transfer (FMT) for treating various diseases is the subject of numerous clinical studies. Currently, recurrent Clostridioides difficile infection (rCDI) is the only confirmed indication recommended in medical guidelines. In Germany, the FMT is subject to the Medicines Act and may only be carried out as part of individual healing attempts or clinical studies. For patient safety, repeated donor screening, ideally with the construction of a chair bench, is necessary. This significantly limits the nationwide availability of the FMT in Germany. Microbiota-based therapeutics prepared from the stool of tested donors have recently been approved by the US Food and Drug Administration (FDA) for the prevention of rCDI. More microbiome-based medicines can be expected in the future.
Collapse
|
30
|
Ananthakrishnan AN, Whelan K, Allegretti JR, Sokol H. Diet and Microbiome-Directed Therapy 2.0 for IBD. Clin Gastroenterol Hepatol 2025; 23:406-418. [PMID: 38992408 DOI: 10.1016/j.cgh.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory bowel disease (IBD) comprises chronic and relapsing disorders of the gastrointestinal tract, characterized by dysregulated immune responses to the gut microbiome. The gut microbiome and diet are key environmental factors that influence the onset and progression of IBD and can be leveraged for treatment. In this review, we summarize the current evidence on the role of the gut microbiome and diet in IBD pathogenesis, and the potential of microbiome-directed therapies and dietary interventions to improve IBD outcomes. We discuss available data and the advantages and drawbacks of the different approaches to manipulate the gut microbiome, such as fecal microbiota transplantation, next-generation and conventional probiotics, and postbiotics. We also review the use of diet as a therapeutic tool in IBD, including the effects in induction and maintenance, special diets, and exclusive enteral nutrition. Finally, we highlight the challenges and opportunities for the translation of diet and microbiome interventions into clinical practice, such as the need for personalization, manufacturing and regulatory hurdles, and the specificity to take into account for clinical trial design.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Jessica R Allegretti
- Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Univeresitaire, Paris, France; Micalis Institute, AgroParisTech, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
31
|
Jiang X, Zheng Y, Sun H, Dang Y, Yin M, Xiao M, Wu T. Fecal Microbiota Transplantation Improves Cognitive Function of a Mouse Model of Alzheimer's Disease. CNS Neurosci Ther 2025; 31:e70259. [PMID: 39957504 PMCID: PMC11831070 DOI: 10.1111/cns.70259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND A growing body of evidence suggests a link between the gut microbiota and Alzheimer's disease (AD), although the underlying mechanisms remain elusive. This study aimed to investigate the impact of fecal microbiota transplantation (FMT) on cognitive function in a mouse model of AD. METHODS Four-month-old 5 × FAD (familial Alzheimer's disease) mice underwent antibiotic treatment to deplete their native gut microbiota. Subsequently, they received FMT either weekly or every other day. After 8 weeks, cognitive function and β-amyloid (Aβ) load were assessed through behavioral testing and pathological analysis, respectively. The composition of the gut microbiota was analyzed using 16S rRNA sequencing. RESULTS Initial weekly FMT failed to alleviate memory deficits or reduce brain Aβ pathology in 5 × FAD mice. In contrast, FMT administered every other day effectively restored gut dysbiosis in 5 × FAD mice and decreased Aβ pathology and lipopolysaccharide levels in the colon and hippocampus. Mechanistically, FMT reduced the expression of amyloid β precursor protein, β-site APP cleaving enzyme 1, and presenilin-1, potentially by inhibiting the Toll-like receptor 4/inhibitor of kappa B kinase β/nuclear factor kappa-B signaling pathway. However, the cognitive benefits of FMT on 5 × FAD mice diminished over time. CONCLUSION These findings demonstrate the dose- and time-dependent efficacy of FMT in mitigating AD-like pathology, underscoring the potential of targeting the gut microbiota for AD treatment.
