1
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
2
|
Pessentheiner AR, Spann NJ, Autran CA, Oh TG, Grunddal KV, Coker JK, Painter CD, Ramms B, Chiang AW, Wang CY, Hsiao J, Wang Y, Quach A, Booshehri LM, Hammond A, Tognaccini C, Latasiewicz J, Willemsen L, Zengler K, de Winther MP, Hoffman HM, Philpott M, Cribbs AP, Oppermann U, Lewis NE, Witztum JL, Yu R, Atkins AR, Downes M, Evans RM, Glass CK, Bode L, Gordts PL. The human milk oligosaccharide 3'sialyllactose reduces low-grade inflammation and atherosclerosis development in mice. JCI Insight 2024; 9:e181329. [PMID: 39325548 PMCID: PMC11601559 DOI: 10.1172/jci.insight.181329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium. Transcriptome analysis in macrophages revealed that 3'SL attenuates mRNA levels of a selected set of inflammatory genes and promotes the activity of liver X receptor (LXR) and sterol regulatory element binding protein-1 (SREBP1). These acute antiinflammatory effects of 3'SL were associated with reduced histone H3K27 acetylation at a subset of LPS-inducible enhancers distinguished by preferential enrichment for CCCTC-binding factor (CTCF), IFN regulatory factor 2 (IRF2), B cell lymphoma 6 (BCL6), and other transcription factor recognition motifs. In a murine atherosclerosis model, both s.c. and oral administration of 3'SL significantly reduced atherosclerosis development and the associated inflammation. This study provides evidence that 3'SL attenuates inflammation by a transcriptional mechanism to reduce atherosclerosis development in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, UCSD, La Jolla, California, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | - Joanna K.C. Coker
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Bioengineering at UCSD, La Jolla, California, USA
| | | | - Bastian Ramms
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Austin W.T. Chiang
- Department of Pediatrics at UCSD, La Jolla, California, USA
- Department of Bioengineering at UCSD, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, La Jolla, California, USA
| | - Chen-Yi Wang
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, United Kingdom
| | - Jason Hsiao
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Yiwen Wang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Anthony Quach
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | | | | | | | - Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Karsten Zengler
- Department of Bioengineering at UCSD, La Jolla, California, USA
- Center for Microbiome Innovation, UCSD, La Jolla, California, USA
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Hal M. Hoffman
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pediatrics at UCSD, La Jolla, California, USA
- Rady Children’s Hospital of San Diego, San Diego, California, USA
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
| | - Adam P. Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, United Kingdom
| | - Nathan E. Lewis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Bioengineering at UCSD, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, La Jolla, California, USA
| | | | - Ruth Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ron M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Christopher K. Glass
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Cellular and Molecular Medicine and
| | - Lars Bode
- Department of Pediatrics at UCSD, La Jolla, California, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE) and
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Philip L.S.M. Gordts
- Department of Medicine, UCSD, La Jolla, California, USA
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| |
Collapse
|
3
|
Loutet MG, Narimani A, Qamar H, Yonemitsu C, Pell LG, Mahmud AA, Ahmed T, Bode L, Bassani DG, Roth DE. Associations between human milk oligosaccharides and infant growth in a Bangladeshi mother-infant cohort. Pediatr Res 2024; 96:356-364. [PMID: 38052861 PMCID: PMC11343707 DOI: 10.1038/s41390-023-02927-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND We aimed to estimate associations between human milk oligosaccharides (HMOs) and infant growth (length-for-age (LAZ) and weight-for-length (WLZ) z-scores) at 12 months postnatal age. METHODS In this secondary analysis of data from a maternal vitamin D trial in Dhaka, Bangladesh (N = 192), absolute concentrations of HMOs were measured in 13 ± 1 week(s) postpartum milk samples, infant anthropometric measurements were obtained soon after birth and at 12 months postpartum, and infant feeding was classified during 6 months postpartum. Associations between individual HMOs or HMO groups and LAZ or WLZ were estimated by multivariable linear regression adjusting for infant feeding pattern, maternal secretor status, and other potential confounders. RESULTS The concentrations of 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated HMOs were inversely associated with LAZ at 12 months of age, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months. These associations were robust in analyses restricted to infants who were primarily exclusively/predominantly fed human milk during the first 3 (or 6) months. CONCLUSIONS Since HMOs are both positively and negatively associated with postnatal growth, there is a need for randomized trials to estimate the causal benefits and risks of exogenously administered HMOs on infant growth and other health outcomes. IMPACT 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated human milk oligosaccharides (HMOs) were inversely associated with length-for-age z-scores (LAZ) at 12 months, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months among Bangladeshi infants. Associations between individual and grouped HMOs with infant length growth at 12 months were as strong or stronger in analyses restricted to infants who were exclusively or predominantly fed human milk up to 3 (or 6) months. Randomized trials are needed to characterize the effects of specific HMOs on infant growth, particularly in countries where postnatal linear growth faltering is common.
Collapse
Affiliation(s)
- Miranda G Loutet
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- The University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Arash Narimani
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Huma Qamar
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Lisa G Pell
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, icddr,b, Dhaka, Bangladesh
| | - Lars Bode
- University of California San Diego, San Diego, CA, USA
| | - Diego G Bassani
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Daniel E Roth
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- The University of Toronto, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
4
|
Lv Y, Wang X, Huang J, Zhang W, Zhu M, Dekyi K, Zhang Y, Zheng L, Li H. Sialic acid in human milk and infant formulas in China: concentration, distribution and type. Br J Nutr 2024; 131:1506-1512. [PMID: 38178715 DOI: 10.1017/s0007114524000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
This study compared the concentrations, types and distributions of sialic acid (SA) in human milk at different stages of the postnatal period with those in a range of infant formulas. Breast milk from mothers of healthy, full-term and exclusively breastfed infants was collected on the 2nd (n 246), 7th (n 135), 30th (n 85) and 90th (n 48) day after birth. The SA profiles of human milk, including their distribution, were analysed and compared with twenty-four different infant formulas. Outcome of this observational study was the result of natural exposure. Only SA of type Neu5Ac was detected in human milk. Total SA concentrations were highest in colostrum and reduced significantly over the next 3 months. Approximately 68·7–76·1 % of all SA in human milk were bound to oligosaccharides. Two types of SA, Neu5Ac and Neu5Gc, have been detected in infant formulas. Most SA was present in infant formulas combined with protein. Breastfed infants could receive more SA than formula-fed infants with the same energy intake. Overall, human milk is a preferable source of SA than infant formulas in terms of total SA content, dynamics, distribution and type. These SA profiles in the natural state are worth to be considered by the production of formulas because they may have a great effect on infant nutrition and development.
Collapse
Affiliation(s)
- Youping Lv
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
- Quanzhou Center for Disease Control and Prevention, Quanzhou, Fujian Province, 362000, People's Republic of China
| | - Xinyue Wang
- Department of Nutrition, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, 361015, People's Republic of China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 361015, People's Republic of China
| | - Jiale Huang
- Department of Clinical Nutrition, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Meizhen Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Kelsang Dekyi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Yichen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Linxi Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Hongwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| |
Collapse
|
5
|
Kuntz S, Kunz C, Borsch C, Hill D, Morrin S, Buck R, Rudloff S. Influence of microbially fermented 2´-fucosyllactose on neuronal-like cell activity in an in vitro co-culture system. Front Nutr 2024; 11:1351433. [PMID: 38389793 PMCID: PMC10881714 DOI: 10.3389/fnut.2024.1351433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Scope 2´-Fucosyllactose (2´-FL), the most abundant oligosaccharide in human milk, plays an important role in numerous biological functions, including improved learning. It is not clear, however, whether 2´-FL or a cleavage product could influence neuronal cell activity. Thus, we investigated the effects of 2´-FL, its monosaccharide fucose (Fuc), and microbial fermented 2´-FL and Fuc on the parameters of neuronal cell activity in an intestinal-neuronal transwell co-culture system in vitro. Methods Native 13C-labeled 2´-FL and 13C-Fuc or their metabolites, fermented with Bifidobacterium (B.) longum ssp. infantis and B. breve, which were taken from the lag-, log- and stationary (stat-) growth phases of batch cultures, were applied to the apical compartment of the co-culture system with Caco-2 cells representing the intestinal layer and all-trans-retinoic acid-differentiated SH-SY5Y (SH-SY5YATRA) cells mimicking neuronal-like cells. After 3 h of incubation, the culture medium in the basal compartment was monitored for 13C enrichment by using elemental analysis isotope-ratio mass spectrometry (EA-IRMS) and effects on cell viability, plasma, and mitochondrial membrane potential. The neurotransmitter activation (BDNF, GABA, choline, and glutamate) of SH-SY5YATRA cells was also determined. Furthermore, these effects were also measured by the direct application of 13C-2´-FL and 13C-Fuc to SH-SY5YATRA cells. Results While no effects on neuronal-like cell activities were observed after intact 2´-FL or Fuc was incubated with SH-SY5YATRA cells, supernatants from the stat-growth phase of 2´-FL, fermented by B. longum ssp. infantis alone and together with B. breve, significantly induced BDNF release from SH-SY5YATRA cells. No such effects were found for 2´-FL, Fuc, or their fermentation products from B. breve. The BDNF release occurred from an enhanced vesicular release, which was confirmed by the use of the Ca2+-channel blocker verapamil. Concomitant with this event, 13C enrichment was also observed in the basal compartment when supernatants from the stat-growth phase of fermentation by B. longum ssp. infantis alone or together with B. breve were used. Conclusion The results obtained in this study suggest that microbial products of 2´-FL rather than the oligosaccharide itself may influence neuronal cell activities.
