1
|
Aryee LMD, Adu‐Afarwuah S, Prado EL, Guyer AE, Arnold CD, Dewey KG, Amponsah B, Manu A, Oaks BM, Bentil HJ, Nti H, Ayete Labi FB, Mensah MO, Adjetey E, Hastings PD. Effect of Early-Life Lipid-Based Nutrient Supplement and Home Environment on Autonomic Nervous System Regulation at 9-11 Years: A Follow-Up of a Randomized Controlled Trial. MATERNAL & CHILD NUTRITION 2025; 21:e13789. [PMID: 39679749 PMCID: PMC11956065 DOI: 10.1111/mcn.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Nutrition and the home environment contribute to the development of the autonomic nervous system (ANS). However, no study has examined the long-term effects of prenatal and postnatal small-quantity lipid-based nutrient supplements (SQ-LNS) and home environment on ANS regulation. We investigated the effect of early-life SQ-LNS and home environment on ANS regulation at 9-11 years. Participants were children born to women who participated in a randomized controlled trial in Ghana from 2009 to 2014. Women were randomized to receive daily, from pregnancy until delivery, either SQ-LNS, multiple micronutrients (MMN) or iron and folic acid (IFA) followed by SQ-LNS, MMN or placebo, respectively, until 6 months postpartum. Infants in the SQ-LNS group received SQ-LNS from 6 to 18 months. Quality of home environment was observed at 4-6 and 9-11 years. At 9-11 years, 965 children had their respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP) measured at baseline and during two inhibitory control tasks, the RACER Simon and Emotion Go/No-Go (EGNG) tasks. PEP reactivity to the RACER Simon task was greater in the MMN (-2.54 ± 4.45, p = 0.016) and SQ-LNS (-2.31 ± 4.94, p = 0.093) groups than in the IFA group (-1.57 ± 3.51). A better home environment at 4-6 predicted longer baseline PEP (β = 0.13, 95% CI: 0.02, 0.23, p = 0.016) and more PEP reactivity during the EGNG task (β = -0.06, 95% CI: -0.00, -0.02, p = 0.001). Prenatal micronutrient supplementation appears to increase SNS reactivity. Children raised in disadvantaged early home environments had more tonic SNS activation and less SNS reactivity, suggesting a predisposition for stronger fight-or-flight activation and less likelihood to modulate arousal in response to acute situations. Trial Registration: ClinicalTrials.gov identifier: NCT00970866.
Collapse
Affiliation(s)
- Lois M. D. Aryee
- Department of Nutrition and Food ScienceUniversity of GhanaAccraGhana
| | - Seth Adu‐Afarwuah
- Department of Nutrition and Food ScienceUniversity of GhanaAccraGhana
| | - Elizabeth L. Prado
- Department of Nutrition, Institute for Global NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Amanda E. Guyer
- Department of Human EcologyUniversity of California DavisDavisCaliforniaUSA
- Center for Mind and BrainUniversity of California DavisDavisCaliforniaUSA
| | - Charles D. Arnold
- Department of Nutrition, Institute for Global NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Kathryn G. Dewey
- Department of Nutrition, Institute for Global NutritionUniversity of California DavisDavisCaliforniaUSA
| | | | - Adom Manu
- Department of Population, Family & Reproductive Health, School of Public HealthUniversity of GhanaAccraGhana
| | - Brietta M. Oaks
- Department of NutritionUniversity of Rhode IslandRhode IslandUSA
| | - Helena J. Bentil
- Department of Nutrition, Institute for Global NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Helena Nti
- Department of Nutrition and Food ScienceUniversity of GhanaAccraGhana
- Department of Sports and Exercise Medical SciencesUniversity of Health and Allied SciencesHoGhana
| | - Fatimah B. Ayete Labi
- Department of Biological, Environmental and Occupational Health, School of Public HealthUniversity of GhanaAccraGhana
| | - Mavis O. Mensah
- Department of Nutrition and Food ScienceUniversity of GhanaAccraGhana
| | - Ebenezer Adjetey
- Department of Nutrition and Food ScienceUniversity of GhanaAccraGhana
| | - Paul D. Hastings
- Center for Mind and BrainUniversity of California DavisDavisCaliforniaUSA
- Department of PsychologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Vinding RK, Sevelsted A, Horner D, Vahman N, Lauritzen L, Hagen CP, Chawes B, Stokholm J, Bønnelykke K. Fish oil supplementation during pregnancy, anthropometrics, and metabolic health at age ten: A randomized clinical trial. Am J Clin Nutr 2024; 119:960-968. [PMID: 38569788 DOI: 10.1016/j.ajcnut.2023.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 12/21/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND We previously reported that children of mothers who received fish oil supplementation during pregnancy had higher body mass index [BMI (in kg/m2)] at 6 y of age as well as a concomitant increase in fat-, muscle, and bone mass, but no difference in fat percentage. OBJECTIVES Here, we report follow-up at age 10 y including assessment of metabolic health. METHODS This is a follow-up analysis of a randomized clinical trial conducted among 736 pregnant females and their offspring participating in the Copenhagen Prospective Studies on Asthma in Childhood mother-child cohort. The intervention was 2.4 g n-3 (ω-3) Long-Chain PolyUnsaturated Fatty Acid (n-3 LCPUFA) or control daily from pregnancy week 24 until 1 wk after birth. Outcomes were anthropometric measurements, body composition from Bioelectrical Impedance Analysis, blood pressure, concentrations of triglycerides, cholesterol, glucose, and C-peptide from fasting blood samples, and a metabolic syndrome score was calculated. Anthropometric measurements and body composition were prespecified secondary endpoints of the n-3 LCPUFA trial, and others were exploratory. RESULTS Children in the n-3 LCPUFA group had a higher mean BMI at age 10 year compared to the control group: 17.4 (SD: 2.44) compared with 16.9 (2.28); P = 0.020 and a higher odds ratio of having overweight (odds ratio: 1.53; 95% CI: 1.01, 2.33; P = 0.047). This corresponded to differences in body composition in terms of increased lean mass (0.49 kg; 95% CI: -0.20, 1.14; P = 0.17), fat mass (0.49 kg; 95% CI: -0.03, 1.01; P = 0.06), and fat percent (0.74%; 95% CI: -0.01, 1.49; P = 0.053) compared to the control group. Children in the n-3 LCPUFA group had a higher metabolic syndrome score compared to the control (mean difference: 0.19; 95% CI: -0.02, 0.39; P = 0.053). CONCLUSIONS In this randomized clinical trial, children of mothers receiving n-3 LCPUFA supplementation had increased BMI at age 10 y, increased risk of being overweight, and a tendency of increased fat percentage and higher metabolic syndrome score. These findings suggest potential adverse health effects from n-3 LCPUFA supplementation during pregnancy and need to be replicated in future independent studies. This trial was registered at clinicaltrials.gov as NCT00798226.