Collapse
Affiliation(s)
- Xueqin Jiang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Yu Zheng
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Huaiqing Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Yini Dang
- Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengmei Yin
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Ming Xiao
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Brain Institute, Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Ting Wu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| |
Collapse
|
32
|
Shang J, Del Valle DM, Britton GJ, Mead K, Rajpal U, Chen-Liaw A, Mogno I, Li Z, Menon R, Gonzalez-Kozlova E, Elkrief A, Peled JU, Gonsalves TR, Shah NJ, Postow M, Colombel JF, Gnjatic S, Faleck DM, Faith JJ. Baseline colitogenicity and acute perturbations of gut microbiota in immunotherapy-related colitis. J Exp Med 2025; 222:e20232079. [PMID: 39666007 PMCID: PMC11636624 DOI: 10.1084/jem.20232079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/17/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy-related colitis (irC) frequently emerges as an immune-related adverse event during immune checkpoint inhibitor therapy and is presumably influenced by the gut microbiota. We longitudinally studied microbiomes from 38 ICI-treated cancer patients. We compared 13 ICI-treated subjects who developed irC against 25 ICI-treated subjects who remained irC-free, along with a validation cohort. Leveraging a preclinical mouse model, predisease stools from irC subjects induced greater colitigenicity upon transfer to mice. The microbiota during the first 10 days of irC closely resembled inflammatory bowel disease microbiomes, with reduced diversity, increased Proteobacteria and Veillonella, and decreased Faecalibacterium, which normalized before irC remission. These findings highlight the irC gut microbiota as functionally distinct but phylogenetically similar to non-irC and healthy microbiomes, with the exception of an acute, transient disruption early in irC. We underscore the significance of longitudinal microbiome profiling in developing clinical avenues to detect, monitor, and mitigate irC in ICI therapy cancer patients.
Collapse
Affiliation(s)
- Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Marie Del Valle
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K.R. Mead
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvija Rajpal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle Elkrief
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Tina Ruth Gonsalves
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil J. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M. Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Junca H, Steube A, Mrowietz S, Stallhofer J, Vital M, dos Anjos Borges LG, Pieper DH, Stallmach A. Bacterial and viral assemblages in ulcerative colitis patients following fecal microbiota and fecal filtrate transfer. ISME COMMUNICATIONS 2025; 5:ycae167. [PMID: 39830095 PMCID: PMC11740987 DOI: 10.1093/ismeco/ycae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Fecal microbiota filtrate transfer is discussed as a safe alternative to fecal microbiota transfer (FMT) to treat ulcerative colitis. We investigated modulation of viral and bacterial composition during fecal microbiota filtrate transfer followed by FMT in six patients with active ulcerative colitis (where clinical activity improved in three patients after filtrate transfer) and combined 16S ribosomal RNA gene amplicon sequencing with a virome analysis pipeline including fast viral particle enrichment and metagenome mapping to detect frequencies of 45,033 reference bacteriophage genomes. We showed that after antibiotic treatment and during filtrate transfer, the bacterial community typically adopted a stable composition distinct to that before antibiotic treatment, with no change toward a donor community. FMT in contrast typically changed the bacterial community to a community with similarity to donor(s). There were no indications of an establishment of predominant donor viruses during filtrate transfer but a remodeling of the virome. In contrast, the establishment of donor viruses during FMT correlated with the predicted hosts established during such transfer. Our approach warrants further investigation in a randomized trial to evaluate larger therapeutic interventions in a comparable and efficient manner.