Collapse
Affiliation(s)
- Sabine Kuntz
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Clemens Kunz
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Borsch
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - David Hill
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Sinéad Morrin
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Rachael Buck
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Silvia Rudloff
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Gao H, Fang B, Sun Z, Du X, Guo H, Zhao L, Zhang M. Effect of Human Milk Oligosaccharides on Learning and Memory in Mice with Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1067-1081. [PMID: 38112024 DOI: 10.1021/acs.jafc.3c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is distinguished by cognitive dysfunction and neuroinflammation in the brain. 2'-Fucosyllactose (2'-FL) is a major human milk oligosaccharide (HMO) that is abundantly present in breast milk and has been demonstrated to exhibit immunomodulatory effects. However, the role of 2'-FL and HMO in gut microbiota modulation in relation to AD remains insufficiently investigated. This study aimed to elucidate the preventive effect of the 2'-FL and HMO impact of AD and the relevant mechanism involved. Here, the behavioral results showed that 2'-FL and HMO intervention decreased the expression of Tau phosphorylation and amyloid-β (Aβ), inhibited neuroinflammation, and restored cognitive impairment in AD mice. The metagenomic analysis proved that 2'-FL and HMO intervention restored the dysbiosis of the gut microbiota in AD. Notably, 2'-FL and HMO intervention significantly enhanced the relative abundance of Clostridium and Akkermansia. The metabolomics results showed that 2'-FL and HMO enhanced the oleoyl-l-carnitine metabolism as potential drivers. More importantly, the levels of oleoyl-l-carnitine were positively correlated with the abundances of Clostridium and Akkermansia. These results indicated that 2'-FL and HMO had therapeutic potential to prevent AD-induced cognitive impairment, which is of great significance for the treatment of AD.
Collapse
Affiliation(s)
- Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Sudarma V, Sunardi D, Marzuki NS, Munasir Z, Asmarinah, Hidayat A, Hegar B. Human Milk Oligosaccharide Profiles and the Secretor and Lewis Gene Status of Indonesian Lactating Mothers. Pediatr Gastroenterol Hepatol Nutr 2023; 26:266-276. [PMID: 37736221 PMCID: PMC10509021 DOI: 10.5223/pghn.2023.26.5.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Purpose Human milk oligosaccharides (HMOs) may be genetically determined based on the secretor and Lewis status of the mother. This study aims to determine the HMO profile and the secretor and Lewis gene status of Indonesian lactating mothers. Methods Baseline data of 120 mother-infant pairs between 0-4 months post-partum obtained from a prospective longitudinal study was used. The concentrations of 2'-fucosyllactose (2'FL), lacto-N-fucopentaose I (LNFP I), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'SL), and 6'-sialyllactose (6'SL) were measured. Genetic analysis was performed for mothers using targeted next-generation sequencing and Sanger sequencing. Wild-type AA with the rs1047781 (A385T) polymorphism was categorized as secretor positive, while heterozygous mutant AT was classified as a weak secretor. The presence of rs28362459 (T59G) heterozygous mutant AC and rs3745635 (G508A) heterozygous mutant CT genes indicated a Lewis negative status, and the absence of these genes indicated a positive status. Subsequently, breast milk was classified into various groups, namely Group 1: Secretor+Lewis+ (Se+Le+), Group 2: Secretor-Lewis+ (Se-Le+), Group 3: Secretor+Lewis- (Se+Le-), and Group 4: Secretor-Lewis- (Se-Le-). Data were analyzed using the Mann-Whitney and Kruskal-Wallis rank tests, and a p-value of 0.05 indicated statistical significance. Results A total of 58.3% and 41.7% of the samples had positive and weak secretor statuses, respectively. The proportion of those in Group 1 was 85%, while 15% were Group 3. The results showed that only 2'FL significantly differed according to the secretor status (p-value=0.018). Conclusion All Indonesian lactating mothers in this study were secretor positive, and most of them had a Lewis-positive status.
Collapse
Affiliation(s)
- Verawati Sudarma
- Doctorate Program of Nutrition, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Department of Nutrition, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Diana Sunardi
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Nanis Sacharina Marzuki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Zakiudin Munasir
- Department of Child Health, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Asmarinah
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Adi Hidayat
- Department of Public Health, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Badriul Hegar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
8
|
Schönknecht YB, Moreno Tovar MV, Jensen SR, Parschat K. Clinical Studies on the Supplementation of Manufactured Human Milk Oligosaccharides: A Systematic Review. Nutrients 2023; 15:3622. [PMID: 37630811 PMCID: PMC10458772 DOI: 10.3390/nu15163622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are a major component of human milk. They are associated with multiple health benefits and are manufactured on a large scale for their addition to different food products. In this systematic review, we evaluate the health outcomes of published clinical trials involving the supplementation of manufactured HMOs. We screened the PubMed database and Cochrane Library, identifying 26 relevant clinical trials and five publications describing follow-up studies. The clinical trials varied in study populations, including healthy term infants, infants with medical indications, children, and adults. They tested eight different HMO structures individually or as blends in varying doses. All trials included safety and tolerance assessments, and some also assessed growth, stool characteristics, infections, gut microbiome composition, microbial metabolites, and biomarkers. The studies consistently found that HMO supplementation was safe and well tolerated. Infant studies reported a shift in outcomes towards those observed in breastfed infants, including stool characteristics, gut microbiome composition, and intestinal immune markers. Beneficial gut health and immune system effects have also been observed in other populations following HMO supplementation. Further clinical trials are needed to substantiate the effects of HMO supplementation on human health and to understand their structure and dose dependency.
Collapse
|
9
|
Effect of supplementation with select human milk oligosaccharides on artificially reared newborn rats. Br J Nutr 2022; 128:1906-1916. [PMID: 34963503 DOI: 10.1017/s0007114521005146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early life nutrition fundamentally influences neonatal development and health. Human milk oligosaccharides (HMO) are key components of breast milk but not standard infant formula that support the establishment of the newborn gut microbiota. Using an artificial rearing system, our objective was to test the effect of two HMO on the whole body and organ growth, adiposity, glucose tolerance and faecal microbiota in young rat pups. From postnatal days 4 to 21, Sprague-Dawley rats were randomised to receive one of: (1) CTR (rat milk substitute); (2) 2'FL (CTR + 1·2 g/l 2'-fucosyllactose); (3) 3'SL (CTR + 1·2 g/l 3'-sialyllactose) and (4) 2'FL + 3'SL (CTR + 0·6 g/l 2'-FL + 0·6 g/l 3'-SL). Body weight (BW), bowel movements and food intake were monitored daily, faecal samples collected each week and oral glucose tolerance, body composition and organ weight measured at weaning. No significant differences were observed between groups in growth performance, body composition, organ weight and abundance of dominant faecal microbes. A decreased relative abundance of genus Proteus in week 1 faecal samples and Terrisporobacter in week 3 faecal samples (P < 0·05) was suggestive of a potential pathogen inhibitory effect of 3'SL. Longitudinal changes in the faecal microbiota of artificially reared suckling rats were primarily governed by age (P = 0·001) and not affected by the presence of 2'-FL and/or 3'-SL in rat milk substitutes (P = 0·479). Considering the known protective effects of HMO, further investigation of supplementation with these and other HMO in models of premature birth, extremely low BW or malnutrition may show more pronounced outcomes.
Collapse
|
10
|
Yao Q, Gao Y, Fan L, Wang J, Zheng N. 2'-Fucosyllactose Remits Colitis-Induced Liver Oxygen Stress through the Gut-Liver-Metabolites Axis. Nutrients 2022; 14:nu14194186. [PMID: 36235838 PMCID: PMC9572607 DOI: 10.3390/nu14194186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Liver oxygen stress is one of the main extraintestinal manifestations of colitis and 5% of cases develop into a further liver injury and metabolic disease. 2′-fucosyllactose (2′-FL), a main member of human milk oligosaccharides (HMOs), has been found to exert efficient impacts on remitting colitis. However, whether 2′-FL exerts the function to alleviate colitis-induced liver injury and how 2′-FL influences the metabolism via regulating gut microbiota remain unknown. Herein, in our study, liver oxygen stress was measured by measuring liver weight and oxygen-stress-related indicators. Then, 16S full-length sequencing analysis and non-target metabolome in feces were performed to evaluate the overall responses of metabolites and intestinal bacteria after being treated with 2′-FL (400 mg/kg b.w.) in colitis mice. The results showed that, compared with the control group, the liver weight of colitis mice was significantly decreased by 18.30% (p < 0.05). After 2′-FL treatment, the liver weight was significantly increased by 12.65% compared with colitis mice (p < 0.05). Meanwhile, they exhibited higher levels of oxidation in liver tissue with decreasing total antioxidant capacity (T-AOC) (decreased by 17.15%) and glutathione (GSH) levels (dropped by 22.68%) and an increasing malondialdehyde (MDA) level (increased by 36.24%), and 2′-FL treatment could reverse those tendencies. Full-length 16S rRNA sequencing revealed that there were 39 species/genera differentially enriched in the control, dextran sulphate sodium (DSS), and DSS + 2′-FL groups. After treatment with 2′-FL, the intestinal metabolic patterns, especially glycometabolism and the lipid-metabolism-related process, in DSS mice were strikingly altered with 33 metabolites significantly down-regulated and 26 metabolites up-regulated. Further analysis found DSS induced a 40.01%, 41.12%, 43.81%, and 39.86% decline in acetic acid, propionic acid, butyric acid, and total short chain fatty acids (SCFAs) in colitis mice (all p < 0.05), respectively, while these were up-regulated to different degrees in the DSS + 2′-FL group. By co-analyzing the data of gut microbiota and metabolites, glycometabolism and lipid-metabolism-associated metabolites exhibited strong positive/negative relationships with Akkermansia_muciniphila (all p < 0.01) and Paraprevotella spp. (all p < 0.01), suggesting that the two species might play crucial roles in the process of 2′-FL alleviating colitis-induced liver oxygen stress. In conclusion, in the gut−liver−microbiotas axis, 2′-FL mediated in glucose and lipid-related metabolism and alleviated liver oxygen stress via regulating gut microbiota in the DSS-induced colitis model. The above results provide a new perspective to understand the probiotic function of 2′-FL.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069; Fax: +86-10-62897587
| |
Collapse
|
11
|
Rosa F, Sharma AK, Gurung M, Casero D, Matazel K, Bode L, Simecka C, Elolimy AA, Tripp P, Randolph C, Hand TW, Williams KD, LeRoith T, Yeruva L. Human Milk Oligosaccharides Impact Cellular and Inflammatory Gene Expression and Immune Response. Front Immunol 2022; 13:907529. [PMID: 35844612 PMCID: PMC9278088 DOI: 10.3389/fimmu.2022.907529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Human milk harbors complex carbohydrates, including human milk oligosaccharides (HMOs), the third most abundant component after lactose and lipids. HMOs have been shown to impact intestinal microbiota, modulate the intestinal immune response, and prevent pathogenic bacterial binding by serving as decoy receptors. However, the direct effect of HMOs on intestinal function and immunity remains to be elucidated. To address this knowledge gap, 21-day-old germ-free mice (C57BI/6) were orally gavaged with 15 mg/day of pooled HMOs for 7 or 14 days and euthanized at day 28 or 35. A set of mice was maintained until day 50 to determine the persistent effects of HMOs. Control groups were maintained in the isolators for 28, 35, or 50 days of age. At the respective endpoints, intestinal tissues were subjected to histomorphometric and transcriptomic analyses, while the spleen and mesenteric lymph nodes (MLNs) were subjected to flow cytometric analysis. The small intestine (SI) crypt was reduced after HMO treatment relative to control at days 28 and 35, while the SI villus height and large intestine (LI) gland depth were decreased in the HMO-treated mice relative to the control at day 35. We report significant HMO-induced and location-specific gene expression changes in host intestinal tissues. HMO treatment significantly upregulated genes involved in extracellular matrix, protein ubiquitination, nuclear transport, and mononuclear cell differentiation. CD4+ T cells were increased in both MLNs and the spleen, while CD8+ T cells were increased in the spleen at day 50 in the HMO group in comparison to controls. In MLNs, plasma cells were increased in HMO group at days 28 and 35, while in the spleen, only at day 28 relative to controls. Macrophages/monocytes and neutrophils were lower in the spleen of the HMO group at days 28, 35, and 50, while in MLNs, only neutrophils were lower at day 50 in the 14-day HMO group. In addition, diphtheria toxoid and tetanus toxoid antibody-secreting cells were higher in HMO-supplemented group compared to controls. Our data suggest that HMOs have a direct effect on gastrointestinal tract metabolism and the immune system even in the absence of host microbiota.
