1
|
Zhang HL, Lin Z, Zhang Y. Developments in research and commercialization of PI3K and AKT targets: a patent-based landscape. Pharm Pat Anal 2025:1-8. [PMID: 39993965 DOI: 10.1080/20468954.2025.2470102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
PI3K and AKT signaling pathway has been linked to the pathophysiology of various diseases. This pathway has emerged as a crucial therapeutic strategy for cancer and other diseases. To better understand recent development of PI3K and AKT, a patent-based landscape study was performed. The results shows that both PI3K and AKT targets have shown prolific patent filings over the past 20 years. This study is the first to depict the therapeutic applications of both PI3K and AKT targets based on a patent big data analysis. Ten key therapeutic applications were identified, with over 77% of patents related to anti-cancer therapy for both PI3K and AKT targets. Additionally, our findings show that combination therapy is a distinguishing feature for drugs targeting both PI3K and AKT. The average time from patent application to drug approval for PI3K target drugs is 8.8 years. PI3K target drugs obtain market approval faster compared to AKT drugs. Approximately, 2 years of patent term extension could be obtained if the time from the patent application date to the drug approval date is less than 10 years.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co. Ltd, Baotou, China
| | - Zhaochen Lin
- Hydrogen Medicine Research Centre, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, China
| | - Ying Zhang
- Pharmacy Intravenous Admixture Services, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
2
|
Ye T, Yan J, Kan T, Xie G, Zhang Z, Yin W, Zhao B, Yu Z, Chu L. Articular cartilage degeneration and aberrant osteocyte perilacunar/canalicular remodeling in subchondral bone of patients with developmental dysplasia of the hip. BMC Musculoskelet Disord 2025; 26:165. [PMID: 39966795 PMCID: PMC11837434 DOI: 10.1186/s12891-025-08419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a congenital musculoskeletal disease that impairs the hip joint and exacerbates hip osteoarthritis. This study aims to investigate the alterations of osteocytic characteristics including apoptosis, lacuna-canalicular network, and perilacunar/canalicular remodeling (PLR) activity in subchondral bone from DDH patients, and potential relationship of these alterations between the cartilage degeneration and DDH progression. METHODS The femoral head specimens were acquired from 16 patients with hip fractures who received total hip arthroplasty operation, 24 patients with primary hip OA and 25 patients with DDH. The femoral head were scanned by a micro-computed tomography and the volume of interest was used for a micro-finite element analysis. Histological and immunohistochemical staining was used to observe chondrocytes in cartilage and osteocytes in subchondral bone. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to investigate the apoptotic osteocytes in subchondral bone. Ploton silver staining was used to visualize lacunocanalicular network and picrosirius red staining was to visualize collagen fiber orientation in subchondral bone. RESULTS The DDH group showed the highest apoptosis rate of osteocytes and increased PLR activity among the three groups. The micro-finite-element analysis revealed that DDH group had deteriorative microstructural and biomechanical properties of subchondral bone. The histological and immunohistochemical analyses showed that the cartilage degeneration in DDH group was the most severe. Linear regression analysis revealed a significant correlation between osteocytic activity in subchondral bone and cartilage degeneration in DDH. CONCLUSIONS Our findings indicate that the abnormal osteocyte activity in subchondral bone might contribute to the deterioration of subchondral bone structure, which accelerates cartilage degeneration and DDH progression. Targeting subchondral bone remodeling could offer a promising therapeutic strategy for DDH.
Collapse
Affiliation(s)
- Teng Ye
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiren Yan
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Guoming Xie
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichang Zhang
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Yin
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizeng Zhao
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linyang Chu
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lee DK, Jin X, Choi PR, Cui Y, Che X, Lee S, Hur K, Kim HJ, Choi JY. Phospholipase C β4 promotes RANKL-dependent osteoclastogenesis by interacting with MKK3 and p38 MAPK. Exp Mol Med 2025; 57:323-334. [PMID: 39894822 PMCID: PMC11873240 DOI: 10.1038/s12276-025-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 02/04/2025] Open
Abstract
Phospholipase C β (PLCβ) is involved in diverse biological processes, including inflammatory responses and neurogenesis; however, its role in bone cell function is largely unknown. Among the PLCβ isoforms (β1-β4), we found that PLCβ4 was the most highly upregulated during osteoclastogenesis. Here we used global knockout and osteoclast lineage-specific PLCβ4 conditional knockout (LysM-PLCβ4-/-) mice as subjects and demonstrated that PLCβ4 is a crucial regulator of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation. The deletion of PLCβ4, both globally and in the osteoclast lineage, resulted in a significant reduction in osteoclast formation and the downregulation of osteoclast marker genes. Notably, male LysM-PLCβ4-/- mice presented greater bone mass and fewer osteoclasts in vivo than their wild-type littermates, without altered osteoblast function. Mechanistically, we found that PLCβ4 forms a complex with p38 mitogen-activated protein kinase (MAPK) and MAPK kinase 3 (MKK3) in response to RANKL-induced osteoclast differentiation, thereby modulating p38 activation. An immunofluorescence assay further confirmed the colocalization of PLCβ4 with p38 after RANKL exposure. Moreover, p38 activation rescued impaired osteoclast formation and restored the reduction in p38 phosphorylation caused by PLCβ4 deficiency. Thus, our findings reveal that PLCβ4 controls osteoclastogenesis via the RANKL-dependent MKK3-p38 MAPK pathway and that PLCβ4 may be a potential therapeutic candidate for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Poo-Reum Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ying Cui
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Liu J, Wang J, Huang R, Jia X, Huang X. The Shh-p38-NFATc1 signaling pathway is essential for osteoclastogenesis during tooth eruption. Tissue Cell 2025; 92:102643. [PMID: 39612595 DOI: 10.1016/j.tice.2024.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tooth eruption, a critical stage in tooth development, is related to osteoclastogenesis. Intraperitoneal injection of Shh agonists into neonatal mice promoted tooth eruption at postnatal day (PN) 15, whereas treatment with the Shh inhibitor (LDE225) suppressed this process. When RAW264.7 osteoclast precursor cells were treated with RANKL, NFATc1 translocated from the cytoplasm to the nucleus and induced cell differentiation into TRAP+ osteoclasts; this process was activated by Shh but inhibited by LDE225. Treating RAW264.7 cells with the p38 inhibitor, BIRB796, also inhibited NFATc1 nuclear localization. p-p38 expression in the alveolar bone of PN3 and PN5 mice was decreased by treatment with LDE225, and RAW264.7 cell differentiation was reduced by BIRB796, regardless of treatment with Shh. Furthermore, Shh activated p38 signaling pathway in RAW264.7 cells, while p38 phosphorylation was reduced by LDE225, which ultimately inhibited osteoclast precursor differentiation. Therefore, we concluded that Shh promotes osteoclast precursor differentiation via the p38-NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Jinan Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiran Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueting Jia
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Li Y, Yuan J, Deng W, Li H, Lin Y, Yang J, Chen K, Qiu H, Wang Z, Kuek V, Wang D, Zhang Z, Mai B, Shao Y, Kang P, Qin Q, Li J, Guo H, Ma Y, Guo D, Mo G, Fang Y, Tan R, Zhan C, Liu T, Gu G, Yuan K, Tang Y, Liang D, Xu L, Xu J, Zhang S. Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling. Chin J Nat Med 2025; 23:90-101. [PMID: 39855834 DOI: 10.1016/s1875-5364(25)60810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 01/30/2025]
Abstract
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Collapse
Affiliation(s)
- Yongxian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haishan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuewei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiamin Yang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia; Curtin Medical School, Curtin University, Western Australia 6102, Australia
| | - Dongping Wang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin Mai
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yang Shao
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Pan Kang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiuli Qin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinglan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huizhi Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanhuai Ma
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Danqing Guo
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Guoye Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yijing Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210008, China
| | - Chenguang Zhan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guoning Gu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Yuan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yongchao Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Liangliang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia.
| | - Shuncong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
6
|
Zhang Z, Liu J, Li Y, Wang Y, Zheng X, Wang F, Tong T, Miao D, Li W, Chen L, Wang L. 4-Hydroxyphenylacetic Acid, a microbial-derived metabolite of Polyphenols, inhibits osteoclastogenesis by inhibiting ROS production. Int Immunopharmacol 2024; 143:113571. [PMID: 39520963 DOI: 10.1016/j.intimp.2024.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Intracellular reactive oxygen species (ROS) accumulation is key to osteoclast differentiation. Plant-derived polyphenols that have reduced ROS production have been widely studied for the treatment of osteoporosis. However, these compounds are rarely absorbed in the small intestine and are instead converted to phenolic acids by the microbiota in the colon. These large quantities of low-molecular-weight phenolic acids can then be absorbed by the body. 4-Hydroxyphenylacetic acid (4-HPA) is an important metabolite of these polyphenols that is generated by the human intestinal microbiota. However, its potential mechanism is not fully understood. In this study, we aimed to elucidate the role of 4-HPA on osteoclastogenesis and treating osteoporosis. Our study showed that 4-HPA inhibited osteoclast differentiation and function and downregulated osteoclast-specific genes, including NFATc1, Atp6v0d2, MMP9, CTSK, Acp5, and c-Fos. As for further mechanism exploration, 4-HPA reduced ROS accumulation by regulating nuclear factor erythroid 2-related factor (Nrf2) and subsequently inhibited the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. To evaluate the effect of 4-HPA on postmenopausal osteoporosis, an ovariectomized (OVX) mouse model was used. The Micro-CT and histomorphometry analyses showed that 4-HPA effectively prevents bone loss. Encouragingly, 4-HPA demonstrated efficacy in treating osteoporosis induced by OVX. In conclusion, our study revealed that 4-HPA, a polyphenol metabolite produced by intestinal microorganisms, also inhibits osteoclast formation and treats osteoporosis, which provides a new experimental basis and candidate drug for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Yijun Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yunsheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Xiao Zheng
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Tong Tong
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Dechao Miao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Wenshuai Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| | - Lei Chen
- Intensive Care Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang 050011, PR China.