Collapse
Affiliation(s)
- Rebecca K Vinding
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Sevelsted
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Horner
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nilofar Vahman
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet and University of Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Olsen SF. A follow-up from a randomized controlled trial suggests that fish oil in pregnancy may increase the risk of obesity and metabolic syndrome in the offspring-a reason for concern? Am J Clin Nutr 2024; 119:863-864. [PMID: 38569781 DOI: 10.1016/j.ajcnut.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Sjurdur Frodi Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Pinar-Martí A, Fernández-Barrés S, Lázaro I, Fossati S, Fochs S, Pey N, Vrijheid M, Romaguera D, Sala-Vila A, Julvez J. Maternal Seafood Consumption during Pregnancy and Cardiovascular Health of Children at 11 Years of Age. Nutrients 2024; 16:974. [PMID: 38613009 PMCID: PMC11013339 DOI: 10.3390/nu16070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Nutrition is critical during pregnancy for the healthy growth of the developing infant, who is fully dependent on maternal dietary omega-3 supply for development. Fatty fish, a main dietary source of omega-3, is associated with decreased cardiovascular risk in adults. We conducted a longitudinal study based on a mother-offspring cohort as part of the project Infancia y Medio Ambiente (INMA) in order to assess whether fish intake during pregnancy relates to cardiovascular health in children. A total of 657 women were included and followed throughout pregnancy until birth, and their children were enrolled at birth and followed up until age 11-12. A semi-quantitative food frequency questionnaire was used to assess the daily intake of foods during the 1st and 3rd trimesters of pregnancy. Cardiovascular assessments included arterial stiffness (assessed by carotid-femoral pulse wave velocity [PWV]) and retinal microcirculation (photographic assessment of central retinal arteriolar and venular equivalent [CRAE and CRVE]). The association between maternal fish consumption and cardiovascular outcomes of offspring at 11 years of age was evaluated using multivariable linear regression models. There were no statistically significant differences in any cardiovascular endpoint in children whose mothers had a higher fish consumption during pregnancy compared to those with a lower fish consumption. We found a slightly higher PWV (β = 0.1, 95% CI = 0.0; 0.2, p for trend = 0.047) in children whose mothers had a higher consumption of canned tuna during the 1st trimester of pregnancy. Fish intake during pregnancy was found to be unrelated to the offspring's cardiovascular health at 11 years of age. The beneficial cardiovascular effects of fish consumption during pregnancy on the offspring are still inconclusive.
Collapse
Affiliation(s)
- Ariadna Pinar-Martí
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain;
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
- Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Sílvia Fernández-Barrés
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (I.L.); (A.S.-V.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Serena Fossati
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
| | - Silvia Fochs
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
| | - Núria Pey
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
| | - Martine Vrijheid
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
- Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dora Romaguera
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aleix Sala-Vila
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (I.L.); (A.S.-V.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Julvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain;
- ISGlobal-Instituto de Salud Global de Barcelona-Campus MAR, PRBB, 08003 Barcelona, Spain; (S.F.-B.); (S.F.); (S.F.); (N.P.); (M.V.); (D.R.)
- Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, 43201 Reus, Spain
| |
Collapse
|
5
|
Wimalasena ST, Ramirez-Silva CI, Gonzalez Casanova I, Stein AD, Sun YV, Rivera JA, Demmelmair H, Koletzko B, Ramakrishnan U. Effects of prenatal docosahexaenoic acid supplementation on offspring cardiometabolic health at 11 years differs by maternal single nucleotide polymorphism rs174602: follow-up of a randomized controlled trial in Mexico. Am J Clin Nutr 2023; 118:1123-1132. [PMID: 37839707 PMCID: PMC10797513 DOI: 10.1016/j.ajcnut.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND There is limited evidence regarding long-term effects of prenatal docosahexaenoic acid (DHA) supplementation on offspring cardiometabolic health (CMH). Inconsistent results may be attributable to variants of fatty acid desaturase (FADS) genes. OBJECTIVE We aimed to evaluate the effect of prenatal DHA supplementation on offspring CMH and investigate effect modification by maternal FADS2 single nucleotide polymorphism (SNP) rs174602. METHODS We used follow-up data from a double-blind, randomized controlled trial in Mexico in which pregnant females received 400 mg/d of algal DHA or placebo from midgestation until delivery. The study sample included 314 offspring with data at age 11 y and maternal FADS genetic data (DHA: n = 160; Placebo: n = 154). We derived a Metabolic Syndrome (MetS) score from body mass index, HDL, triglycerides, fasting glucose concentrations, and systolic blood pressure. Generalized linear models were used to evaluate the effect of the intervention on offspring MetS score and test interactions between treatment group and genotype, adjusting for maternal, offspring, and household factors. RESULTS Offspring MetS score did not differ significantly by treatment group. We observed evidence of effect modification by maternal SNP rs174602 (P = 0.001); offspring of maternal TT genotype who received DHA had lower MetS score relative to the placebo group (DHA (mean ± standard error of the mean (SEM)): -0.21 ± 0.11, n = 21; Placebo: 0.05 ± 0.11, n = 23; Δ= -0.26 (95% CI: -0.55, 0.04), P = 0.09); among CC maternal genotype carriers, offspring of mothers who received DHA had higher MetS score (0.18 ± 0.06, n = 62) relative to the placebo group (-0.05 ± 0.06, n = 65, Δ=0.24 (0.06, 0.41), P < 0.01). CONCLUSION The effect of prenatal DHA supplementation on offspring MetS score differed by maternal FADS SNP rs174602. These findings further support incorporating genetic analysis of FADS polymorphisms in DHA supplementation trials. CLINICAL TRIAL DETAILS This trial was registered at clinicaltrials.gov as NCT00646360.