Collapse
Affiliation(s)
- Fernanda Rosa
- Arkansas Children’s Nutrition Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Little Rock, AR, United States
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Ashok K. Sharma
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Manoj Gurung
- Arkansas Children’s Nutrition Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Little Rock, AR, United States
| | - David Casero
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Katelin Matazel
- Arkansas Children’s Nutrition Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Little Rock, AR, United States
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Christy Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ahmed A. Elolimy
- Arkansas Children’s Nutrition Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Little Rock, AR, United States
- Animal Production Department, National Research Centre, Giza, Egypt
| | - Patricia Tripp
- Arkansas Children’s Nutrition Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Little Rock, AR, United States
| | - Christopher Randolph
- Center for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Timothy W. Hand
- University of Pittsburgh School of Medicine, R.K. Mellon Foundation Institute for Pediatric Research, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Keith D. Williams
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Laxmi Yeruva
- Arkansas Children’s Nutrition Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Little Rock, AR, United States
| |
Collapse
|
12
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3-fucosyllactose (3-FL) produced by a derivative strain of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07329. [PMID: 35646167 PMCID: PMC9131588 DOI: 10.2903/j.efsa.2022.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3-fucosyllactose (3-FL) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3-FL, but it also contains d-lactose, l-fucose, d-glucose and d-galactose, and a small fraction of other related saccharides. The NF is produced by fermentation with a genetically modified strain of Escherichia coli BL21 (DE3). The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3-FL from both proposed and combined (authorised and proposed) uses at their respective maximum use levels in all population categories does not exceed the highest intake level of 3-FL from human milk in infants on a body weight basis. The intake of 3-FL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3-FL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 3-FL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
13
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of lacto-N-tetraose (LNT) produced by derivative strains of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07242. [PMID: 35600267 PMCID: PMC9109231 DOI: 10.2903/j.efsa.2022.7242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on lacto-N-tetraose (LNT) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is a powdered mixture mainly composed of the human-identical milk oligosaccharide (HiMO) LNT, but it also contains d-lactose, lacto-N-triose II and para-lacto-N-hexaose, and a small fraction of other related saccharides. The NF is produced by fermentation with two genetically modified strains of Escherichia coli BL21 (DE3), the production strain and the optional degradation strain. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of LNT from the NF at the maximum proposed use levels does not exceed the intake level of naturally occurring LNT in breastfed infants on a body weight basis. The intake of LNT in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to LNT is also considered of no safety concern. Food supplements are not intended to be used if other foods with added LNT or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
14
|
Oligosaccharides Ameliorate Acute Kidney Injury by Alleviating Cluster of Differentiation 44-Mediated Immune Responses in Renal Tubular Cells. Nutrients 2022; 14:nu14040760. [PMID: 35215410 PMCID: PMC8877265 DOI: 10.3390/nu14040760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden episode of kidney damage that commonly occurs in patients admitted to hospitals. To date, no ideal treatment has been developed to reduce AKI severity. Oligo-fucoidan (FC) interferes with renal tubular cell surface protein cluster of differentiation 44 (CD44) to prevent renal interstitial fibrosis; however, the influence of oligosaccharides on AKI remains unknown. In this study, FC, galacto-oligosaccharide (GOS), and fructo-oligosaccharide (FOS) were selected to investigate the influence of oligosaccharides on AKI. All three oligosaccharides have been proven to be partially absorbed by the intestine. We found that the oligosaccharides dose-dependently reduced CD44 antigenicity and suppressed the hypoxia-induced expression of CD44, phospho-JNK, MCP-1, IL-1β, and TNF-α in NRK-52E renal tubular cells. Meanwhile, CD44 siRNA transfection and JNK inhibitor SP600125 reduced the hypoxia-induced expression of phospho-JNK and cytokines. The ligand of CD44, hyaluronan, counteracted the influence of oligosaccharides on CD44 and phospho-JNK. At 2 days post-surgery for ischemia–reperfusion injury, oligosaccharides reduced kidney inflammation, serum creatine, MCP-1, IL-1β, and TNF-α in AKI mice. At 7 days post-surgery, kidney recovery was promoted. These results indicate that FC, GOS, and FOS inhibit the hypoxia-induced CD44/JNK cascade and cytokines in renal tubular cells, thereby ameliorating AKI and kidney inflammation in AKI mice. Therefore, oligosaccharide supplementation is a potential healthcare strategy for patients with AKI.
Collapse
|
15
|
Panwar D, Panesar PS, Saini A. Prebiotics and their Role in Functional Food Product Development. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:233-271. [DOI: 10.1002/9781119702160.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Jarzynka S, Spott R, Tchatchiashvili T, Ueberschaar N, Martinet MG, Strom K, Kryczka T, Wesołowska A, Pletz MW, Olędzka G, Makarewicz O. Human Milk Oligosaccharides Exhibit Biofilm Eradication Activity Against Matured Biofilms Formed by Different Pathogen Species. Front Microbiol 2022; 12:794441. [PMID: 35069493 PMCID: PMC8767050 DOI: 10.3389/fmicb.2021.794441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) have been shown to exhibit plenty of benefits for infants, such as prebiotic activity shaping the gut microbiota and immunomodulatory and anti-inflammatory activity. For some pathogenic bacteria, antimicrobial activity has been proved, but most studies focus on group B streptococci. In the present study, we investigated the antimicrobial and antibiofilm activities of the total and fractionated HMOs from pooled human milk against four common human pathogenic Gram-negative species (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia cenocepacia) and three Gram-positive species (Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis). The activity of HMOs against enterococci and B. cenocepacia are addressed here for the first time. We showed that HMOs exhibit a predominant activity against the Gram-positive species, with E. faecalis being the most sensitive to the HMOs, both in planktonic bacteria and in biofilms. In further tests, we could exclude fucosyllactose as the antibacterial component. The biological significance of these findings may lie in the prevention of skin infections of the mother’s breast as a consequence of breastfeeding-induced skin laceration and/or protection of the infants’ nasopharynx and lung from respiratory pathogens such as staphylococci.
Collapse
Affiliation(s)
- Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Riccardo Spott
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| | - Tinatini Tchatchiashvili
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Jena, Germany
| | - Mark Grevsen Martinet
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Kamila Strom
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kryczka
- Department of Development of Nursing, Social and Medical Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Wesołowska
- Department of Medical Biology, Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
17
|
Jang KB, Kim SW. Role of milk carbohydrates in intestinal health of nursery pigs: a review. J Anim Sci Biotechnol 2022; 13:6. [PMID: 34983676 PMCID: PMC8729129 DOI: 10.1186/s40104-021-00650-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
18
|
Chen X, Yang C, Zeng J, Zhu Z, Zhang L, Lane JA, Wu X, Zuo D. The protective effects of human milk components, 2′-fucosyllactose and osteopontin, against 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Fabiano V, Indrio F, Verduci E, Calcaterra V, Pop TL, Mari A, Zuccotti GV, Cullu Cokugras F, Pettoello-Mantovani M, Goulet O. Term Infant Formulas Influencing Gut Microbiota: An Overview. Nutrients 2021; 13:4200. [PMID: 34959752 PMCID: PMC8708119 DOI: 10.3390/nu13124200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023] Open
Abstract
Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.