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
7
|
Shao Z, Wang B, Gao H, Zhang S. Microenvironmental interference with intra-articular stem cell regeneration influences the onset and progression of arthritis. Front Genet 2024; 15:1380696. [PMID: 38841721 PMCID: PMC11150611 DOI: 10.3389/fgene.2024.1380696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Studies have indicated that the preservation of joint health and the facilitation of damage recovery are predominantly contingent upon the joint's microenvironment, including cell-cell interactions, the extracellular matrix's composition, and the existence of local growth factors. Mesenchymal stem cells (MSCs), which possess the capacity to self-renew and specialize in many directions, respond to cues from the microenvironment, and aid in the regeneration of bone and cartilage, are crucial to this process. Changes in the microenvironment (such as an increase in inflammatory mediators or the breakdown of the extracellular matrix) in the pathological context of arthritis might interfere with stem cell activation and reduce their ability to regenerate. This paper investigates the potential role of joint microenvironmental variables in promoting or inhibiting the development of arthritis by influencing stem cells' ability to regenerate. The present status of research on stem cell activity in the joint microenvironment is also outlined, and potential directions for developing new treatments for arthritis that make use of these intervention techniques to boost stem cell regenerative potential through altering the intra-articular environment are also investigated. This review's objectives are to investigate these processes, offer fresh perspectives, and offer a solid scientific foundation for the creation of arthritic treatment plans in the future.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Zaozhuang, Shandong, China
| |
Collapse
|
8
|
Song J, Han S, Choi S, Lee J, Jeong Y, Lee HM, Son J, Jeong DY, Yu SS, Lee W. A mixture of Pueraria lobata and Platycodon grandiflorum extracts ameliorates RANKL-induced osteoclast differentiation and ovariectomy-induced bone loss by regulating Src- PI3K-AKT and JNK/p38 signaling pathways. Heliyon 2024; 10:e24842. [PMID: 38312605 PMCID: PMC10835310 DOI: 10.1016/j.heliyon.2024.e24842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Osteoporosis is caused by increased bone resorption due to the excessive activity of osteoclasts. Pueraria lobata has demonstrated the ability to improve bone density in ovariectomized mice, and Platycodon grandiflorum can suppress osteolysis biomarkers such as collagen content in cartilage and alkaline phosphatase activity. In this study, we examined whether HX112, a mixture of Pueraria lobata and Platycodon grandiflorum extracts, could inhibit the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation to alleviate osteoporosis. To induce the differentiation of osteoclasts, RAW 264.7 cell were cultured with RANKL and HX112. Osteoclasts differentiation was evaluated by TRAP activity and TRAP staining. Bone resorption as osteoclasts major function was assessed by pit formation assay. As a result, HX112 suppressed osteoclast differentiation and bone resorptive function. Additionally, HX112 reduced the expression of osteoclastogenic genes including NFATc1 and c-Fos, and these effects of HX112 were mediated by inhibiting Src-phosphoinositide 3-kinase (PI3K)- Protein kinase B (Akt) and c-Jun N-terminal kinase (JNK)/p38 signaling pathways. Furthermore, ICR mice were ovariectomized to induce osteoporosis and bone mineral density of femur was measured using micro-CT. Consequently, oral administration of HX112 to ovariectomized mice significantly improved bone microstructure and bone mineral density. Collectively, these findings indicate that the mixed extract of Pueraria lobata and Platycodon grandiflorum may be useful as therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Jisun Song
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Suhyun Han
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Sooyeon Choi
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - JongDai Son
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Dam Yeon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Seung-Shin Yu
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| | - Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, South Korea
| |
Collapse
|
9
|
Lei Z, Wang Q, Jiang Q, Liu H, Xu L, Kang H, Li F, Huang Y, Lei T. The miR-19a/Cylindromatosis Axis Regulates Pituitary Adenoma Bone Invasion by Promoting Osteoclast Differentiation. Cancers (Basel) 2024; 16:302. [PMID: 38254792 PMCID: PMC10813535 DOI: 10.3390/cancers16020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The presence of bone invasion in aggressive pituitary adenoma (PA) was found in our previous study, suggesting that PA cells may be involved in the process of osteoclastogenesis. miR-19a (as a key member of the miR-17-92 cluster) has been reported to activate the nuclear factor-кB (NF-кB) pathway and promote inflammation, which could be involved in the process of the bone invasion of pituitary adenoma. METHODS In this work, FISH was applied to detect miR-19a distribution in tissues from patients with PA. A model of bone invasion in PA was established, GH3 cells were transfected with miR-19a mimic, and the grade of osteoclastosis was detected by HE staining. qPCR was performed to determine the expression of miR-19a throughout the course of RANKL-induced osteoclastogenesis. After transfected with a miR-19a mimic, BMMs were treated with RANKL for the indicated time, and the osteoclast marker genes were detected by qPCR and Western Blot. Pit formation and F-actin ring assay were used to evaluate the function of osteoclast. The TargetScan database and GSEA were used to find the potential downstream of miR-19a, which was verified by Co-IP, Western Blot, and EMSA. RESULTS Here, we found that miR-19a expression levels were significantly correlated with the bone invasion of PA, both in clinical samples and animal models. The osteoclast formation prior to bone resorption was dramatically enhanced by miR-19, which was mediated by decreased cylindromatosis (CYLD) expression, increasing the K63 ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Consequently, miR-19a promotes osteoclastogenesis by the activation of the downstream NF-кB and mitogen-activated protein kinase (MAPK) pathways. CONCLUSIONS To summarize, the results of this study indicate that PA-derived miR-19a promotes osteoclastogenesis by inhibiting CYLD expression and enhancing the activation of the NF-кB and MAPK pathways.
Collapse
Affiliation(s)
- Zhuowei Lei
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Huiyong Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Linpeng Xu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue. 1095, Wuhan 430030, China
| |
Collapse
|
10
|
Santos MDS, Lima VTM, Barrioni BR, Vago JP, de Arruda JAA, Prazeres PD, Amaral FA, Silva TA, Macari S. Targeting phosphatidylinositol-3-kinase for inhibiting maxillary bone resorption. J Cell Physiol 2023; 238:2651-2667. [PMID: 37814842 DOI: 10.1002/jcp.31121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Previous studies have suggested a role of phosphatidylinositol-3-kinase gamma (PI3Kγ) in bone remodeling, but the mechanism remains undefined. Here, we explored the contribution of PI3Kγ in the resorption of maxillary bone and dental roots using models of orthodontic tooth movement (OTM), orthodontic-induced inflammatory root resorption, and rapid maxillary expansion (RME). PI3Kγ-deficient mice (PI3Kγ-/- ), mice with loss of PI3Kγ kinase activity (PI3KγKD/KD ) and C57BL/6 mice treated with a PI3Kγ inhibitor (AS605240) and respective controls were used. The maxillary bones of PI3Kγ-/- , PI3KγKD/KD , and C57BL/6 mice treated with AS605240 showed an improvement of bone quality compared to their controls, resulting in reduction of the OTM and RME in all experimental groups. PI3Kγ-/- mice exhibited increased root volume and decreased odontoclasts counts. Consistently, the pharmacological blockade or genetic deletion of PI3K resulted in increased numbers of osteoblasts and reduction in osteoclasts during OTM. There was an augmented expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (Alp), a reduction of interleukin-6 (Il-6), as well as a lack of responsiveness of receptor activator of nuclear factor kappa-Β (Rank) in PI3Kγ-/- and PI3KγKD/KD mice compared to control mice. The maxillary bones of PI3Kγ-/- animals showed reduced p-Akt expression. In vitro, bone marrow cells treated with AS605240 and cells from PI3Kγ-/- mice exhibited significant augment of osteoblast mineralization and less osteoclast differentiation. The PI3Kγ/Akt axis is pivotal for bone remodeling by providing negative and positive signals for the differentiation of osteoclasts and osteoblasts, respectively.
Collapse
Affiliation(s)
- Mariana de S Santos
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virgínia T M Lima
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno R Barrioni
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P Vago
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides A de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro D Prazeres
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio A Amaral
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Lee SH, Park SY, Kim JH, Kim N, Lee J. Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways. BMB Rep 2023; 56:551-556. [PMID: 37605614 PMCID: PMC10618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKLinduced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKLinduced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 551-556].
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| | - Shin-Young Park
- Division of Software Engineering, PaiChai University, Daejeon 35345, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| |
Collapse
|
12
|
Chen K, Chen X, Lang C, Yuan X, Huang J, Li Z, Xu M, Wu K, Zhou C, Li Q, Zhu C, Liu L, Shang X. CircFam190a: a critical positive regulator of osteoclast differentiation via enhancement of the AKT1/HSP90β complex. Exp Mol Med 2023; 55:2051-2066. [PMID: 37653038 PMCID: PMC10545668 DOI: 10.1038/s12276-023-01085-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
The identification of key regulatory factors that control osteoclastogenesis is important. Accumulating evidence indicates that circular RNAs (circRNAs) are discrete functional entities. However, the complexities of circRNA expression as well as the extent of their regulatory functions during osteoclastogenesis have yet to be revealed. Here, based on circular RNA sequencing data, we identified a circular RNA, circFam190a, as a critical regulator of osteoclast differentiation and function. During osteoclastogenesis, circFam190a is significantly upregulated. In vitro, circFam190a enhanced osteoclast formation and function. In vivo, overexpression of circFam190a induced significant bone loss, while knockdown of circFam190a prevented pathological bone loss in an ovariectomized (OVX) mouse osteoporosis model. Mechanistically, our data suggest that circFam90a enhances the binding of AKT1 and HSP90β, promoting AKT1 stability. Altogether, our findings highlight the critical role of circFam190a as a positive regulator of osteoclastogenesis, and targeting circFam190a might be a promising therapeutic strategy for treating pathological bone loss.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xingshi Yuan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Junming Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, China
| | - Zhi Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Mingyou Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Kerong Wu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Qidong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 230001, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, 230001, Hefei, Anhui, China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 230001, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, 230001, Hefei, Anhui, China.
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
13
|
Marcadet L, Juracic ES, Khan N, Bouredji Z, Yagita H, Ward LM, Tupling AR, Argaw A, Frenette J. RANKL Inhibition Reduces Cardiac Hypertrophy in mdx Mice and Possibly in Children with Duchenne Muscular Dystrophy. Cells 2023; 12:1538. [PMID: 37296659 PMCID: PMC10253225 DOI: 10.3390/cells12111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiomyopathy has become one of the leading causes of death in patients with Duchenne muscular dystrophy (DMD). We recently reported that the inhibition of the interaction between the receptor activator of nuclear factor κB ligand (RANKL) and receptor activator of nuclear factor κB (RANK) significantly improves muscle and bone functions in dystrophin-deficient mdx mice. RANKL and RANK are also expressed in cardiac muscle. Here, we investigate whether anti-RANKL treatment prevents cardiac hypertrophy and dysfunction in dystrophic mdx mice. Anti-RANKL treatment significantly reduced LV hypertrophy and heart mass, and maintained cardiac function in mdx mice. Anti-RANKL treatment also inhibited NFκB and PI3K, two mediators implicated in cardiac hypertrophy. Furthermore, anti-RANKL treatment increased SERCA activity and the expression of RyR, FKBP12, and SERCA2a, leading possibly to an improved Ca2+ homeostasis in dystrophic hearts. Interestingly, preliminary post hoc analyses suggest that denosumab, a human anti-RANKL, reduced left ventricular hypertrophy in two patients with DMD. Taken together, our results indicate that anti-RANKL treatment prevents the worsening of cardiac hypertrophy in mdx mice and could potentially maintain cardiac function in teenage or adult patients with DMD.
Collapse
Affiliation(s)
- Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Emma Sara Juracic
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (E.S.J.); (A.R.T.)
| | - Nasrin Khan
- The Ottawa Pediatric Bone Health Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (N.K.); (L.M.W.)
| | - Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Leanne M. Ward
- The Ottawa Pediatric Bone Health Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (N.K.); (L.M.W.)
- The Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (E.S.J.); (A.R.T.)