Collapse
Affiliation(s)
- Sonia Tandon Wimalasena
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | | | | | - Aryeh D Stein
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Yan V Sun
- Department of Epidemiology, Emory University, Atlanta, GA, United States
| | - Juan A Rivera
- National Institute of Public Health, Cuernavaca, Mexico
| | - Hans Demmelmair
- LMU-Ludwig Maximilians Universität, Department of Pediatrics, LMU University Hospitals, Munich, Germany
| | - Berthold Koletzko
- LMU-Ludwig Maximilians Universität, Department of Pediatrics, LMU University Hospitals, Munich, Germany
| | - Usha Ramakrishnan
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Emory University, Atlanta, GA, United States.
| |
Collapse
|
6
|
Wilkins E, Wickramasinghe K, Pullar J, Demaio AR, Roberts N, Perez-Blanco KM, Noonan K, Townsend N. Maternal nutrition and its intergenerational links to non-communicable disease metabolic risk factors: a systematic review and narrative synthesis. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2021; 40:20. [PMID: 33902746 PMCID: PMC8077952 DOI: 10.1186/s41043-021-00241-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Non-communicable diseases (NCDs) are the leading cause of death and disability globally, while malnutrition presents a major global burden. An increasing body of evidence suggests that poor maternal nutrition is related to the development of NCDs and their risk factors in adult offspring. However, there has been no systematic evaluation of this evidence. METHODS We searched eight electronic databases and reference lists for primary research published between 1 January 1996 and 31 May 2016 for studies presenting data on various dimensions of maternal nutritional status (including maternal exposure to famine, maternal gestational weight gain (GWG), maternal weight and/or body mass index (BMI), and maternal dietary intake) during pregnancy or lactation, and measures of at least one of three NCD metabolic risk factors (blood pressure, blood lipids and blood glucose) in the study population of offspring aged 18 years or over. Owing to high heterogeneity across exposures and outcomes, we employed a narrative approach for data synthesis (PROSPERO= CRD42016039244, CRD42016039247). RESULTS Twenty-seven studies from 10 countries with 62,607 participants in total met our inclusion criteria. The review revealed considerable heterogeneity in findings across studies. There was evidence of a link between maternal exposure to famine during pregnancy with adverse blood pressure, blood lipid, and glucose metabolism outcomes in adult offspring in some contexts, with some tentative support for an influence of adult offspring adiposity in this relationship. However, the evidence base for maternal BMI, GWG, and dietary intake of specific nutrients during pregnancy was more limited and revealed no consistent support for a link between these exposures and adult offspring NCD metabolic risk factors. CONCLUSION The links identified between maternal exposure to famine and offspring NCD risk factors in some contexts, and the tentative support for the role of adult offspring adiposity in influencing this relationship, suggest the need for increased collaboration between maternal nutrition and NCD sectors. However, in view of the current scant evidence base for other aspects of maternal nutrition, and the overall heterogeneity of findings, ongoing monitoring and evaluation using large prospective studies and linked data sets is a major priority.
Collapse
Affiliation(s)
- Elizabeth Wilkins
- Centre on Population Approaches for NCD Prevention, University of Oxford, Oxford, UK
| | | | - Jessie Pullar
- Centre on Population Approaches for NCD Prevention, University of Oxford, Oxford, UK
| | | | - Nia Roberts
- Health Library, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | - Nick Townsend
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
7
|
He S, Stein AD. Early-Life Nutrition Interventions and Associated Long-Term Cardiometabolic Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 12:461-489. [PMID: 33786595 PMCID: PMC8009753 DOI: 10.1093/advances/nmaa107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Early-life nutrition interventions can have lifelong cardiometabolic benefits. Most evidence on this topic is derived from observational studies. We evaluated the association of randomized controlled nutritional trials in early life and long-term cardiometabolic outcomes. Through literature search of PubMed, CABI Global Health, Embase, and Cochrane, with manual reference check and weekly alert from PubMed, we identified 8312 records, and included 53 records from 40 cohorts in 21 countries. The total number of participants was 33,551. Interventions were initiated as early as conception, and the longest until 7 y (except 1 study from infancy to 20 y). The cohorts were followed up for between 3 and 73 y. We identified 7 types of interventions (protein-energy supplements, long-chain PUFAs, single micronutrient, multiple micronutrients, infant and young child feeding, dietary counseling, and other) and 4 categories of cardiometabolic outcomes (biomarkers, cardiovascular, body size and composition, and subclinical/clinical outcomes). Most findings were null. Fasting glucose concentration was 0.04 mmol/L lower (95% CI: -0.05, -0.02 mmol/L; I2 = 0%) in the intervention groups than in the control groups (15 studies). BMI (kg/m2) was 0.20 higher (95% CI: 0.12, 0.28; I2 = 54%) in the intervention groups than control groups (14 studies). No significant effect was observed for total cholesterol (12 studies) or blood pressure (17 studies). Ongoing and personalized dietary counseling was associated with lower glucose and cholesterol, better endothelial function, and reduced risk of metabolic syndrome. The timing of intervention mattered, with earlier initiation conferring greater benefit (improved lipid profile and marginally lower glucose concentration) based on 2 studies. In sum, glucose concentration was lower following early-life nutrition interventions, but there is a risk of unintended consequences, including higher BMI. Maternal and child nutrition interventions must be evidence-based and tailored to each population to promote long-term cardiometabolic health.
Collapse
Affiliation(s)
- Siran He
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Bernstein AS, Oken E, de Ferranti S. Fish, Shellfish, and Children's Health: An Assessment of Benefits, Risks, and Sustainability. Pediatrics 2019; 143:e20190999. [PMID: 31110165 PMCID: PMC6864235 DOI: 10.1542/peds.2019-0999] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
American children eat relatively little fish and shellfish in comparison with other sources of animal protein, despite the health benefits that eating fish and shellfish may confer. At the same time, fish and shellfish may be sources of toxicants. This report serves to inform pediatricians about available research that elucidates health risks and benefits associated with fish and shellfish consumption in childhood as well as the sustainability of fish and shellfish harvests.