Collapse
Affiliation(s)
- Valentina Fabiano
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tudor Lucian Pop
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Second Paediatric Clinic, Department of Mother and Child, University of Medicine and Pharmacy Iuliu Hatieganu, 400177 Cluj-Napoca, Romania
| | - Alessandra Mari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Fugen Cullu Cokugras
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Paediatric Gastroenterology, Hepatology and Nutrition, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34000, Turkey
| | - Massimo Pettoello-Mantovani
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Department of Pediatrics, Scientific Institute ‘Casa Sollievo della Sofferenza’, University of Foggia, 71122 Foggia, Italy
- Association pour l’Activité et la Recherche Scìentifiques, EPA-UNEPSA/ARS, 2000 Neuchâtel, Switzerland
| | - Olivier Goulet
- Department of Paediatric Gastroenterology, and Nutrition, Intestinal Failure Rehabilitation Centre, National Reference Centre for Rare Digestive Diseases, Necker-Enfants Malades Hospital, Paris Centre University and Paris-Descartes School of Medicine, 75000 Paris, France;
| |
Collapse
|
21
|
Sekerel BE, Bingol G, Cullu Cokugras F, Cokugras H, Kansu A, Ozen H, Tamay Z. An Expert Panel Statement on the Beneficial Effects of Human Milk Oligosaccharides (HMOs) in Early Life and Potential Utility of HMO-Supplemented Infant Formula in Cow's Milk Protein Allergy. J Asthma Allergy 2021; 14:1147-1164. [PMID: 34594114 PMCID: PMC8478436 DOI: 10.2147/jaa.s323734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
This review by pediatric gastroenterology and allergy-immunology experts aimed to address the biological roles of human milk oligosaccharides (HMOs) and the potential utility of HMOs in prevention of allergy with particular emphasis on cow's milk protein allergy (CMPA). The participating experts consider HMOs amongst the most critical bioactive components of human milk, which act as antimicrobials and antivirals by preventing pathogen adhesion to epithelial cells, as intestinal epithelial cell modulators by enhancing maturation of intestinal mucosa and intestinal epithelial barrier function, as prebiotics by promoting healthy microbiota composition and as immunomodulators by modulating immune cells indirectly and directly. Accordingly, the participating experts consider the proposed link between HMOs and prevention of allergy to be primarily based on the impact of HMO on gut microbiota, intestinal mucosal barrier, immunomodulation and immune maturation. Along with the lower risk of respiratory and gastrointestinal infections, HMO-supplemented formulas seem to be promising alternatives in the management of CMPA. Nonetheless, the effects of individual as well as complex mixtures of HMO in terms of clear clinical and immunological effects and tolerance development need to be further explored to fully realize the immunomodulatory mechanisms and the potential for HMOs in prevention of allergic diseases and CMPA.
Collapse
Affiliation(s)
- Bulent Enis Sekerel
- Division of Pediatric Allergy, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulbin Bingol
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Fugen Cullu Cokugras
- Division of Pediatric Gastroenterology, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Haluk Cokugras
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Aydan Kansu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Hasan Ozen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Tamay
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
22
|
Lee S, Goodson ML, Vang W, Rutkowsky J, Kalanetra K, Bhattacharya M, Barile D, Raybould HE. Human milk oligosaccharide 2'-fucosyllactose supplementation improves gut barrier function and signaling in the vagal afferent pathway in mice. Food Funct 2021; 12:8507-8521. [PMID: 34308934 PMCID: PMC8451585 DOI: 10.1039/d1fo00658d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
2′-Fucosyllactose (2′-FL) is one of the predominant oligosaccharides found in human milk and has several well-established beneficial effects in the host. It has previously been shown that 2′-FL can improve the metabolic phenotype in high-fat (HF)-fed mice. Here we investigated whether dietary supplementation with 2′-FL was associated with improved intestinal barrier integrity, signaling in the vagal afferent pathway and cognitive function. Mice were fed either a low-fat (LF, 10% fat per kcal) or HF (45% fat per kcal) diet with or without supplementation of 2′-FL (10% w/w) in the diet for 8 weeks. Body weight, energy intake, fat and lean mass, intestinal permeability (ex vivo in Ussing chambers), lipid profiles, gut microbiome and microbial metabolites, and cognitive functions were measured. Vagal afferent activity was measured via immunohistochemical detection of c-Fos protein in the brainstem in response to peripheral administration of cholecystokinin (CCK). 2′-FL significantly attenuated the HF-induced increase in fat mass and energy intake. 2′-FL significantly reduced intestinal permeability and significantly increased expression of interleukin (IL)-22, a cytokine known for its protective role in the intestine. Additionally, 2′-FL led to changes in the gut microbiota composition and in the associated microbial metabolites. Signaling in the vagal afferent pathway was improved but there was no effect on cognitive function. In conclusion, 2′-FL supplementation improved the metabolic profiles, gut barrier integrity, lipid metabolism and signaling in the vagal afferent pathway. These findings support the utility of 2′-FL in the control of gut barrier function and metabolic homeostasis under a metabolic challenge. 2’-Fucosyllactose (2’-FL), a predominant human milk oligosaccharide, attenuates HF diet-induced metabolic and intestinal barrier impairment, improves gut hormone resistance, and alters the intestinal microbiota and microbiota-derived metabolites.![]()
Collapse
Affiliation(s)
- Sunhye Lee
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UC Davis, CA, USA.
| | - Michael L Goodson
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UC Davis, CA, USA.
| | - Wendie Vang
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UC Davis, CA, USA.
| | - Jennifer Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, CA, USA
| | - Karen Kalanetra
- Department of Food Science and Technology, College of Agriculture, UC Davis, CA, USA
| | - Mrittika Bhattacharya
- Department of Food Science and Technology, College of Agriculture, UC Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, College of Agriculture, UC Davis, CA, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UC Davis, CA, USA.
| |
Collapse
|
23
|
Rudloff S, Kuntz S, Borsch C, Vazquez E, Buck R, Reutzel M, Eckert GP, Kunz C. Fucose as a Cleavage Product of 2'Fucosyllactose Does Not Cross the Blood-Brain Barrier in Mice. Mol Nutr Food Res 2021; 65:e2100045. [PMID: 34139057 DOI: 10.1002/mnfr.202100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/31/2021] [Indexed: 01/22/2023]
Abstract
SCOPE To further examine the role of the human milk oligosaccharide 2'fucosyllactose (2´FL) and fucose (Fuc) in cognition. Using 13 C-labeled 2'FL,thestudy previously showed in mice that 13 C-enrichment of the brain is not caused by 13 C1 -2´FL itself, but rather by microbial metabolites. Here, the study applies 13 C1 -Fuc in the same mouse model to investigate its uptake into the brain. METHODS AND RESULTS Mice received 13 C1 -Fuc via oral gavage (2 mmol 13 C1 -Fuc/kg-1 body weight) or intravenously (0.4 mmol/kg-1 body weight). 13 C-enrichment is measured in organs, including various brain regions, biological fluids and excrements. By EA-IRMS, the study observes an early rise of 13 C-enrichment in plasma, 30 min after oral dosing. However, 13 C-enrichment in the brain does not occur until 3-5 h post-dosing, when the 13 C-Fuc bolus has already reached the lower gut. Therefore, the researcher assume that 13 C-Fuc is absorbed in the upper small intestine but cannot cross the blood-brain barrier which is also observed after intravenous application of 13 C1 -Fuc. CONCLUSIONS Late 13 C-enrichment in the rodent brain may be derived from 13 C1 -Fuc metabolites derived from bacterial fermentation. The precise role that Fuc or 2´FL metabolites might play in gut-brain communication needs to be investigated in further studies.
Collapse
Affiliation(s)
- Silvia Rudloff
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany.,Department of Pediatrics, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Christian Borsch
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | | | - Rachael Buck
- Discovery R&D, Abbott Nutrition, Columbus, OH, 43219, USA
| | - Martina Reutzel
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Gunter Peter Eckert
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Clemens Kunz
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
24
|
Gu F, Kate GAT, Arts ICW, Penders J, Thijs C, Lindner C, Nauta A, van Leusen E, van Leeuwen SS, Schols HA. Combining HPAEC-PAD, PGC-LC-MS, and 1D 1H NMR to Investigate Metabolic Fates of Human Milk Oligosaccharides in 1-Month-Old Infants: a Pilot Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6495-6509. [PMID: 34060814 PMCID: PMC8278486 DOI: 10.1021/acs.jafc.0c07446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
A solid-phase extraction procedure was optimized to extract 3-fucosyllactose and other human milk oligosaccharides (HMOs) from human milk samples separately, followed by absolute quantitation using high-performance anion-exchange chromatography-pulsed amperometric detection and porous graphitized carbon-liquid chromatography-mass spectrometry, respectively. The approach developed was applied on a pilot sample set of 20 human milk samples and paired infant feces collected at around 1 month postpartum. One-dimensional 1H nuclear magnetic resonance spectroscopy was employed on the same samples to determine the relative levels of fucosylated epitopes and sialylated (Neu5Ac) structural elements. Based on different HMO consumption patterns in the gastrointestinal tract, the infants were assigned to three clusters as follows: complete consumption; specific consumption of non-fucosylated HMOs; and, considerable levels of HMOs still present with consumption showing no specific preference. The consumption of HMOs by infant microbiota also showed structure specificity, with HMO core structures and Neu5Ac(α2-3)-decorated HMOs being most prone to degradation. The degree and position of fucosylation impacted HMO metabolization differently.