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
- Department of Rehabilitation, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Lee HJ, Lee SJ, Lee SK, Choi BK, Lee DR, Park JH, Oh JS. Magnolia kobus Extract Suppresses Porphyromonas gingivalis LPS-Induced Proinflammatory Cytokine and MMP Expression in HGF-1 Cells and Regulates Osteoclastogenesis in RANKL-Stimulated RAW264.7 Cells. Curr Issues Mol Biol 2023; 45:4875-4890. [PMID: 37367059 DOI: 10.3390/cimb45060310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Clinical prevention is of utmost importance for the management of periodontal diseases. Periodontal disease starts with an inflammatory response in the gingival tissue, and results in alveolar bone destruction and subsequent tooth loss. This study aimed to confirm the anti-periodontitis effects of MKE. To confirm this, we studied its mechanism of action using qPCR and WB in LPS-treated HGF-1 cells and RANKL-induced osteoclasts. We found that MKE suppressed proinflammatory cytokine protein expression by inhibiting the TLR4/NF-κB pathway in LPS-PG-induced HGF-1 cells and blocking ECM degradation by regulating the expression of TIMPs and MMPs. We also confirmed that TRAP activity and multinucleated cell formation were reduced in RANKL-stimulated osteoclasts after exposure to MKE. These results were confirmed by inhibiting TRAF6/MAPK expression, which led to the suppression of NFATc1, CTSK, TRAP, and MMP expression at the gene and protein levels. Our results confirmed that MKE is a promising candidate for the management of periodontal disease based on its anti-inflammatory effects and inhibition of ECM degradation and osteoclastogenesis.
Collapse
Affiliation(s)
- Hae Jin Lee
- NUON Co., Ltd., Jungwon-gu, Seongnam-si 13201, Republic of Korea
| | - So Jung Lee
- NUON Co., Ltd., Jungwon-gu, Seongnam-si 13201, Republic of Korea
| | - Sung Kwon Lee
- NUON Co., Ltd., Jungwon-gu, Seongnam-si 13201, Republic of Korea
| | - Bong Keun Choi
- NUON Co., Ltd., Jungwon-gu, Seongnam-si 13201, Republic of Korea
| | - Dong Ryung Lee
- NUON Co., Ltd., Jungwon-gu, Seongnam-si 13201, Republic of Korea
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
15
|
Kaifu T, Maruhashi T, Chung SH, Shimizu K, Nakamura A, Iwakura Y. DCIR suppresses osteoclastic proliferation and resorption by downregulating M-CSF and RANKL signaling. Front Immunol 2023; 14:1159058. [PMID: 37266426 PMCID: PMC10230091 DOI: 10.3389/fimmu.2023.1159058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is an inhibitory C-type lectin receptor that acts as a negative regulator in the immune system and bone metabolism. We previously revealed that DCIR deficiency enhanced osteoclastogenesis and antigen presentation of dendritic cells, and that asialo-biantennary N-glycan (NA2) functions as a ligand for DCIR. NA2 binding to DCIR suppressed murine and human osteoclastogenesis that occurs in the presence of M-CSF and RANKL. The DCIR-NA2 axis, therefore, plays an important role in regulating osteoclastogenesis in both mice and humans, although the underlying mechanisms remain unclear. Here we found that Dcir -/- bone marrow-derived macrophages (BMMs) exhibited greater proliferative and differentiation responses to M-CSF and RANKL, respectively, than wild-type (WT) BMMs. Moreover, Dcir -/- osteoclasts (OCs) increased resorptive activity and cell fusion more significantly than WT OCs. DCIR deficiency affects gene expression patterns in OCs, and we found that the expression of neuraminidase 4 was increased in Dcir -/- OCs. Furthermore, DCIR-NA2 interaction in WT BMMs, but not Dcir -/- BMMs, decreased Akt phosphorylation in response to M-CSF and RANKL. These data suggest that DCIR regulates osteoclastogenesis by downregulating M-CSF and RANKL signaling, and that DCIR-mediated signaling may contribute to the terminal modification of oligosaccharides by controlling the expression of glycosylation enzymes.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kenji Shimizu
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
16
|
Wang X, Shao L, Richardson KK, Ling W, Warren A, Krager K, Aykin-Burns N, Hromas R, Zhou D, Almeida M, Kim HN. Hematopoietic cytoplasmic adaptor protein Hem1 promotes osteoclast fusion and bone resorption in mice. J Biol Chem 2023; 299:102841. [PMID: 36574841 PMCID: PMC9867982 DOI: 10.1016/j.jbc.2022.102841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Hem1 (hematopoietic protein 1), a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins, is essential for lymphopoiesis and innate immunity as well as for the transition of hematopoiesis from the fetal liver to the bone marrow. However, the role of Hem1 in bone cell differentiation and bone remodeling is unknown. Here, we show that deletion of Hem1 resulted in a markedly increase in bone mass because of defective bone resorption in mice of both sexes. Hem1-deficient osteoclast progenitors were able to differentiate into osteoclasts, but the osteoclasts exhibited impaired osteoclast fusion and decreased bone-resorption activity, potentially because of decreased mitogen-activated protein kinase and tyrosine kinase c-Abl activity. Transplantation of bone marrow hematopoietic stem and progenitor cells from wildtype into Hem1 knockout mice increased bone resorption and normalized bone mass. These findings indicate that Hem1 plays a pivotal role in the maintenance of normal bone mass.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lijian Shao
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kimberly K Richardson
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wen Ling
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aaron Warren
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert Hromas
- Department of Medicine, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Maria Almeida
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Ha-Neui Kim
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
17
|
Sun J, Cai G, Shen J, Cheng P, Zhang J, Jiang D, Xu X, Lu F, Chen L, Chen H. AS-605240 Blunts Osteoporosis by Inhibition of Bone Resorption. Drug Des Devel Ther 2023; 17:1275-1288. [PMID: 37138583 PMCID: PMC10150757 DOI: 10.2147/dddt.s403231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Background Osteoporosis is a metabolic bone disease. Osteoclasts are significantly involved in the pathogenesis of osteoporosis. AS-605240 (AS) is a small molecule PI3K-γ inhibitor and is less toxic compared to pan-PI3K inhibitors. AS also exerts multiple biological effects including anti-inflammatory, anti-tumor, and myocardial remodeling promotion. However, the involvement of AS in the differentiation and functions of osteoclasts and the effect of AS in treating patients with osteoporosis is still unclear. Purpose This study aimed to investigate if AS inhibits the differentiation of osteoclasts and resorption of the bones induced by M-CSF and RANKL. Next, we evaluated the therapeutic effects of AS on bone loss in ovariectomy (OVX)-induced osteoporosis mice models. Methods We stimulated bone marrow-derived macrophages with an osteoclast differentiation medium containing different AS concentrations for 6 days or 5μM AS at different times. Next, we performed tartrate-resistant acid phosphatase (TRAP) staining, bone resorption assay, F-actin ring fluorescence, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting (WB). Next, MC3T3-E1s (pre-osteoblast cells) were differentiated to osteoblast by stimulating the cells with varying AS concentrations. Next, we performed alkaline phosphatase (ALP) staining, RT-qPCR, and WB on these cells. We established an OVX-induced osteoporosis mice model and treated the mice with 20mg/kg of AS. Finally, we extracted the femurs and performed micro-CT scanning, H&E, and TRAP staining. Results AS inhibits the formation of osteoclasts and resorption of bone triggered by RANKL by inhibiting the PI3K/Akt signaling pathway. Furthermore, AS enhances the differentiation of osteoblasts and inhibits bone loss due to OVX in vivo. Conclusion AS inhibits osteoclast production and enhances osteoblast differentiation in mice, thus providing a new therapeutic approach for treating patients with osteoporosis.
Collapse
Affiliation(s)
- Jiacheng Sun
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Guoping Cai
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Jinlong Shen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Pu Cheng
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Jiapeng Zhang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Dengteng Jiang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Xianquan Xu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Fangying Lu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Lihua Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Haixiao Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
- Correspondence: Haixiao Chen; Lihua Chen, Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, N.150 Ximen Road of Linhai City, Taizhou, Zhejiang Province, People’s Republic of China, Tel +86 15268400288, +86 13757624851, Email ;
| |
Collapse
|
18
|
Wu MH, Hsu WB, Chen MH, Shi CS. Inhibition of Neddylation Suppresses Osteoclast Differentiation and Function In Vitro and Alleviates Osteoporosis In Vivo. Biomedicines 2022; 10:2355. [PMID: 36289618 PMCID: PMC9598818 DOI: 10.3390/biomedicines10102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/20/2023] Open
Abstract
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of nuclear factor-κB ligand (sRANKL)-stimulated osteoclast differentiation, the neddylation and expression of UBA3, the NEDD8-activating enzyme (NAE) catalytic subunit, were dose- and time-dependently upregulated in RAW 264.7 macrophages. UBA3 knockdown for diminishing NAE activity or administering low doses of the NAE inhibitor MLN4924 significantly suppressed sRANKL-stimulated osteoclast differentiation and bone-resorbing activity in the macrophages by inhibiting sRANKL-stimulated neddylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-activated transforming growth factor-β-activated kinase 1 (TAK1) downstream signaling for diminishing nuclear factor-activated T cells c1 (NFATc1) expression. sRANKL enhanced the interaction of TRAF6 with the neddylated proteins and the polyubiquitination of TRAF6's lysine 63, which activated TAK1 downstream signaling; however, this process was inhibited by MLN4924. MLN4924 significantly reduced osteoporosis in an ovariectomy- and sRANKL-induced osteoporosis mouse model in vivo. Our novel finding was that NAE-mediated neddylation participates in RANKL-activated TRAF6-TAK1-NFATc1 signaling during osteoclast differentiation and osteoporosis, suggesting that neddylation may be a new target for treating osteoporosis.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Mei-Hsin Chen
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
- Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| |
Collapse
|
19
|
GSK 650394 Inhibits Osteoclasts Differentiation and Prevents Bone Loss via Promoting the Activities of Antioxidant Enzymes In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3458560. [PMID: 36164394 PMCID: PMC9509242 DOI: 10.1155/2022/3458560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Osteoporosis (OP) is one of the most common bone disorders among the elderly, characterized by abnormally elevated bone resorption caused by formation and activation of osteoblast (OC). Excessive reactive oxygen species (ROS) accumulation might contribute to the formation process of OC as an essential role. Although accumulated advanced treatment target on OP have been proposed in recent years, clinical outcomes remain unexcellence attributed to severe side effects. The purpose of present study was to explore the underlying mechanisms of GSK 650394 (GSK) on inhibiting formation and activation of OC and bone resorption in vitro and in vivo. GSK could inhibit receptor activator of nuclear-κB ligand (RANKL-)-mediated Oc formation via suppressing the activation of NF-κB and MAPK signaling pathways, regulating intracellular redox status, and downregulate the expression of nuclear factor of activated T cells c1 (NFATc1). In addition, quantitative RT-PCR results show that GSK could suppress the expression of OC marker gene and antioxidant enzyme genes. Consistent with in vitro cellular results, GSK treatment improved bone density in the mouse with ovariectomized-induced bone loss according to the results of CT parameters, HE staining, and Trap staining. Furthermore, GSK treatment could enhance the capacity of antioxidant enzymes in vivo. In conclusion, this study suggested that GSK could suppress the activation of osteoclasts and therefore maybe a potential therapeutic reagent for osteoclast activation-related osteoporosis.