Collapse
|
9
|
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M, Cochrane Pregnancy and Childbirth Group. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev 2018; 11:CD003402. [PMID: 30480773 PMCID: PMC6516961 DOI: 10.1002/14651858.cd003402.pub3] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Higher intakes of foods containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA), such as fish, during pregnancy have been associated with longer gestations and improved perinatal outcomes. This is an update of a review that was first published in 2006. OBJECTIVES To assess the effects of omega-3 LCPUFA, as supplements or as dietary additions, during pregnancy on maternal, perinatal, and neonatal outcomes and longer-term outcomes for mother and child. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (16 August 2018), and reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing omega-3 fatty acids (as supplements or as foods, stand-alone interventions, or with a co-intervention) during pregnancy with placebo or no omega-3, and studies or study arms directly comparing omega-3 LCPUFA doses or types. Trials published in abstract form were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed study eligibility, extracted data, assessed risk of bias in trials and assessed quality of evidence for prespecified birth/infant, maternal, child/adult and health service outcomes using the GRADE approach. MAIN RESULTS In this update, we included 70 RCTs (involving 19,927 women at low, mixed or high risk of poor pregnancy outcomes) which compared omega-3 LCPUFA interventions (supplements and food) compared with placebo or no omega-3. Overall study-level risk of bias was mixed, with selection and performance bias mostly at low risk, but there was high risk of attrition bias in some trials. Most trials were conducted in upper-middle or high-income countries; and nearly half the trials included women at increased/high risk for factors which might increase the risk of adverse maternal and birth outcomes.Preterm birth < 37 weeks (13.4% versus 11.9%; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.81 to 0.97; 26 RCTs, 10,304 participants; high-quality evidence) and early preterm birth < 34 weeks (4.6% versus 2.7%; RR 0.58, 95% CI 0.44 to 0.77; 9 RCTs, 5204 participants; high-quality evidence) were both lower in women who received omega-3 LCPUFA compared with no omega-3. Prolonged gestation > 42 weeks was probably increased from 1.6% to 2.6% in women who received omega-3 LCPUFA compared with no omega-3 (RR 1.61 95% CI 1.11 to 2.33; 5141 participants; 6 RCTs; moderate-quality evidence).For infants, there was a possibly reduced risk of perinatal death (RR 0.75, 95% CI 0.54 to 1.03; 10 RCTs, 7416 participants; moderate-quality evidence: 62/3715 versus 83/3701 infants) and possibly fewer neonatal care admissions (RR 0.92, 95% CI 0.83 to 1.03; 9 RCTs, 6920 participants; moderate-quality evidence - 483/3475 infants versus 519/3445 infants). There was a reduced risk of low birthweight (LBW) babies (15.6% versus 14%; RR 0.90, 95% CI 0.82 to 0.99; 15 trials, 8449 participants; high-quality evidence); but a possible small increase in large-for-gestational age (LGA) babies (RR 1.15, 95% CI 0.97 to 1.36; 6 RCTs, 3722 participants; moderate-quality evidence, for omega-3 LCPUFA compared with no omega-3. Little or no difference in small-for-gestational age or intrauterine growth restriction (RR 1.01, 95% CI 0.90 to 1.13; 8 RCTs, 6907 participants; moderate-quality evidence) was seen.For the maternal outcomes, there is insufficient evidence to determine the effects of omega-3 on induction post-term (average RR 0.82, 95% CI 0.22 to 2.98; 3 trials, 2900 participants; low-quality evidence), maternal serious adverse events (RR 1.04, 95% CI 0.40 to 2.72; 2 trials, 2690 participants; low-quality evidence), maternal admission to intensive care (RR 0.56, 95% CI 0.12 to 2.63; 2 trials, 2458 participants; low-quality evidence), or postnatal depression (average RR 0.99, 95% CI 0.56 to 1.77; 2 trials, 2431 participants; low-quality evidence). Mean gestational length was greater in women who received omega-3 LCPUFA (mean difference (MD) 1.67 days, 95% CI 0.95 to 2.39; 41 trials, 12,517 participants; moderate-quality evidence), and pre-eclampsia may possibly be reduced with omega-3 LCPUFA (RR 0.84, 95% CI 0.69 to 1.01; 20 trials, 8306 participants; low-quality evidence).For the child/adult outcomes, very few differences between antenatal omega-3 LCPUFA supplementation and no omega-3 were observed in cognition, IQ, vision, other neurodevelopment and growth outcomes, language and behaviour (mostly low-quality to very low-quality evidence). The effect of omega-3 LCPUFA on body mass index at 19 years (MD 0, 95% CI -0.83 to 0.83; 1 trial, 243 participants; very low-quality evidence) was uncertain. No data were reported for development of diabetes in the children of study participants. AUTHORS' CONCLUSIONS In the overall analysis, preterm birth < 37 weeks and early preterm birth < 34 weeks were reduced in women receiving omega-3 LCPUFA compared with no omega-3. There was a possibly reduced risk of perinatal death and of neonatal care admission, a reduced risk of LBW babies; and possibly a small increased risk of LGA babies with omega-3 LCPUFA.For our GRADE quality assessments, we assessed most of the important perinatal outcomes as high-quality (e.g. preterm birth) or moderate-quality evidence (e.g. perinatal death). For the other outcome domains (maternal, child/adult and health service outcomes) GRADE ratings ranged from moderate to very low, with over half rated as low. Reasons for downgrading across the domain were mostly due to design limitations and imprecision.Omega-3 LCPUFA supplementation during pregnancy is an effective strategy for reducing the incidence of preterm birth, although it probably increases the incidence of post-term pregnancies. More studies comparing omega-3 LCPUFA and placebo (to establish causality in relation to preterm birth) are not needed at this stage. A further 23 ongoing trials are still to report on over 5000 women, so no more RCTs are needed that compare omega-3 LCPUFA against placebo or no intervention. However, further follow-up of completed trials is needed to assess longer-term outcomes for mother and child, to improve understanding of metabolic, growth and neurodevelopment pathways in particular, and to establish if, and how, outcomes vary by different types of omega-3 LCPUFA, timing and doses; or by characteristics of women.