Collapse
Affiliation(s)
- Fangjie Gu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Geert A. ten Kate
- Microbial
Physiology, University of Groningen, P.O. Box 72, Groningen 9700 AB, The Netherlands
| | - Ilja C. W. Arts
- Maastricht
University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
- Maastricht
Centre for Systems Biology (MaCSBio), Paul-Henri Spaaklaan 1, Maastricht 6229 EN, The Netherlands
| | - John Penders
- Maastricht
University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Carel Thijs
- Maastricht
University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Cordula Lindner
- FrieslandCampina
Innovation Centre, Bronland
20, Wageningen 6708 WH, The Netherlands
| | - Arjen Nauta
- FrieslandCampina
Innovation Centre, Bronland
20, Wageningen 6708 WH, The Netherlands
| | - Ellen van Leusen
- FrieslandCampina
Innovation Centre, Bronland
20, Wageningen 6708 WH, The Netherlands
| | - Sander S. van Leeuwen
- Microbial
Physiology, University of Groningen, P.O. Box 72, Groningen 9700 AB, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
25
|
Gu F, Wang S, Beijers R, de Weerth C, Schols HA. Structure-Specific and Individual-Dependent Metabolization of Human Milk Oligosaccharides in Infants: A Longitudinal Birth Cohort Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6186-6199. [PMID: 34032401 PMCID: PMC8193636 DOI: 10.1021/acs.jafc.0c07484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
To follow human milk oligosaccharide (HMO) biosynthesis and in vivometabolization, mother milk and infant feces from 68 mother-infant dyads at 2, 6, and 12 weeks postpartum were analyzed, with 18 major HMOs quantitated. Fucosylated and neutral core HMO levels in milk were dependent on mothers' Lewis/Secretor status, whereas most sialylated HMO levels were independent. Infant fecal excretion of HMOs gradually declined with age, especially for neutral core structures. Although decreasing in absolute concentrations in milk during lactation, the relative abundance of total fucosylated HMOs increased in both milk and feces. Mono-fucosylated HMOs were more consumed than those decorated with two fucose moieties. More (α2-3)-sialylated HMOs were degraded than (α2-6)-sialylated HMOs. The transition speed of HMO metabolization from nonspecific or structure-specific consumption stage to the complete consumption stage was individual-dependent. Variation was associated with mode and place of delivery, where caesarean section or early exposure to hospital environment delayed the transition.
Collapse
Affiliation(s)
- Fangjie Gu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Shuang Wang
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Roseriet Beijers
- Department
of Developmental Psychology, Behavioral Science Institute, Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition
and Behavior, Radboud University Medical
Center, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Carolina de Weerth
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition
and Behavior, Radboud University Medical
Center, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
26
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Maradona MP, Schlatter JR, van Loveren H, Colombo P, Knutsen HK. Safety of 3-FL (3-Fucosyllactose) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06662. [PMID: 34221147 PMCID: PMC8243255 DOI: 10.2903/j.efsa.2021.6662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3-fucosyllactose (3-FL) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3-FL but also contains D-lactose and its monomers, L-fucose and a small fraction of other related saccharides. The NF is produced by fermentation with a genetically modified strain of Escherichia coli K-12. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The target population is the general population, except for food supplements for which the target population is individuals above 1 year of age. The anticipated daily intake of 3-FL from the NF at the maximum proposed use levels is unlikely to exceed the intake level of breastfed infants on a body weight basis. The intake of 3-FL in breastfed infants on a body weight basis is expected to be safe also for other population groups. In infants below 1 year of age, a possible exceedance of a natural intake was observed, but the degree of this exceedance is not considered of safety concern in view of the wide range of 3-FL concentrations in human milk. Food supplements are not intended to be used if other foods with the added NF (as well as human milk for young children) are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
27
|
Zhang S, Li T, Xie J, Zhang D, Pi C, Zhou L, Yang W. Gold standard for nutrition: a review of human milk oligosaccharide and its effects on infant gut microbiota. Microb Cell Fact 2021; 20:108. [PMID: 34049536 PMCID: PMC8162007 DOI: 10.1186/s12934-021-01599-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Human milk is the gold standard for nutrition of infant growth, whose nutritional value is mainly attributed to human milk oligosaccharides (HMOs). HMOs, the third most abundant component of human milk after lactose and lipids, are complex sugars with unique structural diversity which are indigestible by the infant. Acting as prebiotics, multiple beneficial functions of HMO are believed to be exerted through interactions with the gut microbiota either directly or indirectly, such as supporting beneficial bacteria growth, anti-pathogenic effects, and modulation of intestinal epithelial cell response. Recent studies have highlighted that HMOs can boost infants health and reduce disease risk, revealing potential of HMOs in food additive and therapeutics. The present paper discusses recent research in respect to the impact of HMO on the infant gut microbiome, with emphasis on the molecular basis of mechanism underlying beneficial effects of HMOs.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianle Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Caixia Pi
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, China.
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Gray TE, Narayana K, Garner AM, Bakker SA, Yoo RKH, Fischer-Tlustos AJ, Steele MA, Zandberg WF. Analysis of the biosynthetic flux in bovine milk oligosaccharides reveals competition between sulfated and sialylated species and the existence of glucuronic acid-containing analogues. Food Chem 2021; 361:130143. [PMID: 34051596 DOI: 10.1016/j.foodchem.2021.130143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
We previously observed that sialylated bovine milk oligosaccharides (BMOs) decline in both absolute and relative abundances over the initial stages of bovine lactation, with initial evidence suggesting that this decline occurred due to increased concentrations of unique sulfated BMOs. Since both sulfated and sialylated BMOs have distinct bioactivites, a follow up study was launched in order to more clearly define relative changes in these classes of BMOs over the first week of lactation in dairy cattle. Capillary electrophoresis (CE) and several liquid chromatography mass spectrometry (LC-MS) methods, including a novel multiplexed tandem MS method, were used to profile the BMOs extracted from milk collected from the same 20 Holstein cows at milkings 1, 2, 3, 4, 8, and 14 post-partum. In addition to clearly validating that sulfated and sialylated BMOs exist in direct biosynthetic completion, our study has identified over 170 unique BMOs including 14 unique glucuronic acid-containing trisaccharides.
Collapse
Affiliation(s)
- Taylor E Gray
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Kamal Narayana
- Department of Biology, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Alexander M Garner
- Department of Biology, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Samantha A Bakker
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Rachael K H Yoo
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Michael A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
29
|
Quitadamo PA, Comegna L, Cristalli P. Anti-Infective, Anti-Inflammatory, and Immunomodulatory Properties of Breast Milk Factors for the Protection of Infants in the Pandemic From COVID-19. Front Public Health 2021; 8:589736. [PMID: 33738273 PMCID: PMC7960784 DOI: 10.3389/fpubh.2020.589736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic since the end of 2019 spreads worldwide, counting millions of victims. The viral invasion, systemic inflammation, and consequent organ failure are the gravest features of coronavirus disease 2019 (COVID-19), and they are associated with a high mortality rate. The aim of this study is to evaluate the role of breast milk in the COVID-19 pandemic, analyzing its antiviral, anti-inflammatory, and immunoregulatory effects due to its bioactive components, so numerous and important for the protection of infants. The study tried to demonstrate that all the components of human milk are capable of performing functions on all the pathogenic events recognized and described in COVID-19 disease. Those human milk factors are well-tolerated and practically free of side effects, so breast milk should become a research topic to discover therapies even in this epidemic. In the first part, the mechanisms of protection and defense of the breast milk elements will be delineated; in the second section, it will describe the human milk effects in viral infections and it will be hypothesized how the known mechanisms could act in COVID infection.
Collapse
Affiliation(s)
- Pasqua Anna Quitadamo
- NICU “Casa Sollievo della Sofferenza” Foundation, Scientific Research and Care Institute, San Giovanni Rotondo, Italy
| | | | | |
Collapse
|
30
|
Pruss KM, Marcobal A, Southwick AM, Dahan D, Smits SA, Ferreyra JA, Higginbottom SK, Sonnenburg ED, Kashyap PC, Choudhury B, Bode L, Sonnenburg JL. Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations. THE ISME JOURNAL 2021; 15:577-591. [PMID: 33087860 PMCID: PMC8027378 DOI: 10.1038/s41396-020-00798-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Microbiota-accessible carbohydrates (MACs) are powerful modulators of microbiota composition and function. These substrates are often derived from diet, such as complex polysaccharides from plants or human milk oligosaccharides (HMOs) during breastfeeding. Host-derived mucus glycans on gut-secreted mucin proteins serve as a continuous endogenous source of MACs for resident microbes; here we investigate the potential role of purified, orally administered mucus glycans in maintaining a healthy microbial community. In this study, we liberated and purified O-linked glycans from porcine gastric mucin and assessed their efficacy in shaping the recovery of a perturbed microbiota in a mouse model. We found that porcine mucin glycans (PMGs) and HMOs enrich for taxonomically similar resident microbes. We demonstrate that PMGs aid recovery of the microbiota after antibiotic treatment, suppress Clostridium difficile abundance, delay the onset of diet-induced obesity, and increase the relative abundance of resident Akkermansia muciniphila. In silico analysis revealed that genes associated with mucus utilization are abundant and diverse in prevalent gut commensals and rare in enteric pathogens, consistent with these glycan-degrading capabilities being selected for during host development and throughout the evolution of the host-microbe relationship. Importantly, we identify mucus glycans as a novel class of prebiotic compounds that can be used to mitigate perturbations to the microbiota and provide benefits to host physiology.
Collapse
Affiliation(s)
- K M Pruss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - A Marcobal
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - A M Southwick
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - D Dahan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - S A Smits
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - S K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - E D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - P C Kashyap
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - B Choudhury
- GlycoAnalytics Core, University of California, San Diego, CA, USA
| | - L Bode
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, University of California, San Diego, CA, USA
| | - J L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
31
|
Saben JL, Sims CR, Abraham A, Bode L, Andres A. Human Milk Oligosaccharide Concentrations and Infant Intakes Are Associated with Maternal Overweight and Obesity and Predict Infant Growth. Nutrients 2021; 13:nu13020446. [PMID: 33572881 PMCID: PMC7911788 DOI: 10.3390/nu13020446] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive molecules playing a critical role in infant health. We aimed to quantify the composition of HMOs of women with normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), or obesity (30.0–60.0 kg/m2) and determine the effect of HMO intake on infant growth. Human milk (HM) samples collected at 2 months (2 M; n = 194) postpartum were analyzed for HMO concentrations via high-performance liquid chromatography. Infant HM intake, anthropometrics and body composition were assessed at 2 M and 6 M postpartum. Linear regressions and linear mixed-effects models were conducted examining the relationships between maternal BMI and HMO composition and HMO intake and infant growth over the first 6 M, respectively. Maternal obesity was associated with lower concentrations of several fucosylated and sialylated HMOs and infants born to women with obesity had lower intakes of these HMOs. Maternal BMI was positively associated with lacto-N-neotetraose, 3-fucosyllactose, 3-sialyllactose and 6-sialyllactose and negatively associated with disialyllacto-N-tetraose, disialyllacto-N-hexaose, fucodisialyllacto-N-hexaose and total acidic HMOs concentrations at 2 M. Infant intakes of 3-fucosyllactose, 3-sialyllactose, 6-sialyllactose, disialyllacto-N-tetraose, disialyllacto-N-hexaose, and total acidic HMOs were positively associated with infant growth over the first 6 M of life. Maternal obesity is associated with changes in HMO concentrations that are associated with infant adiposity.