Collapse
|
20
|
CpG Oligodeoxynucleotides Inhibit RANKL-Induced Osteoclast Formation by Upregulating A20 Deubiquitinase in RAW 264.7 Cells. Mediators Inflamm 2022; 2022:5255935. [PMID: 36091665 PMCID: PMC9453122 DOI: 10.1155/2022/5255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Activation of toll-like receptor 9 (TLR9) has been proposed to play an inhibitory role in RANKL-induced osteoclastogenesis. A20 deubiquitinase has been found to be related to bone loss. This study investigated the role of CpG oligodeoxynucleotides (CpG-ODNs) through regulation of A20 deubiquitinase in RANKL-induced osteoclast formation. Methods RAW 264.7 cells, a murine monocyte-macrophage cell line, were incubated with or without CpG-ODN in the presence of RANKL. Osteoclast-specific genes and their related signaling molecules were measured by real-time quantitative polymerase chain reaction and Western blot assay. Morphological assessment for osteoclast formation was performed using tartrate-resistant acid phosphatase (TRAP) staining and F-actin ring formation staining. Results RANKL-induced osteoclast-related genes and proteins, c-Fos, NFATc1, TRAP, cathepsin K, and carbonic anhydrase II were significantly inhibited in RAW 264.7 cells stimulated with CpG-ODN. CpG-ODN attenuated TNF receptor-associated factor 6 (TRAF6), p-IκBα, and p-NF-κB expression in RAW 264 cells mediated by RANKL. CpG-ODN increased A20 gene and proteins in time-dependent manner. A20 expression under costimulation with CpG-ODN and RANKL was more decreased than under stimulation with RANKL alone. Cells transfected with A20 siRNA augmented expression of osteoclast-related genes and proteins. Number of TRAP-positive cells transfected with A20 siRNA was higher than those transfected with NC siRNA. A20 expression in cells transfected with IL-1β siRNA in the presence of both RANKL and CpG-ODN was more decreased than those with NC siRNA. Conclusion This study showed that CpG-ODN suppressed RANKL-induced osteoclast formation through regulation of the A20-TRAF6 axis in RAW 264.7 cells.
Collapse
|
21
|
Ye X, Jiang J, Yang J, Yan W, Jiang L, Chen Y. Specnuezhenide suppresses diabetes-induced bone loss by inhibiting RANKL-induced osteoclastogenesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1080-1089. [PMID: 35929595 PMCID: PMC9827798 DOI: 10.3724/abbs.2022094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetes osteoporosis is a chronic complication of diabetes mellitus (DM) and is associated with osteoclast formation and enhanced bone resorption. Specnuezhenide (SPN) is an active compound with anti-inflammatory and immunomodulatory properties. However, the roles of SPN in diabetic osteoporosis remain unknown. In this study, primary bone marrow macrophages (BMMs) were pretreated with SPN and were stimulated with receptor activator of nuclear factor kappa B ligand (RANKL; 50 ng/mL) to induce osteoclastogenesis. The number of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. The protein levels of cellular oncogene fos/nuclear factor of activated T cells c1 (c-Fos/NFATc1), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinases (MAPKs) were evaluated by western blot analysis. NF-κB luciferase assays were used to examine the role of SPN in NF-κB activation. The DM model group received a high-glucose, high-fat diet and was then intraperitoneally injected with streptozotocin (STZ). Micro-CT scanning, serum biochemical analysis, histological analysis were used to assess bone loss. We found that SPN suppressed RANKL-induced osteoclast formation and that SPN inhibited the expression of osteoclast-related genes and c-Fos/ NFATc1. SPN inhibited RANKL-induced activation of NF-κB and MAPKs. In vivo experiments revealed that SPN suppressed diabetes-induced bone loss and the number of osteoclasts. Furthermore, SPN decreased the levels of bone turnover markers and increased the levels of runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), calcium (Ca) and phosphorus (P). SPN also regulated diabetes-related markers. This study suggests that SPN suppresses diabetes-induced bone loss by inhibiting RANKL-induced osteoclastogenesis, and provides an experimental basis for the treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
| | | | - Juan Yang
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| | - Wenyan Yan
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| | - Luyue Jiang
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| | - Yan Chen
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| |
Collapse
|
22
|
Wang L, Dong M, Shi D, Yang C, Liu S, Gao L, Niu W. Role of PI3K in the bone resorption of apical periodontitis. BMC Oral Health 2022; 22:345. [PMID: 35953782 PMCID: PMC9373278 DOI: 10.1186/s12903-022-02364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Phosphoinositide 3-kinase (PI3K) is located within cells, and is involved in regulating cell survival, proliferation, apoptosis and angiogenesis. The purpose of this study was to investigate the role of PI3K in the process of bone destruction in apical periodontitis, and provide reference data for the treatment of this disease. METHODS The relative mRNA expression of PI3K, Acp5 and NFATc1 in the normal human periodontal ligament and in chronic apical periodontitis were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). A mouse model of apical periodontitis was established by root canal exposure to the oral cavity, and HE staining was used to observe the progress of apical periodontitis. Immunohistochemical staining was used to detect the expression of PI3K and AKT in different stages of apical periodontitis, while enzymatic histochemical staining was used for detection of osteoclasts. An Escherichia coli lipopolysaccharide (LPS)-mediated inflammatory environment was also established at the osteoclast and osteoblast level, and osteoclasts or osteoblasts were treated with the PI3K inhibitor LY294002 to examine the role of PI3K in bone resorption. RESULTS The expression of PI3K, Acp5 and NFATc1 genes in chronic apical periodontitis sample groups was significantly increased relative to healthy periodontal ligament tissue (P < 0.05). Mouse apical periodontitis was successfully established and bone resorption peaked between 2 and 3 weeks (P < 0.05). The expression of PI3K and Akt increased with the progression of inflammation, and reached a peak at 14 days (P < 0.05). The gene and protein expression of PI3K, TRAP and NFATc1 in osteoclasts were significantly increased (P < 0.05) in the E. coli LPS-mediated inflammatory microenvironment compared to the normal control group. Meanwhile in osteoblasts, the gene and protein expression of PI3K, BMP-2 and Runx2 were significantly reduced (P < 0.05) in the inflammatory microenvironment. With the addition of LY294002, expressions of bone resorption-related factors (TRAP, NFATc1) and bone formation-related factors (BMP-2, Runx2) significantly decreased (P < 0.05). CONCLUSIONS Under the inflammatory environment induced by LPS, PI3K participates in the occurrence and development of chronic apical periodontitis by regulating the proliferation and differentiation of osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- LiNa Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - DongMei Shi
- Department of Pediatric Stomatology, The Third People's Hospital of Puyang City, Puyang, Henan Province, China
| | - CaiHui Yang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Lu Gao
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - WeiDong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
23
|
Cao J, Zhou MX, Chen X, Sun M, Wei C, Peng Q, Cheng Z, Sun W, Wang H. Sec-O-Glucosylhamaudol Inhibits RANKL-Induced Osteoclastogenesis by Repressing 5-LO and AKT/GSK3β Signaling. Front Immunol 2022; 13:880988. [PMID: 35558084 PMCID: PMC9087042 DOI: 10.3389/fimmu.2022.880988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Sec-O-glucosylhamaudol (SOG), an active flavonoid compound derived from the root of Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., exhibits analgesic, anti-inflammatory, and high 5-lipoxygenase (5-LO) inhibitory effects. However, its effect on osteoclastogenesis was unclear. We demonstrated that SOG markedly attenuated RANKL-induced osteoclast formation, F-actin ring formation, and mineral resorption by reducing the induction of key transcription factors NFATc1, c-Fos, and their target genes such as TRAP, CTSK, and DC-STAMP during osteoclastogenesis. Western blotting showed that SOG significantly inhibited the phosphorylation of AKT and GSK3β at the middle–late stage of osteoclastogenesis without altering calcineurin catalytic subunit protein phosphatase-2β-Aα expression. Moreover, GSK3β inhibitor SB415286 partially reversed SOG-induced inhibition of osteoclastogenesis, suggesting that SOG inhibits RANKL-induced osteoclastogenesis by activating GSK3β, at least in part. 5-LO gene silencing by small interfering RNA in mouse bone marrow macrophages markedly reduced RANKL-induced osteoclastogenesis by inhibiting NFATc1. However, it did not affect the phosphorylation of AKT or GSK3β, indicating that SOG exerts its inhibitory effects on osteoclastogenesis by suppressing both the independent 5-LO pathway and AKT-mediated GSK3β inactivation. In support of this, SOG significantly improved bone destruction in a lipopolysaccharide-induced mouse model of bone loss. Taken together, these results suggest a potential therapeutic effect for SOG on osteoclast-related bone lysis disease.
Collapse
Affiliation(s)
- Jinjin Cao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ming-Xue Zhou
- Department of Neurology, Ruikang Hospital of Guangxi Traditional Chinese Medicine (TCM) University, Nanning, China
| | - Xinyan Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Menglu Sun
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Congmin Wei
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qisheng Peng
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Zhou Cheng
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wanchun Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Hongbing Wang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Lu F, Wu X, Hu H, Zhang J, Song X, Jin X, Chen L, Sun J, Chen H. Yangonin treats inflammatory osteoporosis by inhibiting the secretion of inflammatory factors and RANKL expression. Inflammopharmacology 2022; 30:1445-1458. [PMID: 35451724 DOI: 10.1007/s10787-022-00985-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As the main cause of osteoporosis, abnormal activity of osteoclasts could disrupt the balance between bone resorption and formation. Moreover, up-regulation of nuclear factor-kappa ligand (RANKL) expression by chronic inflammation-mediated inflammatory factors might contribute to the differentiation of osteoclast precursor cells. Therefore, an anti-inflammatory agent named yangonin was presented for inhibiting osteoclast and relieving inflammatory osteoporosis through down-regulating inflammatory factors. METHODS We established a model of macrophage inflammation and then verified the anti-inflammatory effect of yangonin. The inhibitory effect of yangonin on osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining, Western blotting and quantitative real-time PCR (qRT-PCR). Finally, micro-CT, TRAP and hematoxylin-eosin (HE) staining were used to show the effect of yangonin on inflammatory osteoporosis in vivo. RESULTS Our results suggested that yangonin was able to reduce the secretion of inflammatory factors, down-regulate osteoclast-related genes such as TRAP, RANKL, cathepsin K (CTSK) and nuclear factor-activated T-cell 1 (NFATc1). Furthermore, it was demonstrated that yangonin could suppress the function of inflammatory cytokines in osteoclast differentiation and reporting, wherein NF-κB, AKT and downstream c-Fos/NFATc1 signaling pathways were involved. In an in vivo study, we implied that yangonin has a relieving effect on inflammatory osteoporosis. CONCLUSION Our research shows that yangonin down-regulates inflammatory factors and inhibits the bone-breaking effect of inflammation through NF-κB, AKT and downstream c-Fos/NFATc1 signaling pathways to achieve the purpose of treating inflammatory osteoporosis.