Collapse
Affiliation(s)
- Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Judith C Gomersall
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Jacqueline F Gould
- The University of AdelaideSchool of PsychologyNorth Terrace, AdelaideAdelaideSouth AustraliaAustralia5001
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Sjurdur F Olsen
- Statens Serum InstitutCentre for Fetal Programming, Department of EpidemiologyCopenhagenDenmark
| | - Maria Makrides
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideAustraliaAustralia
- Women's and Children's Health Research InstituteNorth AdelaideAustralia
| | | |
Collapse
|
10
|
Maslova E, Rifas-Shiman SL, Olsen SF, Gillman MW, Oken E. Prenatal n-3 long-chain fatty acid status and offspring metabolic health in early and mid-childhood: results from Project Viva. Nutr Diabetes 2018; 8:29. [PMID: 29795533 PMCID: PMC5968023 DOI: 10.1038/s41387-018-0040-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
Higher maternal and biomarker levels of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) have been associated with improved perinatal outcomes and may also influence offspring metabolic health. Past studies were not powered to examine metabolic outcomes and few have specifically targeted metabolically vulnerable populations. We examined the associations of prenatal n-3 LCPUFA status with markers of metabolic health in early and mid-childhood in the full population as well as stratified by maternal glucose tolerance. Our data consisted of 1418 mother-child dyads from Project Viva, a longitudinal, prospective pre-birth cohort enrolled in eastern Massachusetts. We assessed maternal dietary intake of fish and n-3 LCPUFA in mid-pregnancy using a validated food frequency questionnaire. N-3 LCPUFA levels were quantified in maternal second trimester and umbilical cord plasma using liquid-gas chromatography. We assessed offspring anthropometry, adiposity, and blood pressure at early (median age: 3.2 years) and mid-childhood (median age: 7.7 years); and assayed blood samples collected at these visits for metabolic biomarkers. We report here multivariable effect estimates and 95% CI. Early childhood BMI z-score was on average 0.46 (1.03) units and waist circumference 51.3 (3.7) cm. At mid-childhood these measures were 0.39 (1.00) units and 60.0 (8.3) cm, respectively. Higher cord plasma DHA levels were associated with lower BMI z-score ((Q)uartile 4 vs. Q1: -0.21, 95% CI: -0.38, -0.03), waist circumference (Q4 vs. Q1: -0.63, 95% CI: -1.27, 0.00 cm), and leptin levels (Q4 vs. Q1: -0.36, 95% CI: -0.77, 0.05 ng/mL) in early childhood. These associations were strongest and reached significance in offspring of women with isolated hyperglycemia vs. better or worse glycemic status. Higher maternal DHA + EPA (Q4 vs. Q1: -1.59, 95% CI: -2.80, -0.38 μg/mL) and fish (≥3 vs. 0 portions/week: -2.18, 95% CI: -3.90, -0.47 μg/mL) intake was related to lower adiponectin in early childhood. None of these associations persisted with mid-childhood outcomes. We did not find associations with any of the other outcomes. This study supports early and possibly transient effects of prenatal n-3 LCPUFA status on anthropometric measures and adipokine levels. It also raises the possibility that offspring of women with isolated hyperglycemia derive the most benefits from higher n-3 LCPUFA status.
Collapse
Affiliation(s)
- Ekaterina Maslova
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. .,Department of Primary Care and Public Health, Imperial College London, London, UK. .,Danish Diabetes Academy, Odense, Denmark.
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew W Gillman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Polyunsaturated fatty acid status at birth, childhood growth, and cardiometabolic risk: a pooled analysis of the MEFAB and RHEA cohorts. Eur J Clin Nutr 2018; 73:566-576. [PMID: 29765163 DOI: 10.1038/s41430-018-0175-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVES Polyunsaturated fatty acid (PUFA) status during pregnancy has been suggested to influence offspring obesity and cardiometabolic health. We assessed whether prenatal PUFA exposure is associated with rapid infant growth, childhood BMI, and cardiometabolic profile. SUBJECTS/METHODS In the Dutch MEFAB (n = 266) and Greek RHEA (n = 263) cohorts, we measured n-3 and n-6 PUFA concentrations in cord blood phospholipids, which reflect fetal exposure in late pregnancy. We defined rapid infant growth from birth to 6 months of age as an increase in weight z-score >0.67. We analyzed body mass index (BMI) as continuous and in categories of overweight/obesity at 4 and 6 years. We computed a cardiometabolic risk score at 6-7 years as the sum of waist circumference, non-high-density lipoprotein cholesterol and blood pressure z-scores. Associations of PUFAs with child health outcomes were assessed using generalized linear models for binary outcomes and linear regression models for continuous ones after adjusting for important covariates, and for the pooled estimates, a cohort indicator. RESULTS In pooled analyses, we found no association of PUFA levels with rapid infant growth, childhood BMI (β per SD increase in the total n-3:n-6 PUFA ratio = -0.04 SD; 99% CI: -0.15, 0.06; P = 0.65 at 4 years, and -0.05 SD; 99% CI: -0.18, 0.08; P = 0.78 at 6 years), and overweight/obesity. We also found no associations for clustered cardiometabolic risk and its individual components. The results were similar across cohorts. CONCLUSIONS Our findings suggest that PUFA concentrations at birth are not associated with later obesity development and cardiometabolic risk in childhood.
Collapse
|
12
|
Maternal fish oil supplementation during lactation is associated with reduced height at 13 years of age and higher blood pressure in boys only. Br J Nutr 2017; 116:2082-2090. [PMID: 28065179 DOI: 10.1017/s0007114516004293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary long-chain n-3 PUFA (n-3 LCPUFA) in infancy may have long-term effects on lifestyle disease risk. The present follow-up study investigated whether maternal fish oil (FO) supplementation during lactation affected growth and blood pressure in adolescents and whether the effects differed between boys and girls. Mother-infant pairs (n 103) completed a randomised controlled trial with FO (1·5 g/d n-3 LCPUFA) or olive oil (OO) supplements during the first 4 months of lactation; forty-seven mother-infant pairs with high fish intake were followed-up for 4 months as the reference group. We also followed-up 100 children with assessment of growth, blood pressure, diet by FFQ and physical activity by 7-d accelerometry at 13·5 (sd 0·4) years of age. Dried whole-blood fatty acid composition was analysed in a subgroup (n 49). At 13 years of age, whole-blood n-3 LCPUFA, diet, physical activity and body composition did not differ between the three groups. The children from the FO group were 3·4 (95 % CI 0·2, 6·6) cm shorter (P=0·035) than those from the OO group, and tended to have less advanced puberty (P=0·068), which explained the difference in height. There was a sex-specific effect on diastolic blood pressure (P sex×group=0·020), which was driven by a 3·9 (95 % CI 0·2, 7·5) mmHg higher diastolic blood pressure in the FO compared with the OO group among boys only (P=0·041). Our results indicate that early n-3 LCPUFA intake may reduce height in early adolescence due to a delay in pubertal maturation and increase blood pressure specifically in boys, thereby tending to counteract existing sex differences.