Collapse
Affiliation(s)
- Jessica L. Saben
- J.L.S. Scientific Consulting, L.L.C., Thornton, CO 80229, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ann Abraham
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-364-3301
| |
Collapse
|
32
|
Galuska CE, Rudloff S, Kuntz S, Borsch C, Reutzel M, Eckert G, Galuska SP, Kunz C. Metabolic fate and organ distribution of 13C-3′-sialyllactose and 13C-N-acetylneuraminic acid in wild-type mice – No evidence for direct incorporation into the brain. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
In Love with Shaping You-Influential Factors on the Breast Milk Content of Human Milk Oligosaccharides and Their Decisive Roles for Neonatal Development. Nutrients 2020; 12:nu12113568. [PMID: 33233832 PMCID: PMC7699834 DOI: 10.3390/nu12113568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.
Collapse
|
34
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Colombo P, Knutsen HK. Safety of 3'-Sialyllactose (3'-SL) sodium salt as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2020; 18:e06098. [PMID: 37649513 PMCID: PMC10464685 DOI: 10.2903/j.efsa.2020.6098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3'-Sialyllactose (3'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human identical milk oligosaccharide (HiMO) 3'-SL but also containing D-lactose, sialic acid and a small fraction of other related oligosaccharides resulting in a fully characterised mixture of carbohydrates. The NF is produced by fermentation with a genetically modified strain of Escherichia coli K-12 DH1. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3'-SL from the NF at the maximum proposed use levels is unlikely to exceed the intake level of naturally occurring 3'-SL in breastfed infants on a body weight basis. The intake of 3'-SL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added NF (as well as breast milk, milk, fermented milk-based products and selected cheeses retaining milk sugar (e.g. curd cheese) for infants and young children) are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use for the proposed target populations.
Collapse
|
35
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Colombo P, Knutsen HK. Safety of 6'-Sialyllactose (6'-SL) sodium salt as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2020; 18:e06097. [PMID: 37649501 PMCID: PMC10464711 DOI: 10.2903/j.efsa.2020.6097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 6'-Sialyllactose (6'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 6'-SL but also contains D-lactose, sialic acid and a small fraction of other related oligosaccharides. The NF is produced by fermentation with a genetically modified strain of Escherichia coli K-12 DH1. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 6'-SL from the NF at the maximum proposed use levels is unlikely to exceed the intake level of naturally occurring 6'-SL in breastfed infants on a body weight basis. The intake of 6'-SL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 6'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with the added NF or breast milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
36
|
Quin C, Vicaretti SD, Mohtarudin NA, Garner AM, Vollman DM, Gibson DL, Zandberg WF. Influence of sulfonated and diet-derived human milk oligosaccharides on the infant microbiome and immune markers. J Biol Chem 2020; 295:4035-4048. [PMID: 32014993 DOI: 10.1074/jbc.ra119.011351] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) promote the development of the neonatal intestinal, immune, and nervous systems and has recently received considerable attention. Here we investigated how the maternal diet affects HMO biosynthesis and how any diet-induced HMO alterations influence the infant gut microbiome and immunity. Using capillary electrophoresis and MS-based analyses, we extracted and measured HMOs from breast milk samples and then correlated their levels with results from validated 24-h diet recall surveys and breast milk fatty acids. We found that fruit intake and unsaturated fatty acids in breast milk were positively correlated with an increased absolute abundance of numerous HMOs, including 16 sulfonated HMOs we identified here in humans for the first time. The diet-derived monosaccharide 5-N-glycolyl-neuraminic acid (Neu5Gc) was unambiguously detected in all samples. To gain insights into the potential impact of Neu5Gc on the infant microbiome, we used a constrained ordination approach and identified correlations between Neu5Gc levels and Bacteroides spp. in infant stool. However, Neu5Gc was not associated with marked changes in infant immune markers, in contrast with sulfonated HMOs, whose expression correlated with suppression of two major Th2 cytokines, IL-10 and IL-13. The findings of our work highlight the importance of maternal diet for HMO biosynthesis and provide as yet unexplored targets for future studies investigating interactions between HMOs and the intestinal microbiome and immunity in infants.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Sara D Vicaretti
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Nina A Mohtarudin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Alexander M Garner
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna M Vollman
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna L Gibson
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7 .,Department of Medicine, Faculty of Medicine, 317-2194 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Wesley F Zandberg
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
37
|
Christensen AS, Skov SH, Lendal SE, Hornshøj BH. Quantifying the human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose in different food applications by high-performance liquid chromatography with refractive index detection. J Food Sci 2020; 85:332-339. [PMID: 31968133 PMCID: PMC7027475 DOI: 10.1111/1750-3841.15005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023]
Abstract
In recent years, production of biosynthesized human milk oligosaccharides (HMOs) has become scalable to industrial standards. As a result, infant formula fortified with 2'-fucosyllactose (2'-FL), the most abundant HMO in human breast milk, is now commercially available. 2'-FL and 3-fucosyllactose (3-FL), another abundant HMO, are thought to be beneficial for infant health and development. Products containing HMOs are projected to expand in the future, showing the need for robust, easily applicable analytical methods for the quantitative assessment of HMOs in different food applications. We present here a validated high-performance liquid chromatography method for the quantification of 2'-FL and 3-FL in whole milk, infant formula, and cereal bars. The sample preparation was simple dispersion and extraction of the sample. The samples were analyzed by hydrophilic interaction liquid chromatography with refractive index detection and a runtime of 19 min. The method had a high degree of linearity (R2 > 0.9995) in the range 0.2 to 12 mg/mL. The recovery for 2'-FL was 88% to 105% and for 3-FL 94% to 112%. The limit of detection (LOD) for whole milk was 0.1 mg/mL for 2'-FL and 0.2 mg/mL for 3-FL. In infant formula and cereal bars, the LOD was 0.6 mg/g for both 2'-FL and 3-FL. To show the practical application of this method, it was successfully utilized in stability studies of 2'-FL and 3-FL in whole milk, UHT milk, and yoghurt. The method provides a means of simultaneous and robust quantification of 2'-FL and 3-FL in various food matrices with high accuracy and high reproducibility. PRACTICAL APPLICATION: 2'-Fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) are two of the most abundant human milk oligosaccharides (HMOs) present in human breast milk. We present a fast HPLC method for the robust quantification of these two compounds in infant formula, whole milk, UHT milk, cereal bars, and yoghurt. This method can easily be set up by food producers and researchers to analyze the dosage of 2'-FL and 3-FL in their product or perform shelf life studies in different food applications.
Collapse
Affiliation(s)
| | - Sabina Holm Skov
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark
| | - Sara Eun Lendal
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark
| | | |
Collapse
|
38
|
Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients 2020; 12:nu12010266. [PMID: 31968617 PMCID: PMC7019891 DOI: 10.3390/nu12010266] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
The first months of life are a special time for the health development and protection of infants. Breastfeeding is the natural and best way of feeding an infant, and positively influences their development and health. Breast milk provides the ideal balance of nutrients for the infant and contains countless bioactive ingredients such as immunoglobulins, hormones, oligosaccharides and others. Human milk oligosaccharides (HMOs) are a very important and interesting constituent of human milk, and are the third most abundant solid component after lactose and lipids. They are a structurally and biologically diverse group of complex indigestible sugars. This article will discuss the mechanisms of action of HMOs in infants, such as their anti-adhesive properties, properties modulating the immune system, and impact on bacterial flora development. Many health benefits result from consuming HMOs. They also may decrease the risk of infection by their interactions with viruses, bacteria or protozoa. The commercial use of HMOs in infant formula, future directions, and research on the use of HMOs as a therapy will be discussed.
Collapse
|
39
|
Turck D, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Poulsen M, Sanz Y, Schlatter JR, van Loveren H, Colombo P, Knutsen HK. Safety of lacto- N-tetraose (LNT) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2019; 17:e05907. [PMID: 32626198 PMCID: PMC7008806 DOI: 10.2903/j.efsa.2019.5907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on lacto-N-tetraose (LNT) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is a powdered mixture mainly composed by LNT, but also containing d-lactose and other oligosaccharides such as para-lacto-N-hexaose-2 (para-LNH-2), lacto-N-triose II and a small fraction of other carbohydrates. It is produced by fermentation with a genetically modified strain of Escherichia coli K-12. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The target population is the general population except for food supplements, for which the target population is individuals above 1 year of age. The intake of LNT from the NF at the proposed use levels is unlikely to exceed the intake level of naturally occurring LNT in breastfed infants on a body weight basis. The intake of other carbohydrate-type compounds structurally related to LNT is considered of no safety concern. The Panel concludes that the NF is safe under the proposed conditions of use for the proposed target populations.