Collapse
Affiliation(s)
- Feng Lu
- Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Orthopedic, Taizhou Hospital of Zhejiang Province, Zhejiang University, No. 150 Ximen Street, Gucheng Street, Linhai City, Taizhou City, 317000, Zhejiang Province, China
| | - Xinhui Wu
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Huiqun Hu
- Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiapeng Zhang
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiaoting Song
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiangang Jin
- Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Orthopedic, Taizhou Hospital of Zhejiang Province, Zhejiang University, No. 150 Ximen Street, Gucheng Street, Linhai City, Taizhou City, 317000, Zhejiang Province, China
| | - Lihua Chen
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jiacheng Sun
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Haixiao Chen
- Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Department of Orthopedic, Taizhou Hospital of Zhejiang Province, Zhejiang University, No. 150 Ximen Street, Gucheng Street, Linhai City, Taizhou City, 317000, Zhejiang Province, China. .,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
25
|
Uehara S, Mukai H, Yamashita T, Koide M, Murakami K, Udagawa N, Kobayashi Y. Inhibitor of protein kinase N3 suppresses excessive bone resorption in ovariectomized mice. J Bone Miner Metab 2022; 40:251-261. [PMID: 35028715 DOI: 10.1007/s00774-021-01296-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The long-term inhibition of bone resorption suppresses new bone formation because these processes are coupled during physiological bone remodeling. The development of anti-bone-resorbing agents that do not suppress bone formation is urgently needed. We previously demonstrated that Wnt5a-Ror2 signaling in mature osteoclasts promoted bone-resorbing activity through protein kinase N3 (Pkn3). The p38 MAPK inhibitor SB202190 reportedly inhibited Pkn3 with a low Ki value (0.004 μM). We herein examined the effects of SB202190 on osteoclast differentiation and function in vitro and in vivo. MATERIALS AND METHODS Bone marrow cells were cultured in the presence of M-csf and GST-Rankl to differentiate into multinucleated osteoclasts. Osteoclasts were treated with increasing concentrations of SB202190. For in vivo study, 10-week-old female mice were subjected to ovariectomy (OVX). OVX mice were intraperitoneally administered with a Pkn3 inhibitor at 2 mg/kg or vehicle for 4 weeks, and bone mass was analyzed by micro-CT. RESULTS SB202190 suppressed the auto-phosphorylation of Pkn3 in osteoclast cultures. SB202190 significantly inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation. SB202190 reduced c-Src activity in osteoclast cultures without affecting the interaction between Pkn3 and c-Src. A treatment with SB202190 attenuated OVX-induced bone loss without affecting the number of osteoclasts or bone formation by osteoblasts. CONCLUSIONS Our results showed that Pkn3 has potential as a therapeutic target for bone loss due to increased bone resorption. SB202190 is promising as a lead compound for the development of novel anti-bone-resorbing agents.
Collapse
Affiliation(s)
- Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Hideyuki Mukai
- Biosignal Research Center, Kobe University, Hyogo, 657-8501, Japan
- Department of Clinical Laboratory, Kitano Hospital, Osaka, 530-8480, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka , Shiojiri-shi, Nagano, 399-0781, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka , Shiojiri-shi, Nagano, 399-0781, Japan
| | - Kohei Murakami
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, 794-8555, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka , Shiojiri-shi, Nagano, 399-0781, Japan.
| |
Collapse
|
26
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
27
|
Suppression of osteoclastogenesis signalling pathways and attenuation of ameloblastic osteolysis induced by local administration of CaP-bisphosphonate and CaP-doxycycline cements: Review of the literature and therapeutic hypothesis. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2021.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Pan W, Zheng L, Gao J, Ye L, Chen Z, Liu S, Pan B, Fang J, Lai H, Zhang Y, Ni K, Lou C, He D. SIS3 suppresses osteoclastogenesis and ameliorates bone loss in ovariectomized mice by modulating Nox4-dependent reactive oxygen species. Biochem Pharmacol 2022; 195:114846. [PMID: 34801525 DOI: 10.1016/j.bcp.2021.114846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Osteoporosis is a metabolic disorder of reduced bone mass, accompanied by the deterioration of the bone microstructure, resulting in increased brittleness and easy fracture. Its pathogenesis can be explained by mainly excessive osteoclast formation or bone resorption hyperfunction. Oxidative stress is intricately linked with bone metabolism, and the maturation and bone resorption of osteoclasts respond to intracellular ROS levels. SIS3 is a small-molecule compound that selectively suppresses Smad3 phosphorylation in the TGF-β/Smad signaling pathway and attenuates the ability to bind to target DNA. Several studies have reported that Smad3 plays a significant role in bone metabolism. However, whether SIS3 can modulate bone metabolism by affecting osteoclastogenesis and the specific molecular mechanisms involved remain unknown. Here, we demonstrated that SIS3 could suppress osteoclastogenesis and ameliorate bone loss in ovariectomized mice. Mechanistically, SIS3 inhibited Smad3 phosphorylation in BMMs, and the deficiency of phosphorylated Smad3 downregulated ROS production and Nox4-dependent expression during osteoclast formation, thereby blocking MAPK phosphorylation and the synthesis of downstream osteoclast marker proteins. Similarly, Nox4 plasmid transfection significantly alleviated osteoclast formation inhibited by SIS3. In addition, we identified the interaction region between Smad3 and Nox4 by ChIP and dual luciferase reporter assays. Collectively, we found that SIS3 could inhibit Smad3 phosphorylation, reduce Nox4-dependent ROS generation induced by RANKL, and prevent osteoclast differentiation and maturation, making it a promising alternative therapy for osteoporosis.
Collapse
Affiliation(s)
- Wenzheng Pan
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Jiawei Gao
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Lin Ye
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Zhenzhong Chen
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Shijie Liu
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Bin Pan
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Jiawei Fang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Hehuan Lai
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Yejin Zhang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Kainai Ni
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Chao Lou
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Dengwei He
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China.
| |
Collapse
|
29
|
Li CH, Lü ZR, Zhao ZD, Wang XY, Leng HJ, Niu Y, Wang MP. Nitazoxanide, an Antiprotozoal Drug, Reduces Bone Loss in Ovariectomized Mice by Inhibition of RANKL-Induced Osteoclastogenesis. Front Pharmacol 2021; 12:781640. [PMID: 34955850 PMCID: PMC8696474 DOI: 10.3389/fphar.2021.781640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Nitazoxanide (NTZ) is an FDA-approved anti-parasitic drug with broad-spectrum anti-infective, anti-inflammatory, and antineoplastic potential. However, its regulatory effects on osteoclastogenesis and the underlying mechanisms remain unclear. The present study found that NTZ potently inhibited osteoclast formation at the early stage of receptor activator of NF-κB ligand-induced osteoclastogenesis in a concentration-dependent manner at a non-growth inhibitory concentration. NTZ suppressed actin ring formation and decreased osteoclast marker gene expression, including TRAP, MMP9, and cathepsin K. NTZ significantly impaired the bone resorption activity of osteoclasts. In vivo, ovariectomized mice were treated with 50, 100 and 200 mg/kg/d NTZ for 3 months. NTZ (100 mg/kg/d) administration markedly reduced ovariectomy-induced bone loss by suppressing osteoclast activity. Mechanistically, osteoclastogenesis blockade elicited by NTZ resulted from inhibition of STAT3 phosphorylation, and reduction of the Ca2+ fluorescence intensity and NFATc1 expression. NTZ weakened the binding between STAT3 and the NFATc1 promoter region. Furthermore, enforced NFATc1 expression partly rescued the impaired osteoclast differentiation in NTZ-treated RAW264.7 cells. In summary, NTZ could inhibit osteoclastogenesis and bone loss through modulation of the receptor activator of NF-κB ligand-induced STAT3-NFATc1 signaling pathway, which might be a potential alternative treatment regimen against bone destruction-related diseases including osteoporosis.
Collapse
Affiliation(s)
- Chang-hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing, China
| | - Zi-rui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhen-da Zhao
- Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing, China
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Xin-yu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Hui-jie Leng
- Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Mo-pei Wang
- Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing, China
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Hu H, Chen Y, Huang F, Chen B, Zou Z, Tan B, Yi H, Liu C, Wan Y, Ling Z, Zou X. Panax notoginseng saponins attenuate intervertebral disc degeneration by reducing the end plate porosity in lumbar spinal instability mice. JOR Spine 2021; 4:e1182. [PMID: 35005448 PMCID: PMC8717113 DOI: 10.1002/jsp2.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
Although painkillers could alleviate some of the symptoms, there are no drugs that really cope with the intervertebral disc degeneration (IDD) at present, so it is urgent to find a cure that could prevent or reverse the progression of IDD. During the development of IDD, the cartilaginous end plates (EPs) become hypertrophic and porous by the increase of osteoclast activities, which hinder the penetration of nutrition. The compositional and structural degeneration of the EP may cause both nutritional as well as mechanical impairment to the nucleus pulposus (NP) so that developing drugs that target the degenerating EP may be another option in addition to targeting the NP. In the lumbar spine instability mouse model, we found increased porosity in the cartilaginous EP, accompanied by the decrease in total intervertebral disc volume. Panax notoginseng saponins (PNS), a traditional Chinese patent drug with anti-osteoclastogenesis effect, could alleviate IDD by inhibiting aberrant osteoclast activation in the porous EP. Further in vitro experiment validated that PNS inhibit the receptor activator of nuclear factor kappa-Β ligand-induced osteoclast differentiation, while the transcriptional activation of PAX6 may be involved in the mechanism, which had been defined as an inhibitory transcription factor in osteoclastogenesis. These findings may provide a novel therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Hao Hu
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Yan Chen
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Fangli Huang
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Bolin Chen
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Zhiyuan Zou
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Bizhi Tan
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Hualin Yi
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Chun Liu
- Precision Medicine InstituteSun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Yong Wan
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Zemin Ling
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Xuenong Zou
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| |
Collapse
|
31
|
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne) 2021; 12:779638. [PMID: 34887836 PMCID: PMC8649804 DOI: 10.3389/fendo.2021.779638] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic compounds spotted in various fruits, vegetables, barks, tea plants, and stems and many more natural commodities. They have a multitude of applications through their anti-inflammatory, anti-oxidative, anti-carcinogenic properties, along with the ability to assist in the stimulation of bone formation. Bone, a rigid connective body tissue made up of cells embedded in a mineralised matrix is maintained by an assemblage of pathways assisting osteoblastogenesis and osteoclastogenesis. These have a significant impact on a plethora of bone diseases. The homeostasis between osteoblast and osteoclast formation decides the integrity and structure of the bone. The flavonoids discussed here are quercetin, kaempferol, icariin, myricetin, naringin, daidzein, luteolin, genistein, hesperidin, apigenin and several other flavonoids. The effects these flavonoids have on the mitogen activated protein kinase (MAPK), nuclear factor kappa β (NF-kβ), Wnt/β-catenin and bone morphogenetic protein 2/SMAD (BMP2/SMAD) signalling pathways, and apoptotic pathways lead to impacts on bone remodelling. In addition, these polyphenols regulate angiogenesis, decrease the levels of inflammatory cytokines and play a crucial role in scavenging reactive oxygen species (ROS). Considering these important effects of flavonoids, they may be regarded as a promising agent in treating bone-related ailments in the future.