Collapse
Affiliation(s)
- Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| | - Simon Mrowietz
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Luiz Gustavo dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), University Hospital Jena, D-07747 Jena, Germany
| |
Collapse
|
34
|
Zhang T, Li X, Li J, Sun F, Duan L. Gut microbiome-targeted therapies as adjuvant treatments in inflammatory bowel diseases: a systematic review and network meta-analysis. J Gastroenterol Hepatol 2025; 40:78-88. [PMID: 39482823 DOI: 10.1111/jgh.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND AND AIM Gut microbiome-targeted therapies (MTTs), including prebiotics, probiotics, synbiotics, and fecal microbiota transplantation (FMT), have been widely used in inflammatory bowel diseases (IBD), but the best MTTs has not yet been confirmed. We performed a network meta-analysis (NMA) to examine this in ulcerative colitis (UC) and Crohn's disease (CD). METHODS We searched for randomized controlled trials (RCTs) on the efficacy and safety of MTTs as adjuvant therapies for IBD until December 10, 2023. Data were pooled using a random effects model, with efficacy reported as pooled relative risks with 95% CIs, and interventions ranked according to means of surfaces under cumulative ranking values. RESULTS Thirty-eight RCTs met the inclusion criteria. Firstly, we compared the efficacy of MTTs in IBD patients. Only FMT and probiotics were superior to placebo in all outcomes, but FMT ranked best in improving clinical response rate and clinical and endoscopic remission rate, and probiotics ranked second in reducing clinical relapse rate showed significant efficacy, while prebiotics ranked first showed nonsignificant efficacy. Subsequently, we conducted NMA for specific MTT formulations in UC and CD separately, which revealed that FMT, especially combined FMT via colonoscopy and enema, showed significant efficacy and was superior in improving clinical response and remission rate of active UC patients. As for endoscopic remission and clinical relapse, multistrain probiotics based on specific genera of Lactobacillus and Bifidobacterium showed significant efficacy and ranked best in UC. In CD, we found that no MTTs were significantly better than placebo, but synbiotics comprising Bifidobacterium and fructo-oligosaccharide/inulin mix and Saccharomyces ranked best in improving clinical remission and reducing clinical relapse, respectively. Moreover, FMT was safe in both UC and CD. CONCLUSIONS FMT and multistrain probiotics showed superior efficacy in UC. However, the efficacy of MTTs varies among different IBD subtypes and disease stages; thus, the personalized treatment strategies of MTTs are necessary.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Feng Sun
- China Center for Evidence Based Medical and Clinical Research, Peking University, Beijing, China
- Institute of Public Health, Peking University, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
35
|
Sin HCL, Haifer C. Faecal transplantation: the good, the bad and the ugly. Intern Med J 2025; 55:35-40. [PMID: 39629909 DOI: 10.1111/imj.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/13/2024] [Indexed: 01/18/2025]
Abstract
There continues to be significant interest from both clinicians and patients in using faecal transplantation, as the integral role of the gut microbiome is increasingly recognised in various disease conditions, both within and beyond the gut. This Clinical Perspectives article provides an overview of existing literature, factors limiting the use of faecal microbial transplantation in clinical practice and exciting new advancements on the horizon.
Collapse
Affiliation(s)
- Hiu C L Sin
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
| | - Craig Haifer
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Lee JY, Kim Y, Kim J, Kim JK. Fecal Microbiota Transplantation: Indications, Methods, and Challenges. J Microbiol 2024; 62:1057-1074. [PMID: 39557804 DOI: 10.1007/s12275-024-00184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.
Collapse
Affiliation(s)
- Jee Young Lee
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Yehwon Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyoun Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea.
| |
Collapse
|
37
|
Feng M, Zou Z, Shou P, Peng W, Liu M, Li X. Gut microbiota and Parkinson's disease: potential links and the role of fecal microbiota transplantation. Front Aging Neurosci 2024; 16:1479343. [PMID: 39679259 PMCID: PMC11638248 DOI: 10.3389/fnagi.2024.1479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and seriously affects the quality of life of elderly patients. PD is characterized by the loss of dopaminergic neurons in the substantia nigra as well as abnormal accumulation of α-synuclein in neurons. Recent research has deepened our understanding of the gut microbiota, revealing that it participates in the pathological process of PD through the gut-brain axis, suggesting that the gut may be the source of PD. Therefore, studying the relationship between gut microbiota and PD is crucial for improving our understanding of the disease's prevention, diagnosis, and treatment. In this review, we first describe the bidirectional regulation of the gut-brain axis by the gut microbiota and the mechanisms underlying the involvement of gut microbiota and their metabolites in PD. We then summarize the different species of gut microbiota found in patients with PD and their correlations with clinical symptoms. Finally, we review the most comprehensive animal and human studies on treating PD through fecal microbiota transplantation (FMT), discussing the challenges and considerations associated with this treatment approach.