Collapse
|
40
|
Hirschmugl B, Brandl W, Csapo B, van Poppel M, Köfeler H, Desoye G, Wadsack C, Jantscher-Krenn E. Evidence of Human Milk Oligosaccharides in Cord Blood and Maternal-to-Fetal Transport across the Placenta. Nutrients 2019; 11:E2640. [PMID: 31689898 PMCID: PMC6893815 DOI: 10.3390/nu11112640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are present in maternal serum in early gestation, raising the question of whether HMOs can cross the placental barrier and reach fetal circulation. Here, we aimed to detect HMOs in cord blood, and assess HMO composition and concentration in relation to maternal HMOs. In an ex-vivo placental perfusion model, we asked whether HMOs can pass over the placenta. Using HPLC, we measured HMOs in maternal serum and matching venous cord blood samples collected at delivery from normal pregnancies (n = 22). To investigate maternal-to-fetal transport, we perfused isolated placental cotyledons from term pregnancies (n = 3) with 2'-fucosyllactose (2'FL) in a double closed setting. We found up to 18 oligosaccharides typically present in maternal serum in all cord serum samples investigated. Median total cord blood HMO concentration did not differ from the concentration in maternal serum. HMO composition resembled the composition in maternal serum, with the strongest correlations for 2'FL and LDFT. After 180 min perfusion, we found 22% of maternally offered 2'FL in the fetal circuit without reaching equilibrium. Our results provide direct evidence of HMOs in cord blood, and suggest that the placenta transfers HMOs from the maternal to fetal circuit. Future studies will investigate potential differences in the transfer of specific HMOs, or in pregnancy disorders.
Collapse
Affiliation(s)
- Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| | - Waltraud Brandl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | - Bence Csapo
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | - Mireille van Poppel
- BioTechMed-Graz, 8010 Graz, Austria.
- Institute of Sport Science, University of Graz, 8010 Graz, Austria.
| | - Harald Köfeler
- BioTechMed-Graz, 8010 Graz, Austria.
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| | - Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
41
|
Kuntz S, Kunz C, Borsch C, Vazquez E, Buck R, Reutzel M, Eckert GP, Rudloff S. Metabolic Fate and Distribution of 2´-Fucosyllactose: Direct Influence on Gut Microbial Activity but not on Brain. Mol Nutr Food Res 2019; 63:e1900035. [PMID: 31125176 PMCID: PMC6618057 DOI: 10.1002/mnfr.201900035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/07/2019] [Indexed: 01/24/2023]
Abstract
SCOPE 2´-Fucosyllactose (2´FL) is an abundant oligosaccharide in human milk. It is hypothesized that its brain enrichment is associated with improved learning. Accumulation of 2´FL in organs, biological fluids, and feces is assessed in wild-type and germ-free mice. METHODS AND RESULTS 13 C-labelled 2´FL is applied to NMRI wild-type mice intravenously (0.2 g kg-1 ) or orally (1 g kg-1 ), while controls receive saline. Biological samples are collected (0.5-15 h) and 13 C-enrichment is measured by elemental analysis isotope ratio mass spectrometry (EA-IRMS). After oral application, 2´FL is primarily eliminated in the feces. 13 C-enrichment in organs including the brain follows the same pattern as in plasma with a maximum peak after 5 h. However, 13 C-enrichment is only detected when the 13 C-2´FL bolus reaches the colon. In contrast, in germ-free mice, the 13 C-bolus remains in the intestinal content and is expelled via the feces. Furthermore, intravenously applied 13 C-2´FL is eliminated via urine; no 13 C-enrichment of organs is observed, suggesting that intact 2´FL is not retained. CONCLUSIONS 13 C-enrichment in brain and other organs after oral application of 13 C-2´FL in wild-type mice indicates cleaved fucose or other gut microbial 2´FL metabolites may be incorporated, as opposed to intact 2´FL.
Collapse
Affiliation(s)
- Sabine Kuntz
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
| | - Clemens Kunz
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
| | - Christian Borsch
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
| | | | - Rachael Buck
- Discovery R&D, Abbott NutritionColumbusOH43219USA
| | - Martina Reutzel
- Institute of PharmacologyGoethe‐University Frankfurt60438Frankfurt am MainGermany
| | - Gunter Peter Eckert
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
- Institute of PharmacologyGoethe‐University Frankfurt60438Frankfurt am MainGermany
| | - Silvia Rudloff
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
- Department of PediatricsJustus‐Liebig University Giessen35392GiessenGermany
| |
Collapse
|
42
|
Auker KM, Coleman CM, Wang M, Avula B, Bonnet SL, Kimble LL, Mathison BD, Chew BP, Ferreira D. Structural Characterization of Cranberry Arabinoxyloglucan Oligosaccharides. JOURNAL OF NATURAL PRODUCTS 2019; 82:606-620. [PMID: 30839212 DOI: 10.1021/acs.jnatprod.8b01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranberry ( Vaccinium macrocarpon) products are widely available in North American food, juice, and dietary supplement markets. The use of cranberry is popular for the prevention of urinary tract infections (UTIs) and other reported health benefits. Preliminary findings by our research group indicate that arabinoxyloglucan oligosaccharides are present in cranberry products and may contribute to the antiadhesion properties of urine produced after cranberry consumption, but relatively little is known regarding the oligosaccharide components of cranberry. This report describes the isolation from two cranberry sources and the complete structure elucidation of two arabinoxyloglucan oligosaccharides through the use of carbohydrate-specific NMR spectroscopic and chemical derivatization methods. These compounds were identified as the heptasaccharide β-d-glucopyranosyl-(1→4)-[α-d-xylopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranose (1) and the octasaccharide β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranose (2). Selected fractions and the isolated compounds were subjected to antimicrobial, cell viability, and E. coli antiadhesion assays. Results indicated that enriched fractions and purified compounds lacked antimicrobial and cytotoxic effects, supporting the potential use of such compounds for disease prevention without the risk for resistance development. Preliminary antiadhesion results indicated that mixtures of oligosaccharides exhibited greater antiadhesion properties than purified fractions or pure compounds. The potential use of cranberry oligosaccharides for the prevention of UTIs warrants continued investigations of this complex compound series.
Collapse
Affiliation(s)
- Kimberly M Auker
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Christina M Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Mei Wang
- National Center for Natural Products Research and the Research Institute for Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Bharathi Avula
- National Center for Natural Products Research and the Research Institute for Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Susanna L Bonnet
- Department of Chemistry , University of the Free State , 205 Nelson Mandela Drive , Bloemfontein , 9301 , South Africa
| | - Lindsey L Kimble
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Bridget D Mathison
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Boon P Chew
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
43
|
Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being. Nutrients 2019; 11:nu11020306. [PMID: 30717166 PMCID: PMC6413137 DOI: 10.3390/nu11020306] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/19/2023] Open
Abstract
Human milk not only has nutritional value, but also provides a wide range of biologically active molecules, which are adapted to meet the needs of newborns and infants. Mother’s milk is a source of sialylated oligosaccharides and glycans that are attached to proteins and lipids, whose concentrations and composition are unique. Sialylated human milk glycoconjugates and oligosaccharides enrich the newborn immature immune system and are crucial for their proper development and well-being. Some of the milk sialylated oligosaccharide structures can locally exert biologically active effects in the newborn’s and infant’s gut. Sialylated molecules of human milk can be recognized and bound by sialic acid-dependent pathogens and inhibit their adhesion to the epithelial cells of newborns and infants. A small amount of intact sialylated oligosaccharides can be absorbed from the intestine and remain in the newborn’s circulation in concentrations high enough to modulate the immunological system at the cellular level and facilitate proper brain development during infancy. Conclusion: The review summarizes the current state of knowledge on sialylated human milk oligosaccharides and glycoconjugates, discusses the significance of sialylated structures of human milk in newborn protection and development, and presents the advantages of human milk over infant formula.
Collapse
|
44
|
Plaza-Díaz J, Fontana L, Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients 2018; 10:1038. [PMID: 30096792 PMCID: PMC6116142 DOI: 10.3390/nu10081038] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Maternal milk contains compounds that may affect newborn immunity. Among these are a group of oligosaccharides that are synthesized in the mammary gland from lactose; these oligosaccharides have been termed human milk oligosaccharides (HMOs). The amount of HMOs present in human milk is greater than the amount of protein. In fact, HMOs are the third-most abundant solid component in maternal milk after lactose and lipids, and are thus considered to be key components. The importance of HMOs may be explained by their inhibitory effects on the adhesion of microorganisms to the intestinal mucosa, the growth of pathogens through the production of bacteriocins and organic acids, and the expression of genes that are involved in inflammation. This review begins with short descriptions of the basic structures of HMOs and the gut immune system, continues with the beneficial effects of HMOs shown in cell and animal studies, and it ends with the observational and randomized controlled trials carried out in humans to date, with particular emphasis on their effect on immune system development. HMOs seem to protect breastfed infants against microbial infections. The protective effect has been found to be exerted through cell signaling and cell-to-cell recognition events, enrichment of the protective gut microbiota, the modulation of microbial adhesion, and the invasion of the infant intestinal mucosa. In addition, infants fed formula supplemented with selected HMOs exhibit a pattern of inflammatory cytokines closer to that of exclusively breastfed infants. Unfortunately, the positive effects found in preclinical studies have not been substantiated in the few randomized, double-blinded, multicenter, controlled trials that are available, perhaps partly because these studies focus on aspects other than the immune response (e.g., growth, tolerance, and stool microbiota).
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain.
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain.
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain.
- CIBEROBN, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
45
|
Wylie AD, Zandberg WF. Quantitation of Sialic Acids in Infant Formulas by Liquid Chromatography-Mass Spectrometry: An Assessment of Different Protein Sources and Discovery of New Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8114-8123. [PMID: 29730930 DOI: 10.1021/acs.jafc.8b01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycosidically bound, but not free, dietary sialic acids are used for the biosynthesis of new glycoconjugates in humans, making the quantitation of these two forms in infant food sources important, as in neonates the demand for sialic acid may exceed the de novo biosynthetic supply. Here, a rapid high-performance liquid chromatography-mass spectrometry method was developed to identify and quantitate glycosidically bound and free sialic acids in infant formulas. The sialic acid contents of eight commercially available infant formulas with varying protein source or manufacturer were investigated. The formula protein sources (whey vs casein) did not have a large impact on the ratios of free to bound sialic acids, nor did protein hydrolysis or sample form (solid vs liquid). Hydrolyzed bovine whey protein-based formulas were found to contain the highest amount of the most abundant human sialic acid, 5- N-acetylneuraminic acid (Neu5Ac). O-Acetylated Neu5Ac was quantified in all formulas tested and, for the first time, 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn) was detected in several infant formulas.