Collapse
Affiliation(s)
| | | | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | |
Collapse
|
32
|
Yu J, Schilling L, Eller T, Canalis E. Hairy and enhancer of split 1 is a primary effector of NOTCH2 signaling and induces osteoclast differentiation and function. J Biol Chem 2021; 297:101376. [PMID: 34742737 PMCID: PMC8633688 DOI: 10.1016/j.jbc.2021.101376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Notch2tm1.1Ecan mice, which harbor a mutation replicating that found in Hajdu–Cheney syndrome, exhibit marked osteopenia because of increased osteoclast number and bone resorption. Hairy and enhancer of split 1 (HES1) is a Notch target gene and a transcriptional modulator that determines osteoclast cell fate decisions. Transcript levels of Hes1 increase in Notch2tm1.1Ecan bone marrow–derived macrophages (BMMs) as they mature into osteoclasts, suggesting a role in osteoclastogenesis. To determine whether HES1 is responsible for the phenotype of Notch2tm1.1Ecan mice and the skeletal manifestations of Hajdu–Cheney syndrome, Hes1 was inactivated in Ctsk-expressing cells from Notch2tm1.1Ecan mice. Ctsk encodes the protease cathepsin K, which is expressed preferentially by osteoclasts. We found that the osteopenia of Notch2tm1.1Ecan mice was ameliorated, and the enhanced osteoclastogenesis was reversed in the context of the Hes1 inactivation. Microcomputed tomography revealed that the downregulation of Hes1 in Ctsk-expressing cells led to increased bone volume/total volume in female mice. In addition, cultures of BMMs from CtskCre/WT;Hes1Δ/Δ mice displayed a decrease in osteoclast number and size and decreased bone-resorbing capacity. Moreover, activation of HES1 in Ctsk-expressing cells led to osteopenia and enhanced osteoclast number, size, and bone resorptive capacity in BMM cultures. Osteoclast phenotypes and RNA-Seq of cells in which HES1 was activated revealed that HES1 modulates cell–cell fusion and bone-resorbing capacity by supporting sealing zone formation. In conclusion, we demonstrate that HES1 is mechanistically relevant to the skeletal manifestation of Notch2tm1.1Ecan mice and is a novel determinant of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA.
| |
Collapse
|
33
|
He J, Chen K, Deng T, Xie J, Zhong K, Yuan J, Wang Z, Xiao Z, Gu R, Chen D, Li X, Lin D, Xu J. Inhibitory Effects of Rhaponticin on Osteoclast Formation and Resorption by Targeting RANKL-Induced NFATc1 and ROS Activity. Front Pharmacol 2021; 12:645140. [PMID: 34630071 PMCID: PMC8495440 DOI: 10.3389/fphar.2021.645140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The extravagant osteoclast formation and resorption is the main cause of osteoporosis. Inhibiting the hyperactive osteoclastic resorption is considered as an efficient treatment for osteoporosis. Rhaponticin (RH) is a small molecule that has been reported to possess anti-inflammatory, anti-allergic, anti-fibrotic, and anti-diabetic activities. However, the influence of RH on osteoclasts differentiation and function is still unclear. To this end, an array of assays including receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL) induced osteoclastogenesis, tartrate-resistant acidic phosphatase (TRAcP) staining, immunofluorescence, and hydroxyapatite resorption were performed in this study. It was found that RH had significant anti-catabolic effects by inhibiting osteoclastogenesis and bone resorption without cytotoxicity. Mechanistically, the expression of NADPH oxidase 1 (Nox1) was found to be suppressed and antioxidant enzymes including catalase, superoxide dismutase 2 (SOD-2), and heme oxygenase-1(HO-1) were enhanced following RH treatment, suggesting RH exhibited antioxidant activity by reducing the generation of reactive oxygen species (ROS) as well as enhancing the depletion of ROS. In addition, MAPKs, NF-κB, and intracellular Ca2+ oscillation pathways were significantly inhibited by RH. These changes led to the deactivation of osteoclast master transcriptional factor-nuclear factor of activated T cells 1 (NFATc1), as examined by qPCR and Western blot assay, which led to the decreased expression of downstream integrin β3, c-Fos, cathepsin K, and Atp6v0d2. These results suggested that RH could effectively suppress RANKL-regulated osteoclast formation and bone resorption. Therefore, we propose that RH can represent a novel natural small molecule for the treatment of osteoporosis by inhibiting excessive osteoclast activity.
Collapse
Affiliation(s)
- Jianbo He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Tiancheng Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiewei Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kunjing Zhong
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ronghe Gu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Orthopedics, First People’s Hospital of Nanning, Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Delong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Liang X, Hou Y, Han L, Yu S, Zhang Y, Cao X, Yan J. ELMO1 Regulates RANKL-Stimulated Differentiation and Bone Resorption of Osteoclasts. Front Cell Dev Biol 2021; 9:702916. [PMID: 34381782 PMCID: PMC8350380 DOI: 10.3389/fcell.2021.702916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
Bone homeostasis is a metabolic balance between the new bone formation by osteoblasts and old bone resorption by osteoclasts. Excessive osteoclastic bone resorption results in low bone mass, which is the major cause of bone diseases such as rheumatoid arthritis. Small GTPases Rac1 is a key regulator of osteoclast differentiation, but its exact mechanism is not fully understood. ELMO and DOCK proteins form complexes that function as guanine nucleotide exchange factors for Rac activation. Here, we report that ELMO1 plays an important role in differentiation and bone resorption of osteoclasts. Osteoclast precursors derived from bone marrow monocytes (BMMs) of Elmo1–/– mice display defective adhesion and migration during differentiation. The cells also have a reduced activation of Rac1, p38, JNK, and AKT in response to RANKL stimulation. Importantly, we show that bone erosion is alleviated in Elmo1–/– mice in a rheumatoid arthritis mouse model. Taken together, our results suggest that ELMO1, as a regulator of Rac1, regulates osteoclast differentiation and bone resorption both in vitro and in vivo.
Collapse
Affiliation(s)
- Xinyue Liang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yafei Hou
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Han
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shuxiang Yu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yunyun Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiumei Cao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianshe Yan
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Tomomura A, Bandow K, Tomomura M. Purification and Biological Function of Caldecrin. MEDICINES (BASEL, SWITZERLAND) 2021; 8:41. [PMID: 34436220 PMCID: PMC8398347 DOI: 10.3390/medicines8080041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Blood calcium homeostasis is critical for biological function. Caldecrin, or chymotrypsin-like elastase, was originally identified in the pancreas as a serum calcium-decreasing factor. The serum calcium-decreasing activity of caldecrin requires the trypsin-mediated activation of the protein. Protease activity-deficient mature caldecrin can also reduce serum calcium concentration, indicating that structural processing is necessary for serum calcium-decreasing activity. Caldecrin suppresses the differentiation of bone-resorbing osteoclasts from bone marrow macrophages (BMMs) by inhibiting receptor activator of NF-κB ligand (RANKL)-induced nuclear factor of activated T-cell cytoplasmic 1 expression via the Syk-PLCγ-Ca2+ oscillation-calcineurin signaling pathway. It also suppresses mature osteoclastic bone resorption by RANKL-stimulated TRAF6-c-Src-Syk-calcium entry and actin ring formation. Caldecrin inhibits lipopolysaccharide (LPS)-induced osteoclast formation in RANKL-primed BMMs by inducing the NF-κB negative regulator A20. In addition, caldecrin suppresses LPS-mediated M1 macrophage polarization through the immunoreceptor triggering receptor expressed on myeloid cells (TREM) 2, suggesting that caldecrin may function as an anti-osteoclastogenic and anti-inflammatory factor via TREM2. The ectopic intramuscular expression of caldecrin cDNA prevents bone resorption in ovariectomized mice, and the administration of caldecrin protein also prevents skeletal muscle destruction in dystrophic mice. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease and a possible therapeutic target for skeletal and inflammatory diseases.
Collapse
Affiliation(s)
- Akito Tomomura
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Kenjiro Bandow
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, 1-1 Akemi, Urayasu, Chiba 279-8550, Japan;
| |
Collapse
|
37
|
Pengjam Y, Prajantasen T, Tonwong N, Panichayupakaranant P. Downregulation of miR-21 gene expression by CRE-Ter to modulate osteoclastogenesis: De Novo mechanism. Biochem Biophys Rep 2021; 26:101002. [PMID: 33997317 PMCID: PMC8099503 DOI: 10.1016/j.bbrep.2021.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
miR-21 expression stimulates osteoclast cells in the context of osteoclastogenesis. A previous report showed that NFκB-miR-21 pathway could serve as an innovative alternative to devise therapeutics for healing diabetic ulcers. Furthermore, our study demonstrated that a highly water-soluble curcuminoids-rich extract (CRE-Ter) inhibits osteoclastogenesis through NFκB pathway. The interplay between miR-21 and CRE-Ter in osteoclastogenesis has not yet been investigated. In this study, we examined the relation of CRE-Ter and miR-21 gene expression in receptor of the nuclear factor κB (NFκB) ligand (RANKL) - induced murine monocyte/macrophage RAW 264.7 cells, osteoclast cells, in osteoclastogenesis. Effect of CRE-Ter on generation of intracellular reactive oxygen species (ROS) was estimated by dichlorofluorescein diacetate (DCFH-DA). The results reveal that CRE-Ter reduced expression levels of miR-21 gene in osteoclasts. The inhibitory effects of CRE-Ter on in vitro osteoclastogenesis were evaluated by reduction in tartrate-resistant acid phosphatase (TRAP) content, and by reduction in expression levels of an osteoclast-specific gene, cathepsin K. Treatment of the osteoclast cells with CRE-Ter suppressed RANKL-induced NFκB activation including phospho-NFκB-p65, and phospho IκBα proteins. Western blot analysis revealed that NFκB inhibitor up-regulated CRE-Ter-promoted expression of phospho-NFκB-p65. In addition, CRE-Ter dose-dependently inhibited phospho-Akt expression. CRE-Ter also dose-dependently reduced DNA binding activity of NFκB and Akt as revealed by EMSA. ChIP assay revealed binding of NFκB-p65 to miR-21 promoters. In conclusion, our results demonstrate that CRE-Ter downregulates miR-21 gene expression in osteoclasts via a de novo mechanism, NFκB- Akt-miR-21 pathway.
Collapse
Affiliation(s)
- Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Thanet Prajantasen
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Natda Tonwong
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|
38
|
Wang Y, Yang Q, Fu Z, Sun P, Zhang T, Wang K, Li X, Qian Y. Hinokitiol inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo. Int Immunopharmacol 2021; 96:107619. [PMID: 33831806 DOI: 10.1016/j.intimp.2021.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a metabolic bone-loss disease characterized by abnormally excessive osteoclast formation and bone resorption. Identification of natural medicines that can inhibit osteoclastogenesis, bone resorption, and receptor activator of nuclear factor-κB ligand (RANKL)-induced signaling is necessary for improved treatment of osteoporosis. In this study, hinokitiol, a tropolone-related compound extracted from the heart wood of several cupressaceous plants, was found to inhibit RANKL-induced osteoclast formation and bone resorption in vitro. Hinokitiol inhibited early activation of the ERK, p38, and JNK-MAPK pathways, thereby suppressing the activity and expression of downstream factors (c-Jun, c-Fos, and NFATC1). Consistent with the above in vitro findings, hinokitiol treatment protected against ovariectomy-induced bone loss in vivo. Collectively, our results imply that hinokitiol can potentially serve as an effective agent for treating osteoclast-induced osteoporosis.