Collapse
Affiliation(s)
- Maosen Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pingping Shou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Peng
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
38
|
Pan X, Song Y, Liang Y, Feng G, Wang Z. Roseburia intestinalis: A possible target for vascular calcification. Heliyon 2024; 10:e39865. [PMID: 39524709 PMCID: PMC11550659 DOI: 10.1016/j.heliyon.2024.e39865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
With the advancement of metagenomics and metabolomics techniques, the crucial role of the gut microbiome in intestinal, cardiovascular, and metabolic disorders has been extensively explored. Vascular calcification (VC) is common in atherosclerosis, hypertension, diabetes mellitus, and chronic kidney disease. Moreover, it is a significant cause of cardiovascular diseases and mortality. Roseburia intestinalis, as a promising candidate for the next generation of probiotics, plays a substantial role in inhibiting the systemic inflammatory response and holds great potential in the treatment of intestinal diseases, cardiovascular diseases, and metabolic disorders. Its primary metabolite, butyrate, acts on specific receptors (GPR43, GPR41, GPR109a). It enters cells via transporters (MCT1, SMCT1), affecting gene expression through HDACs, PPARγ and Nrf2, promoting energy metabolism and changing the concentration of other metabolites (including AGEs, LPS, BHB) in the circulation to affect the body's life activities. In this paper, we focus on the possible mechanism of the primary metabolite butyrate of Roseburia intestinalis in inhibiting VC, which may become a potential therapeutic target for the treatment of VC and the ways to enhance its effect.
Collapse
Affiliation(s)
- Xinyun Pan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 21200, China
| | - Yunjian Song
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 21200, China
| | - Yapeng Liang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 21200, China
| |
Collapse
|
39
|
Laperrousaz B, Levast B, Fontaine M, Nancey S, Dechelotte P, Doré J, Lehert P. Safety comparison of single-donor and pooled fecal microbiota transfer product preparation in ulcerative colitis: systematic review and meta-analysis. BMC Gastroenterol 2024; 24:402. [PMID: 39528920 PMCID: PMC11552227 DOI: 10.1186/s12876-024-03487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Multiple studies have evaluated fecal microbiota transfer (FMT) in patients with ulcerative colitis (UC) using single-donor (SDN) and multidonor (MDN) products. Systematic review and meta-analysis were performed to compare the safety of SDN and MDN products. METHODS Systematic searches were performed in Web of Science, Scopus, PubMed, and Orbit Intelligence to identify studies that compared FMT products manufactured using SDN or MDN strategies against control treatment in patients with UC. Fifteen controlled studies were selected for meta-analysis (11 randomized controlled trials and 4 controlled cohort trials). Safety of each treatment type was assessed using the counts of adverse events and serious adverse events using fixed- and random-effects models. Significance of the indirect difference between FMT preparations was assessed using a network approach. Benefit-risk ratios were calculated by multiplicative utility model, incorporating geometric mean of risk ratios (RRs) of efficacy and safety. RESULTS Safety data was collected for a total of 587 patients (193 exposed to SDN products, 114 exposed to MDN products and 280 exposed to control treatment). The 12 studies showed similar overall safety event counts for MDN and SDN versus placebo (RRs: 0.90 and 1.09, respectively [P = 0.206 and P = 0.420, respectively]). Results indicated similar risk of safety events for MDN compared to SDN (RR: 0.83, P = 0.159). Positive benefit-risk ratios were demonstrated for MDN and SDN versus placebo (RRs: 1.70 and 1.16, respectively [P = 0.003 and P = 0.173, respectively]). MDN had a greater benefit-risk ratio compared to SDN (RR: 1.46, P = 0.072). CONCLUSION Similar safety profiles were observed for MDN and SDN strategies. Alongside previously described superior efficacy, treatment with MDN has greater benefit-risk ratio than SDN in patients with UC. Further development of MDN FMT treatment for UC should be considered.