Collapse
|
13
|
Jochems SHJ, Gielen M, Rump P, Hornstra G, Zeegers MP. Potential programming of selected cardiometabolic risk factors at childhood by maternal polyunsaturated fatty acid availability in the MEFAB cohort. Prostaglandins Leukot Essent Fatty Acids 2015; 100:21-7. [PMID: 26115761 DOI: 10.1016/j.plefa.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Increasing evidence suggests that long-chain polyunsaturated fatty acid (LCPUFA) availability in utero could program later health. OBJECTIVE The objective of the study was to explore whether prenatal LCPUFA availability could be involved in programming cardiometabolic disease risk at childhood. METHODS Data of 242 mother-child pairs from the Maastricht Essential Fatty Acid Birth (MEFAB) cohort were used. Multi-variable linear regression analysis was applied to identify associations between maternal LCPUFA concentrations around weeks 11, 22 and 32 of pregnancy and at time of delivery and cardiometabolic risk factors of their children (glucose metabolism, blood lipids, and blood pressure) at age 7. RESULTS Maternal eicosapentaenoic acid (20:5n-3) at week 11 of pregnancy was negatively associated with children׳s glucose (B=-0.34mmol/L; 95% CI: -0.56, -0.12). Positive associations were found between maternal linoleic acid (18:2n-6) at time of delivery and children׳s proinsulin (B=0.25pmol/L; 95% CI: 0.08, 0.41); maternal 3-docosapentaenoic acid (22:5n-3) at week 11 and children׳s total cholesterol (B=1.23mmol/L; 95% CI: 0.45, 2.01) and low-density-lipoprotein cholesterol (B=1.12mmol/L; 95% CI: 0.42, 1.82); and maternal osbond acid (22:5n-6) at week 22 and tetracosadienoic acid (24:2n-6) at week 32 and children׳s diastolic blood pressure (B=16.86mmHg; 95% CI: 7.63, 26.08 and B=17.75mmHg; 95% CI: 6.37, 29.94, respectively). CONCLUSION Our findings suggest that maternal omega-6 (n-6) fatty acids may be of particular importance in relation to children׳s glucose metabolism and blood pressure, whereas omega-3 (n-3) fatty acids seem particularly related to blood lipids at childhood. In general, the strength of the associations appeared stronger with fatty acid concentrations in early pregnancy compared to late pregnancy.
Collapse
Affiliation(s)
- Sylvia H J Jochems
- NUTRIM School for Nutrition and Translational Research in Metabolism, Departments of Complex Genetics, Cluster of Genetics and Cell Biology, Maastricht University, The Netherlands.
| | - Marij Gielen
- NUTRIM School for Nutrition and Translational Research in Metabolism, Departments of Complex Genetics, Cluster of Genetics and Cell Biology, Maastricht University, The Netherlands
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerard Hornstra
- NUTRI-SEARCH, Brikkenoven 14, 6247 BG Gronsveld, The Netherlands
| | - Maurice P Zeegers
- NUTRIM School for Nutrition and Translational Research in Metabolism, Departments of Complex Genetics, Cluster of Genetics and Cell Biology, Maastricht University, The Netherlands
| |
Collapse
|
14
|
Gunaratne AW, Makrides M, Collins CT, Cochrane Pregnancy and Childbirth Group. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood. Cochrane Database Syst Rev 2015; 2015:CD010085. [PMID: 26197477 PMCID: PMC8783748 DOI: 10.1002/14651858.cd010085.pub2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Allergies have become more prevalent globally over the last 20 years. Dietary consumption of n-3 (or omega 3) long chain polyunsaturated fatty acids (LCPUFA) has declined over the same period of time. This, together with the known role of n-3 LCPUFA in inhibiting inflammation, has resulted in speculation that n-3 LCPUFA may prevent allergy development. Dietary n-3 fatty acids supplements may change the developing immune system of the newborn before allergic responses are established, particularly for those with a genetic predisposition to the production of the immunoglobulin E (IgE) antibody. Individuals with IgE-mediated allergies have both the signs and symptoms of the allergic disease and a positive skin prick test (SPT) to the allergen. OBJECTIVES To assess the effect of n-3 LCPUFA supplementation in pregnant and/or breastfeeding women on allergy outcomes (food allergy, atopic dermatitis (eczema), allergic rhinitis (hay fever) and asthma/wheeze) in their children. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), PubMed (1966 to 01 August 2014), CINAHL via EBSCOhost (1984 to 01 August 2014), Scopus (1995 to 01 August 2014), Web of Knowledge (1864 to 01 August 2014) and ClinicalTrials.gov (01 August 2014) and reference lists of retrieved studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating the effect of n-3 LCPUFA supplementation of pregnant and/or lactating women (compared with placebo or no treatment) on allergy outcomes of the infants or children. Trials using a cross-over design and trials examining biochemical outcomes only were not eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility and trial quality and performed data extraction. Where the review authors were also investigators on trials selected, an independent reviewer assessed trial quality and performed data extraction. MAIN RESULTS Eight trials involving 3366 women and their 3175 children were included in the review. In these trials, women were supplemented with n-3 LCPUFA during pregnancy (five trials), lactation (two trials) or both pregnancy and lactation (one trial). All trials randomly allocated women to either a n-3 LCPUFA supplement or a control group. The risk of bias varied across the eight included trials in this review with only two trials with a low risk of selection, performance and attrition bias.N-3 LCPUFA supplementation showed a clear reduction in the primary outcome of any allergy (medically diagnosed IgE mediated) in children aged 12 to 36 months (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.44 to 0.98; two RCTs; 823 children), but not beyond 36 months (RR 0.86, 95% CI 0.61 to 1.20; one RCT, 706 children). For any allergy (medically diagnosed IgE mediated and/or parental report), no clear differences were seen in children either at 12 to 36 months (RR 0.89, 95% CI 0.71 to 1.11; two RCTs, 823 children) or beyond 36 months of age (RR 0.96, 95% CI 0.84 to 1.09; three RCTs, 1765 children).For the secondary outcomes of specific allergies there were no clear differences for food allergies at 12 to 36 months and beyond 36 months, but a clear reduction was seen for children in their first 12 months with n-3 LCPUFA (both for medically diagnosed IgE mediated and medically diagnosed IgE mediated and/or parental report). There was a clear reduction in medically diagnosed IgE-mediated eczema with n-3 LCPUFA for children 12 to 36 months of age, but not at any other time point for both medically diagnosed IgE mediated and medically diagnosed IgE mediated and/or parental report. No clear differences for allergic rhinitis or asthma/wheeze were seen at any time point for both medically diagnosed IgE mediated, and medically diagnosed IgE mediated and/or parental report.There was a clear reduction in children's sensitisation to egg and sensitisation to any allergen between 12 to 36 months of age when mothers were supplemented with n-3 LCPUFA.In terms of safety for the mother and child, n-3 LCPUFA supplementation during pregnancy did not show increased risk of postpartum haemorrhage or early childhood infections. AUTHORS' CONCLUSIONS Overall, there is limited evidence to support maternal n-3 LCPUFA supplementation during pregnancy and/or lactation for reducing allergic disease in children. Few differences in childhood allergic disease were seen between women who were supplemented with n-3 LCPUFA and those who were not.