Collapse
Affiliation(s)
- Yanben Wang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Qichang Yang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ziyuan Fu
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Peng Sun
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Kelei Wang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xinyu Li
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yu Qian
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
39
|
Hinz N, Jücker M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13102287. [PMID: 34064589 PMCID: PMC8151478 DOI: 10.3390/cancers13102287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastasis is a frequent complication of solid tumors and leads to a reduced overall survival. Although much progress has been made in the field of tumor therapy in the last years, bone metastasis depicts a stage of the disease with a lack of appropriate therapeutical options. Hence, this review aims to present the role of AKT in bone metastasis of solid tumors to place the spotlight on AKT as a possible therapeutical approach for patients with bone metastases. Furthermore, we intended to discuss postulated underlying molecular mechanisms of the bone metastasis-promoting effect of AKT, especially in highly bone-metastatic breast, prostate, and lung cancer. To conclude, this review identified the AKT kinase as a potential therapeutical target in bone metastasis and revealed remaining questions, which need to be addressed in further research projects. Abstract Solid tumors, such as breast cancer and prostate cancer, often form bone metastases in the course of the disease. Patients with bone metastases frequently develop complications, such as pathological fractures or hypercalcemia and exhibit a reduced life expectancy. Thus, it is of vital importance to improve the treatment of bone metastases. A possible approach is to target signaling pathways, such as the PI3K/AKT pathway, which is frequently dysregulated in solid tumors. Therefore, we sought to review the role of the serine/threonine kinase AKT in bone metastasis. In general, activation of AKT signaling was shown to be associated with the formation of bone metastases from solid tumors. More precisely, AKT gets activated in tumor cells by a plethora of bone-derived growth factors and cytokines. Subsequently, AKT promotes the bone-metastatic capacities of tumor cells through distinct signaling pathways and secretion of bone cell-stimulating factors. Within the crosstalk between tumor and bone cells, also known as the vicious cycle, the stimulation of osteoblasts and osteoclasts also causes activation of AKT in these cells. As a consequence, bone metastasis is reduced after experimental inhibition of AKT. In summary, AKT signaling could be a promising therapeutical approach for patients with bone metastases of solid tumors.
Collapse
|
40
|
Hong G, Chen Z, Han X, Zhou L, Pang F, Wu R, Shen Y, He X, Hong Z, Li Z, He W, Wei Q. A novel RANKL-targeted flavonoid glycoside prevents osteoporosis through inhibiting NFATc1 and reactive oxygen species. Clin Transl Med 2021; 11:e392. [PMID: 34047464 PMCID: PMC8140192 DOI: 10.1002/ctm2.392] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoporosis is characterized by excessive bone resorption due to enhanced osteoclast activation. Stimulation of nuclear factor of activated T cells 1 (NFATc1) and accumulation of reactive oxygen species (ROS) are important mechanisms underlying osteoclastogenesis. Robinin (Rob) is a flavonoid glycoside that has shown anti-inflammatory and antioxidative effects in previous studies, but little is known about its effects on bone homeostasis. The purpose of our research was to investigate whether Rob could prevent bone resorption in ovariectomized (OVX) mice by suppressing osteoclast production through its underlying mechanisms. METHODS The docking pose of Rob and RANKL was identified by protein-ligand molecular docking. Rob was added to bone marrow macrophages (BMMs) stimulated by nuclear factor-κB (NF-κB) ligand (RANKL). The effects of Rob on osteoclastic activity were evaluated by positive tartrate resistant acid phosphatase (TRAcP) staining kit and hydroxyapatite resorption assay. RANKL-induced ROS generation in osteoclasts was detected by H2 DCFDA and MitoSox Red staining. The classic molecular cascades triggered by RANKL, such as NF-κB, ROS, calcium oscillations, and NFATc1-mediated signaling pathways, were investigated using Fluo4 staining, western blot, and quantitative real-time polymerase chain reaction. In addition, an OVX mouse model mimicking estrogen-deficient osteoporosis was created to evaluate the therapeutic effects of Rob in vivo. RESULTS Computational docking results showed that Rob could bind specifically to RANKL's predicted binding sites. In vitro, Rob inhibited RANKL-mediated osteoclastogenesis dose-dependently without obvious cytotoxicity at low concentrations. We also found that Rob attenuated RANKL-induced mitochondrial ROS production or enhanced activities of ROS-scavenging enzymes, and ultimately reduced intracellular ROS levels. Rob abrogated the RANKL-induced mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, and subsequently blocked NFATc1 signaling and TRAcP expression. In addition, Rob inhibited osteoclast proliferation by downregulating the expression of osteoclast target genes (Acp5, Cathepsin K, Atp6v0d2, Nfact1, c-Fos, and Mmp9) and reducing Ca2+ oscillations. Our in vivo results showed that Rob reduced bone resorption in OVX animal model by repressing osteoclast activity and function. CONCLUSIONS Rob inhibits the activation of osteoclasts by targeting RANKL and is therefore a potential osteoporosis drug.
Collapse
Affiliation(s)
- Guoju Hong
- Division of Orthopaedic SurgeryThe University of AlbertaEdmontonAlbertaCanada
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Zhenqiu Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Xiaorui Han
- Division of Bioengineering, School of MedicineSouth China University of TechnologyGuangzhouGuangdongP.R. China
| | - Lin Zhou
- Department of Endocrinologythe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP.R. China
| | - Fengxiang Pang
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Rishana Wu
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Yingshan Shen
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Xiaoming He
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Zhinan Hong
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- Department of OrthopaedicsThe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Ziqi Li
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- Department of OrthopaedicsThe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Wei He
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- Department of OrthopaedicsThe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| | - Qiushi Wei
- Traumatology and Orthopedics InstituteGuangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
- Department of OrthopaedicsThe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongP.R. China
| |
Collapse
|
41
|
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80:413-422. [PMID: 33158879 PMCID: PMC7958096 DOI: 10.1136/annrheumdis-2020-218089] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
42
|
Tavares SJS, Lima V. Bone anti-resorptive effects of coumarins on RANKL downstream cellular signaling: a systematic review of the literature. Fitoterapia 2021; 150:104842. [PMID: 33556550 DOI: 10.1016/j.fitote.2021.104842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Members of the botanical families Apiaceae/Umbelliferae, Asteraceae, Fabaceae/Leguminosae, and Thymelaeaceae are rich in coumarins and have traditionally been used as ethnomedicines in many regions including Europe, Asia, and South America. Coumarins are a class of secondary metabolites that are widely present in plants, fungi, and bacteria and exhibit several pharmacological, biochemical, and therapeutic effects. Recently, many plants rich in coumarins and their derivatives were found to affect bone metabolism. OBJECTIVE To review scientific literature describing the mechanisms of action of coumarins in osteoclastogenesis and bone resorption. MATERIALS AND METHODS For this systematic review, the PubMed, Scopus, and Periodical Capes databases and portals were searched. We included in vitro research articles published between 2010 and 2020 that evaluated coumarins using osteoclastogenic markers. RESULTS Coumarins have been reported to downregulate RANKL-RANK signaling and various downstream signaling pathways required for osteoclast development, such as NF-κB, MAPK, Akt, and Ca2+ signaling, as well as pathways downstream of the nuclear factor of activated T-cells (NFATc1), including tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and matrix metalloproteinase 9 (MMP-9). CONCLUSIONS Coumarins primarily inhibit osteoclast differentiation and activation by modulating different intracellular signaling pathways; therefore, they could serve as potential candidates for controlled randomized clinical trials aimed at improving human bone health.
Collapse
Affiliation(s)
- Samia Jessica Silva Tavares
- School of Pharmacy, Nursing, and Dentistry, Federal University of Ceará, Fortaleza, Ceará 60430-355, Brazil.
| | - Vilma Lima
- School of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará 60.430-275, Brazil.
| |
Collapse
|
43
|
Kuo CH, Chen JY, Chen CM, Huang CW, Liou YM. Effects of varying gelatin coating concentrations on RANKL induced osteoclastogenesis. Exp Cell Res 2021; 400:112509. [PMID: 33529711 DOI: 10.1016/j.yexcr.2021.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Here, we assessed the effects of varying concentrations of gelatin coating on Receptor Activator of Nuclear Factor κ-B Ligand (RANKL)-induced RAW264.7 murine macrophage differentiation into osteoclast (OC) via osteoclastogenesis. The microstructures of coating surfaces with different concentrations of gelatin were examined by scanning electron microscopy and atomic force microscopy. Increased gelatin coating concentrations led to decreased gel rigidity but increased surface adhesion force attenuated OC differentiation and the decreased actin ring formation in RANKL-induced osteoclastogenesis. The decreased actin ring formation is associated with decreased lysosomal-associated membrane protein 1 (LAMP1) activity and bone resorption in the differentiated OCs with different gelatin coating concentrations as compared to the cells differentiated without gelatin coatings. In addition, increasing concentrations of gelatin coating attenuated the medium TGF-β1 protein levels and the expression levels of TGF-β and type-I (R1) and type-II (R2) TGF-β receptors in OCs, suggesting the gelatin-induced suppression of TGF-β signaling for the regulation of RNAKL-induced OC differentiation. Taken together, these findings showed that changes in gelatin coating concentrations, which were associated with altered gel thickness and substrate rigidity, might attenuate TGF-β signaling events to modulate OC differentiation and concomitant actin ring formation and bone matrix resorption in RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Chia-Hsiao Kuo
- Department of Orthopedics, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cian Wei Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
44
|
Liu W, Xie G, Yuan G, Xie D, Lian Z, Lin Z, Ye J, Zhou W, Zhou W, Li H, Wang X, Feng H, Liu Y, Yao G. 6'-O-Galloylpaeoniflorin Attenuates Osteoclasto-genesis and Relieves Ovariectomy-Induced Osteoporosis by Inhibiting Reactive Oxygen Species and MAPKs/c-Fos/NFATc1 Signaling Pathway. Front Pharmacol 2021; 12:641277. [PMID: 33897430 PMCID: PMC8058459 DOI: 10.3389/fphar.2021.641277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests bright prospects of some natural antioxidants in the treatment of osteoporosis. 6'-O-Galloylpaeoniflorin (GPF), an antioxidant isolated from peony roots (one of very widely used Oriental medicines, with various anti-inflammatory, antitumor, and antioxidant activities), shows a series of potential clinical applications. However, its effects on osteoporosis remain poorly investigated. The current study aimed to explore whether GPF can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating reactive oxygen species (ROS), and investigate the possible mechanism. After the culture of primary murine bone marrow-derived macrophages/monocytes were induced by the use of macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL) and then treated with GPF. Cell proliferation and viability were assessed by Cell Counting Kit-8 (CCK-8) assay. Thereafter, the role of GPF in the production of osteoclasts and the osteogenic resorption of mature osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, podosome belt formation, and resorption pit assay. Western blotting and qRT-PCR examination were performed to evaluate proteins' generation and osteoclast-specific gene levels, respectively. The ROS generation in cells was measured in vitro by 2',7'-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Ovariectomy-induced osteoporosis mouse administered with GPF or vehicle was performed to explore the in vivo potential of GPF, then a micro-CT scan was performed in combination with histological examination for further analysis. GPF suppressed the formation of osteoclasts and podosome belts, as well as bone resorption when induced by RANKL through affecting intracellular ROS activity, MAPKs signaling pathway, and subsequent NFATc1 translocation and expression, as well as osteoclast-specific gene expression in vitro. In vivo study suggested that exposure to GPF prevented osteoporosis-related bone loss in the ovariectomized mice. These findings indicate that GPF attenuates osteoclastogenesis and relieves ovariectomy-induced osteoporosis by inhibiting ROS and MAPKs/c-Fos/NFATc1 signaling pathway. This suggested that GPF may be potentially used to treat bone diseases like periodontitis, rheumatoid arthritis, and osteoporosis associated with osteoclasts.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenyun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Weijun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Henghui Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| |