Collapse
Affiliation(s)
| | | | | | - Stéphane Nancey
- Department of Gastroenterology, Lyon-Sud Hospital, CHU de Lyon, University Claude Bernard Lyon 1 and CIRI-INSERM U1111, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParis Tech, MICALIS, Jouy-en-Josas, 78350, France
| | - Philippe Lehert
- Faculty of Management, UCL, Louvain, Belgium
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
40
|
Xu L, Wang Y, Yan D, Li M, Qiao L, Chen Z, Wu M, Zhong G. Albumin binding domain fusion improved the therapeutic efficacy of Inhibitor of Differentiation-2 protein in colitis mice. Life Sci 2024; 359:123237. [PMID: 39532259 DOI: 10.1016/j.lfs.2024.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
AIMS The human Inhibitor of Differentiation-2 (hID2) protein is a promising candidate for the treatment of colitis. However, its relatively low molecular weight limits its clinical application. To extend the therapeutic half-life, an albumin-binding domain (ABD), known for its high affinity for human serum albumin (HSA), was fused to hID2, resulting in a recombinant ABD-hID2. The anti-colitis bioactivity of ABD-hID2 than that of hID2 was evaluated in this study. MAIN METHODS Western blotting, size-exclusion high-performance chromatography, HSA binding assay, and pharmacokinetic studies were used to characterise ABD-hID2, which was induced by dextran sulfate sodium salt (DSS), Citrobacter rodentium (CR), and ABD-hID2 and hID2. The Disease Activity Index, histological pathologies, inflammatory response, Alcian blue or tuft cell staining, and tight junction proteins were determined. Alterations in the intestinal microbiota after ABD-hID2 treatment were analysed via 16S rRNA gene sequencing. KEY FINDINGS Compared with hID2, ABD-hID2 exhibited a decreased dimer complex, bound to HSA with high affinity, and demonstrated an extended blood retention time in vivo. Consequently, ABD-hID2 exhibited increased therapeutic efficacy in both DSS- and CR-induced colitis mouse models, as evidenced by the alleviation of colitis symptoms, preservation of goblet and tuft cell functions, restoration of the intestinal mucus barrier, and suppression of abnormal immune-inflammatory responses. Additionally, the modulation of the gut microbiota may play a role in the protective effects of ABD-hID2 in mice with CR-induced ulcerative colitis. SIGNIFICANCE ABD-hID2 enhances the bioactivity of hID2 and has the potential for further development as a treatment for colitis.
Collapse
Affiliation(s)
- Lingyun Xu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Min Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lin Qiao
- Department of Medical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Zhiguo Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China
| | - Minna Wu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Genshen Zhong
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China.
| |
Collapse
|
41
|
van den Ende T, de Clercq NC, Davids M, Goedegebuure R, Doeve BH, Ebrahimi G, Buijsen J, Hoekstra R, Mohammad NH, Bijlsma MF, Nieuwdorp M, van Laarhoven HWM. Fecal, duodenal, and tumor microbiota composition of esophageal carcinoma patients, a longitudinal prospective cohort. J Natl Cancer Inst 2024; 116:1834-1844. [PMID: 38924513 PMCID: PMC11542985 DOI: 10.1093/jnci/djae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The microbiome has been associated with chemotherapy and immune checkpoint inhibitor efficacy. How this pertains to resectable esophageal carcinoma is unknown. Our aim was to identify microbial signatures in resectable esophageal carcinoma associated with response to neoadjuvant chemoradiotherapy with or without an immune checkpoint inhibitor. METHODS From 2 prospectively collected esophageal carcinoma cohorts (n = 172 in total) treated with neoadjuvant chemoradiotherapy alone (n = 132) or a combination of neoadjuvant chemoradiotherapy and an immune checkpoint inhibitor (n = 40), fecal samples were available at baseline, during treatment, and presurgery. Additionally, in the immune checkpoint inhibitor-treated patients, tumor and duodenal snap frozen biopsies were collected over time. Fecal, tumor, and duodenal DNA were extracted for 16S ribosomal RNA sequencing. Associations were investigated between microbiome composition pathological complete response and progression-free survival (PFS). RESULTS There was a statistically significant shift in the microbiota profile of the fecal, tumor, and duodenal microbiota over time. In the total cohort, patients with a pathological complete response had a stable fecal alpha diversity, while