Collapse
Affiliation(s)
- Anoja W Gunaratne
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideSouth AustraliaAustralia5000
- Women's and Children's Hospital and Flinders Medical CentreChild Nutrition Research Centre, Women's and Children's Health Research InstituteAdelaideAustralia5000
| | - Maria Makrides
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideSouth AustraliaAustralia5000
- Women's and Children's Hospital and Flinders Medical CentreChild Nutrition Research Centre, Women's and Children's Health Research InstituteAdelaideAustralia5000
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteC/‐ WCHRI72 King William RoadAdelaideSAAustralia5006
| | - Carmel T Collins
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideSouth AustraliaAustralia5000
- Women's and Children's Hospital and Flinders Medical CentreChild Nutrition Research Centre, Women's and Children's Health Research InstituteAdelaideAustralia5000
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteC/‐ WCHRI72 King William RoadAdelaideSAAustralia5006
| | | |
Collapse
|
15
|
Voortman T, van den Hooven EH, Braun KVE, van den Broek M, Bramer WM, Chowdhurry R, Franco OH. Effects of polyunsaturated fatty acid intake and status during pregnancy, lactation, and early childhood on cardiometabolic health: A systematic review. Prog Lipid Res 2015; 59:67-87. [PMID: 26025302 DOI: 10.1016/j.plipres.2015.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023]
Abstract
The importance of polyunsaturated fatty acid (PUFA) intake in fetal life and infancy has been widely studied in relation to child cognitive and visual development, but whether early life PUFA exposure is related to cardiometabolic risk factors is unclear. The focus of this systematic review was to evaluate the effects of PUFA dietary intake and blood levels during pregnancy, lactation, or early childhood (⩽5 y) on obesity, blood pressure, blood lipids, and insulin sensitivity. We identified 4302 abstracts in the databases Embase, Medline and Cochrane Central (April 2014), of which 56 articles, reporting on 45 unique studies, met all selection criteria. Many of the included studies focused on obesity as an outcome (33 studies), whereas studies on insulin sensitivity were relatively scarce (6 studies). Overall, results for obesity, blood pressure, and blood lipids were inconsistent, with a few studies reporting effects in opposite directions and other studies that did not observe any effects of PUFAs on these outcomes. Four studies suggested beneficial effects of PUFAs on insulin sensitivity. We conclude that there is insufficient evidence to support a beneficial effect of PUFAs in fetal life or early childhood on obesity, blood pressure, or blood lipids. More research is needed to investigate the potential favorable effects of PUFAs on insulin sensitivity, and to examine the role of specific fatty acids in early life on later cardiometabolic health.
Collapse
Affiliation(s)
- Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Edith H van den Hooven
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kim V E Braun
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Health Sciences, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | - Marion van den Broek
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Health Sciences, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rajiv Chowdhurry
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proc Nutr Soc 2014; 74:67-82. [PMID: 25497038 DOI: 10.1017/s002966511400158x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence suggests that at a population level, childhood and adolescent obesity increase the long-term risk of chronic diseases such as type 2 diabetes and CVD. At an individual level, however, the metabolic consequences of obesity in youth vary immensely. Despite comparable BMI, some adolescents develop impaired glucose tolerance while others maintain normal glucose homeostasis. It has been proposed that the variation in the capacity to store lipid in the subcutaneous adipose tissue (SAT) may partially discriminate metabolically healthy from unhealthy obesity. In positive energy balance, a decreased capacity to expand SAT may drive lipid accumulation to visceral adipose tissue, liver and skeletal muscle. This state of lipotoxicity is associated with chronic low-grade inflammation, insulin resistance and dyslipidaemia. The present review examines the differential adipose tissue development and function in children and adolescents who exhibit metabolic dysregulation compared with those who are protected. Additionally, the role of manipulating dietary fat quality to potentially prevent and treat metabolic dysfunction in obesity will be discussed. The findings of the present review highlight the need for further randomised controlled trials to establish the effect of dietary n-3 PUFA on the metabolic phenotype of obese children and adolescents. Furthermore, using a personalised nutrition approach to target interventions to those at risk of, or those with established metabolic dysregulation may optimise the efficacy of modifying dietary fat quality.