Collapse
|
45
|
Chen Z, Cho E, Ding M, Seong J, Che X, Lee S, Park BJ, Choi JY, Lee TH. N-[2-(4-benzoyl-1-piperazinyl)phenyl]-2-(4-chlorophenoxy) acetamide is a novel inhibitor of resorptive bone loss in mice. J Cell Mol Med 2020; 25:1425-1438. [PMID: 33369010 PMCID: PMC7875930 DOI: 10.1111/jcmm.16228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The dynamic balance between bone formation and bone resorption is vital for the retention of bone mass. The abnormal activation of osteoclasts, unique cells that degrade the bone matrix, may result in many bone diseases such as osteoporosis. Osteoporosis, a bone metabolism disease, occurs when extreme osteoclast‐mediated bone resorption outstrips osteoblast‐related bone synthesis. Therefore, it is of great interest to identify agents that can regulate the activity of osteoclasts and prevent bone loss‐induced bone diseases. In this study, we found that N‐[2‐(4‐benzoyl‐1‐piperazinyl)phenyl]‐2‐(4‐chlorophenoxy) acetamide (PPOAC‐Bz) exerted a strong inhibitory effect on osteoclastogenesis. PPOAC‐Bz altered the mRNA expressions of several osteoclast‐specific marker genes and blocked the formation of mature osteoclasts, suppressing F‐actin belt formation and bone resorption activity in vitro. In addition, PPOAC‐Bz prevented OVX‐induced bone loss in vivo. These findings highlighted the potential of PPOAC‐Bz as a prospective drug for the treatment of osteolytic disorders.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Mina Ding
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, Korea
| | - Jihyoun Seong
- Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, Korea
| | - Byung-Ju Park
- Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae-Hoon Lee
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, Korea.,Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
46
|
Ma J, Zhu L, Zhou Z, Song T, Yang L, Yan X, Chen A, Ye TW. The calcium channel TRPV6 is a novel regulator of RANKL-induced osteoclastic differentiation and bone absorption activity through the IGF-PI3K-AKT pathway. Cell Prolif 2020; 54:e12955. [PMID: 33159483 PMCID: PMC7791174 DOI: 10.1111/cpr.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Calcium ion signals are important for osteoclast differentiation. Transient receptor potential vanilloid 6 (TRPV6) is a regulator of bone homeostasis. However, it was unclear whether TRPV6 was involved in osteoclast formation. Therefore, the aim of this study was to evaluate the role of TPRV6 in bone metabolism and to clarify its regulatory role in osteoclasts at the cellular level. Materials and methods Bone structure and histological changes in Trpv6 knockout mice were examined using micro‐computed tomography and histological analyses. To investigate the effects of Trpv6 on osteoclast function, we silenced or overexpressed Trpv6 in osteoclasts via lentivirus transfection, respectively. Osteoclast differentiation and bone resorption viability were measured by tartrate‐resistant acid phosphatase (TRAP) staining and pit formation assays. The expression of osteoclast marker genes, including cathepsin k, DC‐STAMP, Atp6v0d2 and TRAP, was measured by qRT‐PCR. Cell immunofluorescence and Western blotting were applied to explore the mechanisms by which the IGF‐PI3K‐AKT pathway was involved in the regulation of osteoclast formation and bone resorption by Trpv6. Results We found that knockout of Trpv6 induced osteoporosis and enhanced bone resorption in mice, but did not affect bone formation. Further studies showed that Trpv6, which was distributed on the cell membrane of osteoclasts, acted as a negative regulator for osteoclast differentiation and function. Mechanistically, Trpv6 suppressed osteoclastogenesis by decreasing the ratios of phosphoprotein/total protein in the IGF–PI3K–AKT signalling pathway. Blocking of the IGF–PI3K–AKT pathway significantly alleviated the inhibitory effect of Trpv6 on osteoclasts formation. Conclusions Our study confirmed the important role of Trpv6 in bone metabolism and clarified its regulatory role in osteoclasts at the cellular level. Taken together, this study may inspire a new strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China.,Department of Health Statistics, The Second Military Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopedic Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tengfei Song
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Lei Yang
- Department of Orthopedic Surgery, The 2nd affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xu Yan
- Department of Orthopedic Surgery, Naval Characteristic Medical Center, The Second Military Medical University, Shanghai, China
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Tian Wen Ye
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
47
|
Wang L, Fang D, Xu J, Luo R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer 2020; 20:1059. [PMID: 33143662 PMCID: PMC7607850 DOI: 10.1186/s12885-020-07568-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Zoledronic acid (ZA) is one of the most important and effective class of anti-resorptive drug available among bisphosphonate (BP), which could effectively reduce the risk of skeletal-related events, and lead to a treatment paradigm for patients with skeletal involvement from advanced cancers. However, the exact molecular mechanisms of its anticancer effects have only recently been identified. In this review, we elaborate the detail mechanisms of ZA through inhibiting osteoclasts and cancer cells, which include the inhibition of differentiation of osteoclasts via suppressing receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK) pathway, non-canonical Wnt/Ca2+/calmodulin dependent protein kinase II (CaMKII) pathway, and preventing of macrophage differentiation into osteoclasts, in addition, induction of apoptosis of osteoclasts through inhibiting farnesyl pyrophosphate synthase (FPPS)-mediated mevalonate pathway, and activation of reactive oxygen species (ROS)-induced pathway. Furthermore, ZA also inhibits cancer cells proliferation, viability, motility, invasion and angiogenesis; induces cancer cell apoptosis; reverts chemoresistance and stimulates immune response; and acts in synergy with other anti-cancer drugs. In addition, some new ways for delivering ZA against cancer is introduced. We hope this review will provide more information in support of future studies of ZA in the treatment of cancers and bone cancer metastasis.
Collapse
Affiliation(s)
- Lianwei Wang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jinming Xu
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, 408300, China.
| |
Collapse
|
48
|
Lin X, Yuan G, Li Z, Zhou M, Hu X, Song F, Shao S, Fu F, Zhao J, Xu J, Liu Q, Feng H. Ellagic acid protects ovariectomy-induced bone loss in mice by inhibiting osteoclast differentiation and bone resorption. J Cell Physiol 2020; 235:5951-5961. [PMID: 32026468 DOI: 10.1002/jcp.29520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.
Collapse
Affiliation(s)
- Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaoning Li
- Department of orthopedics, Dongguan people's hospital, Dongguan, Guangdong, China
| | - Mengyu Zhou
- Department of Dentistry, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianghua Hu
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Siyuan Shao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Fangsheng Fu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
49
|
Tu Y, Wang K, Tan L, Han B, Hu Y, Ding H, He C. Dolichosin A, a coumestan isolated from Glycine tabacina, inhibits IL-1β-induced inflammation in SW982 human synovial cells and suppresses RANKL-induced osteoclastogenesis: From network pharmacology to experimental pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112855. [PMID: 32376366 DOI: 10.1016/j.jep.2020.112855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycine tabacina (Labill.) Benth has been used as a traditional Chinese herbal medicine for the treatment of rheumatoid arthritis (RA) and joint infection. It is also one of the sources of the renowned native herbal medicine 'I-Tiao-Gung' in Taiwan. AIM OF THE STUDY This study aimed to investigate anti-arthritic effects and underlying mechanisms of dolichosin A (DoA), a coumestan compound isolated from G. tabacina, by the integration of network pharmacology and experimental pharmacology. MATERIALS AND METHODS Putative therapeutic targets and potential pharmacological mechanisms of DoA for RA treatment were predicted by network pharmacology approach. The regulated network of DoA acting on RA was constructed using Cytoscape 3.7.1. Anti-arthritic effects of DoA and predicted mechanisms were further validated using IL-1β-induced SW982 human synovial cell model and RANKL-induced osteoclastogenesis model. RESULTS A regulatory network of DoA-targets-pathways-RA was successfully constructed using network pharmacology approach. In this network, 65 candidate targets of DoA related to its therapeutic effect on RA were identified and the functional enrichment analysis revealed that these candidate targets were significantly involved in 12 central signaling pathways such as PI3K/AKT pathway, MAPK pathway and osteoclast differentiation. Furthermore, we found that DoA could significantly inhibit IL-1β-induced inflammation in SW982 human synovial cells, as evidenced by the decreased levels of pro-inflammatory mediators (TNF-α, IL-6 and COX-2) and MMP-3. DoA also suppressed RANKL-induced osteoclastogenesis in vitro, as evidenced by decreased number of TRAP-positive multinucleated osteoclasts and reduced TRAP activity. Further experimental mechanism evidence confirmed the predicted results of network pharmacology that the blockade of PI3K/AKT and MAPK pathways activation was closely associated with these regulated processes of DoA. CONCLUSIONS Our results demonstrated that DoA exhibited strong anti-arthritic activity through suppressing PI3K/AKT and MAPK pathways activation in activated synovial cells and osteoclasts, suggesting its potential as a hopeful candidate for the development of novel agents for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China.
| |
Collapse
|
50
|
Kim EY, Kim JH, Kim M, Park JH, Sohn Y, Jung HS. Abeliophyllum distichum Nakai alleviates postmenopausal osteoporosis in ovariectomized rats and prevents RANKL-induced osteoclastogenesis in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112828. [PMID: 32268206 DOI: 10.1016/j.jep.2020.112828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abeliophyllum distichum Nakai (AD), called Miseon, is one of Korea's monotypic endemic species. As a folk remedy, the AD has been used to treat inflammatory disease, stomachaches, diarrhea, and gynecologic disease in Korea. Some researchers have reported that the AD has anti-cancer, anti-inflammatory, and anti-oxidant effects. But the protective effect of AD leaf for osteoporosis has not been reported yet. AIM OF THE STUDY This study aimed to analyze the effects and mechanism of AD-ethyl acetate fraction (EA) extract on the osteoporosis, one of the gynecologic disease. MATERIALS AND METHODS The RAW 264.7 cells were used as a model for RANKL-induced osteoclastogenesis. We measured the TRAcP activity, expressions of NFATc1, c-fos, and MAPK to investigate the effect of AD-EA. OVX-induced osteoporosis rat model was used as menopausal osteoporosis. After both ovaries were removed through a surgical procedure, and AD-EA or 17b-estradiol was orally administered for 8 weeks. BMD of femurs was measured as well as the bone morphometric parameter, such as BV/TV, trabecular thickness, number and surface using a micro CT. RESULTS AD-EA significantly inhibited TRAcP activity, actin ring formation, pit formation and the expressions of osteoclast-related genes in a dose-dependent manner through the inhibition of the MAPK and c-fos/NFATc1 pathway. In addition, low dose administration of AD-EA improved the deterioration of trabecular bone microarchitecture caused by OVX through the inhibition of bone resorption by TRAcP and CTK. CONCLUSIONS These results suggest that AD-EA may contribute to the therapy of osteoporosis caused by menopause in women.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jae Ho Park
- Department of Pharmaceutical Science, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|