the diversity of poor responders decreased during treatment (P = .036). Presurgery, lower alpha diversity (<4.12) was related to worse PFS (log-rank P = .025). Baseline tumor biopsies of patients with short PFS had more Fusobacterium. A low baseline duodenal alpha diversity (<3.96) was associated with worse PFS (log-rank P = .012). CONCLUSIONS Lower intestinal alpha diversity was associated with worse response and survival of esophageal carcinoma patients. In tumor biopsies, Fusobacterium was more abundant in patients with poor PFS. After further mechanistic validation, these findings may aid in response prediction and the design of novel microbiome modulating treatments for esophageal carcinoma patients.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Nicolien C de Clercq
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ruben Goedegebuure
- Netherlands Cancer Institute, Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Benthe H Doeve
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Gati Ebrahimi
- Department of Radiotherapy, Instituut Verbeeten, Tilburg, the Netherlands
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ronald Hoekstra
- Department of Medical Oncology, Ziekenhuisgroep Twente, Hengelo, the Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten F Bijlsma
- Oncode Institute, Utrecht, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Wu Q, Yang LS, Huang HL, Li YF, Zhou YJ, Xu HM. Washed microbiota transplantation combined with biological agents promotes histological remission in refractory severe ulcerative colitis with recurrent intestinal infection: A case report. Arab J Gastroenterol 2024; 25:448-454. [PMID: 39079826 DOI: 10.1016/j.ajg.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 12/02/2024]
Abstract
Ulcerative colitis (UC) is a chronic non-specific colitis disease. In recent years, fecal microbiota transplantation (FMT), including improved washed microbiota transplantation (WMT), and biological agents have helped improve the prognosis of patients with UC. However, a significant number of patients with moderate to severe UC do not get relief from glucocorticoids, immunosuppressants, and TNF-α antagonists. Patients with severe UC are frequently burdened with opportunistic infections and subsequent surgical interventions. Combined treatment modalities are crucial for patients with severe UC and opportunistic infections. Herein, we reported a case of a 25-year-old female with refractory severe UC complicated with recurrent Clostridioides difficile infection and recurrent cytomegalovirus infection for six years. Surgical removal of the affected bowel segment was almost unavoidable. She showed endoscopic and histological recovery after comprehensive WMT and Vedolizumab treatment. The following are our learnings from the case: 1. A combination of WMT and biological agents can potentially obviate the necessity for surgical treatment in patients with refractory severe UC and promote histological remission. 2. Personalized comprehensive treatment and chronic disease management models for patients with UC should be emphasized. 3. WMT can help treat opportunistic infections, which may also strengthen the treatment with gut-targeted biological agents when traditional TNF-α antagonists show poor efficacy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Liu-Si Yang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Ying-Fei Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
43
|
Zhang Y, Li P, Chen B, Zheng R. Therapeutic effects of fecal microbial transplantation on alcoholic liver injury in rat models. Clin Res Hepatol Gastroenterol 2024; 48:102478. [PMID: 39396755 DOI: 10.1016/j.clinre.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Disruption of gut microbiota is closely related to the progression of alcoholic liver disease (ALD). This study aimed to explore the therapeutic effect of fecal microbiota transplantation (FMT) in ALD rats using a combination of microbiological and metabolomic techniques. METHODS Three liver injury rat models were constructed using alcohol, CCL4, and alcohol combined with CCL4, and administered an FMT treatment comprising the fecal microbiota of healthy rats via the gastric route for 12 consecutive weeks. We measured the therapeutic effect of FMT treatment on liver inflammation, intestinal mucosal barrier, and bacterial translocation in ALD rats using 16S rRNA and UPLC-Q/TOF-MS technology to detect the effects of FMT on the intestinal microbiota and metabolic patterns of ALD rats. RESULTS FMT treatment effectively improved liver function, prolonged survival time, improved the intestinal mucosal barrier, reduced bacterial translocation, alleviated liver inflammation, and delayed the progression of liver fibrosis in three types of liver injury models. The microbiome and metabolomic results showed that FMT can effectively improve gut microbiota disorder in ALD rats and improve metabolic patterns by regulating metabolic pathways such as the arachidonic acid and retinol pathways. CONCLUSION FMT treatment could reverse alcohol induced liver injury by improving gut microbiota and metabolic patterns in ALD rats, and oral FMT could be an effective therapeutic approach for ALD.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021,China