Collapse
|
17
|
Koletzko B, Boey CCM, Campoy C, Carlson SE, Chang N, Guillermo-Tuazon MA, Joshi S, Prell C, Quak SH, Sjarif DR, Su Y, Supapannachart S, Yamashiro Y, Osendarp SJM. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. ANNALS OF NUTRITION AND METABOLISM 2014; 65:49-80. [PMID: 25227906 DOI: 10.1159/000365767] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
The Early Nutrition Academy supported a systematic review of human studies on the roles of pre- and postnatal long-chain polyunsaturated fatty acids (LC-PUFA) published from 2008 to 2013 and an expert workshop that reviewed the information and developed recommendations, considering particularly Asian populations. An increased supply of n-3 LC-PUFA during pregnancy reduces the risk of preterm birth before 34 weeks of gestation. Pregnant women should achieve an additional supply ≥200 mg docosahexaenic acid (DHA)/day, usually achieving a total intake ≥300 mg DHA/day. Higher intakes (600-800 mg DHA/day) may provide greater protection against early preterm birth. Some studies indicate beneficial effects of pre- and postnatal DHA supply on child neurodevelopment and allergy risk. Breast-feeding is the best choice for infants. Breast-feeding women should get ≥200 mg DHA/day to achieve a human milk DHA content of ∼0.3% fatty acids. Infant formula for term infants should contain DHA and arachidonic acid (AA) to provide 100 mg DHA/day and 140 mg AA/day. A supply of 100 mg DHA/day should continue during the second half of infancy. We do not provide quantitative advice on AA levels in follow-on formula fed after the introduction of complimentary feeding due to a lack of sufficient data and considerable variation in the AA amounts provided by complimentary foods. Reasonable intakes for very-low-birth weight infants are 18-60 mg/kg/day DHA and 18-45 mg/kg/day AA, while higher intakes (55-60 mg/kg/day DHA, ∼1% fatty acids; 35-45 mg/kg/day AA, ∼0.6-0.75%) appear preferable. Research on the requirements and effects of LC-PUFA during pregnancy, lactation, and early childhood should continue. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Berthold Koletzko
- Early Nutrition Academy, Dr. von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rytter D, Bech BH, Frydenberg M, Henriksen TB, Olsen SF. Fetal growth and cardio-metabolic risk factors in the 20-year-old offspring. Acta Obstet Gynecol Scand 2014; 93:1150-9. [PMID: 25053259 DOI: 10.1111/aogs.12463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/18/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate the association between prenatal growth patterns as estimated by biparietal diameter and cardio-metabolic risk at 20 years. DESIGN Follow-up study. SETTING Denmark 1988-2009. POPULATION Two cohorts of children born between 1988 and 1990 (n=707) and followed up in 2008-2009 (n=333-509). METHODS We have access to biparietal diameter from early ultrasound scan and birthweight. For each gender, biparietal diameter and birthweight, gestational age-specific growth-z-scores were calculated. A change in growth trajectory was depicted as a shift in z-score for the two growth measures. Multiple linear regression modeling was used to estimate associations between biparietal diameter and birthweight z-scores and later cardio-metabolic risk factors as well as estimating whether changing growth trajectory was associated with later cardio-metabolic risk. MAIN OUTCOME MEASURES Self-reported anthropometrics and clinically measured blood pressure, heart rate and biochemical measures associated with cardio-metabolic health. RESULTS After adjustments, biparietal diameter was not associated with any of the outcomes. Birthweight was positively associated with both adult height and weight and inversely associated with insulin, triglyceride and insulin resistance. Also, the data indicated a U-shaped association between growth in the second half of pregnancy and adult body mass index among individuals with a low biparietal diameter in mid-pregnancy. CONCLUSION Different patterns of intrauterine growth may be associated with later risk of cardio-metabolic disease.
Collapse
Affiliation(s)
- Dorte Rytter
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
19
|
No association between the intake of marine n-3 PUFA during the second trimester of pregnancy and factors associated with cardiometabolic risk in the 20-year-old offspring. Br J Nutr 2013; 110:2037-46. [DOI: 10.1017/s0007114513001335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intake of marine n-3 PUFA has been shown to decrease the risk of CVD in a number of studies. Since the development of CVD is often a lifelong process, marine n-3 PUFA intake early in life may also affect the development of later CVD. The aim of the present study was to investigate the association between maternal intake of marine n-3 PUFA during the second trimester of pregnancy and factors associated with cardiometabolic risk in the 20-year-old offspring. The study was based on the follow-up of the offspring of a Danish pregnancy cohort who participated in a study conducted from 1988 to 1989. A total of 965 pregnant women were originally included in the cohort and detailed information about the intake of marine n-3 PUFA during the second trimester was collected. In 2008–9, the offspring were invited to participate in a clinical examination including anthropometric, blood pressure (BP) and short-term heart rate variability measurements. Also, a fasting venous blood sample was drawn from them. Multiple linear regression modelling, using the lowest quintile of marine n-3 PUFA intake as the reference, was used to estimate the association with all outcomes. A total of 443 offspring participated in the clinical examination. No association between the intake of marine n-3 PUFA during the second trimester of pregnancy and offspring adiposity, glucose metabolism, BP or lipid profile was found. In conclusion, no association between the intake of marine n-3 PUFA during the second trimester of pregnancy and the factors associated with cardiometabolic risk in the 20-year-old offspring could be detected.
Collapse
|
20
|
Much D, Brunner S, Vollhardt C, Schmid D, Sedlmeier EM, Brüderl M, Heimberg E, Bartke N, Boehm G, Bader BL, Amann-Gassner U, Hauner H. Effect of dietary intervention to reduce the n-6/n-3 fatty acid ratio on maternal and fetal fatty acid profile and its relation to offspring growth and body composition at 1 year of age. Eur J Clin Nutr 2013; 67:282-8. [PMID: 23340492 DOI: 10.1038/ejcn.2013.2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVE Evidence is accumulating that the long-chain PUFA (LCPUFA) are associated with offspring growth and body composition. We investigated the relationship between LCPUFAs in red blood cells (RBCs) of pregnant women/breastfeeding mothers and umbilical cord RBCs of their neonates with infant growth and body composition ≤ 1 year of age. SUBJECTS/METHODS In an open-label randomized, controlled trial, 208 healthy pregnant women received a dietary intervention (daily supplementation with 1200 mg n-3 LCPUFAs and dietary counseling to reduce arachidonic acid (AA) intake) from the 15th week of gestation until 4 months of lactation or followed their habitual diet. Fatty acids of plasma phospholipids (PLs) and RBCs from maternal and cord blood were determined and associated with infant body weight, body mass index (BMI), lean body mass and fat mass assessed by skinfold thickness measurements and ultrasonography. RESULTS Dietary intervention significantly reduced the n-6/n-3 LCPUFA ratio in maternal and cord-blood plasma PLs and RBCs. Maternal RBCs docosahexaenoic acid (DHA), n-3 LCPUFAs and n-6 LCPUFAs at the 32nd week of gestation were positively related to birth weight. Maternal n-3 LCPUFAs, n-6 LCPUFAs and AA were positively associated with birth length. Maternal RBCs AA and n-6 LCPUFAs were significantly negatively related to BMI and Ponderal Index at 1 year postpartum, but not to fat mass. CONCLUSION Maternal DHA, AA, total n-3 LCPUFAs and n-6 LCPUFAs might serve as prenatal growth factors, while n-6 LCPUFAs also seems to regulate postnatal growth. The maternal n-6/n-3 LCPUFA ratio does not appear to have a role in adipose tissue development during early postnatal life.
Collapse
Affiliation(s)
- D Much
- Else Kröner-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|