Collapse
Affiliation(s)
- Aaron D Wylie
- The University of British Columbia , Chemistry Department, Charles E. Fipke Centre for Innovative Research , 3247 University Way , Kelowna , British Columbia , V1V 1V7 , Canada
| | - Wesley F Zandberg
- The University of British Columbia , Chemistry Department, Charles E. Fipke Centre for Innovative Research , 3247 University Way , Kelowna , British Columbia , V1V 1V7 , Canada
| |
Collapse
|
46
|
Perdijk O, van Neerven RJJ, van den Brink E, Savelkoul HFJ, Brugman S. The oligosaccharides 6'-sialyllactose, 2'-fucosyllactose or galactooligosaccharides do not directly modulate human dendritic cell differentiation or maturation. PLoS One 2018; 13:e0200356. [PMID: 29990329 PMCID: PMC6039038 DOI: 10.1371/journal.pone.0200356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/25/2018] [Indexed: 01/25/2023] Open
Abstract
Breast milk plays an important role in immune development in early life and protects against diseases later in life. A wide range of the beneficial effects of breast milk are attributed to human milk oligosaccharides (HMOs) as well as components such as vitamin D3 (VitD3) or TGFβ. One mechanism by which HMOs might contribute to immune homeostasis and protection against disease is the induction of a local tolerogenic milieu. In this study we investigated the effect of the HMOs 6’-sialyllactose (6’SL) and 2’-fucosyllactose (2’FL) as well as prebiotic galactooligosaccharides (GOS) on DC differentiation and maturation. Isolated CD14+ monocytes were cultured for six days in the presence of GM-CSF and IL-4 with or without 6’SL, 2’FL, GOS, VitD3 or TGFβ. Additionally, immature VitD3DC, TGFβDC and moDC were used as different DC types to investigate the effect of 6’SL, 2’FL and GOS on DC maturation. Surface marker expression and cytokine production was measured by flow cytometry and cytometric bead array, respectively. Unlike TGFβ and vitD3, the oligosaccharides 6’SL, 2’FL and GOS did not influence DC differentiation. Next, we studied the effect of 6’SL, 2’FL and GOS on maturation of moDC, VitD3DC and TGFβDC that showed different profiles of HMO-binding receptors. 6’SL, 2’FL and GOS did not modulate LPS-induced maturation, even though their putative receptors were present on the different DCs types. Thus, whereas VitD3 and TGFβ halt DC differentiation, which results in phenotypically distinct tolerogenic DCs, 6’SL, 2’FL and GOS do not alter DC differentiation or maturation of in vitro differentiated DC types.
Collapse
Affiliation(s)
- Olaf Perdijk
- Cell Biology and Immunology group, Wageningen University, Wageningen, the Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology group, Wageningen University, Wageningen, the Netherlands
- FrieslandCampina, Amersfoort, the Netherlands
| | - Erik van den Brink
- Cell Biology and Immunology group, Wageningen University, Wageningen, the Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology group, Wageningen University, Wageningen, the Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology group, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
47
|
Morozov V, Hansman G, Hanisch FG, Schroten H, Kunz C. Human Milk Oligosaccharides as Promising Antivirals. Mol Nutr Food Res 2018; 62:e1700679. [PMID: 29336526 DOI: 10.1002/mnfr.201700679] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/23/2017] [Indexed: 11/07/2022]
Abstract
Human milk oligosaccharides (HMOs) are diverse unconjugated carbohydrates that are highly abundant in human breast milk. These glycans are investigated in the context of exhibiting multiple functions in infant growth and development. They seem to provide protection against infectious diseases, including a number of poorly manageable viral infections. Although the potential mechanism of the HMO antiviral protection is rather broad, much of the current experimental work has focused on studying of HMO antiadhesive properties. HMOs may mimic structures of viral receptors and block adherence to target cells, thus preventing infection. Still, the potential of HMOs as a source for new antiviral drugs is relatively unexploited. This can be partly attributed to the extreme complexity of the virus-carbohydrate interactions and technical difficulties in HMO isolation, characterization, and manufacturing procedures. Fortunately, we are currently entering a period of major technological advances that have enabled deeper insights into carbohydrate mediated viral entry, rational selection of HMOs as anti-entry inhibitors, and even evaluation of individual synthetic HMO structures. Here, we provide an up-to-date review on glycan binding studies for rotaviruses, noroviruses, influenza viruses, and human immunodeficiency viruses. We also discuss the preventive and therapeutic potential of HMOs as anti-entry inhibitors and address challenges on the route from fundamental studies to clinical trials.
Collapse
Affiliation(s)
- Vasily Morozov
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Grant Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Clemens Kunz
- Institute of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
48
|
Xiao L, Van't Land B, Engen PA, Naqib A, Green SJ, Nato A, Leusink-Muis T, Garssen J, Keshavarzian A, Stahl B, Folkerts G. Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice. Sci Rep 2018; 8:3829. [PMID: 29497108 PMCID: PMC5832804 DOI: 10.1038/s41598-018-22052-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Development of Type 1 diabetes (T1D) is influenced by non-genetic factors, such as optimal microbiome development during early life that "programs" the immune system. Exclusive and prolonged breastfeeding is an independent protective factor against the development of T1D, likely via bioactive components. Human Milk Oligosaccharides (HMOS) are microbiota modulators, known to regulate immune responses directly. Here we show that early life provision (only for a period of six weeks) of 1% authentic HMOS (consisting of both long-chain, as well as short-chain structures), delayed and suppressed T1D development in non-obese diabetic mice and reduced development of severe pancreatic insulitis in later life. These protective effects were associated with i) beneficial alterations in fecal microbiota composition, ii) anti-inflammatory microbiota-generating metabolite (i.e. short chain fatty acids (SCFAs)) changes in fecal, as well as cecum content, and iii) induction of anti-diabetogenic cytokine profiles. Moreover, in vitro HMOS combined with SCFAs induced development of tolerogenic dendritic cells (tDCs), priming of functional regulatory T cells, which support the protective effects detected in vivo. In conclusion, HMOS present in human milk are therefore thought to be vital in the protection of children at risk for T1D, supporting immune and gut microbiota development in early life.
Collapse
Affiliation(s)
- Ling Xiao
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Belinda Van't Land
- Nutricia Research, Department of Immunology/Human milk research platform, Utrecht, The Netherlands.
- University Medical Center Utrecht, The Wilhelmina Children's Hospital, Laboratory of Translational Immunology, Utrecht, The Netherlands.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Angie Nato
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Johan Garssen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Nutricia Research, Department of Immunology/Human milk research platform, Utrecht, The Netherlands
| | - Ali Keshavarzian
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
- Department of Pharmacology, Department of Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Bernd Stahl
- Nutricia Research, Department of Immunology/Human milk research platform, Utrecht, The Netherlands
| | - Gert Folkerts
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| |
Collapse
|
49
|
Perdijk O, van Splunter M, Savelkoul HFJ, Brugman S, van Neerven RJJ. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms. Front Immunol 2018; 9:143. [PMID: 29483908 PMCID: PMC5816034 DOI: 10.3389/fimmu.2018.00143] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow’s milk. Indeed, recent studies show inverse associations between raw cow’s milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow’s milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow’s milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow’s milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow’s milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow’s milk components in the gut must recirculate into the blood and home to the (upper and lower) respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present in milk, we speculate that raw milk may influence homing of lymphocytes to the upper respiratory tract. This review focuses on potential mechanisms via which cow’s milk or its components can influence immune function in the intestine and the upper respiratory tract. Unraveling these complex mechanisms may contribute to the development of novel dietary approaches in allergy and asthma prevention.
Collapse
Affiliation(s)
- Olaf Perdijk
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Marloes van Splunter
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R J Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
50
|
Akkerman R, Faas MM, de Vos P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Crit Rev Food Sci Nutr 2018; 59:1486-1497. [PMID: 29333864 DOI: 10.1080/10408398.2017.1414030] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk (HM) is the golden standard for nutrition of newborn infants. Human milk oligosaccharides (HMOs) are abundantly present in HM and exert multiple beneficial functions, such as support of colonization of the gut microbiota, reduction of pathogenic infections and support of immune development. HMO-composition is during lactation continuously adapted by the mother to accommodate the needs of the neonate. Unfortunately, for many valid reasons not all neonates can be fed with HM and are either totally or partly fed with cow-milk derived infant formulas, which do not contain HMOs. These cow-milk formulas are supplemented with non-digestible carbohydrates (NDCs) that have functional effects similar to that of some HMOs, since production of synthetic HMOs is challenging and still very expensive. However, NDCs cannot substitute all HMO functions. More efficacious NDCs may be developed and customized for specific groups of neonates such as pre-matures and allergy prone infants. Here current knowledge of HMO functions in the neonate in view of possible replacement of HMOs by NDCs in infant formulas is reviewed. Furthermore, methods to expedite identification of suitable NDCs and structure/function relationships are reviewed as in vivo studies in babies are impossible.
Collapse
Affiliation(s)
- Renate Akkerman
- a Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology , University of Groningen and University Medical Center Groningen , Groningen , The Netherlands
| | - Marijke M Faas
- a Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology , University of Groningen and University Medical Center Groningen , Groningen , The Netherlands.,b Department of Obstetrics and Gynecology , University of Groningen and University Medical Center Groningen , Groningen , The Netherlands
| | - Paul de Vos
- a Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology , University of Groningen and University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|