| | - Pengfei Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Bo Chen
- Department of Blood transfusion, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
44
|
Bohm MS, Ramesh AV, Pierre JF, Cook KL, Murphy EA, Makowski L. Fecal microbial transplants as investigative tools in cancer. Am J Physiol Gastrointest Liver Physiol 2024; 327:G711-G726. [PMID: 39301964 PMCID: PMC11559651 DOI: 10.1152/ajpgi.00171.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
The gut microbiome plays a critical role in the development, progression, and treatment of cancer. As interest in microbiome-immune-cancer interactions expands, the prevalence of fecal microbial transplant (FMT) models has increased proportionally. However, current literature does not provide adequate details or consistent approaches to allow for necessary rigor and experimental reproducibility. In this review, we evaluate key studies using FMT to investigate the relationship between the gut microbiome and various types of cancer. In addition, we will discuss the common pitfalls of these experiments and methods for improved standardization and validation as the field uses FMT with greater frequency. Finally, this review focuses on the impacts of the gut and extraintestinal microbes, prebiotics, probiotics, and postbiotics in cancer risk and response to therapy across a variety of tumor types.NEW & NOTEWORTHY The microbiome impacts the onset, progression, and therapy response of certain types of cancer. Fecal microbial transplants (FMTs) are an increasingly prevalent tool to test these mechanisms that require standardization by the field.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Arvind V Ramesh
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
45
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
46
|
Claytor JD, Faith JJ. Fecal Microbiota Transplantation (FMT) in Ulcerative Colitis: Holding Out for a Superdonor? Clin Gastroenterol Hepatol 2024:S1542-3565(24)00909-1. [PMID: 39442742 DOI: 10.1016/j.cgh.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Jennifer D Claytor
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Jeremiah J Faith
- Precision Immunology Institute, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
47
|
Lin J, Chen D, Yan Y, Pi J, Xu J, Chen L, Zheng B. Gut microbiota: a crucial player in the combat against tuberculosis. Front Immunol 2024; 15:1442095. [PMID: 39502685 PMCID: PMC11534664 DOI: 10.3389/fimmu.2024.1442095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
The mammalian gastrointestinal tract quickly becomes densely populated with foreign microorganisms shortly after birth, thereby establishing a lifelong presence of a microbial community. These commensal gut microbiota serve various functions, such as providing nutrients, processing ingested compounds, maintaining gut homeostasis, and shaping the intestinal structure in the host. Dysbiosis, which is characterized by an imbalance in the microbial community, is closely linked to numerous human ailments and has recently emerged as a key factor in health prognosis. Tuberculosis (TB), a highly contagious and potentially fatal disease, presents a pressing need for improved methods of prevention, diagnosis, and treatment strategies. Thus, we aim to explore the latest developments on how the host's immune defenses, inflammatory responses, metabolic pathways, and nutritional status collectively impact the host's susceptibility to or resilience against Mycobacterium tuberculosis infection. The review addresses how the fluctuations in the gut microbiota not only affect the equilibrium of these physiological processes but also indirectly influence the host's capacity to resist M. tuberculosis. This work highlights the central role of the gut microbiota in the host-microbe interactions and provides novel insights for the advancement of preventative and therapeutic approaches against tuberculosis.
Collapse
Affiliation(s)
- Jie Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Dongli Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongen Yan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
48
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Bénard MV, de Goffau MC, Blonk J, Hugenholtz F, van Buuren J, Paramsothy S, Kaakoush NO, D'Haens GRAM, Borody TJ, Kamm MA, Ponsioen CY. Gut Microbiota Features in Relation to Fecal Microbiota Transplantation Outcome in Ulcerative Colitis: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00907-8. [PMID: 39442743 DOI: 10.1016/j.cgh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) can induce remission in patients with ulcerative colitis, yet its efficacy needs improvement. We conducted a comprehensive evaluation of the current literature on microbial factors affecting outcome, as well as a meta-analysis on some of the largest datasets regarding composition. METHODS MEDLINE, Embase, and Cochrane were systematically searched through August 2024 for relevant studies. The quality of studies was analyzed with JBI tools and a composite critical appraisal score. Additionally, species-level data from 2 landmark FMT trials (the Transplantation of Feces in Ulcerative Colitis; Returning Nature's Homeostasis [TURN] and Fecal Microbiota Transplantation for Chronic Active Ulcerative Colitis [FOCUS] trials) were reanalyzed from a compositional perspective. RESULTS Out of 3755 citations identified, 56 met the inclusion criteria, of which 29 fulfilled quality standards. Higher microbial α-diversity, either in donors or recipients (at baseline or following FMT treatment), was associated with better clinical response rates. Engraftment of the donors' microbiota could not be clearly linked with clinical response, possibly because not every donor has an ideal microbiome. Butyrate-producing species from the Lachnospiraceae and Oscillospiraceae families were often related with response, whereas the reverse was true for Fusobacteria, many Proteobacteria, and Ruminococcus gnavus. Compositional analyses showed that clinical response is associated with a shift from a low-diversity, often Bacteroides-dominant composition to one with higher diversity, either dominated by various butyrate producers, the Christensenellaceae-Methanobrevibacter trophic network, or a moderate/high-diversity composition with abundant but not excessive levels of Prevotella copri. CONCLUSIONS This systematic review/meta-analysis yielded a coherent picture from a compositional perspective, which may help identify beneficial donor profiles and guide personalized FMT approaches.
Collapse
Affiliation(s)
- Mèlanie V Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Justine Blonk
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep van Buuren
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sudarshan Paramsothy
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia; Department of Gastroenterology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Geert R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Majzoub ME, Paramsothy S, Haifer C, Parthasarathy R, Borody TJ, Leong RW, Kamm MA, Kaakoush NO. The phageome of patients with ulcerative colitis treated with donor fecal microbiota reveals markers associated with disease remission. Nat Commun 2024; 15:8979. [PMID: 39420033 PMCID: PMC11487140 DOI: 10.1038/s41467-024-53454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteriophages are influential within the human gut microbiota, yet they remain understudied relative to bacteria. This is a limitation of studies on fecal microbiota transplantation (FMT) where bacteriophages likely influence outcome. Here, using metagenomics, we profile phage populations - the phageome - in individuals recruited into two double-blind randomized trials of FMT in ulcerative colitis. We leverage the trial designs to observe that phage populations behave similarly to bacterial populations, showing temporal stability in health, dysbiosis in active disease, modulation by antibiotic treatment and by FMT. We identify a donor bacteriophage putatively associated with disease remission, which on genomic analysis was found integrated in a bacterium classified to Oscillospiraceae, previously isolated from a centenarian and predicted to produce vitamin B complex except B12. Our study provides an in-depth assessment of phage populations during different states and suggests that bacteriophage tracking has utility in identifying determinants of disease activity and resolution.
Collapse
Affiliation(s)
- Marwan E Majzoub
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, Australia
| | - Craig Haifer
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia
- Department of Gastroenterology, St Vincent's Hospital, Sydney, Australia
| | - Rohit Parthasarathy
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | | | - Rupert W Leong
- Concord Clinical School, University of Sydney, Sydney, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| |
Collapse
|